WO2008032397A1 - Electronic component testing apparatus - Google Patents

Electronic component testing apparatus Download PDF

Info

Publication number
WO2008032397A1
WO2008032397A1 PCT/JP2006/318361 JP2006318361W WO2008032397A1 WO 2008032397 A1 WO2008032397 A1 WO 2008032397A1 JP 2006318361 W JP2006318361 W JP 2006318361W WO 2008032397 A1 WO2008032397 A1 WO 2008032397A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measurement
electronic component
test
fluid
Prior art date
Application number
PCT/JP2006/318361
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Shimada
Kazuyuki Yamashita
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to PCT/JP2006/318361 priority Critical patent/WO2008032397A1/en
Priority to CNA2006800558276A priority patent/CN101512357A/en
Priority to TW096132854A priority patent/TW200821598A/en
Publication of WO2008032397A1 publication Critical patent/WO2008032397A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2862Chambers or ovens; Tanks

Definitions

  • the present invention is used to test an IC device by electrically contacting various electronic components such as a semiconductor integrated circuit element (hereinafter also referred to as an IC device) with a contact portion of a test head.
  • a semiconductor integrated circuit element hereinafter also referred to as an IC device
  • the present invention relates to an electronic component testing apparatus.
  • a handler In an electronic component test apparatus called a handler, a large number of IC devices housed in a tray are transported into a nodola, and each IC device is brought into electrical contact with a test head to perform an electronic component test. Have the device body (hereinafter referred to as a tester) perform the test. When the test is completed, each IC device is ejected from the test head and placed on the tray according to the test result, so that it is sorted into categories such as non-defective products and defective products.
  • test chamber is provided above the test head.
  • This test chamber is equipped with a heat exchanger and a fan, and the air heated or absorbed by the heat exchanger is circulated in the casing of the test chamber by the fan.
  • the heat exchanger and the fan are used to change the atmosphere at the measurement position where the IC device is located in the test chamber to the predetermined set temperature. It is necessary to adjust with high accuracy.
  • an electronic component test apparatus capable of simultaneously testing a plurality of IC devices has a plurality of measurement positions, and among the plurality of measurement positions, the upstream side of the air circulation path by the fan is provided. Some are located and some are located downstream. others Therefore, a temperature difference may occur among a plurality of measurement positions, and it may be difficult to accurately raise or lower the temperature to the set temperature intended for each measurement position.
  • An object of the present invention is to provide an electronic component testing apparatus capable of shortening the startup time at startup and improving the temperature application accuracy.
  • an electronic device capable of pressing the electronic device under test against a contact portion of a test head by pressing means.
  • a component testing apparatus comprising: a chamber for sealing a space surrounding the pressing unit and the contact portion; a temperature adjusting unit capable of raising or lowering a fluid existing in the chamber; and circulating the fluid in the chamber. And circulating means for directing the fluid from the temperature adjusting means to the vicinity of the measurement position where the electronic device under test is located at the time of the test.
  • an electronic component test apparatus for recovering the fluid that has been guided to the vicinity of the measurement position via (see claim 1).
  • the fluid whose temperature has been raised or lowered by the temperature adjusting means is directly guided to the vicinity of the measurement position.
  • the measurement position can be preferentially raised or lowered over the other structures in the test chamber, so that the start-up time of the electronic component test apparatus can be shortened.
  • the pressing means includes a heat absorbing / dissipating body for absorbing heat from the fluid or dissipating heat to the fluid, and is provided in the vicinity of the measurement position.
  • the means preferably induces the fluid directly from the circulation means to the heat sink / radiator (see claim 2).
  • the guiding means includes a conduit for guiding the fluid from the temperature adjusting means to the vicinity of the measurement position, and the conduit includes: It is preferably provided in the test chamber (see claim 3).
  • the conduit is close to the temperature adjusting means. It is preferable to have an inlet that opens near the outlet and an outlet that opens near the measurement position (see claim 4).
  • the electronic component test apparatus includes a plurality of the pressing means, and each pressing means has a heat absorbing / dissipating body for absorbing heat or radiating heat from the fluid. It is preferable that the conduit has a plurality of outlets that open to the vicinity of the heat-absorbing and radiating bodies of the pressing means, respectively (see claim 5).
  • the fluid flowing out through the outlet is not particularly limited.
  • a distribution means for substantially evenly distributing the plurality of heat absorbing / dissipating bodies.
  • V preferably (see claim 6).
  • the distribution means preferably includes a flap provided around the outlet in order to adjust the flow rate of the fluid flowing out from the outlet. 7).
  • the electronic component test apparatus further includes a temperature measuring means for measuring the temperature of the fluid, and the temperature measuring means is circulated by the circulation means. It is preferable that the fluid circulation path is provided in the vicinity of the downstream side of the outlet of the conduit or in the vicinity of the downstream side of the measurement position (see claim 8).
  • the temperature measurement means By providing the temperature measurement means in the vicinity of the downstream side of the outlet of the conduit or in the vicinity of the downstream side of the measurement position in the fluid circulation path, the temperature at the measurement position can be accurately measured.
  • the plurality of temperature measuring means includes a first temperature measuring means and a second temperature measuring means, and the first temperature measuring means is configured to perform the test at the time of the test.
  • the second temperature measuring means is provided in the vicinity of the measurement position where the electronic device under test is located, and the second temperature measuring means is downstream of the temperature adjusting means in the fluid circulation path circulated by the circulating means. And provided upstream of the measurement position. Preferred (see claim 10).
  • the temperature at the measurement position can be measured with high accuracy, so that the temperature application accuracy can be improved.
  • a plurality of the measurement positions are provided so that a plurality of the electronic devices to be tested can be simultaneously tested, and the first temperature measurement means is provided in the circuit. ! / Is preferably provided near the downstream side of the plurality of measurement positions (see claim 11).
  • control means is a measurement result of one of the first temperature measuring means or the second temperature measuring means so as to shorten the temperature rising time or the temperature falling time. It is preferable to control the temperature adjusting means based only on the measurement result of the other of the second temperature measuring means or the first temperature measuring means after controlling the temperature adjusting means based only on (See claim 12).
  • control means performs temperature increase or decrease by the temperature adjustment means until the first temperature measurement means measures the first set temperature, and then It is preferable to limit the temperature increase or decrease by the temperature adjusting means until the second temperature measuring means measures the second set temperature (see claim 13).
  • control unit is configured to control the temperature so that the temperature at the measurement position is maintained at a third set temperature based on the measurement result of the second temperature measurement unit. It is preferable to control the adjusting means (see claim 14).
  • the first set temperature is relatively higher than the third set temperature (see claim 15).
  • the second set temperature is substantially the same as the third set temperature, or is relatively low with respect to the third set temperature. Preferably it is temperature (see claim 16).
  • control means sets the second set temperature based on the measurement result of the first temperature measurement means and the measurement result of the second temperature measurement means. It is preferable to correct it (see claim 17).
  • the control means preferably corrects the second set temperature based on the measurement results of all the first temperature measurement means and the measurement results of the second temperature measurement means. (See claim 18).
  • FIG. 1 is a schematic side view showing an electronic device test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an electronic component testing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing tray handling in the electronic component testing apparatus according to the embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing an IC stocker used in the electronic component testing apparatus according to the embodiment of the present invention.
  • FIG. 5 is a perspective view showing a customer tray used in the electronic component testing apparatus according to the embodiment of the present invention.
  • FIG. 6 is an exploded perspective view showing a test tray used in the electronic component testing apparatus according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a test chamber of the electronic device test apparatus according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a pusher unit of the electronic component test apparatus according to the embodiment of the present invention.
  • FIG. 9A is a cross-sectional view showing a pusher used in the electronic device test apparatus according to the embodiment of the present invention, and is a view showing a state where the pressing member is at the reference position.
  • FIG. 9B is a cross-sectional view showing a pusher used in the electronic device test apparatus according to the embodiment of the present invention, and shows a state in which the pressing member is relatively moved upward with respect to the guide member. is there.
  • FIG. 9C is a cross-sectional view showing a pusher used in the electronic device testing apparatus according to the embodiment of the present invention, and shows a state in which the pressing member is moved relative to the left side with respect to the guide member. .
  • FIG. 9D shows a pusher used in the electronic device test apparatus according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a state where the pressing member is moved relative to the right side with respect to the guide member.
  • FIG. 10A is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, and shows a state where the pusher is at the reference position.
  • FIG. 10B is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, showing a state in which the pusher is relatively moved upward with respect to the base member.
  • FIG. 10C is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, showing a state in which the pusher is moved relative to the left side with respect to the base member.
  • FIG. 10D is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, showing a state in which the pusher is moved relative to the right side with respect to the base member.
  • FIG. 11 is a cross-sectional view of a principal part of a pusher unit according to another embodiment of the present invention.
  • FIG. 12 is a flowchart showing a method of applying temperature and monitoring temperature in the test chamber in the electronic device test apparatus according to the embodiment of the present invention.
  • FIG. 13 is a graph showing an example of transition of measured values by the first and second temperature sensors when the temperature is adjusted by the method shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an electronic component testing apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing an electronic component testing apparatus according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention. It is a conceptual diagram which shows the handling of the tray in.
  • FIG. 3 is a view for understanding the tray handling method in the electronic component testing apparatus according to the present embodiment.
  • the members arranged side by side in the vertical direction are planarly shown. Some parts are shown. Therefore, its mechanical (three-dimensional) structure will be explained with reference to FIG.
  • the electronic device test apparatus tests (inspects) whether or not the IC device can properly operate in a state in which a high-temperature or low-temperature thermal stress is applied to the IC device. It is a device that classifies IC devices based on it, and consists of a handler 1, a test head 5, and a tester 6.
  • the IC device test using this electronic component test equipment is a tray in which a large number of IC devices to be tested are mounted (hereinafter referred to as customer tray; see Fig. 5). This is called a tray (see Fig. 6). It is carried out by changing the chair.
  • the handler 1 in the present embodiment stores IC devices to be tested from now on, and a storage unit 200 that classifies and stores tested IC devices. And classifying the loader unit 300 that sends IC devices sent from the storage unit 200 into the chamber unit 100, the chamber unit 100 including the test head 5, and the IC devices that have been tested in the chamber unit 100.
  • the unloader part 400 to be taken out and the power are also configured! RU
  • the socket 50 provided in the test head 5 is connected to the tester 6 through the cable 7 shown in FIG. 1, and the IC device electrically connected to the socket 50 is connected to the tester 6 through the cable 7. Connect and test the IC device with the test signal from the tester 6 concerned.
  • a space is provided in a part of the lower portion of the handler 1, and the test head 5 is replaceably disposed in this space, and through a through hole formed in the device base of the handler 1, It is possible to make electrical contact between the IC device and the socket 50 on the test head 5.
  • it is replaced with another test head that has a socket suitable for the shape and pin count of the IC device of that type.
  • FIG. 4 is an exploded perspective view showing an IC stocker used in the electronic component test apparatus according to the embodiment of the present invention
  • FIG. 5 is a perspective view showing a customer tray used in the electronic component test apparatus according to the embodiment of the present invention. .
  • the storage unit 200 includes a pre-test IC stocker 201 that stores pre-test IC devices, and a tested IC stocker 202 that stores IC devices classified according to the test results! / ⁇ .
  • these stockers 201 and 202 include a frame-like tray support frame 203 and an elevator 204 that can be moved up and down by entering the lower force of the tray support frame 203 and moving upward. And. A plurality of customer trays KST are stacked on the tray support frame 203, and only the stacked customer trays KST are moved up and down by the elevator 204.
  • the accommodating portions for accommodating the IC devices are arranged in 10 rows ⁇ 6 columns.
  • two stock forces STK-B are provided in the pre-test IC stocker 201, and an empty customer tray sent to the unloader unit 400 is provided next to the stock force STK-B.
  • TK 8 is provided, and can be sorted and stored in up to 8 categories according to test results. In other words, in addition to non-defective products and defective products, it can be classified into non-defective products that have a high operating speed, medium-speed products, low-speed products, or defective products that require retesting. It becomes possible.
  • the lower force of the device base 101 is also transferred to the window 306 of the loader unit 300 by the tray transfer arm 205 provided between the storage unit 200 and the device base 101.
  • the IC device loaded in the customer tray KST is transferred to the precursor 305 by the device transport device 304 and the mutual positional relationship between the IC devices is corrected.
  • the IC device transferred to the precursor 305 is stopped again at the loader unit 300 by using the device transfer device 304 and is loaded on the test tray TST.
  • the device transport device 304 for transferring IC devices from the customer tray KST to the test tray TST includes two rails 301 installed on the device base 101 and the two rails 301.
  • a suction head (not shown) is mounted downward on the movable head 303 of the device transport device 304, and the suction head moves while sucking to hold the IC device from the customer tray KST. Then, transfer the IC device to the test tray TST. For example, about eight of these suction heads are attached to one movable head 303. IC devices can be transferred to the test tray TST.
  • FIG. 6 is an exploded perspective view showing a test tray used in the electronic component testing apparatus according to the embodiment of the present invention.
  • a test tray TST a plurality of crosspieces 13 are provided in parallel at equal intervals on the rectangular frame 12, and a plurality of mounting pieces 14 are provided on both sides of the crosspieces 13 and on the side 12a of the frame 12 facing the crosspieces 13, respectively. It is formed to protrude at equal intervals.
  • An insert accommodating portion 15 is constituted by the space between these bars 13 or between the bars 13 and the side 12a and the two attachment pieces 14.
  • Each insert receiving portion 15 is adapted to receive one insert 16 and the insert 16 is attached to the two attachment pieces 14 using a fastener 17 in a floating state. Therefore, holes 21 for attachment to the attachment pieces 14 are formed at both ends of the insert 16. For example, about 16 X 4 inserts 16 are attached to one test tray TST.
  • Each insert 16 has the same shape and the same dimensions, and an IC device is accommodated in each insert 16.
  • the IC accommodating portion 19 of the insert 16 is determined according to the shape of the IC device to be accommodated, and is a rectangular recess in the example shown in FIG. Further, guide holes 20 into which the guide pins 129f of the pusher 129 are inserted are provided on both sides of the IC housing portion 19.
  • FIG. 7 is a cross-sectional view showing a test chamber of the electronic device test apparatus according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a pusher unit of the electronic device test apparatus according to the embodiment of the present invention.
  • 9D is a cross-sectional view showing a pusher used in the electronic component test apparatus of the present invention
  • FIGS. 10A to 10D are cross-sectional views of the main parts of the pusher of the electronic component test apparatus according to the embodiment of the present invention
  • FIG. It is principal part sectional drawing of the pusher unit in other embodiment of invention.
  • test tray TST described above is sent to the chamber unit 100, and the test of each IC device is performed with the IC device mounted on the test tray TST.
  • the chamber unit 100 has a high temperature intended for IC devices loaded on the test tray TST.
  • the soak chamber 110 to which a low temperature thermal stress is applied the test chamber 120 in which the IC device in the state where the thermal stress is applied in the soak chamber 110 is electrically contacted with the test head 5, and the test chamber 120 are tested.
  • the integrated IC device force is also composed of an unsoak chamber 130 that removes thermal stress.
  • the unsoak chamber 130 is preferably thermally insulated from the soak chamber 110 and the test chamber 120. In practice, a predetermined thermal stress is applied to the region between the soak chamber 110 and the test chamber 120, The unsoak chamber 130 is thermally isolated from these. In the present embodiment, these are collectively referred to as the chamber portion 100 for convenience.
  • the soak chamber 110 is provided with a vertical transfer device as conceptually shown in FIG. 3, and a plurality of test trays TST are placed in the vertical transfer device until the test chamber 120 is empty. Wait while being supported. Mainly, thermal stress is applied to IC devices during this standby.
  • a pusher unit 128 including a plurality of pushers 129 is provided above the test head 5 so as to be movable in the Z-axis direction.
  • the plurality of pushers 129 are arranged in the pusher 128 so as to correspond to the arrangement of the sockets 50 on the test head 5.
  • a drive plate 127b supported by the drive shaft 127a of the Z-axis drive device 127 is provided above the pusher unit 128, a drive plate 127b supported by the drive shaft 127a of the Z-axis drive device 127 is provided above the pusher unit 128, a drive plate 127b supported by the drive shaft 127a of the Z-axis drive device 127 is provided.
  • the drive plate 127b is connected to the Z-axis drive device 127 via the drive shaft 127b.
  • This actuator is connected to an actuator (not shown), and can be moved up and down by driving this actuator.
  • a plurality of convex portions 127c that press the pushers 129 are provided on the lower surface of the drive plate 127b. These convex portions 127c are arranged on the lower surface of the drive plate 127b so as to correspond to the arrangement of the pushers 129 in the pusher unit 128.
  • the pusher unit 128 includes a plurality of pushers 129 that contact and press the IC device during a test, and an upper base member 128a that supports the top of each pusher 129 in a floating state.
  • a lower base member 128b that supports the lower portion of each pusher 129 in a floating state and a force are also configured.
  • the pusher unit 128 corresponds to the socket 50 on the test head 5, for example, a total of 64 pushers.
  • a pusher 129 is provided. As shown in FIG.
  • the pusher 129 includes a pusher block 129b that is in close contact with the upper surface of the IC device, a heat sink 129c that absorbs or dissipates the pusher block 129b, and a Z-axis drive device 127. And a pressing member 129a including a shaft 129c with which the convex portion 127c abuts.
  • the pusher 129 has a guide member 129e from which a guide pin 129f protrudes downward. As shown in FIGS. 9A to 9D, the pressing member 129a is provided in the guide member 129e, and can be slightly moved up and down and left and right with respect to the guide member 129e.
  • FIG. 9A to 9D the pressing member 129a is provided in the guide member 129e, and can be slightly moved up and down and left and right with respect to the guide member 129e.
  • FIG. 9A shows a state in which the pressing member 129a is at the reference position with respect to the guide member 129e due to the weight of the pressing member 129a.
  • FIG. 9B shows a state in which the pressing member 129a is slightly moved upward relative to the guide member 129e
  • FIG. 9C is a state in which the pressing member 129a is minutely moved to the left relative to the guide member 129e.
  • FIG. 9D shows a state where the pressing member 129a has slightly moved to the right relative to the guide member 129e.
  • the upper base member 128a of the pusher unit 128 is a metal member made of, for example, aluminum, and has an opening that allows the pusher 129 to pass therethrough.
  • the lower base member 128b is a metal member that also has, for example, an aluminum isotropic force, and has an opening that allows the pusher 129 to pass therethrough.
  • FIG. 10A shows a state where the pusher 129 is at the reference position with respect to the base members 128a and 128b due to the weight of the pusher 129.
  • FIG. 10B shows a state in which the pusher 129 has moved slightly upward relative to the base members 128a and 128b
  • FIG. 10C shows that the pusher 129 has moved slightly to the left relative to the base members 128a and 128b.
  • FIG. 10D shows a state in which the pusher 129 has slightly moved to the right relative to the base members 128a and 128b.
  • a separator 126c is provided between the upper base member 128a and the lower base member 128b.
  • the separator 126c is a metal flat plate member made of, for example, aluminum.
  • the separator 126c is formed with an outlet 126d that opens toward the heat sink 129c of the pusher 129.
  • the test chamber 120 is sealed with a casing 121 as shown in FIG. Inside the casing 121, a heat exchanger 122, a fan 123, first and second temperature sensors 124a and 124b, a pusher unit 128, and a socket 50 are provided. Further, in the present embodiment, a duct 126 is provided inside the casing 121 to guide hot air or cold air directly from the fan 123 to the heat sink 129c of the pusher 129 via the heat exchanger 122.
  • the duct 126 includes an inlet side duct 126a, a separator 126c, and an upper base member 128a of the pusher unit 128.
  • the inlet-side duct 126a is a tubular member bent at a right angle, and the fan 123 force is placed on the inlet 126b.
  • the fan 123 for example, a sirocco fan, a turbo fan, a cross flow fan, or a propeller fan can be used.
  • a heat exchange ⁇ 122 is provided between the inlet 126b of the inlet duct 126 and the end point.
  • the heat exchanger 122 is configured by a heat exchanger for heat release through which a heating medium circulates or an electric heater, and the inside of the casing 121 is, for example, about room temperature to 160 ° C. It is possible to supply a sufficient amount of heat to maintain a high temperature.
  • the heat exchanger 122 is composed of an endothermic heat exchanger or the like in which a refrigerant such as liquid nitrogen circulates, and the inside of the casing 121 is, for example, about 60 ° C. to room temperature. It has become possible to absorb a sufficient amount of heat to maintain a low temperature. In some cases, a coolant such as liquid nitrogen is directly supplied into the casing 121 for circulation.
  • a second temperature sensor 124b for measuring the temperature of the atmosphere in the casing 121 is provided.
  • the first and second temperature sensors 124a and 124b for example, platinum sensors, thermocouples, or the like can be used.
  • simply “upstream” means upstream in the circulation path of hot air or cold air by the fan 123 in the casing 121
  • simply “downstream” means downstream in the circulation path. Means.
  • the first temperature sensor 124a in the vicinity of the measurement position 900 by providing the first temperature sensor 124a in the vicinity of the measurement position 900, the temperature at the measurement position 900 can be measured with high accuracy, so that the temperature application accuracy is further improved. be able to.
  • the number of temperature sensors provided in the casing 121 of the test chamber 120 is not limited to two, and for example, three or more temperature sensors may be provided.
  • the temperature application accuracy can be further improved by providing a temperature sensor in the vicinity of each measurement position 900.
  • the heat exchanger 122 and the two temperature sensors 124a, 124b are connected to the control device 125, and the control device 125 includes the first temperature sensor 124a and the second temperature sensor.
  • the heat exchange 22 can be controlled based on the measurement result of the support 124b.
  • the end point of the inlet duct 126a is connected to the separator 126c and the upper base member 128a, and the separator 126c and the upper base member 128a form a tubular structure. For this reason, the hot air or the cold air generated by the heat exchanger 122 passes through the inlet duct 126a between the upper base member 128a and the separator 126c as shown by a dashed line arrow in FIG.
  • Guided to 900 The hot or cold air that has passed through the measurement position 900 is collected by the fan 123 and is again introduced into the inlet 126b of the inlet duct 126a to circulate!
  • the hot air or the cold air is directly guided to the heat sink 129c at the measurement position 900 from the duct 129 by the duct 126.
  • the measurement position 900 and the heat sink 129d can be heated or lowered in preference to the other structures in the casing 121. It can be shortened.
  • a flap 1 is formed around the downstream side of the outlet 126d of the separator 126c. 26e may be provided. By adjusting the height, width or angle of the flap 126e for each outlet 126d, the temperature difference between the plurality of measurement positions 900 and the heat sink 129d can be further reduced.
  • the test tray TST is transported between the pusher unit 128 and the socket 50, and the Z-axis drive device 127 moves the drive plate 127b below the Z-axis. As a result, the entire pusher unit 128 is lowered. During this lowering, the guide pin 129f of the pusher 129 is inserted into the guide hole 20 of the insert 16, and each pusher 129 is placed upright with respect to the insert 16. When the pusher 129 is further lowered, the pusher block 129b is pressed against the upper surface of the IC device while the pressing member 129a is guided in the insert 16, and the input / output terminals of the IC device and the contact pins of the socket 50 are electrically connected.
  • the tester exchanges test signals with the IC device via the test head, and the IC device test is executed.
  • the result of this test is, for example, an address determined by the identification number assigned to the test tray TST and the IC device number assigned inside the test tray TST. Stored in a storage device.
  • test tray TST in the test chamber 120
  • a transport roller or the like can be used as a means for transporting the test tray TST in the test chamber 120.
  • the drive plate 127b of the Z-axis drive device 127 is sufficiently raised so that a gap through which the test tray TST can pass is formed between the pusher 129 and the socket 50. is doing.
  • the test tray TST for which the test has been completed is carried out to the unloader section 400 after the IC device that has been tested in the unsoak chamber 130 is removed from heat and returned to room temperature. . Further, a tray transfer device 102 is provided on the device base 101, and the test tray TST discharged from the unsoak chamber 130 by the tray transfer device 102 is soaked via the unloader unit 400 and the loader unit 300. Returned to chamber 110.
  • the unloader section 400 is also provided with two device transport apparatuses 404 having the same structure as the device transport apparatus 304 provided in the loader section 300.
  • the test tray TST force tested IC device carried out to the unloader unit 400 is Can be transshipped to customer train KST according to test results.
  • the device base 101 in the unloader unit 400 includes the unloader unit 40.
  • an elevating table for elevating the customer tray KST is provided below each window 406. This lifting table is lowered with a customer tray KST full of tested IC devices, and this full tray is transferred to the tray transfer arm 205.
  • test chamber temperature applying method at the time of starting the electronic component testing apparatus according to the present embodiment and a temperature monitoring method after the temperature in the test chamber is stabilized will be described.
  • the present invention is not particularly limited to this, and the temperature inside the casing 121 is lowered. It can also be applied to cases.
  • FIG. 12 is a flowchart showing a method for temperature application and temperature monitoring in the test chamber in the electronic component test apparatus according to the embodiment of the present invention, and FIG. 13 shows the first and second methods when the method shown in FIG. 12 is executed. It is a graph which shows an example of transition of the measured value by the 2nd temperature sensor
  • the warm air blown by the fan 123 is directly guided to the outlets 126d of the separator 126c through the duct 126, and blown toward the heat sink 129d and the measurement position 900 of the pusher 129 with direct force.
  • the first temperature sensor 124a provided on the downstream side of the measurement position 900 measures the temperature of the atmosphere in the vicinity of the measurement position 900. Until the temperature Ta [° C] measured by the first temperature sensor 124a becomes equal to or higher than the first set temperature A [° C] (Ta ⁇ A), the controller 125 continues to heat up the heat exchanger 122. (NO in step S20). [0084] As shown in Fig. 13, the first set temperature A is higher than the target third set temperature C [° C] to be applied to the measurement position 900 during the test ( A> C).
  • the atmosphere in the vicinity of the downstream side of the measurement position 900 is raised to the first set temperature A, and the temperature of the entire measurement position 900 is overshot with respect to the third set temperature C.
  • the second temperature sensor 124b is closer to the heat exchanger 122 than the first temperature sensor 124a, as shown in the figure, the measured temperature Ta of the first temperature sensor 124a is The measured temperature Tb of the second temperature sensor 124b is higher.
  • control device 125 controls to stop the temperature increase of heat exchanger 122.
  • Step S30 The temperature sensor that measures the temperature of the atmosphere in the casing 121 is switched from the first temperature sensor 124a to the second temperature sensor 124b (step S30). Then, until the temperature Tb [° C] measured by the second temperature sensor 124b becomes equal to or lower than the second set temperature B [° C] (T b ⁇ B), the control device 125 stops the heat exchange 122. Leave as is (N 0 at step S50).
  • the first temperature sensor 124a located in the vicinity of the downstream side of the measurement position 900 is used to change the temperature of the entire measurement position 900 relative to the third set temperature C.
  • the heat exchange 122 is stopped, and the temperature is lowered from the plurality of measurement positions 900 and the heat sink 129d located on the upstream side. Because of this, measurement The temperature of the entire position 900 can be made uniform in a short time, and the start-up time of the electronic component test apparatus can be shortened.
  • the temperature difference between the plurality of measurement positions 900 and the heat sink 129d can be reduced, the temperature application accuracy can be improved.
  • the second set temperature B is corrected while the second temperature sensor 124b is monitoring the temperature.
  • Set Step S80.
  • a plurality of first temperature sensors 124a may be arranged in the vicinity of a plurality of measurement positions 900, and in this case, the average value of the measured temperatures of all the first temperature sensors 124a is calculated.
  • Ta used in step S 70 in FIG. 13 the temperature application accuracy can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

An electronic component testing apparatus is provided with a casing (121) hermetically sealing a space surrounding a pusher (129) and a socket (50); a heat exchanger (122) for increasing or reducing temperature of a fluid that exists in the casing (121); and a fan (123) for circulating the fluid; a duct (126) for directly guiding the fluid from the heat exchanger (122) to the vicinity of a measuring position (900). Furthermore, the fan (123) recovers the fluid guided to the measuring position (900) through the duct (126).

Description

明 細 書  Specification
電子部品試験装置  Electronic component testing equipment
技術分野  Technical field
[0001] 本発明は、半導体集積回路素子等の各種電子部品(以下、代表的に ICデバイスと も称する。 )をテストヘッドのコンタクト部に電気的に接触させて ICデバイスを試験する ために用いられる電子部品試験装置に関する。  The present invention is used to test an IC device by electrically contacting various electronic components such as a semiconductor integrated circuit element (hereinafter also referred to as an IC device) with a contact portion of a test head. The present invention relates to an electronic component testing apparatus.
背景技術  Background art
[0002] ハンドラ(Handler)と称される電子部品試験装置では、トレイに収容した多数の ICデ バイスをノヽンドラ内に搬送し、各 ICデバイスをテストヘッドに電気的に接触させ、電子 部品試験装置本体 (以下、テスタと称する。 )に試験を行わせる。そして、試験が終了 すると各 ICデバイスをテストヘッドから払い出し、試験結果に応じたトレイに載せ替え ることで、良品や不良品といったカテゴリへの仕分けが行われる。  [0002] In an electronic component test apparatus called a handler, a large number of IC devices housed in a tray are transported into a nodola, and each IC device is brought into electrical contact with a test head to perform an electronic component test. Have the device body (hereinafter referred to as a tester) perform the test. When the test is completed, each IC device is ejected from the test head and placed on the tray according to the test result, so that it is sorted into categories such as non-defective products and defective products.
[0003] このような ICデバイスのテストは、 55°C〜150°C程度の熱ストレスを ICデバイスに 印加した状態で実施されるため、テストヘッドの上部にテストチャンバが設けられてい る。このテストチャンバは、熱交翻及びファンを備えており、熱交^^で加熱又は 吸熱された空気を、ファンによりテストチャンバのケーシング内で循環させて 、る。  [0003] Such an IC device test is performed in a state where a thermal stress of about 55 ° C. to 150 ° C. is applied to the IC device. Therefore, a test chamber is provided above the test head. This test chamber is equipped with a heat exchanger and a fan, and the air heated or absorbed by the heat exchanger is circulated in the casing of the test chamber by the fan.
[0004] 電子部品試験装置の起動時には、 ICデバイスの試験に備えて、熱交換器及びファ ンを用いて、テストチャンバ内において試験時に ICデバイスが位置する測定位置の 雰囲気を、所定の設定温度に精度良く調整する必要がある。  [0004] At the time of starting up the electronic component testing apparatus, in preparation for the IC device test, the heat exchanger and the fan are used to change the atmosphere at the measurement position where the IC device is located in the test chamber to the predetermined set temperature. It is necessary to adjust with high accuracy.
[0005] し力しながら、この起動時の昇温又は降温の際、測定位置の他に、テストチャンバ 内に存在する全ての構造体を加熱又は冷却する必要がある。特に、測定位置は、テ ストチャンバ内におけるファンによる空気の循環路において、熱容量の大きな構造体 の下流側に位置しているため、測定位置の雰囲気が設定温度に到達するのに多く の時間を必要とする場合がある。  [0005] However, when the temperature is raised or lowered at the time of starting, it is necessary to heat or cool all structures existing in the test chamber in addition to the measurement position. In particular, since the measurement position is located downstream of the structure with a large heat capacity in the air circulation path by the fan in the test chamber, it takes a lot of time for the atmosphere at the measurement position to reach the set temperature. You may need it.
[0006] また、複数の ICデバイスを同時に試験可能な電子部品試験装置においては、複数 の測定位置を備えており、複数の測定位置の中でも、ファンによる空気の循環路に ぉ 、て上流側に位置するものや下流側に位置するものが存在することとなる。このた め、複数の測定位置の中で温度差が生じて、各々の測定位置を目的とする設定温 度に精度良く昇温又は降温することが困難となる場合がある。 [0006] In addition, an electronic component test apparatus capable of simultaneously testing a plurality of IC devices has a plurality of measurement positions, and among the plurality of measurement positions, the upstream side of the air circulation path by the fan is provided. Some are located and some are located downstream. others Therefore, a temperature difference may occur among a plurality of measurement positions, and it may be difficult to accurately raise or lower the temperature to the set temperature intended for each measurement position.
発明の開示  Disclosure of the invention
[0007] 本発明は、起動時の立上時間を短縮すると共に、温度印加精度を向上することが 可能な電子部品試験装置を提供することを目的とする。  [0007] An object of the present invention is to provide an electronic component testing apparatus capable of shortening the startup time at startup and improving the temperature application accuracy.
[0008] 上記目的を達成するために、本発明によれば、被試験電子部品の試験を行うため に、押圧手段により前記被試験電子部品をテストヘッドのコンタクト部に押し付けるこ とが可能な電子部品試験装置であって、前記押圧手段及び前記コンタクト部を囲む 空間を密閉するチャンバと、前記チャンバ内に存在する流体を昇温又は降温可能な 温度調整手段と、前記流体を前記チャンバ内で循環させる循環手段と、前記流体を 、前記温度調整手段から、試験時に前記被試験電子部品が位置する測定位置の近 傍に直接誘導する誘導手段と、を備え、前循環手段は、前記誘導手段を経由して前 記測定位置の近傍に誘導された前記流体を回収する電子部品試験装置が提供され る (請求項 1参照)。  In order to achieve the above object, according to the present invention, in order to test an electronic device under test, an electronic device capable of pressing the electronic device under test against a contact portion of a test head by pressing means. A component testing apparatus comprising: a chamber for sealing a space surrounding the pressing unit and the contact portion; a temperature adjusting unit capable of raising or lowering a fluid existing in the chamber; and circulating the fluid in the chamber. And circulating means for directing the fluid from the temperature adjusting means to the vicinity of the measurement position where the electronic device under test is located at the time of the test. There is provided an electronic component test apparatus for recovering the fluid that has been guided to the vicinity of the measurement position via (see claim 1).
[0009] 本発明では、温度調整手段により昇温又は降温された流体を、測定位置の近傍に 直接誘導する。これにより、測定位置をテストチャンバ内の他の構造体よりも優先的 に昇温又は降温することができるので、電子部品試験装置の起動時間を短縮するこ とがでさる。  In the present invention, the fluid whose temperature has been raised or lowered by the temperature adjusting means is directly guided to the vicinity of the measurement position. As a result, the measurement position can be preferentially raised or lowered over the other structures in the test chamber, so that the start-up time of the electronic component test apparatus can be shortened.
[0010] また、各々の測定位置の近傍に流体を直接誘導することで複数の測定位置間の温 度差を低減することができるので、温度印加精度を向上させることができる。  [0010] In addition, since the temperature difference between the plurality of measurement positions can be reduced by directly guiding the fluid in the vicinity of each measurement position, it is possible to improve the temperature application accuracy.
[0011] 上記発明においては特に限定されないが、前記押圧手段は、前記流体から吸熱し 又は前記流体へ放熱するための吸放熱体を有し、前記測定位置の近傍に設けられ ており、前記誘導手段は、前記流体を前記循環手段から前記吸放熱体に直接誘導 することが好ま Uヽ (請求項 2参照)。  [0011] In the above invention, although not particularly limited, the pressing means includes a heat absorbing / dissipating body for absorbing heat from the fluid or dissipating heat to the fluid, and is provided in the vicinity of the measurement position. The means preferably induces the fluid directly from the circulation means to the heat sink / radiator (see claim 2).
[0012] 上記発明にお!/、ては特に限定されな!、が、前記誘導手段は、前記流体を前記温 度調整手段から前記測定位置の近傍に導く導管を有し、前記導管は、前記テストチ ヤンバ内に設けられて 、ることが好ま 、(請求項 3参照)。 [0012] In the above invention! /, Although not particularly limited !, the guiding means includes a conduit for guiding the fluid from the temperature adjusting means to the vicinity of the measurement position, and the conduit includes: It is preferably provided in the test chamber (see claim 3).
[0013] 上記発明においては特に限定されないが、前記導管は、前記温度調整手段の近 傍で開口して 、る入口と、前記測定位置の近傍で開口して 、る出口と、を有すること が好ましい (請求項 4参照)。 [0013] Although not particularly limited in the above invention, the conduit is close to the temperature adjusting means. It is preferable to have an inlet that opens near the outlet and an outlet that opens near the measurement position (see claim 4).
[0014] 上記発明においては特に限定されないが、前記電子部品試験装置は、前記押圧 手段を複数備え、前記各押圧手段は、前記流体から吸熱し又は放熱するための吸 放熱体を有しており、前記導管は、前記各押圧手段の前記吸放熱体の近傍に向か つてそれぞれ開口して 、る複数の前記出口を有することが好ま U、(請求項 5参照)。 [0014] Although not particularly limited in the above invention, the electronic component test apparatus includes a plurality of the pressing means, and each pressing means has a heat absorbing / dissipating body for absorbing heat or radiating heat from the fluid. It is preferable that the conduit has a plurality of outlets that open to the vicinity of the heat-absorbing and radiating bodies of the pressing means, respectively (see claim 5).
[0015] 上記発明においては特に限定されないが、前記出口を介して流出する前記流体を[0015] In the above invention, the fluid flowing out through the outlet is not particularly limited.
、前記複数の吸放熱体に対して実質的に均等に配分する配分手段をさらに備えてAnd a distribution means for substantially evenly distributing the plurality of heat absorbing / dissipating bodies.
V、ることが好まし 、(請求項 6参照)。 V, preferably (see claim 6).
[0016] 上記発明においては特に限定されないが、前記配分手段は、前記出口から流出す る前記流体の流量を調整するために前記出口の周囲に設けられたフラップを含むこ とが好ましい (請求項 7参照)。 [0016] Although not particularly limited in the above invention, the distribution means preferably includes a flap provided around the outlet in order to adjust the flow rate of the fluid flowing out from the outlet. 7).
[0017] 上記発明にお 、ては特に限定されな 、が、前記電子部品試験装置は、前記流体 の温度を測定する温度測定手段をさらに備え、前記温度測定手段は、前記循環手 段により循環される前記流体の循環路において、前記導管の出口の下流側近傍、又 は、前記測定位置の下流側近傍に設けられて 、ることが好ま 、 (請求項 8参照)。 [0017] In the above invention, although not particularly limited, the electronic component test apparatus further includes a temperature measuring means for measuring the temperature of the fluid, and the temperature measuring means is circulated by the circulation means. It is preferable that the fluid circulation path is provided in the vicinity of the downstream side of the outlet of the conduit or in the vicinity of the downstream side of the measurement position (see claim 8).
[0018] 温度測定手段を、流体の循環路において、導管の出口の下流側近傍、又は、前記 測定位置の下流側近傍に設けることで、測定位置の温度を精度良く測定することが できる。 [0018] By providing the temperature measurement means in the vicinity of the downstream side of the outlet of the conduit or in the vicinity of the downstream side of the measurement position in the fluid circulation path, the temperature at the measurement position can be accurately measured.
[0019] 上記発明においては特に限定されないが、前記流体の温度を測定する複数の温 度測定手段と、前記複数の温度測定手段のうちの少なくとも 1つの温度測定手段の 測定結果に基づいて、前記温度調整手段を制御する制御手段と、を備えていること が好ましい (請求項 9参照)。  [0019] Although not particularly limited in the above invention, based on the measurement results of a plurality of temperature measurement means for measuring the temperature of the fluid and at least one temperature measurement means of the plurality of temperature measurement means, And a control means for controlling the temperature adjusting means (refer to claim 9).
[0020] 上記発明においては特に限定されないが、前記複数の温度測定手段は、第 1の温 度測定手段と第 2の温度測定手段とを含み、前記第 1の温度測定手段は、試験時に 前記被試験電子部品が位置する測定位置の近傍に設けられており、前記第 2の温 度測定手段は、前記循環手段により循環される前記流体の循環路において、前記温 度調整手段の下流側であり、且つ、前記測定位置の上流側に設けられていることが 好ましい (請求項 10参照)。 [0020] Although not particularly limited in the above invention, the plurality of temperature measuring means includes a first temperature measuring means and a second temperature measuring means, and the first temperature measuring means is configured to perform the test at the time of the test. The second temperature measuring means is provided in the vicinity of the measurement position where the electronic device under test is located, and the second temperature measuring means is downstream of the temperature adjusting means in the fluid circulation path circulated by the circulating means. And provided upstream of the measurement position. Preferred (see claim 10).
[0021] 第 1の温度測定手段を測定位置の近傍に設けることで、測定位置の温度を精度良 く測定することが可能となるので、温度印加精度を向上させることができる。 [0021] By providing the first temperature measuring means in the vicinity of the measurement position, the temperature at the measurement position can be measured with high accuracy, so that the temperature application accuracy can be improved.
[0022] 上記発明においては特に限定されないが、複数の前記被試験電子部品を同時に 試験可能なように前記測定位置を複数備えており、前記第 1の温度測定手段は、前 記循環路にお!/、て、前記複数の測定位置の下流側近傍に設けられて 、ることが好ま しい(請求項 11参照)。 [0022] Although not particularly limited in the above invention, a plurality of the measurement positions are provided so that a plurality of the electronic devices to be tested can be simultaneously tested, and the first temperature measurement means is provided in the circuit. ! / Is preferably provided near the downstream side of the plurality of measurement positions (see claim 11).
[0023] 上記発明においては特に限定されないが、前記制御手段は、昇温時間又は降温 時間を短縮するように、前記第 1の温度測定手段又は前記第 2の温度測定手段の一 方の測定結果のみに基づいて前記温度調整手段を制御した後に、前記第 2の温度 測定手段又は第 1の温度測定手段の他方の測定結果のみに基づいて前記温度調 整手段を制御することが好まし ヽ (請求項 12参照)。  [0023] Although not particularly limited in the above invention, the control means is a measurement result of one of the first temperature measuring means or the second temperature measuring means so as to shorten the temperature rising time or the temperature falling time. It is preferable to control the temperature adjusting means based only on the measurement result of the other of the second temperature measuring means or the first temperature measuring means after controlling the temperature adjusting means based only on (See claim 12).
[0024] 上記発明においては特に限定されないが、前記制御手段は、前記第 1の温度測定 手段が第 1の設定温度を測定するまで前記温度調整手段による昇温又は降温を実 行した後、前記第 2の温度測定手段が第 2の設定温度を測定するまで、前記温度調 整手段による昇温又は降温を制限することが好ましい (請求項 13参照)。  [0024] Although not particularly limited in the above invention, the control means performs temperature increase or decrease by the temperature adjustment means until the first temperature measurement means measures the first set temperature, and then It is preferable to limit the temperature increase or decrease by the temperature adjusting means until the second temperature measuring means measures the second set temperature (see claim 13).
[0025] 上記発明においては特に限定されないが、前記制御手段は、前記第 2の温度測定 手段の測定結果に基づいて、前記測定位置の温度が第 3の設定温度に維持される ように前記温度調整手段を制御することが好ま ヽ (請求項 14参照)。  [0025] Although not particularly limited in the above invention, the control unit is configured to control the temperature so that the temperature at the measurement position is maintained at a third set temperature based on the measurement result of the second temperature measurement unit. It is preferable to control the adjusting means (see claim 14).
[0026] 上記発明においては特に限定されないが、前記第 1の設定温度は、前記第 3の設 定温度に対して相対的に高 、温度であることが好ま ヽ(請求項 15参照)。  [0026] Although not particularly limited in the above invention, it is preferable that the first set temperature is relatively higher than the third set temperature (see claim 15).
[0027] 上記発明においては特に限定されないが、前記第 2の設定温度は、前記第 3の設 定温度と実質的に同一の温度、又は、前記第 3の設定温度に対して相対的に低い 温度であることが好ま ヽ (請求項 16参照)。  [0027] Although not particularly limited in the above invention, the second set temperature is substantially the same as the third set temperature, or is relatively low with respect to the third set temperature. Preferably it is temperature (see claim 16).
[0028] 上記発明においては特に限定されないが、前記制御手段は、前記第 1の温度測定 手段の測定結果及び第 2の温度測定手段の測定結果に基づ 、て、前記第 2の設定 温度を修正することが好ま ヽ (請求項 17参照)。  [0028] Although not particularly limited in the above invention, the control means sets the second set temperature based on the measurement result of the first temperature measurement means and the measurement result of the second temperature measurement means. It is preferable to correct it (see claim 17).
[0029] 上記発明においては特に限定されないが、前記第 1の温度測定手段を複数備え、 前記制御手段は、全ての前記第 1の温度測定手段の測定結果、及び、前記第 2の温 度測定手段の測定結果に基づ!、て、前記第 2の設定温度を修正することが好ま 、 (請求項 18参照)。 [0029] In the above invention, although not particularly limited, a plurality of the first temperature measuring means, The control means preferably corrects the second set temperature based on the measurement results of all the first temperature measurement means and the measurement results of the second temperature measurement means. (See claim 18).
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の実施形態に係る電子部品試験装置を示す概略側面図である FIG. 1 is a schematic side view showing an electronic device test apparatus according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施形態に係る電子部品試験装置を示す斜視図である。 FIG. 2 is a perspective view showing an electronic component testing apparatus according to an embodiment of the present invention.
[図 3]図 3は、本発明の実施形態に係る電子部品試験装置におけるトレイの取り廻し を示す概念図である。 FIG. 3 is a conceptual diagram showing tray handling in the electronic component testing apparatus according to the embodiment of the present invention.
[図 4]図 4は、本発明の実施形態に係る電子部品試験装置に用いられる ICストッカを 示す分解斜視図である。  FIG. 4 is an exploded perspective view showing an IC stocker used in the electronic component testing apparatus according to the embodiment of the present invention.
[図 5]図 5は、本発明の実施形態に係る電子部品試験装置に用いられるカスタマトレ ィを示す斜視図である。  FIG. 5 is a perspective view showing a customer tray used in the electronic component testing apparatus according to the embodiment of the present invention.
[図 6]図 6は、本発明の実施形態に係る電子部品試験装置に用いられるテストトレィを 示す分解斜視図である。  FIG. 6 is an exploded perspective view showing a test tray used in the electronic component testing apparatus according to the embodiment of the present invention.
[図 7]図 7は、本発明の実施形態に係る電子部品試験装置のテストチャンバを示す断 面図である。  FIG. 7 is a cross-sectional view showing a test chamber of the electronic device test apparatus according to the embodiment of the present invention.
[図 8]図 8は、本発明の実施形態に係る電子部品試験装置のプッシャユニットを示す 断面図である。  FIG. 8 is a cross-sectional view showing a pusher unit of the electronic component test apparatus according to the embodiment of the present invention.
[図 9A]図 9Aは、本発明の実施形態に係る電子部品試験装置に用 、られるプッシャ を示す断面図であり、押圧部材が基準位置にある状態を示す図である。  FIG. 9A is a cross-sectional view showing a pusher used in the electronic device test apparatus according to the embodiment of the present invention, and is a view showing a state where the pressing member is at the reference position.
[図 9B]図 9Bは、本発明の実施形態に係る電子部品試験装置に用 ヽられるプッシャ を示す断面図であり、押圧部材がガイド部材に対して上方に相対移動した状態を示 す図である。 FIG. 9B is a cross-sectional view showing a pusher used in the electronic device test apparatus according to the embodiment of the present invention, and shows a state in which the pressing member is relatively moved upward with respect to the guide member. is there.
[図 9C]図 9Cは、本発明の実施形態に係る電子部品試験装置に用いられるプッシャ を示す断面図であり、押圧部材がガイド部材に対して左側に相対移動した状態を示 す図である。  FIG. 9C is a cross-sectional view showing a pusher used in the electronic device testing apparatus according to the embodiment of the present invention, and shows a state in which the pressing member is moved relative to the left side with respect to the guide member. .
[図 9D]図 9Dは、本発明の実施形態に係る電子部品試験装置に用いられるプッシャ を示す断面図であり、押圧部材がガイド部材に対して右側に相対移動した状態を示 す図である。 [FIG. 9D] FIG. 9D shows a pusher used in the electronic device test apparatus according to the embodiment of the present invention. FIG. 6 is a cross-sectional view showing a state where the pressing member is moved relative to the right side with respect to the guide member.
圆 10A]図 10Aは、本発明の実施形態に係る電子部品試験装置のプッシャユニット の要部断面図であり、プッシャが基準位置にある状態を示す図である。 [10A] FIG. 10A is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, and shows a state where the pusher is at the reference position.
圆 10B]図 10Bは、本発明の実施形態に係る電子部品試験装置のプッシャユニット の要部断面図であり、プッシャがベース部材に対して上方に相対移動した状態を示 す図である。 [10B] FIG. 10B is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, showing a state in which the pusher is relatively moved upward with respect to the base member.
圆 10C]図 10Cは、本発明の実施形態に係る電子部品試験装置のプッシャユニット の要部断面図であり、プッシャがベース部材に対して左側に相対移動した状態を示 す図である。 [10C] FIG. 10C is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, showing a state in which the pusher is moved relative to the left side with respect to the base member.
圆 10D]図 10Dは、本発明の実施形態に係る電子部品試験装置のプッシャユニット の要部断面図であり、プッシャがベース部材に対して右側に相対移動した状態を示 す図である。 [10D] FIG. 10D is a cross-sectional view of the main part of the pusher unit of the electronic device test apparatus according to the embodiment of the present invention, showing a state in which the pusher is moved relative to the right side with respect to the base member.
[図 11]図 11は、本発明の他の実施形態におけるプッシャユニットの要部断面図であ る。  FIG. 11 is a cross-sectional view of a principal part of a pusher unit according to another embodiment of the present invention.
[図 12]図 12は、本発明の実施形態に係る電子部品試験装置におけるテストチャンバ 内の温度印加及び温度監視の方法を示すフローチャートである。  FIG. 12 is a flowchart showing a method of applying temperature and monitoring temperature in the test chamber in the electronic device test apparatus according to the embodiment of the present invention.
[図 13]図 13は、図 12に示す方法により温度調整された際の第 1及び第 2の温度セン サによる測定値の遷移の一例を示すグラフである。 FIG. 13 is a graph showing an example of transition of measured values by the first and second temperature sensors when the temperature is adjusted by the method shown in FIG.
符号の説明 Explanation of symbols
1· ··ノヽンドラ 1 ... Nondra
100· ··チャンバ部  100 ··· Chamber section
120· ··テストチャンノ  120 ... Test Channo
122…熱交換器  122… Heat exchanger
123· ··ファン  123 ··· Fan
124a, 124b…温度センサ  124a, 124b ... Temperature sensor
126· ··ダク卜  126
126a…入口側ダクト 126b…入口 126a… Inlet side duct 126b ... Entrance
126c…セノルータ  126c ... Seno router
126d…出口  126d ... Exit
128· ··プッシャユニット  128 ··· Pusher unit
128a, 128b…ベース部材  128a, 128b… Base member
129· ··プッシャ  129 ... pusher
129a…押圧部材  129a ... Pressing member
129c…ヒートシンク  129c… heat sink
129e…ガイド部材  129e ... Guide member
200…格納部  200 ... storage
300· ··ローダ咅  300 ··· Loader
400· ··アンローダ咅  400 ... unloader
5…テストヘッド  5 ... Test head
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0033] 図 1は本発明の実施形態に係る電子部品試験装置を示す概略断面図、図 2は本 発明の実施形態に係る電子部品試験装置を示す斜視図、図 3は本発明の実施形態 におけるトレイの取り廻しを示す概念図である。  FIG. 1 is a schematic cross-sectional view showing an electronic component testing apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view showing an electronic component testing apparatus according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. It is a conceptual diagram which shows the handling of the tray in.
[0034] なお、図 3は本実施形態に係る電子部品試験装置におけるトレイの取り廻しの方法 を理解するための図であり、実際には上下方向に並んで配置されている部材を平面 的に示した部分もある。従って、その機械的 (三次元的)構造は図 2を参照して説明 する。  FIG. 3 is a view for understanding the tray handling method in the electronic component testing apparatus according to the present embodiment. In practice, the members arranged side by side in the vertical direction are planarly shown. Some parts are shown. Therefore, its mechanical (three-dimensional) structure will be explained with reference to FIG.
[0035] 本実施形態に係る電子部品試験装置は、 ICデバイスに高温又は低温の熱ストレス を与えた状態で ICデバイスが適切に動作する力否かを試験 (検査)し、当該試験結 果に基づいて ICデバイスを分類する装置であり、ハンドラ 1、テストヘッド 5及びテスタ 6から構成されている。この電子部品試験装置による ICデバイスのテストは、試験対 象となる ICデバイスが多数搭載されたトレイ(以下、カスタマトレイと称する。図 5参照) 力もハンドラ 1内に搬送されるトレイ (以下、テストトレイと称する。図 6参照)に ICデバ イスを載せ替えて実施される。 [0035] The electronic device test apparatus according to the present embodiment tests (inspects) whether or not the IC device can properly operate in a state in which a high-temperature or low-temperature thermal stress is applied to the IC device. It is a device that classifies IC devices based on it, and consists of a handler 1, a test head 5, and a tester 6. The IC device test using this electronic component test equipment is a tray in which a large number of IC devices to be tested are mounted (hereinafter referred to as customer tray; see Fig. 5). This is called a tray (see Fig. 6). It is carried out by changing the chair.
[0036] このため、本実施形態におけるハンドラ 1は、図 1〜図 3に示すように、これから試験 を行う ICデバイスを格納し、また試験済みの ICデバイスを分類して格納する格納部 2 00と、格納部 200から送られる ICデバイスをチャンバ部 100に送り込むローダ部 300 と、テストヘッド 5を含むチャンバ部 100と、チャンバ部 100で試験が行われた試験済 みの ICデバイスを分類して取り出すアンローダ部 400と、力も構成されて!、る。  Therefore, as shown in FIGS. 1 to 3, the handler 1 in the present embodiment stores IC devices to be tested from now on, and a storage unit 200 that classifies and stores tested IC devices. And classifying the loader unit 300 that sends IC devices sent from the storage unit 200 into the chamber unit 100, the chamber unit 100 including the test head 5, and the IC devices that have been tested in the chamber unit 100. The unloader part 400 to be taken out and the power are also configured! RU
[0037] テストヘッド 5に設けられているソケット 50は、図 1に示すケーブル 7を通じてテスタ 6 に接続され、ソケット 50に電気的に接続された ICデバイスを、ケーブル 7を介してテ スタ 6に接続し、当該テスタ 6からの試験信号により ICデバイスをテストする。なお、図 1に示すように、ハンドラ 1の下部の一部に空間が設けられており、この空間にテスト ヘッド 5が交換可能に配置され、ハンドラ 1の装置基盤に形成された貫通穴を通して 、ICデバイスとテストヘッド 5上のソケット 50とを電気的に接触させることが可能となつ ている。 ICデバイスの品種交換の際には、その品種の ICデバイスの形状やピン数に 適したソケットを有する他のテストヘッドに交換される。  [0037] The socket 50 provided in the test head 5 is connected to the tester 6 through the cable 7 shown in FIG. 1, and the IC device electrically connected to the socket 50 is connected to the tester 6 through the cable 7. Connect and test the IC device with the test signal from the tester 6 concerned. As shown in FIG. 1, a space is provided in a part of the lower portion of the handler 1, and the test head 5 is replaceably disposed in this space, and through a through hole formed in the device base of the handler 1, It is possible to make electrical contact between the IC device and the socket 50 on the test head 5. When changing the type of IC device, it is replaced with another test head that has a socket suitable for the shape and pin count of the IC device of that type.
[0038] 以下にハンドラ 1の各部について詳述する。  [0038] Each part of the handler 1 will be described in detail below.
[0039] <格納部 200 >  [0039] <Storage unit 200>
図 4は本発明の実施形態に係る電子部品試験装置に用いられる ICストッカを示す 分解斜視図、図 5は本発明の実施形態に係る電子部品試験装置に用いられるカスタ マトレイを示す斜視図である。  FIG. 4 is an exploded perspective view showing an IC stocker used in the electronic component test apparatus according to the embodiment of the present invention, and FIG. 5 is a perspective view showing a customer tray used in the electronic component test apparatus according to the embodiment of the present invention. .
[0040] 格納部 200には、試験前の ICデバイスを格納する試験前 ICストッカ 201と、試験結 果に応じて分類された ICデバイスを格納する試験済み ICストッカ 202と、を備えて!/ヽ る。  [0040] The storage unit 200 includes a pre-test IC stocker 201 that stores pre-test IC devices, and a tested IC stocker 202 that stores IC devices classified according to the test results! /ヽ.
[0041] これらのストッカ 201、 202は、図 4に示すように、枠状のトレィ支持枠 203と、このト レイ支持枠 203の下部力も進入して上部に向力つて昇降可能とするエレベータ 204 と、を備えている。トレイ支持枠 203には、カスタマトレィ KSTが複数積み重ねられて おり、この積み重ねられたカスタマトレィ KSTのみがエレベータ 204によって上下に 移動される。なお、本実施形態におけるカスタマトレィ KSTは、図 5に示すように、 IC デバイスを収容する収容部が 10行 X 6列に配置されて 、る。 [0042] 試験前 ICストッカ 201と試験済み ICストッカ 202とは同一構造となっているので、試 験前 ICストッカ 201と試験済み ICストッカ 202とのそれぞれの数を必要に応じて適宜 数に設定することができる。 As shown in FIG. 4, these stockers 201 and 202 include a frame-like tray support frame 203 and an elevator 204 that can be moved up and down by entering the lower force of the tray support frame 203 and moving upward. And. A plurality of customer trays KST are stacked on the tray support frame 203, and only the stacked customer trays KST are moved up and down by the elevator 204. In the customer tray KST in this embodiment, as shown in FIG. 5, the accommodating portions for accommodating the IC devices are arranged in 10 rows × 6 columns. [0042] Since the pre-test IC stocker 201 and the tested IC stocker 202 have the same structure, the number of the pre-test IC stocker 201 and the tested IC stocker 202 is set to an appropriate number as necessary. can do.
[0043] 本実施形態では、図 2及び図 3に示すように、試験前 ICストッカ 201に 2個のストッ 力 STK—Bが設けられ、その隣にアンローダ部 400へ送られる空のカスタマトレィを 積み重ねた空ストツ力 STK—Eが 2つ設けられている。また、この空トレイストツ力 STK In this embodiment, as shown in FIG. 2 and FIG. 3, two stock forces STK-B are provided in the pre-test IC stocker 201, and an empty customer tray sent to the unloader unit 400 is provided next to the stock force STK-B. There are two stacked empty stock forces STK-E. This empty tray stocks force STK
— Eの隣には、試験済み ICストッカ 202に 8個のストッカ STK— 1、 STK— 2、 · · ·、 S— Next to E, 8 stockers in tested IC stocker 202 STK— 1, STK— 2, S
TK 8が設けられており、試験結果に応じて最大 8つの分類に仕分けして格納でき るように構成されている。つまり、良品と不良品の別の他に、良品の中でも動作速度 が高速なもの、中速なもの、低速なもの、或いは、不良品の中でも再試験が必要なも の等に仕分けすることが可能となって 、る。 TK 8 is provided, and can be sorted and stored in up to 8 categories according to test results. In other words, in addition to non-defective products and defective products, it can be classified into non-defective products that have a high operating speed, medium-speed products, low-speed products, or defective products that require retesting. It becomes possible.
[0044] <ローダ部 300 >  [0044] <Loader unit 300>
上述したカスタマトレィ KSTは、格納部 200と装置基盤 101との間に設けられたトレ ィ移送アーム 205によって、ローダ部 300の窓部 306に装置基盤 101の下側力も運 ばれる。そして、このローダ部 300において、カスタマトレィ KSTに積み込まれた IC デバイスをデバイス搬送装置 304によってプリサイサ (preciser) 305にー且移送し、こ こで ICデバイスの相互の位置関係を修正した後、さらにこのプリサイサ 305に移送さ れた ICデバイスを、再びデバイス搬送装置 304を用いて、ローダ部 300に停止して V、るテストトレイ TSTに積み替える。  In the customer tray KST described above, the lower force of the device base 101 is also transferred to the window 306 of the loader unit 300 by the tray transfer arm 205 provided between the storage unit 200 and the device base 101. In the loader unit 300, the IC device loaded in the customer tray KST is transferred to the precursor 305 by the device transport device 304 and the mutual positional relationship between the IC devices is corrected. The IC device transferred to the precursor 305 is stopped again at the loader unit 300 by using the device transfer device 304 and is loaded on the test tray TST.
[0045] カスタマトレィ KSTからテストトレイ TSTに ICデバイスを積み替えるデバイス搬送装 置 304としては、図 2に示すように、装置基盤 101上に架設された 2本のレール 301と 、この 2本のレール 301によってテストトレイ TSTとカスタマトレィ KSTとの間を往復移 動することが可能な可動アーム 302と、この可動アーム 302によって支持され、可動 アーム 302に沿って移動可能な可動ヘッド 303と、を備えている。  [0045] As shown in FIG. 2, the device transport device 304 for transferring IC devices from the customer tray KST to the test tray TST includes two rails 301 installed on the device base 101 and the two rails 301. A movable arm 302 capable of reciprocating between the test tray TST and the customer tray KST by a rail 301, and a movable head 303 supported by the movable arm 302 and movable along the movable arm 302. I have.
[0046] このデバイス搬送装置 304の可動ヘッド 303には、吸着ヘッド(不図示)が下向きに 装着されており、この吸着ヘッドが吸引しながら移動することでカスタマトレィ KSTか ら ICデバイスを保持し、その ICデバイスをテストトレイ TSTに積み替える。こうした吸 着ヘッドは、 1つの可動ヘッド 303に対して例えば 8個程度装着されており、一度に 8 個の ICデバイスをテストトレイ TSTに積み替えることができる。 [0046] A suction head (not shown) is mounted downward on the movable head 303 of the device transport device 304, and the suction head moves while sucking to hold the IC device from the customer tray KST. Then, transfer the IC device to the test tray TST. For example, about eight of these suction heads are attached to one movable head 303. IC devices can be transferred to the test tray TST.
[0047] 図 6は本発明の実施形態に係る電子部品試験装置に用いられるテストトレィを示す 分解斜視図である。このテストトレイ TSTは、方形フレーム 12に複数の桟 13が平行 且つ等間隔に設けられ、これら桟 13の両側、及び、桟 13と対向するフレーム 12の辺 12aに、それぞれ複数の取付片 14が等間隔に突出して形成されている。これら桟 13 の間又は桟 13と辺 12aとの間と、 2つの取付片 14と、によって、インサート収容部 15 が構成されている。 FIG. 6 is an exploded perspective view showing a test tray used in the electronic component testing apparatus according to the embodiment of the present invention. In this test tray TST, a plurality of crosspieces 13 are provided in parallel at equal intervals on the rectangular frame 12, and a plurality of mounting pieces 14 are provided on both sides of the crosspieces 13 and on the side 12a of the frame 12 facing the crosspieces 13, respectively. It is formed to protrude at equal intervals. An insert accommodating portion 15 is constituted by the space between these bars 13 or between the bars 13 and the side 12a and the two attachment pieces 14.
[0048] 各インサート収容部 15には、それぞれ 1つずつインサート 16が収容されるようにな つており、このインサート 16はファスナ 17を用いて 2つの取付片 14にフローティング 状態で取り付けられている。このため、インサート 16の両端部には、取付片 14への取 付用孔 21がそれぞれ形成されている。こうしたインサート 16は、例えば 1つのテストト レイ TSTに、 16 X 4個程度取り付けられている。  [0048] Each insert receiving portion 15 is adapted to receive one insert 16 and the insert 16 is attached to the two attachment pieces 14 using a fastener 17 in a floating state. Therefore, holes 21 for attachment to the attachment pieces 14 are formed at both ends of the insert 16. For example, about 16 X 4 inserts 16 are attached to one test tray TST.
[0049] なお、各インサート 16は、同一形状、同一寸法とされており、それぞれのインサート 16に ICデバイスが収容される。インサート 16の IC収容部 19は、収容する ICデバイス の形状に応じて決められ、図 6に示す例では方形の凹部とされている。また、 IC収容 部 19の両側には、プッシャ 129のガイドピン 129fが挿入されるガイド孔 20が設けら れている。  Each insert 16 has the same shape and the same dimensions, and an IC device is accommodated in each insert 16. The IC accommodating portion 19 of the insert 16 is determined according to the shape of the IC device to be accommodated, and is a rectangular recess in the example shown in FIG. Further, guide holes 20 into which the guide pins 129f of the pusher 129 are inserted are provided on both sides of the IC housing portion 19.
[0050] <チャンバ部 100 >  [0050] <Chamber part 100>
図 7は本発明の実施形態に係る電子部品試験装置のテストチャンバを示す断面図 、図 8は本発明の実施形態に係る電子部被試験装置のプッシャユニットを示す断面 図、図 9 A〜図 9Dは本発明の電子部品試験装置に用いられるプッシャを示す断面 図、図 10A〜図 10Dは本発明の実施形態に係る電子部品試験装置のプッシャュ- ットの要部断面図、図 11は本発明の他の実施形態におけるプッシャユニットの要部 断面図である。  FIG. 7 is a cross-sectional view showing a test chamber of the electronic device test apparatus according to the embodiment of the present invention. FIG. 8 is a cross-sectional view showing a pusher unit of the electronic device test apparatus according to the embodiment of the present invention. 9D is a cross-sectional view showing a pusher used in the electronic component test apparatus of the present invention, FIGS. 10A to 10D are cross-sectional views of the main parts of the pusher of the electronic component test apparatus according to the embodiment of the present invention, and FIG. It is principal part sectional drawing of the pusher unit in other embodiment of invention.
[0051] 上述したテストトレイ TSTは、ローダ部 300で ICデバイスが積み込まれた後、チャン バ部 100に送り込まれ、 ICデバイスをテストトレイ TSTに搭載した状態で各 ICデバイ スのテストが実行される。  [0051] After the IC device is loaded in the loader unit 300, the test tray TST described above is sent to the chamber unit 100, and the test of each IC device is performed with the IC device mounted on the test tray TST. The
[0052] チャンバ部 100は、テストトレイ TSTに積み込まれた ICデバイスに目的とする高温 又は低温の熱ストレスを印加するソークチャンバ 110と、このソークチャンバ 110で熱 ストレスが印加された状態にある ICデバイスをテストヘッド 5に電気的に接触させるテ ストチャンバ 120と、テストチャンバ 120で試験された ICデバイス力も熱ストレスを除去 するアンソークチャンバ 130と、力 構成されている。 [0052] The chamber unit 100 has a high temperature intended for IC devices loaded on the test tray TST. Alternatively, the soak chamber 110 to which a low temperature thermal stress is applied, the test chamber 120 in which the IC device in the state where the thermal stress is applied in the soak chamber 110 is electrically contacted with the test head 5, and the test chamber 120 are tested. The integrated IC device force is also composed of an unsoak chamber 130 that removes thermal stress.
[0053] なお、アンソークチャンバ 130は、ソークチャンバ 110やテストチャンバ 120から熱 的に絶縁することが好ましく、実際にはソークチャンバ 110とテストチャンバ 120との 領域に所定の熱ストレスが印加され、アンソークチャンバ 130はこれらとは熱的に絶 縁されている力 本実施形態では便宜的にこれらをチャンバ部 100と総称する。  [0053] The unsoak chamber 130 is preferably thermally insulated from the soak chamber 110 and the test chamber 120. In practice, a predetermined thermal stress is applied to the region between the soak chamber 110 and the test chamber 120, The unsoak chamber 130 is thermally isolated from these. In the present embodiment, these are collectively referred to as the chamber portion 100 for convenience.
[0054] ソークチャンバ 110には、図 3に概念的に示すような垂直搬送装置が設けられてお り、テストチャンバ 120が空くまでの間、複数枚のテストトレイ TSTがこの垂直搬送装 置に支持されながら待機する。主として、この待機中に ICデバイスに熱ストレスが印 加される。  [0054] The soak chamber 110 is provided with a vertical transfer device as conceptually shown in FIG. 3, and a plurality of test trays TST are placed in the vertical transfer device until the test chamber 120 is empty. Wait while being supported. Mainly, thermal stress is applied to IC devices during this standby.
[0055] テストチャンバ 120には、図 7に示すように、テストヘッド 5の上方に、複数のプッシャ 129を備えたプッシャユニット 128が Z軸方向に移動可能に設けられて 、る。複数の プッシャ 129は、テストヘッド 5上のソケット 50の配列に対応するようにプッシャュ-ッ ト 128に配置されている。また、プッシャユニット 128の上方には、 Z軸駆動装置 127 の駆動シャフト 127aに支持された駆動プレート 127bが設けられており、この駆動プ レート 127bは、駆動シャフト 127bを介して Z軸駆動装置 127のァクチユエータ(不図 示)に連結されており、このァクチユエータの駆動により、上下動可能となっている。 駆動プレート 127bの下面には、各プッシャ 129を押圧する複数の凸部 127cが設け られている。これら凸部 127cは、プッシャユニット 128におけるプッシャ 129の配列に 対応するように、駆動プレート 127bの下面に配置されて 、る。  In the test chamber 120, as shown in FIG. 7, a pusher unit 128 including a plurality of pushers 129 is provided above the test head 5 so as to be movable in the Z-axis direction. The plurality of pushers 129 are arranged in the pusher 128 so as to correspond to the arrangement of the sockets 50 on the test head 5. Further, above the pusher unit 128, a drive plate 127b supported by the drive shaft 127a of the Z-axis drive device 127 is provided. The drive plate 127b is connected to the Z-axis drive device 127 via the drive shaft 127b. This actuator is connected to an actuator (not shown), and can be moved up and down by driving this actuator. A plurality of convex portions 127c that press the pushers 129 are provided on the lower surface of the drive plate 127b. These convex portions 127c are arranged on the lower surface of the drive plate 127b so as to correspond to the arrangement of the pushers 129 in the pusher unit 128.
[0056] プッシャユニット 128は、図 8に示すように、試験時に ICデバイスを接触して押圧す る複数のプッシャ 129と、各プッシャ 129の上部をフローティング状態で支持する上 側ベース部材 128aと、各プッシャ 129の下部をフローティング状態で支持する下側 ベース部材 128bと、力も構成されている。なお、図 7や図 8中には、プッシャ 129が 4 つしか図示されていないが、実際には、プッシャユニット 128は、テストヘッド 5上のソ ケット 50に対応して、例えば合計 64個のプッシャ 129を備えている。 [0057] プッシャ 129は、図 9Aに示すように、 ICデバイスの上面に密着して押圧するプッシ ャブロック 129bと、プッシャブロック 129bを吸熱又は放熱するためのヒートシンク 129 cと、 Z軸駆動装置 127の凸部 127cが当接するシャフト 129cと、から構成される押圧 部材 129aを有している。また、プッシャ 129は、ガイドピン 129fが下方に向かって突 出しているガイド部材 129eを有している。そして、図 9A〜図 9Dに示すように、押圧 部材 129aは、ガイド部材 129e内に設けられており、ガイド部材 129eに対して上下 左右に微小移動可能となっている。図 9Aは、押圧部材 129aの自重により、ガイド部 材 129eに対して押圧部材 129aが基準位置にある状態を示している。図 9Bは、押圧 部材 129aがガイド部材 129eに対して相対的に上方に微小移動した状態を示し、図 9Cは、押圧部材 129aがガイド部材 129eに対して相対的に左側に微小移動した状 態を示し、図 9Dは、押圧部材 129aがガイド部材 129eに対して相対的に右側に微 小移動した状態を示して!/、る。 As shown in FIG. 8, the pusher unit 128 includes a plurality of pushers 129 that contact and press the IC device during a test, and an upper base member 128a that supports the top of each pusher 129 in a floating state. A lower base member 128b that supports the lower portion of each pusher 129 in a floating state and a force are also configured. Although only four pushers 129 are shown in FIGS. 7 and 8, in reality, the pusher unit 128 corresponds to the socket 50 on the test head 5, for example, a total of 64 pushers. A pusher 129 is provided. As shown in FIG. 9A, the pusher 129 includes a pusher block 129b that is in close contact with the upper surface of the IC device, a heat sink 129c that absorbs or dissipates the pusher block 129b, and a Z-axis drive device 127. And a pressing member 129a including a shaft 129c with which the convex portion 127c abuts. The pusher 129 has a guide member 129e from which a guide pin 129f protrudes downward. As shown in FIGS. 9A to 9D, the pressing member 129a is provided in the guide member 129e, and can be slightly moved up and down and left and right with respect to the guide member 129e. FIG. 9A shows a state in which the pressing member 129a is at the reference position with respect to the guide member 129e due to the weight of the pressing member 129a. FIG. 9B shows a state in which the pressing member 129a is slightly moved upward relative to the guide member 129e, and FIG. 9C is a state in which the pressing member 129a is minutely moved to the left relative to the guide member 129e. FIG. 9D shows a state where the pressing member 129a has slightly moved to the right relative to the guide member 129e.
[0058] プッシャユニット 128の上側ベース部材 128aは、例えばアルミニウム等から構成さ れる金属製部材であり、プッシャ 129が通過可能な程度の開口が形成されている。下 側ベース部材 128bも同様に、例えばアルミニウム等力も構成される金属製部材であ り、プッシャ 129が通過可能な程度の開口が形成されている。  [0058] The upper base member 128a of the pusher unit 128 is a metal member made of, for example, aluminum, and has an opening that allows the pusher 129 to pass therethrough. Similarly, the lower base member 128b is a metal member that also has, for example, an aluminum isotropic force, and has an opening that allows the pusher 129 to pass therethrough.
[0059] 上側ベース部材 128a及び下側ベース部材 128bの開口に各プッシャ 129が挿入 されて支持されており、各プッシャ 129は、図 10A〜図 10Dに示すように、ベース部 材 128a、 128bに対して上下左右に微小移動可能となっている。図 10Aは、プッシャ 129の自重により、ベース部材 128a、 128bに対してプッシャ 129が基準位置にある 状態を示している。図 10Bは、プッシャ 129がベース部材 128a、 128bに対して相対 的に上方に微小移動した状態を示し、図 10Cは、プッシャ 129がベース部材 128a、 128bに対して相対的に左側に微小移動した状態を示し、図 10Dは、プッシャ 129が ベース部材 128a、 128bに対して相対的に右側に微小移動した状態を示して 、る。  [0059] Each pusher 129 is inserted into and supported by the openings of the upper base member 128a and the lower base member 128b, and each pusher 129 is attached to the base member 128a, 128b as shown in FIGS. 10A to 10D. On the other hand, it can be moved minutely in the vertical and horizontal directions. FIG. 10A shows a state where the pusher 129 is at the reference position with respect to the base members 128a and 128b due to the weight of the pusher 129. FIG. 10B shows a state in which the pusher 129 has moved slightly upward relative to the base members 128a and 128b, and FIG. 10C shows that the pusher 129 has moved slightly to the left relative to the base members 128a and 128b. FIG. 10D shows a state in which the pusher 129 has slightly moved to the right relative to the base members 128a and 128b.
[0060] さらに、本実施形態では、上側ベース部材 128aと下側ベース部材 128bとの間に セパレータ 126cが設けられている。セパレータ 126cは、例えばアルミニウム等から 構成される金属製平板部材である。このセパレータ 126cには、プッシャ 129のヒート シンク 129cに向かって開口している出口 126dが形成されている。 [0061] テストチャンバ 120は、図 7に示すように、ケーシング 121により密閉されている。ケ 一シング 121の内部には、熱交換器 122、ファン 123、第 1及び第 2の温度センサ 12 4a、 124b,プッシャユニット 128並びにソケット 50が設けられている。さらに、本実施 形態では、ケーシング 121の内部に、ファン 123から熱交換器 122を経由してプッシ ャ 129のヒートシンク 129cに温風又は冷風を直接導くダクト 126が設けられている。 [0060] Further, in the present embodiment, a separator 126c is provided between the upper base member 128a and the lower base member 128b. The separator 126c is a metal flat plate member made of, for example, aluminum. The separator 126c is formed with an outlet 126d that opens toward the heat sink 129c of the pusher 129. The test chamber 120 is sealed with a casing 121 as shown in FIG. Inside the casing 121, a heat exchanger 122, a fan 123, first and second temperature sensors 124a and 124b, a pusher unit 128, and a socket 50 are provided. Further, in the present embodiment, a duct 126 is provided inside the casing 121 to guide hot air or cold air directly from the fan 123 to the heat sink 129c of the pusher 129 via the heat exchanger 122.
[0062] ダクト 126は、図 7に示すように、入口側ダクト 126a、セパレータ 126c及びプッシャ ユニット 128の上側ベース部材 128aから構成されている。  As shown in FIG. 7, the duct 126 includes an inlet side duct 126a, a separator 126c, and an upper base member 128a of the pusher unit 128.
[0063] 入口側ダクト 126aは、同図に示すように、直角に折れ曲がった管状部材であり、そ の入口 126bにファン 123力 立置している。なお、ファン 123としては、例えば、シロッ コファン、ターボファン、クロスフローファン又はプロペラファン等を用いることができる  [0063] As shown in the figure, the inlet-side duct 126a is a tubular member bent at a right angle, and the fan 123 force is placed on the inlet 126b. As the fan 123, for example, a sirocco fan, a turbo fan, a cross flow fan, or a propeller fan can be used.
[0064] 入口ダクト 126の入口 126bと終点との間には熱交^^ 122が設けられている。ケ 一シング 121内部を高温にする場合には、熱交換器 122は、加熱媒体が流通する放 熱用熱交換器又は電熱ヒータ等で構成され、ケーシング 121内部を、例えば室温〜 160°C程度の高温に維持するために十分な熱量を供給することが可能となっている 。一方、ケーシング 121内部を低温にする場合には、熱交翻 122は、液体窒素等 の冷媒が循環する吸熱用熱交換器等で構成され、ケーシング 121内部を、例えば 60°C〜室温程度の低温に維持するために十分な熱量を吸収することが可能となつ ている。なお、ケーシング 121内に、液体窒素等の冷媒を直接供給して循環させる場 合もある。 [0064] A heat exchange ^^ 122 is provided between the inlet 126b of the inlet duct 126 and the end point. When the inside of the casing 121 is heated to a high temperature, the heat exchanger 122 is configured by a heat exchanger for heat release through which a heating medium circulates or an electric heater, and the inside of the casing 121 is, for example, about room temperature to 160 ° C. It is possible to supply a sufficient amount of heat to maintain a high temperature. On the other hand, when the inside of the casing 121 is cooled, the heat exchanger 122 is composed of an endothermic heat exchanger or the like in which a refrigerant such as liquid nitrogen circulates, and the inside of the casing 121 is, for example, about 60 ° C. to room temperature. It has become possible to absorb a sufficient amount of heat to maintain a low temperature. In some cases, a coolant such as liquid nitrogen is directly supplied into the casing 121 for circulation.
[0065] 入口側ダクト 126aの終点近傍には、ケーシング 121内の雰囲気の温度を測定する ための第 2の温度センサ 124bが設けられている。これに対し、ケーシング 121内のフ アン 123による温風又は冷風の循環路において、測定位置 900の下流側近傍に、ケ 一シング 121内の雰囲気の温度を測定するための第 1の温度センサ 124aが設けら れている。第 1及び第 2の温度センサ 124a、 124bとしては、例えば、白金センサや 熱電対等を用いることができる。なお、本実施形態において、単に「上流」という場合 は、ケーシング 121内のファン 123による温風又は冷風の循環路における上流を意 味し、単に「下流」という場合には、前記循環路における下流を意味する。 [0066] 本実施形態では、第 1の温度センサ 124aを測定位置 900の近傍に設けることで、 測定位置 900の温度を精度良く測定することが可能となるので、温度印加精度を更 に向上させることができる。 [0065] Near the end point of the inlet duct 126a, a second temperature sensor 124b for measuring the temperature of the atmosphere in the casing 121 is provided. In contrast, the first temperature sensor 124a for measuring the temperature of the atmosphere in the casing 121 in the vicinity of the downstream side of the measurement position 900 in the hot or cold air circulation path by the fan 123 in the casing 121. Is provided. As the first and second temperature sensors 124a and 124b, for example, platinum sensors, thermocouples, or the like can be used. In the present embodiment, simply “upstream” means upstream in the circulation path of hot air or cold air by the fan 123 in the casing 121, and simply “downstream” means downstream in the circulation path. Means. [0066] In the present embodiment, by providing the first temperature sensor 124a in the vicinity of the measurement position 900, the temperature at the measurement position 900 can be measured with high accuracy, so that the temperature application accuracy is further improved. be able to.
[0067] なお、本発明においては、テストチャンバ 120のケーシング 121内に設けられる温 度センサの数は 2つに限定されず、例えば 3つ以上の温度センサを設けても良い。特 に、測定位置 900が複数ある場合には、それぞれの測定位置 900の近傍に温度セ ンサを設けることで、温度印加精度をより向上させることができる。  In the present invention, the number of temperature sensors provided in the casing 121 of the test chamber 120 is not limited to two, and for example, three or more temperature sensors may be provided. In particular, when there are a plurality of measurement positions 900, the temperature application accuracy can be further improved by providing a temperature sensor in the vicinity of each measurement position 900.
[0068] 図 7に示すように、熱交換器 122及び 2つの温度センサ 124a、 124bは、制御装置 125に接続されており、制御装置 125は、第 1の温度センサ 124aや第 2の温度セン サ 124bの測定結果に基づいて、熱交 22を制御することが可能となっている。  [0068] As shown in FIG. 7, the heat exchanger 122 and the two temperature sensors 124a, 124b are connected to the control device 125, and the control device 125 includes the first temperature sensor 124a and the second temperature sensor. The heat exchange 22 can be controlled based on the measurement result of the support 124b.
[0069] 入口側ダクト 126aの終点は、セパレータ 126c及び上側ベース部材 128aに連結さ れており、セパレータ 126cと上側ベース部材 128aは管状構造を構成している。この ため、熱交換器 122により生成された温風又は冷風は、図 7にて一点鎖線の矢印に て示すように、入口側ダクト 126a内を通って上側ベース部材 128aとセパレータ 126 cとの間に導かれ、セパレータ 126cに形成された各出口 126dを通過してプッシャ 12 9のヒートシンク 129dに直接導力れ、さらにプッシャ 129の押圧部材 129aとガイド部 材 129eとの間を通過して測定位置 900に導かれる。測定位置 900を通過した温風 又は冷風はファン 123により回収されて、再度入口側ダクト 126aの入口 126bに投入 されて循環するようになって!/ヽる。  [0069] The end point of the inlet duct 126a is connected to the separator 126c and the upper base member 128a, and the separator 126c and the upper base member 128a form a tubular structure. For this reason, the hot air or the cold air generated by the heat exchanger 122 passes through the inlet duct 126a between the upper base member 128a and the separator 126c as shown by a dashed line arrow in FIG. To the heat sink 129d of the pusher 129 and further passed between the pressing member 129a of the pusher 129 and the guide member 129e to measure the position. Guided to 900. The hot or cold air that has passed through the measurement position 900 is collected by the fan 123 and is again introduced into the inlet 126b of the inlet duct 126a to circulate!
[0070] このように、本実施形態では、ダクト 126により温風又は冷風を測定位置 900ゃプッ シャ 129のヒートシンク 129cに直接誘導する。これにより、電子部品試験装置の起動 時に、測定位置 900やヒートシンク 129dをケーシング 121内の他の構造体よりも優 先して昇温又は降温することができるので、電子部品試験装置の起動時間を短縮す ることがでさる。  As described above, in this embodiment, the hot air or the cold air is directly guided to the heat sink 129c at the measurement position 900 from the duct 129 by the duct 126. As a result, when the electronic component test apparatus is started, the measurement position 900 and the heat sink 129d can be heated or lowered in preference to the other structures in the casing 121. It can be shortened.
[0071] また、各々の測定位置 900やヒートシンク 129dに温風又は冷風を直接誘導するこ とで、複数の測定位置 900やヒートシンク 129dの間の温度差を低減することができる ので、温度印加精度を向上させることができる。  [0071] Further, by directly inducing hot air or cold air to each measurement position 900 and heat sink 129d, the temperature difference between the plurality of measurement positions 900 and heat sink 129d can be reduced. Can be improved.
[0072] なお、図 11に示すように、セパレータ 126cの出口 126dの下流側周囲にフラップ 1 26eを設けても良い。このフラップ 126eの高さ、幅又は角度等を各出口 126d毎にそ れぞれ調整することで、複数の測定位置 900やヒートシンク 129dの間の温度差を更 に低減することができる。 [0072] As shown in FIG. 11, a flap 1 is formed around the downstream side of the outlet 126d of the separator 126c. 26e may be provided. By adjusting the height, width or angle of the flap 126e for each outlet 126d, the temperature difference between the plurality of measurement positions 900 and the heat sink 129d can be further reduced.
[0073] ICデバイスを試験する場合には、図 8に示すように、プッシャユニット 128とソケット 5 0との間にテストトレイ TSTが搬送され、 Z軸駆動装置 127が駆動プレート 127bを Z 軸下方に移動させ、これによりプッシャユニット 128全体が下降する。この下降中に、 プッシャ 129のガイドピン 129fがインサート 16のガイド孔 20に挿入され、各プッシャ 1 29がインサート 16に対してそれぞ; ^立置決めされる。さらにプッシャ 129が下降する と、押圧部材 129aがインサート 16内で案内されながら、プッシャブロック 129bが IC デバイスの上面に接触して押圧し、 ICデバイスの入出力端子とソケット 50のコンタクト ピンとが電気的に接触する。この状態で、テスタがテストヘッドを介して ICデバイスと 試験信号の授受を行うことで、 ICデバイスの試験が実行される。この試験の結果は、 例えば、テストトレイ TSTに付された例えば識別番号と、テストトレイ TSTの内部で割 り当てられた ICデバイスの番号と、によって決定されるアドレスで、電子部品試験装 置の記憶装置に記憶される。  [0073] When testing an IC device, as shown in FIG. 8, the test tray TST is transported between the pusher unit 128 and the socket 50, and the Z-axis drive device 127 moves the drive plate 127b below the Z-axis. As a result, the entire pusher unit 128 is lowered. During this lowering, the guide pin 129f of the pusher 129 is inserted into the guide hole 20 of the insert 16, and each pusher 129 is placed upright with respect to the insert 16. When the pusher 129 is further lowered, the pusher block 129b is pressed against the upper surface of the IC device while the pressing member 129a is guided in the insert 16, and the input / output terminals of the IC device and the contact pins of the socket 50 are electrically connected. To touch. In this state, the tester exchanges test signals with the IC device via the test head, and the IC device test is executed. The result of this test is, for example, an address determined by the identification number assigned to the test tray TST and the IC device number assigned inside the test tray TST. Stored in a storage device.
[0074] なお、テストチャンバ 120内でのテストトレイ TSTの搬送手段としては、特に図示し ないが、例えば搬送用ローラ等を挙げることができる。また、テストトレイ TSTが搬送さ れる際には、プッシャ 129とソケット 50の間にテストトレイ TSTが通過可能な隙間が形 成されるように、 Z軸駆動装置 127の駆動プレート 127bが十分に上昇している。  [0074] Note that, as a means for transporting the test tray TST in the test chamber 120, although not particularly illustrated, for example, a transport roller or the like can be used. In addition, when the test tray TST is transported, the drive plate 127b of the Z-axis drive device 127 is sufficiently raised so that a gap through which the test tray TST can pass is formed between the pusher 129 and the socket 50. is doing.
[0075] 図 1〜図 3に戻り、試験が完了したテストトレイ TSTは、アンソークチャンバ 130で試 験済みの ICデバイスが除熱されて室温に戻された後、アンローダ部 400に搬出され る。また、装置基盤 101上にトレィ搬送装置 102が設けられており、このトレィ搬送装 置 102によって、アンソークチャンバ 130から排出されたテストトレイ TSTは、アンロー ダ部 400及びローダ部 300を介してソークチャンバ 110に返送される。  [0075] Returning to FIGS. 1 to 3, the test tray TST for which the test has been completed is carried out to the unloader section 400 after the IC device that has been tested in the unsoak chamber 130 is removed from heat and returned to room temperature. . Further, a tray transfer device 102 is provided on the device base 101, and the test tray TST discharged from the unsoak chamber 130 by the tray transfer device 102 is soaked via the unloader unit 400 and the loader unit 300. Returned to chamber 110.
[0076] <アンローダ部 400 >  [0076] <Unloader unit 400>
アンローダ部 400にも、ローダ部 300に設けられたデバイス搬送装置 304と同一構 造のデバイス搬送装置 404が 2台設けられて 、る。このデバイス搬送装置 404によつ て、アンローダ部 400に搬出されたテストトレイ TST力 試験済みの ICデバイスが、 試験結果に応じたカスタマトレィ KSTに積み替えられる。 The unloader section 400 is also provided with two device transport apparatuses 404 having the same structure as the device transport apparatus 304 provided in the loader section 300. By this device transport device 404, the test tray TST force tested IC device carried out to the unloader unit 400 is Can be transshipped to customer train KST according to test results.
[0077] 図 2に示すように、アンローダ部 400における装置基盤 101には、アンローダ部 40As shown in FIG. 2, the device base 101 in the unloader unit 400 includes the unloader unit 40.
0に搬出されたカスタマトレィ KSTが装置基盤 101の上面に臨むように配置される 4 つの窓部 406が形成されて!、る。 Four window portions 406 are formed so that the customer tray KST transported to 0 faces the upper surface of the apparatus base 101 !!
[0078] また、図示は省略するが、各窓部 406の下側には、カスタマトレィ KSTを昇降させ るための昇降テーブルが設けられている。この昇降テーブルは、試験済みの ICデバ イスで満載となったカスタマトレィ KSTを載せて下降し、この満載トレィをトレイ移送ァ ーム 205に受け渡す。 [0078] Although not shown, an elevating table for elevating the customer tray KST is provided below each window 406. This lifting table is lowered with a customer tray KST full of tested IC devices, and this full tray is transferred to the tray transfer arm 205.
[0079] 以下に、本実施形態に係る電子部品試験装置の起動時のテストチャンバの温度印 加方法、及び、テストチャンバ内の温度が安定した後の温度監視方法について説明 する。なお、以下に説明では、テストヘッド 5のケーシング 121内を熱交換器 122によ り昇温する場合について説明するが、本発明においては特にこれに限定されず、ケ 一シング 121内を降温する場合にも適用することができる。  Hereinafter, a test chamber temperature applying method at the time of starting the electronic component testing apparatus according to the present embodiment and a temperature monitoring method after the temperature in the test chamber is stabilized will be described. In the following description, the case where the temperature inside the casing 121 of the test head 5 is raised by the heat exchanger 122 will be described. However, the present invention is not particularly limited to this, and the temperature inside the casing 121 is lowered. It can also be applied to cases.
[0080] 図 12は本発明の実施形態に係る電子部品試験装置におけるテストチャンバ内の 温度印加及び温度監視の方法を示すフローチャート、図 13は図 12に示す方法を実 行した際の第 1及び第 2の温度センサによる測定値の遷移の一例を示すグラフである  FIG. 12 is a flowchart showing a method for temperature application and temperature monitoring in the test chamber in the electronic component test apparatus according to the embodiment of the present invention, and FIG. 13 shows the first and second methods when the method shown in FIG. 12 is executed. It is a graph which shows an example of transition of the measured value by the 2nd temperature sensor
[0081] 電子部品試験装置の起動時にハンドラ 1の電源がオンになると、ケーシング 121内 の熱交換器 122及びファン 123が稼動し、熱交換器 122がケーシング 121内の雰囲 気を昇温すると共に、熱交 l22により生成された温風をファン 123が循環させる (図 12のステップ S10)。 [0081] When the power of the handler 1 is turned on at the time of starting the electronic component test apparatus, the heat exchanger 122 and the fan 123 in the casing 121 are operated, and the heat exchanger 122 raises the atmosphere in the casing 121. At the same time, the fan 123 circulates the hot air generated by the heat exchange 122 (step S10 in FIG. 12).
[0082] ファン 123により送風された温風は、ダクト 126を介してセパレータ 126cの各出口 1 26dにそれぞれ直接導かれて、プッシャ 129のヒートシンク 129d及び測定位置 900 に向力つて吹き付けられる。  The warm air blown by the fan 123 is directly guided to the outlets 126d of the separator 126c through the duct 126, and blown toward the heat sink 129d and the measurement position 900 of the pusher 129 with direct force.
[0083] この間、測定位置 900の下流側に設けられた第 1の温度センサ 124aが、測定位置 900の近傍の雰囲気の温度を測定する。第 1の温度センサ 124aが測定する温度 Ta [°C]が第 1の設定温度 A[°C]以上となるまで (Ta≥A)、制御装置 125は熱交換器 1 22に昇温を継続するように制御する(ステップ S 20にて NO)。 [0084] この第 1の設定温度 Aは、図 13に示すように、試験時に測定位置 900に印加され ているべき目的とする第 3の設定温度 C[°C]よりも高い温度である (A>C)。本実施 形態では、測定位置 900の下流側近傍の雰囲気を第 1の設定温度 Aに昇温して、測 定位置 900全体の温度を第 3の設定温度 Cに対してー且オーバーシュートさせる。こ の際、第 2の温度センサ 124bは、第 1の温度センサ 124aよりも熱交翻 122の近く にあるため、同図に示すように、第 1の温度センサ 124aの測定温度 Taよりも、第 2の 温度センサ 124bの測定温度 Tbの方が高くなる。 During this time, the first temperature sensor 124a provided on the downstream side of the measurement position 900 measures the temperature of the atmosphere in the vicinity of the measurement position 900. Until the temperature Ta [° C] measured by the first temperature sensor 124a becomes equal to or higher than the first set temperature A [° C] (Ta≥A), the controller 125 continues to heat up the heat exchanger 122. (NO in step S20). [0084] As shown in Fig. 13, the first set temperature A is higher than the target third set temperature C [° C] to be applied to the measurement position 900 during the test ( A> C). In this embodiment, the atmosphere in the vicinity of the downstream side of the measurement position 900 is raised to the first set temperature A, and the temperature of the entire measurement position 900 is overshot with respect to the third set temperature C. At this time, since the second temperature sensor 124b is closer to the heat exchanger 122 than the first temperature sensor 124a, as shown in the figure, the measured temperature Ta of the first temperature sensor 124a is The measured temperature Tb of the second temperature sensor 124b is higher.
[0085] 第 1の温度センサ 124aの測定温度 Taが第 1の設定温度 A以上となったら (ステップ S20にて YES)、制御装置 125は熱交換器 122の昇温を停止するように制御し (ステ ップ S30)、ケーシング 121内の雰囲気の温度を測定する温度センサを、第 1の温度 センサ 124aから第 2の温度センサ 124bに切り換える(ステップ S30)。そして、第 2の 温度センサ 124bが測定する温度 Tb[°C]が第 2の設定温度 B[°C]以下となるまで (T b≤B)、制御装置 125は熱交翻 122を停止したままとしておく(ステップ S50にて N 0)。  [0085] When measured temperature Ta of first temperature sensor 124a is equal to or higher than first set temperature A (YES in step S20), control device 125 controls to stop the temperature increase of heat exchanger 122. (Step S30) The temperature sensor that measures the temperature of the atmosphere in the casing 121 is switched from the first temperature sensor 124a to the second temperature sensor 124b (step S30). Then, until the temperature Tb [° C] measured by the second temperature sensor 124b becomes equal to or lower than the second set temperature B [° C] (T b ≤ B), the control device 125 stops the heat exchange 122. Leave as is (N 0 at step S50).
[0086] この第 2の設定温度 Bは、図 13に示すように、第 3の設定温度 C以下の温度である( B≤C)。この間、熱交^^ 122による昇温がない中で、ファン 123による送風が行わ れるため、複数の測定位置 900及びヒートシンク 129dのうちで上流側に位置するも のから降温が進む。そのため、第 1の温度センサ 124aの測定温度 Taよりも第 2の温 度センサ 124bの測定温度 Tbの方が早く降温し、同図に示す例では、第 1の温度セ ンサ 124aの測定温度 Taよりも第 2の温度センサ 124bの測定温度 Tbの方が低くなつ ている。  The second set temperature B is a temperature equal to or lower than the third set temperature C (B≤C) as shown in FIG. During this time, air is blown by the fan 123 while there is no temperature increase due to the heat exchange 122, so that the temperature decrease proceeds from the plurality of measurement positions 900 and the heat sink 129d located upstream. Therefore, the measurement temperature Tb of the second temperature sensor 124b drops faster than the measurement temperature Ta of the first temperature sensor 124a, and in the example shown in the figure, the measurement temperature Ta of the first temperature sensor 124a is measured. The measured temperature Tb of the second temperature sensor 124b is lower than that.
[0087] 第 2の温度センサ 124bの測定温度 Tbが第 2の設定温度 B以下となったら (ステップ S50にて YES)、熱交^^ 122が昇温を再開する (ステップ S50)。これ以降は、第 2 の温度センサ 124bによりケーシング 121内の温度を監視する。  [0087] When measured temperature Tb of second temperature sensor 124b is equal to or lower than second set temperature B (YES in step S50), heat exchanger 122 resumes the temperature increase (step S50). Thereafter, the temperature in the casing 121 is monitored by the second temperature sensor 124b.
[0088] 以上のように、本実施形態では、測定位置 900の下流側近傍に位置する第 1の温 度センサ 124aを用いて、測定位置 900全体の温度を第 3の設定温度 Cに対して一 且オーバーシュートさせた後に、熱交 122を停止させて、複数の測定位置 900 やヒートシンク 129dのうちで上流側に位置するものから降温させる。このため、測定 位置 900全体の温度を短時間で均一にすることができ、電子部品試験装置の立上 時間を短縮することができる。また、複数の測定位置 900やヒートシンク 129dの間の 温度差を低減することができるので、温度印加精度を向上させることができる。 [0088] As described above, in the present embodiment, the first temperature sensor 124a located in the vicinity of the downstream side of the measurement position 900 is used to change the temperature of the entire measurement position 900 relative to the third set temperature C. After overshooting, the heat exchange 122 is stopped, and the temperature is lowered from the plurality of measurement positions 900 and the heat sink 129d located on the upstream side. Because of this, measurement The temperature of the entire position 900 can be made uniform in a short time, and the start-up time of the electronic component test apparatus can be shortened. In addition, since the temperature difference between the plurality of measurement positions 900 and the heat sink 129d can be reduced, the temperature application accuracy can be improved.
[0089] さらに、本実施形態では、この第 2の温度センサ 124bが温度監視を行っている間、 第 2の設定温度 Bの修正を行う。  Furthermore, in the present embodiment, the second set temperature B is corrected while the second temperature sensor 124b is monitoring the temperature.
[0090] 具体的には、先ず、ステップ S40を実行した後に制御装置 125が計時を開始し、所 定時間を経過する毎に (ステップ S60にて YES)、両温度センサ 124a、 124bにより 温度を測定し、第 1の温度センサ 124aの測定温度 Taと第 2の温度センサ 124bの測 定温度 Tbとの差 Δ T ( Δ T = Tb— Ta)を算出する (ステップ S 70)。  [0090] Specifically, first, after executing step S40, the control device 125 starts timing, and every time a predetermined time has elapsed (YES in step S60), the temperature is measured by both temperature sensors 124a and 124b. Measure and calculate the difference Δ T (Δ T = Tb−Ta) between the measured temperature Ta of the first temperature sensor 124a and the measured temperature Tb of the second temperature sensor 124b (step S70).
[0091] 次いで、制御装置 125は、ステップ S70で算出した ΔΤを第 2の温度センサ 124bの 測定温度 Tb力 減算し (B=Tb— ΔΤ)、この値を新たな第 2の設定温度 Bとして設 定する (ステップ S80)。この新たな第 2の設定温度 Bによって温度監視を行うことで( ステップ S90〜S110)、複数の測定位置 900において上流側と下流側の温度差を 更に低減することができ、温度印加精度を更に向上させることができる。  Next, the controller 125 subtracts Δ calculated in step S70 from the measured temperature Tb force of the second temperature sensor 124b (B = Tb—ΔΤ), and sets this value as the new second set temperature B. Set (Step S80). By monitoring the temperature with the new second set temperature B (steps S90 to S110), the temperature difference between the upstream side and the downstream side can be further reduced at the plurality of measurement positions 900, and the temperature application accuracy is further improved. Can be improved.
[0092] なお、複数の第 1の温度センサ 124aを複数の測定位置 900の近傍にそれぞれ配 置しても良ぐこの場合には、全ての第 1の温度センサ 124aの測定温度の平均値を 、図 13のステップ S 70で用いる Taとすることで、温度印加精度をより向上させることが できる。  [0092] It should be noted that a plurality of first temperature sensors 124a may be arranged in the vicinity of a plurality of measurement positions 900, and in this case, the average value of the measured temperatures of all the first temperature sensors 124a is calculated. By using Ta used in step S 70 in FIG. 13, the temperature application accuracy can be further improved.
[0093] なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたもの であって、本発明を限定するために記載されたものではない。したがって、上記の実 施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均 等物をも含む趣旨である。  Note that the embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment includes all design changes and equivalents belonging to the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 被試験電子部品の試験を行うために、押圧手段により前記被試験電子部品をテス トヘッドのコンタクト部に押し付けることが可能な電子部品試験装置であって、 前記押圧手段及び前記コンタクト部を囲む空間を密閉するチャンバと、 前記チャンバ内に存在する流体を昇温又は降温可能な温度調整手段と、 前記流体を前記チャンバ内で循環させる循環手段と、  [1] An electronic component testing apparatus capable of pressing the electronic device under test against a contact portion of a test head by a pressing means in order to test the electronic device under test, wherein the pressing means and the contact portion are A chamber that seals the surrounding space, temperature adjusting means that can raise or lower the temperature of fluid in the chamber, and circulation means that circulates the fluid in the chamber;
前記流体を、前記温度調整手段から、試験時に前記被試験電子部品が位置する 測定位置の近傍に直接誘導する誘導手段と、を備え、  Guidance means for directly guiding the fluid from the temperature adjustment means to the vicinity of the measurement position where the electronic device under test is located during testing,
前循環手段は、前記誘導手段を経由して前記測定位置の近傍に誘導された前記 流体を回収する電子部品試験装置。  The pre-circulation means is an electronic component testing apparatus that collects the fluid guided to the vicinity of the measurement position via the guidance means.
[2] 前記押圧手段は、前記流体から吸熱し又は前記流体へ放熱するための吸放熱体 を有し、前記測定位置の近傍に設けられており、 [2] The pressing means has a heat absorbing / dissipating body for absorbing heat from the fluid or radiating heat to the fluid, and is provided in the vicinity of the measurement position.
前記誘導手段は、前記流体を前記循環手段から前記吸放熱体に直接誘導する請 求項 1記載の電子部品試験装置。  2. The electronic component testing apparatus according to claim 1, wherein the guide means directly guides the fluid from the circulation means to the heat sink / radiator.
[3] 前記誘導手段は、前記流体を前記温度調整手段から前記測定位置の近傍に導く 導管を有し、 [3] The guiding means includes a conduit for guiding the fluid from the temperature adjusting means to the vicinity of the measurement position,
前記導管は、前記テストチャンバ内に設けられている請求項 1又は 2記載の電子部 品試験装置。  3. The electronic component testing apparatus according to claim 1, wherein the conduit is provided in the test chamber.
[4] 前記導管は、 [4] The conduit is
前記温度調整手段の近傍で開口して 、る入口と、  An inlet opening near the temperature adjusting means;
前記測定位置の近傍で開口して 、る出口と、を有する請求項 3記載の電子部品試 験装置。  4. The electronic component testing apparatus according to claim 3, further comprising an outlet opening near the measurement position.
[5] 前記電子部品試験装置は、前記押圧手段を複数備え、  [5] The electronic component test apparatus includes a plurality of the pressing means,
前記各押圧手段は、前記流体から吸熱し又は放熱するための吸放熱体を有してお り、  Each pressing means has a heat absorbing / dissipating body for absorbing heat from or dissipating heat from the fluid,
前記導管は、前記各押圧手段の前記吸放熱体の近傍に向力つてそれぞれ開口し て 、る複数の前記出口を有する請求項 4記載の電子部品試験装置。  5. The electronic component testing apparatus according to claim 4, wherein the conduit has a plurality of the outlets that open in the vicinity of the heat-absorbing and radiating bodies of the pressing means.
[6] 前記出口を介して流出する前記流体を、前記複数の吸放熱体に対して実質的に 均等に配分する配分手段をさらに備えている請求項 5記載の電子部品試験装置。 [6] The fluid flowing out through the outlet is substantially discharged with respect to the plurality of heat sinks. 6. The electronic component testing apparatus according to claim 5, further comprising distribution means for evenly distributing.
[7] 前記配分手段は、前記出口から流出する前記流体の流量を調整するために前記 出口の周囲に設けられたフラップを含む請求項 6記載の電子部品試験装置。 7. The electronic component testing apparatus according to claim 6, wherein the distribution means includes a flap provided around the outlet for adjusting a flow rate of the fluid flowing out from the outlet.
[8] 前記電子部品試験装置は、前記流体の温度を測定する温度測定手段をさらに備 え、 [8] The electronic component test apparatus further includes a temperature measuring means for measuring the temperature of the fluid,
前記温度測定手段は、前記循環手段により循環される前記流体の循環路において 、前記導管の出口の下流側近傍、又は、前記測定位置の下流側近傍に設けられて いる請求項 1〜7の何れかに記載の電子部品試験装置。  The temperature measuring means is provided in the vicinity of the downstream side of the outlet of the conduit or the downstream side of the measurement position in the circulation path of the fluid circulated by the circulation means. The electronic component testing device according to claim 1.
[9] 前記流体の温度を測定する複数の温度測定手段と、 [9] A plurality of temperature measuring means for measuring the temperature of the fluid;
前記複数の温度測定手段のうちの少なくとも 1つの温度測定手段の測定結果に基 づいて、前記温度調整手段を制御する制御手段と、を備えている請求項 1〜7の何 れかに記載の電子部品試験装置。  The control unit according to any one of claims 1 to 7, further comprising a control unit that controls the temperature adjusting unit based on a measurement result of at least one of the plurality of temperature measuring units. Electronic component testing equipment.
[10] 前記複数の温度測定手段は、第 1の温度測定手段と第 2の温度測定手段とを含み 前記第 1の温度測定手段は、試験時に前記被試験電子部品が位置する測定位置 の近傍に設けられており、 [10] The plurality of temperature measurement means includes a first temperature measurement means and a second temperature measurement means. The first temperature measurement means is in the vicinity of a measurement position where the electronic device under test is located during a test. It is provided in
前記第 2の温度測定手段は、前記循環手段により循環される前記流体の循環路に おいて、前記温度調整手段の下流側であり、且つ、前記測定位置の上流側に設けら れて 、る請求項 9記載の電子部品試験装置。  The second temperature measurement means is provided downstream of the temperature adjustment means and upstream of the measurement position in the circulation path of the fluid circulated by the circulation means. The electronic component test apparatus according to claim 9.
[11] 複数の前記被試験電子部品を同時に試験可能なように前記測定位置を複数備え ており、 [11] A plurality of the measurement positions are provided so that a plurality of the electronic devices under test can be tested simultaneously.
前記第 1の温度測定手段は、前記循環路において、前記複数の測定位置の下流 側近傍に設けられている請求項 10記載の電子部品試験装置。  11. The electronic component testing apparatus according to claim 10, wherein the first temperature measuring means is provided in the vicinity of the downstream side of the plurality of measurement positions in the circulation path.
[12] 前記制御手段は、昇温時間又は降温時間を短縮するように、前記第 1の温度測定 手段又は前記第 2の温度測定手段の一方の測定結果のみに基づいて前記温度調 整手段を制御した後に、前記第 2の温度測定手段又は第 1の温度測定手段の他方 の測定結果のみに基づいて前記温度調整手段を制御する請求項 9又は 10記載の 電子部品試験装置。 [12] The control means controls the temperature adjustment means based only on the measurement result of one of the first temperature measurement means and the second temperature measurement means so as to shorten the temperature rise time or the temperature fall time. 11. The electronic component testing apparatus according to claim 9 or 10, wherein after the control, the temperature adjusting means is controlled based only on the measurement result of the other of the second temperature measuring means or the first temperature measuring means.
[13] 前記制御手段は、前記第 1の温度測定手段が第 1の設定温度を測定するまで前記 温度調整手段による昇温又は降温を実行した後、前記第 2の温度測定手段が第 2の 設定温度を測定するまで、前記温度調整手段による昇温又は降温を制限する請求 項 12記載の電子部品試験装置。 [13] The control means performs temperature increase or decrease by the temperature adjustment means until the first temperature measurement means measures the first set temperature, and then the second temperature measurement means performs the second temperature measurement. 13. The electronic component testing apparatus according to claim 12, wherein temperature rise or temperature drop by the temperature adjusting means is limited until a set temperature is measured.
[14] 前記制御手段は、前記第 2の温度測定手段の測定結果に基づ 、て、前記測定位 置の温度が第 3の設定温度に維持されるように前記温度調整手段を制御する請求項[14] The control means controls the temperature adjustment means based on the measurement result of the second temperature measurement means so that the temperature at the measurement position is maintained at a third set temperature. Term
13記載の電子部品試験装置。 13. The electronic component testing apparatus according to 13.
[15] 前記第 1の設定温度は、前記第 3の設定温度に対して相対的に高い温度である請 求項 14記載の電子部品試験装置。 [15] The electronic component test apparatus according to [14], wherein the first set temperature is a temperature relatively higher than the third set temperature.
[16] 前記第 2の設定温度は、前記第 3の設定温度と実質的に同一の温度、又は、前記 第 3の設定温度に対して相対的に低い温度である請求項 15記載の電子部品試験装 置。 16. The electronic component according to claim 15, wherein the second set temperature is substantially the same as the third set temperature or a temperature relatively lower than the third set temperature. Test device.
[17] 前記制御手段は、前記第 1の温度測定手段の測定結果及び第 2の温度測定手段 の測定結果に基づいて、前記第 2の設定温度を修正する請求項 15又は 16の何れ かに記載の電子部品試験装置。  [17] The control unit according to any one of claims 15 and 16, wherein the control unit corrects the second set temperature based on a measurement result of the first temperature measurement unit and a measurement result of the second temperature measurement unit. The electronic component testing apparatus described.
[18] 前記第 1の温度測定手段を複数備え、 [18] comprising a plurality of the first temperature measuring means,
前記制御手段は、全ての前記第 1の温度測定手段の測定結果、及び、前記第 2の 温度測定手段の測定結果に基づ!、て、前記第 2の設定温度を修正する請求項 17記 載の電子部品試験装置。  18. The control means corrects the second set temperature based on the measurement results of all the first temperature measurement means and the measurement results of the second temperature measurement means. Electronic component testing equipment.
PCT/JP2006/318361 2006-09-15 2006-09-15 Electronic component testing apparatus WO2008032397A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/318361 WO2008032397A1 (en) 2006-09-15 2006-09-15 Electronic component testing apparatus
CNA2006800558276A CN101512357A (en) 2006-09-15 2006-09-15 Electronic element test device
TW096132854A TW200821598A (en) 2006-09-15 2007-09-04 Electronic component testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318361 WO2008032397A1 (en) 2006-09-15 2006-09-15 Electronic component testing apparatus

Publications (1)

Publication Number Publication Date
WO2008032397A1 true WO2008032397A1 (en) 2008-03-20

Family

ID=39183468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318361 WO2008032397A1 (en) 2006-09-15 2006-09-15 Electronic component testing apparatus

Country Status (3)

Country Link
CN (1) CN101512357A (en)
TW (1) TW200821598A (en)
WO (1) WO2008032397A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007419A1 (en) * 2009-07-14 2011-01-20 株式会社アドバンテスト Electronic part pressing device, electronic part test device, and interface device
CN105182120A (en) * 2015-08-31 2015-12-23 武汉博富通试验设备有限公司 Novel electronic on-line detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393768A (en) * 2011-10-13 2012-03-28 清华大学 Temperature closed-loop control device and testing method
TWI398654B (en) * 2011-11-22 2013-06-11 Chroma Ate Inc Semiconductor automation testing machine with temperature control system
KR20150108578A (en) * 2014-03-18 2015-09-30 가부시키가이샤 어드밴티스트 Temperature control apparatus and test system
KR102473315B1 (en) * 2016-02-19 2022-12-02 (주)테크윙 Pushing apparatus of handler for testing electronic devices
JP7316798B2 (en) 2019-01-30 2023-07-28 株式会社アドバンテスト Electronic component handling equipment and electronic component testing equipment
CN110794277B (en) * 2018-07-26 2022-06-03 株式会社爱德万测试 Electronic component handling apparatus and electronic component testing apparatus
KR20220028846A (en) * 2020-08-31 2022-03-08 세메스 주식회사 Chamber module and test handler including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310272U (en) * 1989-06-16 1991-01-31
JPH04363674A (en) * 1991-02-15 1992-12-16 Hitachi Electron Eng Co Ltd Thermostatic chamber for ic handler
JPH07294596A (en) * 1994-04-28 1995-11-10 Ando Electric Co Ltd Temperature control method in constant-temperature bath for high-low-temperature handler
JP2000162268A (en) * 1998-11-27 2000-06-16 Advantest Corp Method of applying temperature of electronic component and electronic component tester
WO2003007007A1 (en) * 2001-07-12 2003-01-23 Advantest Corporation Electronic parts handling device, and electronic parts temperature control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310272U (en) * 1989-06-16 1991-01-31
JPH04363674A (en) * 1991-02-15 1992-12-16 Hitachi Electron Eng Co Ltd Thermostatic chamber for ic handler
JPH07294596A (en) * 1994-04-28 1995-11-10 Ando Electric Co Ltd Temperature control method in constant-temperature bath for high-low-temperature handler
JP2000162268A (en) * 1998-11-27 2000-06-16 Advantest Corp Method of applying temperature of electronic component and electronic component tester
WO2003007007A1 (en) * 2001-07-12 2003-01-23 Advantest Corporation Electronic parts handling device, and electronic parts temperature control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007419A1 (en) * 2009-07-14 2011-01-20 株式会社アドバンテスト Electronic part pressing device, electronic part test device, and interface device
JPWO2011007419A1 (en) * 2009-07-14 2012-12-20 株式会社アドバンテスト Electronic component pressing device, electronic component testing device, and interface device
CN105182120A (en) * 2015-08-31 2015-12-23 武汉博富通试验设备有限公司 Novel electronic on-line detection device

Also Published As

Publication number Publication date
CN101512357A (en) 2009-08-19
TWI346787B (en) 2011-08-11
TW200821598A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
WO2008032397A1 (en) Electronic component testing apparatus
JP4119104B2 (en) Pusher with heater, electronic component handling apparatus, and electronic component temperature control method
JP4152316B2 (en) Electronic component handling apparatus and temperature control method for electronic component
JP4789125B2 (en) Electronic component test socket and electronic component test apparatus using the same
TW496961B (en) Device testing apparatus
US20020070745A1 (en) Cooling system for burn-in unit
JP2005156172A (en) Test burn-in device for middle power and high power ic
KR20090061028A (en) Electronic component testing apparatus
JP4514787B2 (en) Electronic component testing apparatus and temperature control method in electronic component testing apparatus
US7642795B2 (en) Drive method and drive circuit of peltier element, attaching structure of peltier module and electronic device handling apparatus
JP4763003B2 (en) Pusher with heater, electronic component handling apparatus, and electronic component temperature control method
US11519953B2 (en) Apparatus for testing semiconductor device
JP3942734B2 (en) Electronic component testing equipment
JP4082807B2 (en) Electronic component temperature application method and electronic component test apparatus
US12007451B2 (en) Method and system for thermal control of devices in an electronics tester
JP4054465B2 (en) Electronic component testing equipment
JP2005347612A (en) Wafer tray, wafer burn-in unit, wafer-level burn-in apparatus using same unit, and temperature controlling method of semiconductor wafer
KR100938363B1 (en) The reliability testing for temperature regulation system of memory module
WO2010016119A1 (en) Electronic component handling device
JP4041607B2 (en) Electronic component testing equipment
JP2003028924A (en) Electronic component handling device and method of controlling temperature of the electronic component
TW202422066A (en) Heat exchanger, electronic component processing device, and electronic component testing device
WO2004005948A1 (en) Electronic component contact device
KR20070090022A (en) Peltier element drive method and circuit, peltier module attaching structure, and electronic component handling device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680055827.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020097006866

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06798024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP