WO2008029668A1 - Procédé de détermination d'activité inhibitrice sur la méthylation d'adn - Google Patents

Procédé de détermination d'activité inhibitrice sur la méthylation d'adn Download PDF

Info

Publication number
WO2008029668A1
WO2008029668A1 PCT/JP2007/066624 JP2007066624W WO2008029668A1 WO 2008029668 A1 WO2008029668 A1 WO 2008029668A1 JP 2007066624 W JP2007066624 W JP 2007066624W WO 2008029668 A1 WO2008029668 A1 WO 2008029668A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylation
dna
test
site
restriction enzyme
Prior art date
Application number
PCT/JP2007/066624
Other languages
English (en)
French (fr)
Inventor
Yoshifumi Yamada
Kazuhito Gohda
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2008029668A1 publication Critical patent/WO2008029668A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]

Definitions

  • the present invention relates to a method for detecting methylation of DNA (deoxyribonucleic acid), and more specifically, the action of various biological substances and other substances to inhibit DNA methylation (DNA methylation).
  • the present invention relates to a method for determining whether or not to have an inhibitory action.
  • Such a regulation mechanism of gene expression by methylation of DNA is also observed in, for example, tumor suppressor genes such as pi 6, and in the example of pi 6, the upstream sequence of the pi 6 gene is normal cells. Is unmethylated, so the pi 6 gene is expressed and the canceration of the cell is suppressed. In cancer cells, the upstream sequence of the pl6 gene is methylated and the pl6 gene expression switch is turned off. It has been reported that. Therefore, in the medical field such as cancer treatment, the development of new drugs for preventing or treating cancer by artificially manipulating or controlling DNA methylation or demethylation of genes involved in canceration of cells is in progress. Has been tried. For example, it is expected to be a cancer therapeutic agent that causes normal expression by demethylating a methylated tumor suppressor gene such as pl6, thereby returning cells to a normal state.
  • methylated cytosine is not converted to uracil by sodium bisulfite treatment, so DNA containing methylated cytosine is cleaved by a restriction enzyme, shortened in length, and detected by electrophoresis. Will be.
  • PCR is carried out by adding a primer that recognizes a cytosine-containing region to DNA that has been treated with sodium bisulfite and methylated and replaced with cytosine uracil.
  • a method of amplifying only DNA containing methylated cytosine and detecting DNA methylation is disclosed.
  • Patent Document 1 Special Table 2006—500901 Gazette
  • Patent Document 2 Special Table 2005—508885
  • DNA methylation inhibitors substances that have an action to inhibit DNA methylation
  • DNA methylation inhibitors themselves can be used as the main component of drugs that block the methylation of the bases of genes to be expressed in normal cells.
  • DNA methylation inhibitors can be used as reagents for artificially manipulating DNA methylation in experiments. Therefore, as more new DNA methylation inhibitors are found, it is expected that the potential for the development of new drugs and the elucidation of gene expression mechanisms will increase.
  • One object of the present invention is to provide a method for determining the presence or absence of DNA methylation inhibitory activity of an arbitrary substance relatively easily and quickly without requiring a large amount of sample.
  • Another object of the present invention is to provide a method for detecting DNA methylation that is advantageously used in a method for determining the presence or absence of DNA methylation inhibitory activity. Means for solving the problem
  • the method of the present invention is a test DNA that is a double-stranded DNA having a restriction enzyme recognition site containing a methylation site and having a fluorescent label added thereto, and whether or not it is an inhibitor that inhibits DNA methylation.
  • the test substance to be determined is mixed with the DNA methylase, and then the test DNA contains a restriction enzyme recognition site containing an unmethylated methylation site or a methylated methylation site.
  • the process of applying a methylation-sensitive agent that selectively cleaves any force at the restriction enzyme recognition site, and the process of measuring the fluorescence intensity of the test DNA to which the methylation-sensitive restriction enzyme was applied were measured.
  • the methylation-sensitive agent is , A methylation-sensitive agent that cleaves a restriction enzyme recognition site including a methylation site in an unmethylated state.
  • the test substance may be determined to be an inhibitor that inhibits DNA methylation.
  • the methylation-sensitive agent may be a known methylation-sensitive restriction enzyme (restriction enzyme that cleaves a restriction enzyme recognition site including a methylation site in an unmethylated state), as exemplified later. More than one type of methylation sensitive agent or restriction enzyme may be used simultaneously.
  • a test DNA having a restriction enzyme recognition site including a methylation site is prepared in advance.
  • the object to be examined has a DNA methylation inhibitory effect! /, A force, may be! /, A test substance, so that the DNA used is a methylation site.
  • any restriction enzyme recognition site containing can be used.
  • the test DNA, the test substance, and the DNA methylase are mixed, if the test substance has no DNA methylation inhibitory action, the DNA methylation of the test DNA is performed by the DNA methylase. If the test substance has DNA methylation inhibitory action S, the methylation site is methylated! /, Na!
  • the test substance may be a DNA methylation inhibitor.
  • the test DNA force is cleaved at the restriction enzyme recognition site including the S methylation site, and the test substance is not a DNA methylation inhibitor, the methylation site is methylated, so the test DNA is not cleaved. It will be.
  • test DNA force When DNA is not cleaved at the restriction enzyme recognition site including the S methylation site and the test substance is not a DNA methylation inhibitor, the test DNA is cleaved because the methylation site is methylated.
  • the test substance is a DNA methylation inhibitor can be determined in the present invention simply by detecting whether or not the test DNA has been cleaved by the methylation-sensitive agent. .
  • Whether or not the test DNA is cleaved by the methylation-sensitive agent is determined in the present invention by adding a fluorescent label to the test DNA in advance as understood from the above configuration, Determined based on the fluorescence intensity (of the fluorescent label) of the test DNA measured after treatment with. If a fluorescent label is attached to a molecule such as a protein or DNA as understood by those skilled in the art, changes in the structure, size, and movement of the molecule can be detected based on the fluorescence intensity of the fluorescent label.
  • the test DNA when the test DNA is cleaved by treatment with a methylation-sensitive agent, that is, when the structure of the test DNA changes, the size of the DNA molecule to which the fluorescent label is added changes, Alternatively, since the movement state of the molecules changes, such changes in the structure of the test DNA are reflected in changes in various behaviors of the fluorescence intensity of the fluorescent label attached to the DNA. Therefore, measurement of the fluorescence intensity of the test DNA after treatment with a methylation-sensitive agent makes it relatively easy to determine whether or not the test DNA has been cleaved, so that the test substance is a DNA methylation inhibitor. Judgment will be made on whether or not it is hot.
  • fluorescent labels before and after the process of acting a methylation-sensitive agent are added based on the measurement of fluorescence intensity.
  • the presence or absence of cleavage of the test DNA after treatment with the methylation-sensitive agent may be determined.
  • the test DNA was prepared so that the distance between the methylation site and the fluorescently labeled site was less than half the length of the test DNA, and the test DNA was cleaved after treatment with the methylation-sensitive agent.
  • the change in the length of the DNA to which the fluorescent label is added or the change in the Brownian motion of the DNA molecule can be greatly captured.
  • the fluorescent labels on the test DNA are separated into separate DNA fragments as the test DNA is cleaved based on the measurement of the two fluorescence intensities.
  • the presence or absence of cleavage of the test DNA may be detected, for example, by detecting that it is divided into two.
  • Fluorescence-labeled test with methylation-sensitive agent Specific methods for measuring fluorescence intensity to detect the presence or absence of DNA cleavage include fluorescent correlation spectroscopy and fluorescence depolarization. Arbitrary fluorescence that can detect changes in molecular motion with changes in molecular size It may be a measurement method. In addition, when two or more types of fluorescent labels are added to the test DNA, the presence or absence of cleavage of the test DNA is measured using fluorescence cross-correlation spectroscopy as described in detail later. It may be. It should be understood that any fluorometric analysis technique that can detect changes in the structure or size of the test DNA other than those described above may be employed in the present invention. Belongs to the scope of the invention
  • a double-stranded DNA having a restriction enzyme recognition site containing a methylation site and having a fluorescent label added thereto The test DNA is subjected to a series of reactions, and the presence or absence of cleavage of the test DNA by the methylation-sensitive agent is determined based on the fluorescence measurement of the test DNA! / It can also be applied to detect whether an enzyme has DNA methylation activity.
  • a method for detecting the DNA methylation activity of an enzyme comprising a restriction enzyme recognition site containing a methylation site and a double strand to which a fluorescent label is added.
  • the process of mixing the test DNA, which is DNA, with the test enzyme to be determined whether or not it has DNA methylation activity, and then restriction enzyme recognition that includes a methylation site in an unmethylated state in the test DNA The process of applying a methylation-sensitive agent that selectively cleaves either a restriction enzyme recognition site containing a methylation site or a methylation site of the methylation state, and the fluorescence intensity of the test DNA to which the methylation-sensitive restriction enzyme is applied And a process for determining whether or not the test DNA is cleaved by a methylation-sensitive agent based on the fluorescence intensity.
  • the test enzyme force 3 ⁇ 4 ⁇ is determined depending on whether or not the test DNA is cleaved. Methylating activity and presence Wherein the determining whether to have is provided.
  • This method replaces the DNA methylase with a test enzyme and inhibits the DNA methylation described above in that it does not mix with a test substance that is judged whether or not it has a DNA methylation inhibitory action. It should be understood that this is only different from the method of detecting inhibitors.
  • the above-described method for detecting an inhibitor that inhibits DNA methylation according to the present invention is characterized in that a substance such as a protein has an enzyme activity for demethylating DNA, It is also applicable to detecting whether or not.
  • an enzyme A test DNA which is a double-stranded DNA having a restriction enzyme recognition site containing a methylated methylation site and having a fluorescent label added thereto, and a DNA deionization method.
  • a process of mixing with a test enzyme to be determined whether or not it has methylation activity, and then a restriction enzyme recognition site containing a methylation site in an unmethylated state in the test DNA or methylated methyl The process of applying a methylation-sensitive agent that selectively cleaves any of the restriction enzyme recognition sites including the oxidization site, the process of measuring the fluorescence intensity of the test DNA to which the methylation-sensitive restriction enzyme is applied, and the fluorescence Based on the strength of the test, including the process of determining whether the DNA has been cleaved by an agent that is sensitive to S-methylation, the test enzyme demethylates the DNA depending on whether the test DNA has been cleaved or not. Whether or not it has activity Is provided.
  • This method is characterized in that the test DNA is pre-methylated, the DNA methylase is replaced with the test enzyme, and the test substance to be determined whether or not it has a DNA methylation inhibitory action is not mixed. It should be understood that this is only different from the method of detecting inhibitors that inhibit the methylation of DNA.
  • the characteristics of the above-described method for detecting an inhibitor that inhibits DNA methylation of the present invention can also be applied to a method for detecting an inhibitor that inhibits DNA demethylation. Therefore, according to yet another aspect of the present invention, there is provided a method for detecting an inhibitory substance that inhibits demethylation of DNA, comprising a restriction enzyme recognition site containing a methylated methylation site, and a fluorescence. Mix test DNA, which is a double-stranded DNA with a label, a test substance to be determined whether it is an inhibitor that inhibits demethylation of DNA, and a DNA demethylation enzyme.
  • Methylation that selectively cleaves the process and then either the restriction enzyme recognition site containing the methylation site in the unmethylated state or the restriction enzyme recognition site containing the methylation site in the methylation state in the test DNA
  • the process of applying a sensitive agent the process of measuring the fluorescence intensity of a test DNA to which a methylation sensitive restriction enzyme is applied, and whether or not the test DNA was cleaved by the methylation sensitive agent based on the fluorescence intensity
  • the process of judging Wherein method characterized in that the test substance to determine whether power, whether the inhibitor inhibits DNA demethylation is provided by whether the test DNA has been cut. This method is to detect an inhibitor that inhibits DNA methylation.
  • the method differs from the method in that the test DNA is pre-methylated and the DNA methylase is replaced with a DNA demethylase.
  • the method of the present invention differs from the conventional method for detecting methylation of DNA in order to specify in detail the methylation pattern of DNA.
  • This method is intended to determine whether or not it has DNA methylation inhibitory activity (or enzyme DNA methylation activity, enzyme DNA demethylation activity or DNA demethylation inhibitory activity).
  • DNA methylation inhibitory activity or enzyme DNA methylation activity, enzyme DNA demethylation activity or DNA demethylation inhibitory activity.
  • treatment with sodium bisulfite to replace cytosine with uracil, amplification of DNA by PCR, and fractionation of DNA according to its length as in the conventional method for detecting methylation of DNA No electrophoresis method is used.
  • the method of the present invention it is possible to detect the presence or absence of DNA methylation easily and quickly without the need for a high concentration or a large amount of sample as compared with the conventional method for detecting methylation of DNA. Done.
  • the measurement for distinguishing between methylated DNA and unmethylated DNA is fluorescence measurement. This is very advantageous in that it can be reduced.
  • the sample amount can be further reduced by using a device equipped with the optical system of the confocal optical microscope used for the fluorescence correlation spectroscopic analysis as described above in the fluorescence measurement.
  • the present invention provides a test DNA that can be used in a small amount, so that the subsequent series of processes is relatively quick and simple. It can also be applied to screening.
  • the method for detecting an inhibitor that inhibits DNA methylation requires only a slight modification as described above, and the DNA methylation activity of the enzyme.
  • This method can be applied to a method for detecting DNA, a method for detecting the DNA demethylation activity of an enzyme, and a method for detecting an inhibitor that inhibits DNA demethylation. Screening for the presence or absence of DNA methylation activity, presence or absence of DNA demethylation activity, and presence or absence of DNA demethylation inhibitory activity for these test substances, easily and quickly, and without requiring a large amount of sample.
  • the DNA methylation activity of any enzyme and the demethylation inhibitory action of substances can be detected.
  • FIG. 1 is a flowchart showing the processing steps in a preferred embodiment of the method of the present invention.
  • FIG. 2 schematically shows a change in the structure of a DNA molecule during the process of the embodiment of FIG.
  • Fig. 3 shows the fluorescence intensity obtained by fluorescence correlation spectroscopy of the sample in Example 1. It is a graph showing an autocorrelation function value.
  • FIG. 4 is a graph showing the cross-correlation function values of the fluorescence intensities of the fluorescent labels alexa647 and TAMRA obtained by fluorescence cross-correlation spectroscopy of the sample in Example 2.
  • A is the result for the test sample
  • B is the result for the control sample.
  • FIG. 1 is a flowchart showing the processing steps in a preferred embodiment of the method for detecting an inhibitor that inhibits methylation of DNA of the present invention.
  • FIG. 2 is a flow chart of FIG. This diagram schematically shows changes in the state of molecules assumed in the treatment.
  • a test DNA which is a double-stranded DNA having a restriction enzyme recognition site including a methylation site, is prepared in advance.
  • the length of the test DNA is also 10 to 40, which is the cost of synthesis and the ease of detection; OOmer is preferred and 40 mer is even more preferred.
  • the methylation site is C in the 5′-cytosine (C) -guanine (G) -3 ′ base sequence, and in the double-stranded DNA as illustrated in FIG. 2 (A), Since C is bonded to G, the base sequence opposite to the base sequence of 5 ′ CG—3 ′ is 3′—G—C—5 ′. It is known that the 5'-C-G-3 'C base of both DNA strands is methylated in the presence of methylase (without inhibition).
  • a fluorescent dye is added to the test DNA as at least one fluorescent label.
  • the fluorescent dye may be any fluorescent dye usually used in this field, such as TAMRA (carboxymethylrhodamine), TMR tetramethylrhoaamine-8 Alexa64, Rhodamine reen, Alexa488, but is not limited thereto. If a single fluorescent dye is added to the test DNA, the test DNA may be prepared so that the distance between the fluorescent labeling site and the methylation site is shorter than half of the total DNA length! I like it.
  • Test DNA as described in more detail later is treated with a methylating enzyme in the presence of a test substance (a substance to be tested for the presence or absence of a methylation inhibitory effect), and further treated with a methylation sensitive agent After that, when determining whether or not the test DNA is cleaved at the methylation site, if a single fluorescent dye is added to the test DNA, the fluorescent dye must be added! Changes in the child's movement state are observed (based on fluorescence measurements). When the test DNA is cleaved, a fluorescent dye is added to only one DNA fragment. If the distance between the fluorescent labeling site and the methylation site is shorter than half of the total DNA length, the test DNA is cleaved.
  • a test substance a substance to be tested for the presence or absence of a methylation inhibitory effect
  • the difference in the length of the DNA molecules increases due to the addition of fluorescent dyes! /, And the change in the movement state of the DNA molecules detected by fluorescence intensity measurement. Since it becomes large, the presence or absence of DNA cleavage can be detected with higher sensitivity.
  • the test DNA may be fluorescently labeled with a plurality of types of fluorescent dyes. By modifying the DNA strand with a different type of label across the methylation cleavage site, it becomes possible to measure with fluorescence cross-correlation spectroscopy as described below. Can be detected with good sensitivity.
  • the test DNA may be a DNA derived from an organism that satisfies the above conditions. However, an artificially synthesized DNA is more stable than an organism and can be mass-produced at low cost. Suitable for screening of different types of test substances. Test DNA should be mass-produced at one time rather than being prepared each time the method of this embodiment is performed, and then stored in a non-denaturing manner so that it can be used in the required amount when carrying out the method of this embodiment. May be.
  • the test DNA and the test substance are first mixed (step 1), and then the DNA methylase (and the enzyme reaction). (Step 2).
  • the DNA methylase may be CpG methylase, Dnmtl, Dnm t3a, Dnmt3b, Dam methylase, Dcm methylase, or the like. It should be noted that the subsequent mixing operation of the substance as understood by those skilled in the art is performed in a state where the substance is dissolved in an aqueous solution unless otherwise specified. Thereafter, the mixed solution is incubated at 37 ° C for about 1 hour so that the DNA methylation reaction proceeds.
  • Step 2 Prior to the addition of the DNA methylating enzyme in Step 2, it is preferable to incubate the aqueous solution at 37 ° C. for about 30 minutes so that the temperature of the solution is adjusted to the temperature at which the enzyme reaction is to occur. Conditions such as the composition of the aqueous solution, the temperature of the reaction process, the reaction time, and the like that are normally used may be selected so that the target enzyme reaction or the like proceeds appropriately.
  • a methylation-sensitive agent is then added to the aqueous solution (Step 4 ), and cleavage at the restriction enzyme recognition site including the methylation site of the test DNA and the base sequence CG proceeds.
  • Aqueous solution strength Incubate at 37 ° C for 1 hour (step 5).
  • the methylation-sensitive agent cleaves a methylation site that is not methylated
  • the test substance has a methylation-inhibiting action, cleave the test DNA that is not methylated,
  • the test DNA is not cleaved, so the length of the test DNA is preserved. Become. (Right figure).
  • Such methylation sensitive agents are typically methylation sensitive restriction enzymes such as Aat II, Acc I, Acc II, Aci I, Afa I, Afl II, Alu I , Aorl3H I, A or51H Apa I, ApaL I, Ava I, Ava II, Bal I, BamH I, Ban II, Bbe I, Ben I, Bgl I, Bgl II, Bin I, BmeTl lO I, BmgT120 I, Bpul l02 I, BspT104 I, BspT107 I, Bspl286 I, Bspl407 I, BssH II, BspD I, BstP I, BstU I, BstX I, Bstl l07 I, CfrlO I, Cfrl3 I, Cla I, Cpo I, Dra I, Eae I, Eag I, Eaml l05 I, Eco065 I, EcoO109
  • the methylation-sensitive restriction enzyme among the above, preferably, the nucleotide sequences CCGG, CCGC, GCGC, ACGT, CGGCCG, GCCGGC, GGCGCC, CCCGGG, CGCG, AT CGTA, TTCGAA, GTCGAG or CTCGAG are selectively used.
  • Cleavage methylation-sensitive restriction enzymes are used, more preferably Hpall (C'CGG), Acil (C'CGC), HinPII (G'CGC), HpyCH4IV (A'CGT), EagI (C'GGCCG) , NegMIV (G 'CCGGC), Kas I (G 'GCGCC), Smal (CCC' GGG), BstUI (CG 'CG), BspDI (AT' CGTA), BstB I (TT 'CGAA), Sail (G' TCGAG), Xhol (C 'TCGAG), etc.
  • the methylation-sensitive restriction enzyme may be used.
  • “in parentheses” indicates an enzyme cleavage site.
  • the treatment with a methylation-sensitive agent or a restriction enzyme in step 45 cleaves a methylated site in a chemically methylated state that does not occur in an enzymatic reaction, and a methylated site in an unmethylated state. Do not cleave! /, May be done with methylation sensitive agents! / ,. In this case, the methylated test DNA is cleaved and fragmented, but the unmethylated test DNA is not cleaved, thus preserving the length of the test DNA. (The reverse of Fig. 2 (C))
  • the fluorescence intensity of the aqueous solution is then measured (step 6).
  • any measurement / spectroscopic method capable of detecting a change in the structure of the molecule of the fluorescently labeled test DNA or a fragment thereof or a change in the movement state as understood from the above description is selected. It's okay.
  • the length of the DNA molecule is shortened when the test DNA is cleaved! DNA molecules that have been shortened with a fluorescent label have a faster Brownian motion than DNA molecules before they are shortened. Therefore, in this case, it is advantageous to use fluorescence correlation spectroscopy, fluorescence depolarization, etc. that can detect changes in the speed of Brownian motion of DNA molecules with fluorescent labels. it can.
  • the length of the DNA molecule to which the fluorescent label is added is shortened, and thus the translational diffusion time is shortened. Presence / absence is determined. Note that the test DNA is not cleaved.
  • the translational diffusion time is measured in advance by a control sample that is known to have not been cleaved by DNA, or by test DNA prior to addition of a methylation sensitive agent! /, Teyo! / ⁇
  • the degree of polarization when the test DNA is not cleaved is measured in advance using a control sample that is known not to cleave DNA, or the test DNA before the addition of a methylation-sensitive agent. ! /, Teyo! /
  • the test DNA as described above is preferably constructed such that the distance between the fluorescent labeling site and the methylation site is shorter than half of the total DNA length, so that the test DNA is cleaved!
  • the difference in length between fluorescently labeled DNA molecules is increasing. Due to the difference in force and length, it is reasonably expedient that the difference in the movement state of molecules can be detected with high sensitivity in the above fluorescence intensity measurement.
  • fluorescence cross-correlation spectroscopy when two fluorescent labels having different emission wavelengths as known in this field pass through a minute fluorescence observation region by Brownian motion, the fluorescence intensity of each label It is possible to determine whether or not there is a correlation between the movements of the two fluorescent labels based on the change in S. If the fluorescent label is present on one carrier (molecule), the change in the two fluorescent intensities changes together, but if the fluorescent label is present on a separate carrier, the two fluorescent intensities Change will change independently. Fluorescent label on one carrier Whether it is on board or not can be determined from the cross-correlation function of the two fluorescence intensities.
  • the two labels move separately, and the cross-correlation function of the two labels moves together without cleaving the test DNA. Since the value is significantly lower, the presence or absence of cutting of the test DNA is determined by the significant difference in force and cross-correlation function.
  • the presence or absence of cleavage of the test DNA is determined based on the fluorescence measurement as described above, the presence or absence of the methylation inhibitory action of the test substance is determined (step 7-9). If the methylation-sensitive substance cleaves a methylated site in an unmethylated state, if cleavage of test DNA is detected, it is determined that the test substance has a methylation-inhibiting effect and the test If DNA cleavage is not detected, it is determined that the test substance has no methylation-inhibiting action.
  • the methylation-sensitive agent cleaves a methylated site in the methylation state, if cleavage of the test DNA is detected, it is determined that the test substance has no methylation-inhibiting action, and the test DNA If no cleavage is detected, it is determined that the test substance has an inhibitory action on methylation.
  • the series of processes of the above embodiment can be used to determine whether or not a certain enzyme has DNA methylation activity.
  • the test substance to be tested for the presence or absence of methylation inhibitory activity in step 1 is not mixed with the test DNA, and when adding the methylating enzyme in step 2, is there DNA methylation activity?
  • a test enzyme to be judged is added.
  • the presence or absence of cleavage of the test DNA is determined, the presence or absence of DNA methylation activity is determined. If the methylation-sensitive agent cleaves a methylation site in an unmethylated state, if cleavage of the test DNA is detected, it is determined that the test enzyme has no methylation activity and the test DNA is cleaved. Is not detected, it is determined that the test enzyme has methylation activity (if the methylation-sensitive agent cleaves the methylated methylated site, the above determination is reversed) )
  • the series of processes in the above embodiment can also be used for testing demethylase activity of a substance such as an arbitrary protein.
  • a substance such as an arbitrary protein.
  • the test DNA DNA whose methylation site is methylated is used. used.
  • the test substance to be tested for the presence or absence of methylation inhibitory activity in Step 1 is not mixed with the test DNA, and instead of adding the methylating enzyme in Step 2, there is DNA demethylation activity.
  • a test enzyme to be determined is added. After a series of treatments, if it is determined whether or not the test DNA is cleaved, the presence or absence of DNA demethylation activity is determined.
  • the test enzyme If the methylation-sensitive agent cleaves a methylation site in an unmethylated state, if cleavage of the test DNA is detected, it is determined that the test enzyme has demethylation activity, and the test DNA If no cleavage is detected, it is determined that the test enzyme has no demethylation activity (if the methylation-sensitive agent cleaves a methylated site in the methylated state, the above determination is reversed. )
  • the series of processes in Fig. 1 of the above embodiment is also for determining whether or not a certain substance has an action of inhibiting the demethylation action of DNA demethylase. It is possible to use S. In that case, as the test DNA, DNA having a methylated site methylated is used. Then, after mixing the test substance to be tested for the presence or absence of demethylation inhibitory activity with test DNA, in step 2, demethylase is added. After a series of treatments, if it is determined whether the test DNA is cleaved, it is determined whether the test substance has a demethylation inhibitory effect.
  • the methylation-sensitive agent cleaves a methylated site in an unmethylated state, if cleavage of the test DNA is detected, it is determined that the test substance has no demethylation inhibitory activity, and the test DNA If no cleavage is detected, it is determined that the test substance has a demethylation-inhibiting action (if the methylation sensitive substance cleaves the methylated methylation site, the reverse of the above) Judgment is made.
  • test DNA which is a double-stranded DNA, was prepared by associating oligonucleotides that were fluorescently labeled at one end with damine) (both obtained from Sigma Dienosis).
  • the meeting procedure is as follows. Oligonucleotide and fluorescently labeled oligonucleotide were each diluted with TE buffer (1 mM EDTA, 10 mM Tris-HCl) to 50 mM. Next, oligonucleotide 101, fluorescently labeled oligonucleotide 101 and TE buffer 801 were mixed and reacted at 95 ° C for 10 minutes, and then slowly cooled to associate the oligonucleotides to produce double-stranded DNA.
  • test DNA was mixed with 5-azadeoxycytidine (Sigma Aldrich) as a test substance (known to have an inhibitory effect on DNA methylation).
  • test DNA was dissolved in reaction buffer (50 mM NaCl, 10 mM Tris-HCl, 1 OmM MgCl 2, lmM dithiothreitol) so that the DNA concentration was 5 nM.
  • reaction buffer 50 mM NaCl, 10 mM Tris-HCl, 1 OmM MgCl 2, lmM dithiothreitol
  • the test sample is 5-azadexoxy and the control sample is Microcin SF608 1 Incubation was performed at 37 ° C for 30 minutes.
  • test sample and the control sample that have been treated with DNA methylase are methylated to cut V, Na! /, DNA, and not methylated DNA! /, Methylation Treated with a sensitive restriction enzyme.
  • the procedure is as follows.
  • the test sample and the control sample are dissolved in a reaction buffer (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl, lmM dithiothreito 1) so as to be ⁇ , and this is added to methylation sensitive restriction enzyme Acd (Takara Bio) 5U. And incubated at 37 ° C for 1 hour.
  • test DNA is considered to be in an unmethylated state in the test sample (with methylation-inhibiting action), so that it is cleaved at the methylation site. It will be.
  • a single-molecule fluorescence analysis system MF20 (Olympus) equipped with a confocal microscope optical system was used for test samples treated with methylation-sensitive restriction enzymes, control samples, and test samples not treated with methylation-sensitive restriction enzymes.
  • the fluorescence intensity was measured by fluorescence correlation spectroscopy.
  • the test sample and the control sample were each diluted so that the test DNA concentration was InM, and the measurement time was 15 seconds per sample (5 seconds x 3 times).
  • FIG. 3 shows a test sample (curve A) that was not treated with restriction enzyme, a control sample (curve B) to which Mi crocin SF608 was added, and 5_azadeoxycytidine added by fluorescence correlation spectroscopy.
  • the autocorrelation curves obtained from the test sample (curve C) are shown. Referring to the figure, the shape of the autocorrelation curve of the test sample not treated with restriction enzyme as understood and the control sample to which Microcin SF608 was added generally match, but 5-azadeoxycytidine The shape of the autocorrelation curve of the sample to be added is shifted to the left compared to the autocorrelation curves of the other samples.
  • the translation diffusion time of each sample was as follows. Treat with restriction enzyme, na! /, Test sample 853 seconds
  • the above results indicate that the DNA is cleaved in the test sample added with 5-azadeoxycytidine. That is, in the presence of 5-azadeoxycytidine, it indicates that methylation of methylation enzyme DNA was inhibited.
  • the method employing the fluorescence correlation spectroscopy of the present invention has shown that the test substance is an inhibitor that inhibits DNA methylation.
  • Test samples treated with methylation-sensitive restriction enzyme, control samples, and test samples not treated with methylation-sensitive restriction enzyme were analyzed by fluorescence depolarization using a single molecule fluorescence analysis system MF20 (Olympus). Fluorescence intensity measurement was performed. In the measurement, the test sample and the control sample were each diluted so that the test DNA concentration was InM, and the measurement time was 3 seconds per sample (1 second x 3 times). The measured value is an mP value (corresponding to 1000 times the value obtained by dividing the difference between the intensity of longitudinally polarized light and transversely polarized light by the sum of longitudinally polarized light and transversely polarized light).
  • test DNA Using the test DNA to which two fluorescent labels with different emission wavelengths were added, the presence or absence of the DNA methylation inhibitory effect of the test substance was determined according to the above treatment process.
  • TAMRA carboxytetramethylrhodamine
  • Alexa647 obtained from Nippon Bioservice
  • the meeting procedure is the same as in Example 1.
  • the base sequence of the test DNA in the associated state is as follows.
  • Fluorescence intensity was measured by fluorescence cross-correlation spectroscopy using a single-molecule fluorescence analysis system MF20 (Olympus) for a test sample treated with a methylation-sensitive restriction enzyme and a control sample.
  • the test sample and the control sample were each diluted so that the test DNA concentration was 0. InM, and the measurement time was 15 seconds (5 seconds x 3 times) per sample.
  • FIGS. 4 (A) and 4 (B) show test samples added with 5-azadeoxycytidine, Microcin, respectively.
  • the cross correlation function of the fluorescence intensity of alexa647 and TAM RA by the fluorescence cross correlation spectroscopy obtained from the control sample to which SF608 was added is shown.
  • the cross-correlation function is 1 when there is no correlation between the two fluorescence intensity changes over time. Comparing the shape of the cross-correlation curve between the test sample and the control sample, the correlation value of the control sample was larger than 1, whereas the correlation value of the test sample was about 1.
  • the correlation between alexa647 and TAMRA movement is independent, and in the control sample, there is some correlation between alexa647 and TAMRA movement, and alexa647 and TAMRA are on the same carrier. It is suggested that you are riding. That is, in the former, the test DNA is cleaved and alexa647 and TAMRA move independently of each other, and in the latter, the test DNA is stored without being cleaved! /. Since the unmethylated DNA is cleaved in this experimental system, it is shown in the test sample that methylation of the methylating enzyme DNA was inhibited by 5-azadeoxycytidine. Thus, the method employing the fluorescence cross-correlation spectroscopy of the present invention has shown that the test substance is an inhibitor that inhibits DNA methylation.
  • the results of the above examples show that after a series of reactions were performed using a test DNA that is a double-stranded DNA having a restriction enzyme recognition site including a methylation site and a fluorescent label added, methyl
  • the presence or absence of cleavage of the test DNA by the oxidatively sensitive agent can be determined based on the fluorescence measurement of the test DNA, thereby determining whether or not an enzyme has methylation activity or demethylation activity, It also indicates that it is possible to determine whether a substance has an inhibitory action on enzyme methylation or demethylation.
  • the time required for detection with a very small DNA concentration of 0.1 to InM is 3 to 15 seconds. It is a point that can be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

明 細 書
DN Aメチル化阻害作用の判定方法
技術分野
[0001] 本発明は、 DNA (デォキシリボ核酸)のメチル化を検出する方法に係り、より詳細に は、種々の生体関連物質及びその他の物質が DNAのメチル化を阻害する作用(D NAメチル化阻害作用)を有するか否か判定する方法に係る。
背景技術
[0002] DNAの塩基配列により決定される遺伝子の発現の制御機構をクロマチンの動的変 動から解明しょうとする研究分野(ェピジエネテイクス)に於いて、 DNAのメチル化の 有無が遺伝子発現のスィッチの一つになっているであろう、ということが明らかになつ てきた。現在までの研究によれば、(哺乳類の) DNAのプロモーター領域の塩基配 歹 IJに於いて、シトシン(C)ーグァニン(G)の配列のうちの Cがメチル化されると、クロマ チンが凝縮し、これにより、その近傍の遺伝子の発現スィッチがオフ(発現が停止さ れる)となり、逆に、メチル化された DNAが脱メチル化されると、遺伝子の発現スイツ チがオンとなり、遺伝子の発現が開始されるという機構が考えられている。かかる DN Aのメチル化による遺伝子発現の制御機構は、例えば、 pi 6などのがん抑制遺伝子 に於いても観察されており、 pi 6の例では、 pi 6遺伝子の上流の配列が正常細胞で は非メチル化されているので、 pi 6遺伝子が発現され、細胞のがん化が抑制される 力 がん細胞では、 pl6遺伝子の上流の配列がメチル化され、 pl6遺伝子の発現の スィッチがオフになっていることが報告されている。そこで、がん治療などの医療分野 では、細胞のがん化に係る遺伝子の DNAのメチル化又は脱メチル化を人為的に操 作又は制御することによってがんを予防又は治療する新薬の開発が試みられている 。例えば、メチル化された pl6などのがん抑制遺伝子を脱メチル化することによって 正常に発現させ、これにより、細胞を正常な状態へ戻すがん治療薬などが期待され ている。
[0003] 上記の如き遺伝子発現機構や DNAのメチル化に関する研究に於いて、 DNAのメ チル化の検出は、一般的には、 DNAの PCRによる増幅、 DNAの適当な化学処理、 電気泳動法などを用いて行われている。例えば、特許文献 1は、 DNAを亜硫酸水素 ナトリウムで化学処理してメチル化されていないシトシンをゥラシルに変換した後、そ の DNAを、シトシンを含む領域を認識する制限酵素で処理し、しかる後、電気泳動 により、 DNAの長さで分離するという方法を開示している。この場合、メチル化された シトシンは、亜硫酸水素ナトリウム処理でゥラシルに変換されないので、メチル化され たシトシンを含む DNAは、制限酵素により切断され、長さが短くなり、電気泳動法に より、検出されることになる。また、特許文献 2では、亜硫酸水素ナトリウム処理されメ チル化されてレ、な!/、シトシンがゥラシルに置換された DNAに、シトシンを含む領域を 認識するプライマーを添加して PCRを行うことにより、メチル化されたシトシンを含む DNAのみを増幅して、 DNAのメチル化を検出するという方法が開示されている。 特許文献 1 :特表 2006— 500901公報
特許文献 2:特表 2005— 508885公報
発明の開示
発明が解決しょうとする課題
[0004] 上記の DNAのメチル化の制御による新薬の開発の過程や DNAのメチル化が係る 遺伝子発現機構の探求の過程に於いては、 DNAのメチル化を阻害する作用を有す る物質 (DNAメチル化阻害剤)が用いられることがある。新薬の開発に於いては、 D NAメチル化阻害剤そのもの力 正常な細胞に於いて発現されるべき遺伝子の塩基 のメチル化を阻止する薬剤の主成分として利用され得る。また、遺伝子発現機構に 於ける DNAメチル化の役割を探求する場合には、 DNAメチル化阻害剤は、実験に 於いて DNAのメチル化を人為的に操作するための試薬として用いることができる。 従って、新規な DNAメチル化阻害剤がより多く見出されれば、それだけ、新薬の開 発や遺伝子発現機構の解明の可能性が大きくなることが期待される。
[0005] 新規な DNAメチル化阻害剤を見出すためには、或る物質が DNAメチル化阻害作 用を有しているか否かを判別し又は確認する必要がある。し力もながら、従来の技術 に於いて、或る物質の DNAメチル化阻害作用の有無を比較的簡便に判定する方法 、或いは、 DNAメチル化阻害剤のスクリーニングをするための方法は確立されてい ない。或る物質の DNAメチル化阻害作用の有無の判定は、その物質の存在下でメ チル化酵素処理された DNA中に於いてメチル化された部位を検出することにより為 される力 上記に例示した従前の DNAのメチル化部位の検出方法は、そもそも、 D NAのメチル化のパターンの判別、即ち、 DNA中のどの塩基がメチル化されている 力、を詳細に検出するための方法であり、処理過程に時間と労力を要するともに、多量 の試料を要するので、或る物質の DNAメチル化阻害作用の有無の判定や種々の被 検物質に於ける DNAメチル化阻害剤のスクリーニングの方法には適していない。従 つて、もし比較的簡便に且迅速に、任意の物質の DNAメチル化阻害作用の有無の 判定を行えることができるようになれば、新規な DNAメチル化阻害剤を見出すことが 、従前に比してより容易になるであろう。また、力、かる新規な方法に於いては、多量の 試料を要しな!/、ことが好まし!/、。
[0006] 力、くして、本発明の一つの目的は、多量の試料を要せず、比較的簡便に且迅速に 、任意の物質の DNAメチル化阻害作用の有無の判定する方法を提供することであ
[0007] また、本発明のもう一つの目的は、 DNAメチル化阻害作用の有無の判定する方法 に於いて有利に用いられる DNAのメチル化を検出する方法を提供することである。 課題を解決するための手段
[0008] 本発明によれば、上記の課題を解決する新規な DNAのメチル化を阻害する阻害 物質を検出する方法が提供される。本発明の方法は、メチル化部位を含む制限酵素 認識部位を有し、蛍光標識が付加された二本鎖 DNAである試験 DNAと、 DNAのメ チル化を阻害する阻害物質であるか否かが判定されるべき被検物質と、 DNAメチル 化酵素とを混合する過程と、その後、試験 DNAに非メチル化状態のメチル化部位を 含む制限酵素認識部位又はメチル化状態のメチル化部位を含む制限酵素認識部 位のいずれ力、を選択的に切断するメチル化感受性作用物質を作用させる過程と、メ チル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過程と、測定 された蛍光強度に基づいて試験 DNA力 Sメチル化感受性作用物質により切断された か否かを判定する過程とを含み、試験 DNAが切断されたか否かにより被検物質が D NAのメチル化を阻害する阻害物質であるか否力、を判定することを特徴する。なお、 力、かる構成に於いて、一つの態様として、典型的には、メチル化感受性作用物質は 、非メチル化状態のメチル化部位を含む制限酵素認識部位を切断するメチル化感 受性作用物質であり、蛍光強度に基づいて試験 DNA力 Sメチル化感受性作用物質に より切断されたか否かを判定する過程に於!/、て、試験 DNAが切断されたと判定され た場合に、被検物質が DNAのメチル化を阻害する阻害物質であると判定するように なっていてよい。また、メチル化感受性作用物質は、後に例示される如き、公知のメ チル化感受性制限酵素(非メチル化状態のメチル化部位を含む制限酵素認識部位 を切断する制限酵素)であってよく、二種類以上のメチル化感受性作用物質又は制 限酵素が同時に用いられてもよレ、。
上記の本発明の構成によれば、まず、メチル化部位を含む制限酵素認識部位を有 する試験 DNAが予め準備される。本発明の場合、検査されるべき対象は、 DNAメ チル化阻害作用を有して!/、る力、もしれな!/、被検物質であるから、使用される DNAは 、メチル化部位を含む制限酵素認識部位を有していれば、任意のものでよいことは 理解されるべきである。そして、力、かる試験 DNAと、被検物質と、 DNAメチル化酵素 とを混合すると、もし被検物質が DNAメチル化阻害作用を有していなければ、 DNA メチル化酵素により試験 DNAのメチル化されることとなる力 S、被検物質が DNAメチ ル化阻害作用を有してレ、れば、メチル化部位がメチル化されて!/、な!/、状態(非メチル 化状態)で保存されることとなる。従って、その後、試験 DNAに非メチル化状態のメ チル化部位を含む制限酵素認識部位を選択的に切断するメチル化感受性作用物 質を作用させると、被検物質が DNAメチル化阻害物質であれば、試験 DNA力 Sメチ ル化部位を含む制限酵素認識部位で切断され、被検物質が DNAメチル化阻害物 質でなければ、メチル化部位がメチル化されているので、試験 DNAが切断されない こととなる。 (或いは、試験 DNAにメチル化状態のメチル化部位を含む制限酵素認 識部位を選択的に切断するメチル化感受性作用物質を作用させれば、被検物質が DNAメチル化阻害物質であるとき、試験 DNA力 Sメチル化部位を含む制限酵素認識 部位で切断されず、被検物質が DNAメチル化阻害物質でないときには、メチル化部 位がメチル化されているので、試験 DNAが切断される。)かくして、被検物質が DNA メチル化阻害物質であるか否かは、本発明に於いては、試験 DNAがメチル化感受 性作用物質により切断されたか否力、を検出するだけで決定できることとなる。 [0010] メチル化感受性作用物質により試験 DNAが切断されたか否かは、本発明では、上 記の構成から理解される如ぐ試験 DNAに蛍光標識を予め付加しておき、メチル化 感受性作用物質による処理後に測定された試験 DNAの (蛍光標識の)蛍光強度に 基づいて決定される。当業者にとって理解される如ぐ或るタンパク質や DNAなどの 分子に蛍光標識を付加しておけば、その分子の構造、大きさ、運動の変化が蛍光標 識の蛍光強度に基づいて検出できる。本発明の場合、メチル化感受性作用物質によ る処理により、試験 DNAが切断されると、即ち、試験 DNAの構造が変化すると、蛍 光標識が付加された DNA分子の大きさが変化し、或いは、分子の運動状態が変化 するので、かかる試験 DNAの構造の変化が DNAに付加された蛍光標識の蛍光強 度の種々の挙動の変化に反映される。従って、メチル化感受性作用物質による処理 後の試験 DNAの蛍光強度の測定から、試験 DNAが切断されたか否かが比較的容 易に特定でき、これにより、被検物質が DNAメチル化阻害物質であつたか否かが判 定でさることとなる。
[0011] より具体的には、上記の本発明のいくつかの態様に於いては、蛍光強度の測定に 基づいて、メチル化感受性作用物質を作用させる過程の前後の蛍光標識が付加さ れた部位を有する DNAの大きさの変化を検出することにより、メチル化感受性作用 物質処理後の試験 DNAの切断の有無が判定されるようになっていてよい。また、試 験 DNAは、メチル化部位と蛍光標識の付加された部位との距離がその試験 DNAの 長さの半分以下となるよう調製され、メチル化感受性作用物質処理後に試験 DNAが 切断された場合に、蛍光標識の付加された DNAの長さの変化又はそれによる DNA 分子のブラウン運動の変化が大きく捉えられるようになつていてもよい。更にまた、試 験 DNAに二つ以上の蛍光標識を付加することにより、それら二つの蛍光強度の測 定に基づいて、試験 DNAの切断に伴って試験 DNA上の蛍光標識が別々の DNA の断片に分かれることを検出するなどして、試験 DNAの切断の有無を捉えるようにな つていてもよい。
[0012] メチル化感受性作用物質による蛍光標識された試験 DNAの切断の有無を検出す る蛍光強度の測定方法は、具体的には、蛍光相関分光法、蛍光偏光解消法など、 蛍光標識された分子の大きさの変化に伴う分子運動の変化を検出できる任意の蛍光 測定方法であってよい。また、試験 DNAに二種類以上の蛍光標識を付加させた場 合には、後で詳細に説明される如ぐ蛍光相互相関分光法を用いて試験 DNAの切 断の有無を測定するようになっていてもよい。なお、上記以外の試験 DNAの構造の 変化又は大きさの変化を検出できる任意の蛍光測定分析技術が、本発明に於いて 採用されてよいことは理解されるべきであり、そのような場合も本発明の範囲に属する
[0013] ところで、上記の本発明の DNAのメチル化を阻害する阻害物質を検出する方法に 於ける、メチル化部位を含む制限酵素認識部位を有し、蛍光標識が付加された二本 鎖 DNAである試験 DNAを用いて、一連の反応を施した後、メチル化感受性作用物 質による試験 DNAの切断の有無を試験 DNAの蛍光測定に基づ!/、て決定すると!/、 う特徴は、或る酵素が DNAメチル化活性を有しているか否かを検出することにも適 用できる。従って、本発明の別の態様によれば、酵素の DNAメチル化活性を検出す る方法であって、メチル化部位を含む制限酵素認識部位を有し、蛍光標識が付加さ れたニ本鎖 DNAである試験 DNAと、 DNAメチル化活性を有するか否かが判定さ れるべき被検酵素とを混合する過程と、その後、試験 DNAに非メチル化状態のメチ ル化部位を含む制限酵素認識部位又はメチル化状態のメチル化部位を含む制限酵 素認識部位のいずれかを選択的に切断するメチル化感受性作用物質を作用させる 過程と、メチル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過 程と、蛍光強度に基づいて試験 DNAがメチル化感受性作用物質により切断された か否かを判定する過程とを含み、試験 DNAが切断されたか否かによって被検酵素 力 ¾ΝΑをメチル化する活性と有しているか否かを判定することを特徴とする方法が 提供される。この方法は、 DNAメチル化酵素を被検酵素に置き換え、 DNAメチル化 阻害作用を有するか否かが判定される被検物質を混合しない点に於いて、前記の D NAのメチル化を阻害する阻害物質を検出する方法と異なるだけであることは理解さ れるべきである。
[0014] また、上記の本発明の DNAのメチル化を阻害する阻害物質を検出する方法に於 ける特徴は、或るタンパク質等の物質が DNAを脱メチル化する酵素活性を有してレ、 るか否かを検出することにも適用できる。従って、本発明の別の態様によれば、酵素 の脱 DNAメチル化活性を検出する方法であって、メチル化されたメチル化部位を含 む制限酵素認識部位を有し、蛍光標識が付加された二本鎖 DNAである試験 DNA と、 DNA脱メチル化活性を有するか否かが判定されるべき被検酵素とを混合する過 程と、その後、試験 DNAに非メチル化状態のメチル化部位を含む制限酵素認識部 位又はメチル化状態のメチル化部位を含む制限酵素認識部位のいずれ力、を選択的 に切断するメチル化感受性作用物質を作用させる過程と、メチル化感受性制限酵素 を作用させた試験 DNAの蛍光強度を測定する過程と、蛍光強度に基づ!/、て試験 D NA力 Sメチル化感受性作用物質により切断されたか否力、を判定する過程とを含み、 試験 DNAが切断されたか否かによって被検酵素が DNAを脱メチル化する活性と有 しているか否かを判定することを特徴とする方法が提供される。この方法は、試験 DN Aが予めメチル化され、 DNAメチル化酵素を被検酵素に置き換え、 DNAメチル化 阻害作用を有するか否かが判定される被検物質を混合しない点に於いて、前記の D NAのメチル化を阻害する阻害物質を検出する方法と異なるだけであることは理解さ れるべきである。
更に、上記の本発明の DNAのメチル化を阻害する阻害物質を検出する方法に於 ける特徴は、 DNAの脱メチル化を阻害する阻害物質を検出する方法にも適用できる 。従って、本発明の更に別の態様によれば、 DNAの脱メチル化を阻害する阻害物 質を検出する方法であって、メチル化されたメチル化部位を含む制限酵素認識部位 を有し、蛍光標識が付加された二本鎖 DNAである試験 DNAと、 DNAの脱メチル化 を阻害する阻害物質であるか否かが判定されるべき被検物質と、 DNA脱メチル化酵 素とを混合する過程と、その後、試験 DNAに非メチル化状態の前記メチル化部位を 含む制限酵素認識部位又はメチル化状態のメチル化部位を含む制限酵素認識部 位のいずれ力、を選択的に切断するメチル化感受性作用物質を作用させる過程と、メ チル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過程と、蛍光 強度に基づいて試験 DNAが前記メチル化感受性作用物質により切断されたか否か を判定する過程とを含み、試験 DNAが切断されたか否かによって被検物質が DNA の脱メチル化を阻害する阻害物質であるか否力、を判定することを特徴とする方法が 提供される。この方法は、前記の DNAのメチル化を阻害する阻害物質を検出する方 法とは、試験 DNAが予めメチル化され、 DNAメチル化酵素を DNA脱メチル化酵素 に置き換えた点が異なる。
発明の効果
[0016] 本発明の方法は、上記の説明から理解されるように、従前の DNAのメチル化バタ ーンを詳細に特定するため DNAのメチル化の検出方法とは異なり、被検物質に対 する DNAメチル化阻害作用(又は、酵素の DNAメチル化活性、酵素の DNA脱メチ ル化活性若しくは DNA脱メチル化阻害作用)を有するか否かを判定することを目的 とした方法なので、試験 DNAのメチル化の有無の検出に当たり、従前の DNAのメチ ル化検出方法で行われる如き、シトシンをゥラシルに置換する亜硫酸水素ナトリウム 処理、 PCRによる DNAの増幅、 DNAをその長さによって分画する電気泳動法など を用いていない。従って、本発明の方法によれば、従前の DNAのメチル化検出方法 に比して、高濃度若しくは多量の試料を必要とせず、簡便に且迅速に、 DNAのメチ ル化の有無の検出が行われる。また、特に、本発明の一連の過程に於いて、メチル 化状態の DNAと非メチル化状態の DNAとの見分けるための測定が蛍光測定である ので、試料量を従前の方法に比して大幅に低減することができる点で非常に有利で ある。更に、蛍光測定の際、前記の如き蛍光相関分光分析等に用いられる共焦点光 学顕微鏡の光学系を備えた装置を用いれば、試料量は、より一層低減することが可 能となる。
[0017] 試料量を従前に比して低減できるということは、新薬の開発や遺伝子発現機構の研 究の分野に於いて、非常に有利であることは理解されるべきである。新薬の開発や遺 伝子発現機構の研究の現場に於いて使用される試薬又は物質は、しばしば、高価 であったり、或いは稀少であるために、大量に入手することが困難である場合がある。 また、或る被検物質が DNAメチル化阻害作用を有しているか否かを判定する前に、 即ち、その物質が DNAメチル化阻害剤として利用可能であるか否かを決定する前に 大量に入手又は調製することは、経済的でない。そのような少量しか手に入らない物 質又は有用であるか不明な物質について、 DNAメチル化阻害作用の有無を判定し ようとする場合に、本発明の方法は、少量の試料でも検査ができるので、極めて有効 である (もし大量の試料が必要だとすれば、試料が足りないことで、検査自体が実施 不可能となる場合もある。)。また、本発明は、試料が少量でよぐ試験 DNAを準備し ておけば、その後の一連の過程が比較的迅速に且簡便であることから、多種の被検 物質について、 DNAメチル化阻害作用のスクリーニングをする場合にも適用できる。
[0018] 更に、特記すべきことは、本発明の DNAのメチル化を阻害する阻害物質を検出す る方法は、上記に述べた如ぐ若干の修正をするだけで、酵素の DNAメチル化活性 を検出する方法、酵素の DNA脱メチル化活性を検出する方法及び DNAの脱メチ ル化を阻害する阻害物質を検出する方法に応用することができ、 DNAメチル化阻害 剤の場合と同様、多種の被検物質について、 DNAメチル化活性の有無、 DNA脱メ チル化活性の有無、 DNA脱メチル化阻害作用の有無のスクリーニングも簡便に且 迅速に、又、多量の試料を要せずに、任意の酵素の DNAメチル化活性や物質の脱 メチル化阻害作用を検出することができる点である。これらの活性や阻害作用を検出 することも、上記の DNAのメチル化の制御による新薬の開発の過程や DNAのメチ ル化又は脱メチル化が係る遺伝子発現機構の探求の過程に於いて非常に有用であ る。この点に関し、現在のところ、実際の細胞内で、メチル化された DNAの脱メチル 化をする DNA脱メチル化酵素が存在は確認されて!/、な!/、 (従って、脱メチル化阻害 剤も確認されていない。)。本発明によれば、脱メチル化活性のスクリーニングは、簡 便に且迅速に実施できるので、もし DNA脱メチル化酵素が存在するのであれば、本 発明の方法により、容易に発見できるかもしれない。そして、もし DNA脱メチル化酵 素が発見されれば、メチル化された DNAを脱メチル化する新規な薬剤として利用で きる力、もしれない。
[0019] 本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明に より明らかになるであろう。
図面の簡単な説明
[0020] [図 1]図 1は、本発明の方法の好ましい実施形態に於ける処理過程をフローチャート の形式にて示したものである。
[図 2]図 2は、図 1の実施形態の処理過程中に於ける DNA分子の構造の変化を模式 的に表したものである。
[図 3]図 3は、実施例 1に於ける試料の蛍光相関分光法により得られた蛍光強度の自 己相関関数値を表すグラフ図である。
[図 4]図 4は、実施例 2に於ける試料の蛍光相互相関分光法により得られた蛍光標識 alexa647と TAMRAの蛍光強度の相互相関関数値を表すグラフ図である。 (A)は、被 検試料についての結果であり、(B)は、対照試料についての結果である。
発明を実施するための最良の形態
[0021] 以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳 細に説明する。
[0022] 図 1は、本発明の DNAのメチル化を阻害する阻害物質を検出する方法の好ましい 実施形態に於ける処理過程をフローチャートの形式で表したものであり、図 2は、図 1 の処理に於いて想定される分子の状態の変化を模式的に示したものである。これら の図を参照して、本発明の方法の実施を開始する当たり、予め、メチル化部位を含 む制限酵素認識部位を有する二本鎖 DNAである試験 DNAが準備される。試験 DN Aの長さは、合成のコスト及び検出の容易さ力も 10〜; !OOmerが好ましぐ 20力も 40 merが更に好ましい。メチル化部位は、 5'—シトシン(C)—グァニン(G)—3'の塩基 配列のうちの Cであり、図 2 (A)に例示されている如ぐ二本鎖 DNAに於いて、 Cは、 Gに結合しているので、 5' C G— 3'の塩基配列に対向する塩基配列は、 3'— G — C— 5 'である。メチル化酵素の存在下(阻害作用がなければ)では、双方の DNA 鎖の 5'—C— G— 3'の C塩基がメチル化されることが知られている。
[0023] また、試験 DNAには、少なくとも一つの蛍光標識として蛍光色素が付加されている 。蛍光色素としては、この分野で通常使われる任意の蛍光色素、例えば、 TAMRA(c arboxymethylrhodamine)、 TMR tetramethylrhoaamine八 Alexa64 、 Rhodamine ree n、 Alexa488などであってよいが、これらに限定されない。なお、試験 DNAに一つの 蛍光色素を付加する場合には、試験 DNAは、蛍光標識部位とメチル化部位との距 離が DNA全長の半分よりも短くなるよう調製されて!/、ることが好ましレ、。後でより詳細 に説明される如ぐ試験 DNAが被検物質 (メチル化阻害作用の有無が検査される物 質)の存在下でメチル化酵素により処理され、更に、メチル化感受性作用物質により 処理された後、試験 DNAがメチル化部位で切断されているか否かを判断する際、試 験 DNAに一つの蛍光色素を付加する場合には、蛍光色素が付加して!/、る DNA分 子の運動状態の変化が(蛍光測定に基づいて)観察される。試験 DNAが切断される と、一方の DNA断片にのみ蛍光色素が付加された状態となるところ、蛍光標識部位 とメチル化部位との距離が DNA全長の半分よりも短ければ、試験 DNAが切断され た場合とそうでな!/、場合との蛍光色素が付加して!/、る DNA分子の長さの差が大きく なり、従って、蛍光強度測定により検出される DNA分子の運動状態の変化が大きく なるので、 DNAの切断の有無がより感度良く検出可能となる。また、試験 DNAは、 複数種類の蛍光色素により蛍光標識されていてもよい。メチル化切断部位を挟んで 異なる種類の標識で DNA鎖を修飾すると、後述の如ぐ蛍光相互相関分光法での 計測が可能となり、 1種類の蛍光標識の場合よりも、試験 DNAの切断の有無が感度 良く検出することが出来る。
[0024] 試験 DNAは、上記条件を満たす生物由来の DNAでもよいが、人工的に合成した DNAは、生物由来のものより安定性が高ぐ安価で大量生産ができるので、継続的 に、多種類の被検物質のスクリーニングに適している。試験 DNAは、本実施形態の 方法を実施する度に調製するのではなぐ一度に量産した後、変性しない態様にて 保存し、本実施形態の方法を実施する際に必要量ずつ使用するようにされてよい。
[0025] 力、くして、本実施形態の方法の初めの過程に於いて、試験 DNAと被検物質とがま ず混合され (ステップ 1)、しかる後に DNAメチル化酵素(及び酵素反応のための基 質)が添加される (ステップ 2)。 DNAメチル化酵素は、 CpGメチラーゼ、 Dnmtl, Dnm t3a, Dnmt3b, Damメチラーゼ、 Dcmメチラーゼなどが用いられてよい。なお、当業者 にとつて理解される如ぐ以降の物質の混合操作は、特に断らない限り、水溶液中に 物質を溶解した状態で行う。その後、 DNAのメチル化反応が進行するよう混合液は 、例えば、 37°C、 1時間程度、インキュベーションされる。また、ステップ 2の DNAメチ ル化酵素の添加に先立って、 37°C、 30分程度、水溶液をインキュベーションして、 溶液の温度を酵素反応をさせるべき温度に合わせておくことが好ましい。水溶液の 組成、反応過程の温度、反応時間等の条件は、 目的の酵素反応等が適当に進行す るよう通常使用される条件が選択されてよい。
[0026] ステップ 3の反応過程に於いては、図 2 (B)に示されている如ぐ被検物質がメチル 化阻害作用を有していなければ、塩基配列 C Gの C力 Sメチル化され(同図右)、被 検物質がメチル化阻害作用を有していれば、塩基配列 C Gの Cがメチル化されな V、まま (非メチル化状態:同図左)となる。
[0027] メチル化酵素処理の後、次いで、水溶液にメチル化感受性作用物質が添加され( ステップ 4)、試験 DNAのメチル化部位、塩基配列 C G、を含む制限酵素認識部位 に於ける切断が進行するよう水溶液力 例えば、 37°C、 1時間にてインキュベーショ ンされる(ステップ 5)。ここで、メチル化感受性作用物質が、メチル化されていないメ チル化部位を切断するものであれば、被検物質がメチル化阻害作用を有する場合、 メチル化されていない試験 DNAを切断し、 DNAを断片化するが(図 2 (C)左)、被検 物質がメチル化阻害作用を有していない場合、試験 DNAを切断しないので、従って 、試験 DNAの長さは保存されることとなる。 (同図右)。
[0028] そのようなメチル化感受性作用物質は、典型的には、メチル化感受性制限酵素で あり、例としては、 Aat II、Acc I、Acc II、 Aci I、 Afa I、 Afl II、 Alu I、 Aorl3H I、 A or51H Apa I、 ApaL I、 Ava I、 Ava II、 Bal I、 BamH I、 Ban II、 Bbe I、 Ben I、 Bgl I、Bgl II、 Bin I、 BmeTl lO I、 BmgT120 I、 Bpul l02 I、 BspT104 I、 BspT107 I、Bspl286 I、Bspl407 I、 BssH II、 BspD I、 BstP I、 BstU I、 BstX I、 Bstl l07 I、 CfrlO I、 Cfrl3 I、 Cla I、 Cpo I、 Dra I、 Eae I、 Eag I、 Eaml l05 I、 Eco065 I、 EcoO109 I、 EcoR I、 EcoR V、 EcoT14 I、 EcoT22 I、 Eco52 I、 Eco81 I、 Fba I、 Fok I、 Fse I、 Hae II、 Hae III、 Hap II、 Hha I、 Hinc II、 Hind III、 Hinf I、 Hinl I 、 Hpa II、 HpyCH4 IV、 as I、 pn I、 Mbo I、 Mbo II、 Mil I、 Mlu I、 Msp I、 Mun I、 Mva I、 Nae I、 NegM IV、 Nco I、 Nde I、 Nhe I、 Not I、 Nru I、 Nsb I、 PmaC I、 PshA I、 PshB I、 Pspl406 I、 Pst I、 Pvu I、 Pvu II、 Sac I、 Sac II、 Sal I、 Sea I、 Sfi I、 Sma I、 Smi I、 SnaB I、 Spe I、 Sph I、 Sse8387 I、 Ssp I、 Stu I、 Taq I、 Tthl l l I、Van91 I, Vpa l lB I、 Xba I、 Xho I、 Xsp Iなどが挙げられる。また、メ チル化感受性制限酵素としては、上記のうち、好ましくは、塩基配列 CCGG、 CCGC 、 GCGC、 ACGT、 CGGCCG、 GCCGGC、 GGCGCC、 CCCGGG、 CGCG、 AT CGTA、 TTCGAA、 GTCGAG又は CTCGAGを選択的に切断するメチル化感受 性制限酵素が用いられ、更に好ましくは、 Hpall (C ' CGG) , Acil (C ' CGC) , HinPII ( G 'CGC)、 HpyCH4IV(A 'CGT)、 EagI (C 'GGCCG)、 NegMIV(G 'CCGGC)、 Kas I (G ' GCGCC)、 Smal (CCC ' GGG)、 BstUI (CG ' CG)、 BspDI (AT ' CGTA)、 BstB I (TT ' CGAA)、 Sail (G 'TCGAG)及び Xhol (C 'TCGAG)等のメチル化感受性制 限酵素が用いられてよい。なお、括弧内のに」は、酵素の切断部位を示している。
[0029] なお、ステップ 4 5のメチル化感受性作用物質又は制限酵素による処理は、酵素 反応ではなぐ化学的にメチル化された状態のメチル化部位を切断し、非メチル化状 態のメチル化部位を切断しな!/、メチル化感受性作用物質によって行ってもよ!/、。この 場合は、メチル化された試験 DNAは切断され、断片化されるが、メチル化されてい ない試験 DNAは切断されず、従って、試験 DNAの長さは保存されることとなる。 (図 2 (C)の場合の逆)
[0030] 力べして、メチル化感受性作用物質又は制限酵素による処理が終了すると、次いで 、水溶液の蛍光強度測定が行われる(ステップ 6)。蛍光強度測定としては、上記の説 明から理解される如ぐ蛍光標識された試験 DNA又はその断片の分子の構造の変 化又は運動状態の変化を検出できる任意の測定 ·分光分析方法が選択されてよい。
[0031] 試験 DNAに一つの蛍光標識が付加されている場合、試験 DNAが切断されると、 蛍光標識の付加されて!/、る DNA分子の長さが短くなる。短くなつた蛍光標識の付加 されている DNA分子は、短くなる前の DNA分子よりも早いブラウン運動をする。そこ で、この場合には、蛍光標識の付加されている DNA分子のブラウン運動の速さの変 化を検出することのできる蛍光相関分光法、蛍光偏光解消法などを有利に用いるこ と力 Sできる。
[0032] 蛍光相関分光法では、微小の蛍光観察領域をブラウン運動により通過する分子の 移動(並進ブラウン運動)の速さが観測される。分子の並進ブラウン運動の速さは、測 定された蛍光強度の時間を変数とした自己相関関数の形状に反映される(以下の実 施例に於ける測定結果を参照)。分子の並進ブラウン運動の速さの指標としては、測 定開始時から自己相関関数の値が半分になるまでの時間の長さ(並進拡散時間)が 用いられる。分子の移動は、分子の大きさが小さいほど、速くなるので、並進拡散時 間が短くなる。本発明の場合、試験 DNAが切断されると、蛍光標識の付加されてい る DNA分子の長さが短くなり、従って、並進拡散時間が短くなるので、このこと力、ら、 試験 DNAの切断の有無が判定される。なお、試験 DNAが切断されていない状態の 並進拡散時間は、予め、 DNAが切断されていないことが分かっている対照試料、或 いは、メチル化感受性作用物質を添加する前の試験 DNAにより測定されて!/、てよ!/ヽ
[0033] 蛍光偏光解消法では、この分野に於いて知られている如ぐ分子の回転ブラウン運 動(自転)の速さが観測される。分子の回転ブラウン運動の速さは、測定された蛍光 の縦偏光と横偏光の強度の割合又は偏光度に反映される。分子の回転は、分子の 大きさが小さいほど、速くなるので、偏光度が小さくなる。本発明の場合、試験 DNA が切断されると、蛍光標識の付加されている DNA分子の長さが短くなり、従って、回 転ブラウン運動が速くなり、偏光度が下がるので、このことから、試験 DNAの切断の 有無が判定される。なお、試験 DNAが切断されていない状態の偏光度は、予め、 D NAが切断されていないことが分かっている対照試料、或いは、メチル化感受性作用 物質を添加する前の試験 DNAにより測定されて!/、てよ!/、。
[0034] なお、既に述べた如ぐ試験 DNAは、好ましくは、蛍光標識部位とメチル化部位と の距離が DNA全長の半分よりも短くなるよう構成されているので、試験 DNAが切断 されて!/、る場合とそうでな!/、場合の蛍光標識された DNA分子の長さの差が大きくな つている。力、かる長さの差により、上記の蛍光強度測定に於いて、分子の運動状態の 差が感度よく検出でさるようになることは理角早されるべさである。
[0035] 試験 DNAに二種類の蛍光標識がメチル化部位を挟んで付加されている場合、試 験 DNAが切断されると、二つの蛍光標識の付加されて!/、る DNA分子が分離するこ ととなる。従って、試験 DNAの切断の有無は、二つの蛍光標識の挙動が独立である か相関があるかを検出することにより判定することができる。そこで、この場合には、蛍 光相互相関分光法を有利に用いることができる。
[0036] 蛍光相互相関分光法では、この分野に於いて知られている如ぐ二つの発光波長 の異なる蛍光標識が微小の蛍光観察領域をブラウン運動により通過する際に、各々 の標識の蛍光強度の変化から二つの蛍光標識の運動に相関があるか否力、を判定す ること力 Sできる。もし蛍光標識が一つの担体(分子)に存在する場合には、二つの蛍 光強度の変化が一体的に変化するが、蛍光標識が別々の担体に存在する場合には 、二つの蛍光強度の変化は、独立に変化することとなる。蛍光標識が一つの担体に 乗っているか否かは、二つの蛍光強度の相互相関関数から判定することができる。 本発明の場合、試験 DNAが切断されれば、二つの標識は別々に運動することとなり 、試験 DNAが切断されずに二つの標識が一体的に運動する場合に比して相互相 関関数の値が顕著な低くなるので、力、かる相互相関関数の顕著な差により、試験 DN Aの切断の有無が判定される
[0037] 力、くして、上記の如き、蛍光測定に基づいて試験 DNAの切断の有無が判定される と、被検物質のメチル化阻害作用の有無が判定される(ステップ 7— 9)。メチル化感 受性作用物質が非メチル化状態のメチル化部位を切断するものであれば、試験 DN Aの切断が検出された場合、被検物質のメチル化阻害作用が有りと判定され、試験 DNAの切断が検出されない場合、被検物質のメチル化阻害作用が無しと判定され る。また、メチル化感受性作用物質がメチル化状態のメチル化部位を切断するもので あれば、試験 DNAの切断が検出された場合、被検物質のメチル化阻害作用が無し と判定され、試験 DNAの切断が検出されない場合、被検物質のメチル化阻害作用 が有りと判定される。
[0038] ところで、上記の実施形態の一連の過程は、或る酵素について、 DNAのメチル化 活性があるか否かを判定するためにも用いることができる。その場合、ステップ 1のメ チル化阻害作用の有無が判定される被検物質と試験 DNAの混合は行われず、ステ ップ 2のメチル化酵素を添加する際、 DNAのメチル化活性があるか否かを判定され るべき被検酵素が添加される。一連の処理の後、試験 DNAの切断の有無が判定さ れると、 DNAのメチル化活性の有無が判定される。メチル化感受性作用物質が非メ チル化状態のメチル化部位を切断するものであれば、試験 DNAの切断が検出され た場合、被検酵素のメチル化活性が無しと判定され、試験 DNAの切断が検出されな い場合、被検酵素のメチル化活性が有りと判定される(メチル化感受性作用物質がメ チル化状態のメチル化部位を切断するものであれば、上記の逆の判定が為される。 )
[0039] また、予めメチル化された試験 DNAを用いれば、上記の実施形態の一連の過程 は、任意のタンパク質等の物質の脱メチル化酵素活性の検査にも用いることができる 。その場合、まず、試験 DNAとしては、メチル化部位がメチル化されている DNAが 使用される。そして、ステップ 1のメチル化阻害作用の有無が判定される被検物質と 試験 DNAの混合は行われず、ステップ 2のメチル化酵素を添加するのに代えて、 D NAの脱メチル化活性があるか否かを判定されるべき被検酵素が添加される。一連 の処理の後、試験 DNAの切断の有無が判定されると、 DNAの脱メチル化活性の有 無が判定される。メチル化感受性作用物質が非メチル化状態のメチル化部位を切断 するものであれば、試験 DNAの切断が検出された場合、被検酵素の脱メチル化活 性が有りと判定され、試験 DNAの切断が検出されない場合、被検酵素の脱メチル化 活性が無しと判定される (メチル化感受性作用物質がメチル化状態のメチル化部位 を切断するものであれば、上記の逆の判定が為される。)。
[0040] 更に、上記の実施形態の図 1の一連の過程は、或る物質について、 DNAの脱メチ ル化酵素の脱メチル化作用を阻害する作用があるか否かを判定するためにも用いる こと力 Sできる。その場合、試験 DNAとしては、メチル化部位がメチル化されている DN Aが使用される。そして、脱メチル化阻害作用の有無が判定される被検物質と試験 D NAの混合の後、ステップ 2に於いて、脱メチル化酵素が添加される。一連の処理の 後、試験 DNAの切断の有無が判定されると、被検物質の脱メチル化阻害作用の有 無が判定される。メチル化感受性作用物質が非メチル化状態のメチル化部位を切断 するものであれば、試験 DNAの切断が検出された場合、被検物質の脱メチル化阻 害作用が無しと判定され、試験 DNAの切断が検出されない場合、被検物質の脱メ チル化阻害作用が有りと判定される(メチル化感受性作用物質がメチル化状態のメ チル化部位を切断するものであれば、上記の逆の判定が為される。)。
[0041] 上記に説明した本発明の有効性を検証するために、以下の如き実験を行った。な お、以下の実施例は、本発明の有効性を例示するものであって、本発明の範囲を限 定するあのではな!/、ことは理角早されるべさである。
[0042] 実施例 1
1つの蛍光標識が付加された試験 DNAを用いた DNAメチル化阻害物晳のメチル 化阳.害作用の判定
1つの蛍光標識が付加された試験 DNAを用いて、上記の処理過程に従って、被 検物質の DNAメチル化阻害作用の有無の判定を行った。 [0043] 試験 DNAの調製 ダミン)にて一端が蛍光標識されたオリゴヌクレオチド(レ、ずれもシグマジエノシスより 入手)を会合させ二本鎖 DNAである試験 DNAを調製した。
オリゴヌクレオチド
5 ' GCCATGTACCCTCGACACAA3 '
蛍光標識オリゴヌクレオチド
5 ' (TAMRA)TTGTGTCGAGGGTACATGGC3 '
なお、下線を付した CG力 Sメチル化部位である。
会合の手順は、以下の通りである。オリゴヌクレオチド、蛍光標識オリゴヌクレオチドを それぞれ TEバッファ (1 mM EDTA, 10 mM Tris-HCl)で希釈し 50 mMとした。 次いで、オリゴヌクレオチド 10 1、蛍光標識オリゴヌクレオチド 10 1、 TEバッファ 80 1を混ぜ、 95°Cで 10分間反応させた後、ゆっくり冷却してオリゴヌクレオチドを会合 させ二本鎖 DNAを生成した。この反応液にェキソヌクレアーゼ (タカラバイオより入手 )を添加して、 37°Cで反応させることにより未反応のオリゴヌクレオチドを分解した後、 MERmaid SPIN kit(QBioGene,USAより入手)で精製することにより試験 DNAの純度 を高め、高感度の解析が出来るようにした。会合させた状態の試験 DNAの塩基配列 は、以下の通りである。
(TAMRA) TTGTGTCGAGGGTACATGGC
AACACAGCTCCCATGTACCG
(下線部がメチル化部位)
[0044] 試験 DNAのメチル化(ステップ 1 3)
試験 DNAに、被検物質として(DNAメチル化阻害作用があることが知られている) 5-ァザデォキシシチジン(Sigma Aldrich)を混合した。また対照試料として、 DNAメ チル化阻害作用のない Microcin SF608を試験 DNAに混合したものを調製した。手 順は、以下の通りである。試験 DNAを反応バッファ(50mM NaCl,10mMTris-HCl,l OmM MgCl ,lmM dithiothreitol)に溶解し、 DNA濃度が 5nMとなるようにした。被 検試料には、 5-ァザデォキシシを、対照試料には、 Microcin SF608を、それぞれ 1 μ Mとなるよう加えて、それぞれ 37°Cにて 30分、インキュベーションを行った。
[0045] しかる後に、これらの試料に DNAメチル化酵素である CpGメチラーゼ (New Englan d Biolabsより入手)を 20U加え、その基質となる S-アデノシルメチォニン(Sigma Aldr ichより入手)を濃度が 160 となるよう加えた。かかる試料は、次いで、 37°Cで 1時 間インキュベーションを行い、酵素の DNAのメチル化反応を促進させた。
[0046] メチル化感¾性制限酵素による非メチル化部位の切断 (ステップ 4 5)
力、くして、 DNAメチル化酵素処理を施した被検試料と対照試料を、メチル化されて V、な!/、DNAを切断し、メチル化された DNAを切断しな!/、メチル化感受性制限酵素 にて処理した。手順は、以下の通りである。被検試料と対照試料を、 ΙΟηΜとなるよう に、反応バッファ(50mM NaCl,10mM Tris- HCl,10mM MgCl ,lmM dithiothreito 1)に溶解し、これに、メチル化感受性制限酵素 Acd (タカラバイオ) 5Uを加え、 37°C にて 1時間、インキュベーションした。
[0047] 上記のメチル化感受性制限酵素処理により、被検試料 (メチル化阻害作用有り)に 於いては、試験 DNAは、非メチル化状態にあると考えられるので、メチル化部位で 切断されることとなる。
[0048] 带 木目 法によろ f 油 1 (ステップ 6)
メチル化感受性制限酵素処理された被検試料と対照試料及びメチル化感受性制 限酵素処理していない被検試料について、共焦点顕微鏡の光学系を備えた 1分子 蛍光分析システム MF20 (ォリンパス)を用いて、蛍光相関分光法により、蛍光強度 測定を行った。測定に於いては、被検試料と対照試料は、それぞれ、試験 DNA濃 度が InMになるよう希釈し、計測時間を 1試料につき、 15秒(5秒 X 3回)とした。
[0049] 図 3は、蛍光相関分光法により、制限酵素処理していない被検試料(曲線 A)と、 Mi crocin SF608を添加した対照試料(曲線 B)と、 5_ァザデォキシシチジン添加の被検 試料(曲線 C)から得られた自己相関曲線をそれぞれ示している。同図を参照して、 理解される如ぐ制限酵素処理していない被検試料と Microcin SF608を添加した対 照試料の自己相関曲線の形状は、概ね一致するが、 5-ァザデォキシシチジン添カロ の被検試料の自己相関曲線の形状は、他の試料の自己相関曲線に比べ左にシフト していること力 Sわ力、る。各試料の並進拡散時間は、以下の通りであった。 制限酵素処理してレ、な!/、被検試料 853 秒
Microcin SF608を添加した対照試料 840〃秒
5-ァザデォキシシチジン添加の被検試料 476 秒
既に述べた如ぐ蛍光標識の付加された DNA分子が小さくなると、分子の移動速 度が速くなることから、自己相関曲線は速く低減し、並進拡散時間は短くなる。従って 、上記の結果は、 5-ァザデォキシシチジン添加の被検試料に於いて、 DNAが切断 されていることを示している。即ち、 5-ァザデォキシシチジンの存在下では、メチル化 酵素の DNAのメチル化が阻害されたことを示す。力、くして、本発明の蛍光相関分光 法を採用した方法により、被検物質が DNAのメチル化を阻害する阻害物質であるこ とが示された。
[0050] 带 ^ 角 肖 ¾によろ f 油 I (ステップ 6)
メチル化感受性制限酵素処理された被検試料と対照試料及びメチル化感受性制 限酵素処理していない被検試料について、 1分子蛍光分析システム MF20 (ォリン パス)を用いて、蛍光偏光解消法により、蛍光強度測定を行った。測定に於いては、 被検試料と対照試料は、それぞれ、試験 DNA濃度が InMになるよう希釈し、計測 時間を 1試料につき、 3秒(1秒 X 3回)とした。測定値は、 mP値 (縦偏光と横偏光の 強度の差分を縦偏光と横偏光の和で割った値の 1000倍に相当する)である。
[0051] 各試料の mP値は、以下の通りであった。
制限酵素処理していない被検試料 283
Microcin SF608を添加した対照試料 279
5-ァザデォキシシチジン添加の被検試料 124
既に述べた如ぐ蛍光標識の付加された DNA分子が小さくなると、分子の回転ブラ ゥン運動が速くなることから、 mP値は低減する。従って、上記の結果は、 5-ァザデォ キシシチジン添加の被検試料に於!/、て、 DNAが切断されて!/、ることを示して!/、る。 即ち、 5-ァザデォキシシチジンの存在下では、 DNAが非メチル化状態にあり、メチ ル化酵素の DNAのメチル化が阻害されたことを示す。力、くして、本発明の蛍光偏光 解消法を採用した方法によっても、被検物質が DNAのメチル化を阻害する阻害物 質であることが示された。 [0052] 実施例 2
2つの発光波長の異なる蛍光標識が付加された試験 DNAを用いた DNAメチル化 阻害物晳のメチル化阻害作用の判定
2つの発光波長の異なる蛍光標識が付加された試験 DNAを用いて、上記の処理 過程に従って、被検物質の DNAメチル化阻害作用の有無の判定を行った。
[0053] 試験 DNAの調製
以下の塩基配列を有する TAMRA (カルボキシテトラメチルローダミン)にて一端が 蛍光標識されたオリゴヌクレオチド(シグマジエノシスより入手)と Alexa647にて一端が 蛍光標識されたオリゴヌクレオチド(日本バイオサービスより入手)を会合させ二本鎖 DNAである試験 DNAを調製した。
蛍光標識オリゴヌクレオチド
5 ' (alexa647)GCCATGTACCCTCGACACAA3 '
蛍光標識オリゴヌクレオチド
5 ' (TAMRA)TTGTGTCGAGGGTACATGGC3 '
なお、下線を付した CG力 Sメチル化部位である。
会合の手順は、実施例 1と同様である。会合させた状態の試験 DNAの塩基配列は、 以下の通りである。
(TAMRA) TTGTGTCGAGGGTACATGGC
AACACAGCTCCCATGTACCG(alexa647)
(下線部がメチル化部位)
[0054] 以後の試験 DNAのメチル化 (ステップ 1 3)とメチル化感受性制限酵素による非メ チル化部位の切断 (ステップ 4 5)は、実施例 1と同様とした。
[0055] ffilffi 去による f 彻 1 (ステップ 6)
メチル化感受性制限酵素処理された被検試料と対照試料につ!/、て、 1分子蛍光分 析システム MF20 (ォリンパス)を用いて、蛍光相互相関分光法により、蛍光強度測 定を行った。測定に於いては、被検試料と対照試料は、それぞれ、試験 DNA濃度 が 0. InMになるよう希釈し、計測時間を 1試料につき、 15秒(5秒 X 3回)とした。
[0056] 図 4 (A)、 (B)は、それぞれ、 5-ァザデォキシシチジン添加の被検試料、 Microcin SF608を添加した対照試料から得られた蛍光相互相関分光法による alexa647と TAM RAの蛍光強度の相互相関関数を示している。相互相関関数は、二つの蛍光強度の 時間変化に相関がない場合には 1となる。被検試料と対照試料との相互相関曲線の 形状を比較して、対照試料は、相関値が 1より大きいのに対し、被検試料は、相関値 が略 1に推移した。従って、被検試料では、 alexa647と TAMRAの運動には相関が独 立したものであり、対照試料では、 alexa647と TAMRAの運動に或る程度の相関が在 り、 alexa647と TAMRAが同一の担体に乗っていることが示唆される。即ち、前者では 、試験 DNAが切断され、 alexa647と TAMRAとが互いに独立に運動し、後者では、試 験 DNAが切断されずに保存されて!/、ることとなる。今回の実験系ではメチル化され ていない DNAが切断されるので、被検試料では、 5-ァザデォキシシチジンにより、メ チル化酵素の DNAのメチル化が阻害されたことを示す。力、くして、本発明の蛍光相 互相関分光法を採用した方法により、被検物質が DNAのメチル化を阻害する阻害 物質であることが示された。
上記の実施例の結果は、メチル化部位を含む制限酵素認識部位を有し、蛍光標 識が付加された二本鎖 DNAである試験 DNAを用いて、一連の反応を施した後、メ チル化感受性作用物質による試験 DNAの切断の有無を試験 DNAの蛍光測定に 基づいて決定することができ、これにより、或る酵素がメチル化活性若しくは脱メチル 化活性を有しているか否力、、又は或る物質が酵素のメチル化若しくは脱メチル化の 阻害作用を有しているか否かを判定することができることを示している。また、上記実 施例に於いて特記されるべきことは、被検試料の DNA濃度が 0. 1乃至 InMというご く微量でよぐ検出に要する時間も 3— 15秒と非常に短時間で計測が可能である点 である。上記の方法によれば、多数の被検物質について、各被検物質が DNAメチ ル化阻害剤であるか否かのスクリーニングを容易に行うことができる。同様に、 DNA メチル化酵素若しくは DNA脱メチル化酵素のスクリーニング又は DNA脱メチル化阻 害剤のスクリーニングも容易に行うことができる。

Claims

請求の範囲
[1] DNAのメチル化を阻害する阻害物質を検出する方法であって、
メチル化部位を含む制限酵素認識部位を有し、蛍光標識が付加された二本鎖 DN Aである試験 DNAと、 DNAのメチル化を阻害する阻害物質であるか否かが判定さ れるべき被検物質と、 DNAメチル化酵素とを混合する過程と、
その後、非メチル化状態の前記メチル化部位を含む制限酵素認識部位又はメチル 化状態の前記メチル化部位を含む制限酵素認識部位のいずれ力、を選択的に切断 するメチル化感受性作用物質を前記試験 DNAに作用させる過程と、
前記メチル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過程 と、
前記蛍光強度に基づいて前記試験 DNAが前記メチル化感受性作用物質により切 断されたか否かを判定する過程とを含み、
前記試験 DNAが切断されたか否かにより前記被検物質が DNAのメチル化を阻害 する阻害物質であるか否力、を判定することを特徴とする方法。
[2] 請求項 1の方法であって、前記メチル化感受性作用物質が、非メチル化状態の前 記メチル化部位を含む制限酵素認識部位を切断するメチル化感受性作用物質であ り、前記蛍光強度に基づいて前記試験 DNAが前記メチル化感受性作用物質により 切断されたか否かを判定する過程に於レ、て、前記試験 DNAが切断されたと判定さ れた場合に、前記被検物質が DNAのメチル化を阻害する阻害物質であると判定す ることを特徴とする方法。
[3] 請求項 1の方法であって、前記試験 DNAに、少なくとも二種類の蛍光標識が付加 されて!/ヽることを特徴とする方法。
[4] 請求項 1の方法であって、前記試験 DNAに於いて前記メチル化部位と前記蛍光 標識の付加された部位との距離が前記試験 DNAの長さの半分以下であることを特 徴とする方法。
[5] 請求項 1の方法であって、前記メチル化感受性作用物質力 Aat II、Acc I、 Acc I
I、Aci I 、Afa I 、 Afl II、 Alu I、 Aorl3H I、 Aor51H I、 Apa I、 ApaL I、 Ava I、 Ava II、Bal I、 BamH I、 Ban II、 Bbe I、 Ben I、 Bgl I、 Bgl II、 Bin I、 BmeTl lO I 、 BmgT120 I、 Bpul l02 I、 BspT104 I、 BspT107 I、 Bspl286 I、 Bspl407 I、 BssH II、BspD I、BstP I、BstU I、 BstX I、 Bstl l07 I、 CfrlO I、 Cfrl3 I、 Cla I、 Cpo I、 Dra I、 Eae I、 Eag I、 Eaml l05 I、 Eco065 I、 EcoO109 I、 EcoR I、 EcoR V、 E coT14 I、 EcoT22 I、 Eco52 I、 Eco81 I、 Fba I、 Fok I、 Fse I、 Hae II、 Hae ΙΠ、 H ap II、 Hha I、 Hinc II、 Hind III、 Hinf I、 Hinl I、 Hpa II、 HpyCH4 IV、 as I、 p n I、 Mbo I、 Mbo II、 Mil I、 Mlu I、 Msp I、 Mun I、 Mva I、 Nae I、 NegM IV、 Nco I、 Nde I、 Nhe I、 Not I、 Nru I、 Nsb I、 PmaC I、 PshA I、 PshB I、 Pspl406 I、 P st I、 Pvu I、 Pvu II、 Sac I、 Sac II、 Sal I、 Sea I、 Sfi I、 Sma I、 Smi I、 SnaB I、 Sp e I、 Sph I、 Sse8387 I、 Ssp I、 Stu I、 Taq I、 Tthl l l I、 Van91 I, Vpa l lB I、 Xb a I、Xho I、Xsp Iから成る群から選択されたメチル化感受性作用物質であることを 特徴とする方法。
請求項 1の方法であって、メチル化感受性作用物質がメチル化感受性制限酵素で あることを特徴とする方法。
請求項 1の方法であって、前記メチル化感受性作用物質が、 CCGG、 CCGC、 GC GC、 ACGT、 CGGCCG、 GCCGGC、 GGCGCC、 CCCGGG、 CGCG、 ATCGT A、 TTCGAA、 GTCGAG、及び CTCGAGからなる群から選択された認識配列を 切断する制限酵素であることを特徴とする方法。
請求項 1の方法であって、前記蛍光強度に基づいて前記試験 DNAが前記メチル 化感受性作用物質により切断されたか否力、を判定する過程に於レ、て、前記メチル化 感受性作用物質を作用させる過程の前後の蛍光標識が付加された部位を有する D NAの大きさの変化が決定されることを特徴とする方法。
請求項 1の方法であって、前記メチル化感受性作用物質を作用させた試験 DNA の蛍光強度を測定する過程に於いて、前記蛍光強度の測定が蛍光相関分光法によ り行われることを特徴とする方法。
請求項 1の方法であって、前記メチル化感受性作用物質を作用させた試験 DNA の蛍光強度を測定する過程に於いて、前記蛍光強度の測定が蛍光相互相関分光 法により行われることを特徴とする方法。
請求項 1の方法であって、前記メチル化感受性作用物質を作用させた試験 DNA の蛍光強度を測定する過程に於!/、て、前記蛍光強度の測定が蛍光偏光解消法によ り行われることを特徴とする方法。
[12] 酵素の DNAメチル化活性を検出する方法であって、
メチル化部位を含む制限酵素認識部位を有し、蛍光標識が付加された二本鎖 DN Aである試験 DNAと、 DNAメチル化活性を有するか否かが判定されるべき被検酵 素とを混合する過程と、
その後、非メチル化状態の前記メチル化部位を含む制限酵素認識部位又はメチル 化状態の前記メチル化部位を含む制限酵素認識部位のいずれ力、を選択的に切断 するメチル化感受性作用物質を前記試験 DNAに作用させる過程と、
前記メチル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過程 と、
前記蛍光強度に基づいて前記試験 DNAが前記メチル化感受性作用物質により切 断されたか否かを判定する過程とを含み、
前記試験 DNAが切断されたか否かによって前記被検酵素が DNAをメチル化する 活性と有しているか否力、を判定することを特徴とする方法。
[13] 酵素の DNA脱メチル化活性を検出する方法であって、
メチル化されたメチル化部位を含む制限酵素認識部位を有し、蛍光標識が付加さ れたニ本鎖 DNAである試験 DNAと、 DNA脱メチル化活性を有するか否かが判定 されるべき被検酵素とを混合する過程と、
その後、非メチル化状態の前記メチル化部位を含む制限酵素認識部位又はメチル 化状態の前記メチル化部位を含む制限酵素認識部位のいずれ力、を選択的に切断 するメチル化感受性作用物質を前記試験 DNAに作用させる過程と、
前記メチル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過程 と、
前記蛍光強度に基づいて前記試験 DNAが前記メチル化感受性作用物質により切 断されたか否かを判定する過程とを含み、
前記試験 DNAが切断されたか否かによって前記被検酵素が DNAを脱メチル化 する活性と有しているか否かを判定することを特徴とする方法。 DNAの脱メチル化を阻害する阻害物質を検出する方法であって、
メチル化されたメチル化部位を含む制限酵素認識部位を有し、蛍光標識が付加さ れたニ本鎖 DNAである試験 DNAと、 DNAの脱メチル化を阻害する阻害物質であ るか否かが判定されるべき被検物質と、 DNA脱メチル化酵素とを混合する過程と、 その後、非メチル化状態の前記メチル化部位を含む制限酵素認識部位又はメチル 化状態の前記メチル化部位を含む制限酵素認識部位のいずれ力、を選択的に切断 するメチル化感受性作用物質を前記試験 DNAに作用させる過程と、
前記メチル化感受性制限酵素を作用させた試験 DNAの蛍光強度を測定する過程 と、
前記蛍光強度に基づいて前記試験 DNAが前記メチル化感受性作用物質により切 断されたか否かを判定する過程とを含み、
前記試験 DNAが切断されたか否かによって前記被検物質が DNAの脱メチル化を 阻害する阻害物質であるか否かを判定することを特徴とする方法。
PCT/JP2007/066624 2006-09-05 2007-08-28 Procédé de détermination d'activité inhibitrice sur la méthylation d'adn WO2008029668A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006240246A JP2009278867A (ja) 2006-09-05 2006-09-05 Dnaメチル化阻害作用の判定方法
JP2006-240246 2006-09-05

Publications (1)

Publication Number Publication Date
WO2008029668A1 true WO2008029668A1 (fr) 2008-03-13

Family

ID=39157101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066624 WO2008029668A1 (fr) 2006-09-05 2007-08-28 Procédé de détermination d'activité inhibitrice sur la méthylation d'adn

Country Status (2)

Country Link
JP (1) JP2009278867A (ja)
WO (1) WO2008029668A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026929A (ja) * 2010-07-26 2012-02-09 Ooyashiki Kazuma 一分子蛍光分析法によるdnaのメチル化度の決定方法
CN109207618A (zh) * 2017-06-30 2019-01-15 中国农业科学院植物保护研究所 用于测定生物材料中目标序列甲基化率的方法及试剂盒
WO2023124633A1 (zh) * 2021-12-31 2023-07-06 湖南中医药大学 Dna甲基化修饰的检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2633073B1 (en) * 2010-10-29 2017-04-26 Asuragen, Inc. mPCR METHODS FOR ANALYZING REPEAT SEQUENCES
CN109811037B (zh) * 2018-11-15 2022-02-11 华南师范大学 一种dna甲基化过程的连续在线检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026401A1 (en) * 1998-11-03 2000-05-11 The Johns Hopkins University School Of Medicine METHYLATED CpG ISLAND AMPLIFICATION (MCA)
WO2002101353A2 (en) * 2001-06-08 2002-12-19 U.S. Genomics, Inc. Methods and products for analyzing nucleic acids based on methylation status
WO2003012051A2 (en) * 2001-07-31 2003-02-13 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Inhibitor of dna methylation
WO2003027259A2 (en) * 2001-09-26 2003-04-03 Epigenx Pharmaceuticals, Inc. Assays for dna methylation changes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026401A1 (en) * 1998-11-03 2000-05-11 The Johns Hopkins University School Of Medicine METHYLATED CpG ISLAND AMPLIFICATION (MCA)
WO2002101353A2 (en) * 2001-06-08 2002-12-19 U.S. Genomics, Inc. Methods and products for analyzing nucleic acids based on methylation status
WO2003012051A2 (en) * 2001-07-31 2003-02-13 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Inhibitor of dna methylation
WO2003027259A2 (en) * 2001-09-26 2003-04-03 Epigenx Pharmaceuticals, Inc. Assays for dna methylation changes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN LI ET AL.: "Hairpin Fluorescence DNA Probe for Real-Time Monitoring of DNA Methylation", ANALYTICAL CHEMISTRY, vol. 79, no. 3, 1 February 2007 (2007-02-01), pages 1050 - 1056, XP003021652 *
LEE S.P. ET AL.: "A Fluorometric Assay for DNA Cleavage Reactions Characterized with BAmHI Restriction Endnuclease", ANALYTICAL BIOCHEMISTRY, vol. 220, 1994, pages 377 - 383, XP002945386 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026929A (ja) * 2010-07-26 2012-02-09 Ooyashiki Kazuma 一分子蛍光分析法によるdnaのメチル化度の決定方法
CN109207618A (zh) * 2017-06-30 2019-01-15 中国农业科学院植物保护研究所 用于测定生物材料中目标序列甲基化率的方法及试剂盒
CN109207618B (zh) * 2017-06-30 2020-05-29 中国农业科学院植物保护研究所 用于测定生物材料中目标序列甲基化率的方法及试剂盒
WO2023124633A1 (zh) * 2021-12-31 2023-07-06 湖南中医药大学 Dna甲基化修饰的检测方法

Also Published As

Publication number Publication date
JP2009278867A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
Wu et al. Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction
JP7510354B2 (ja) 多重化触媒レポーター沈着
Moody et al. Methods and novel technology for microRNA quantification in colorectal cancer screening
CA2422890C (en) Method of predicting the clinical response to chemotherapeutic treatment with alkylating agents
US6413723B1 (en) Methods and compositions for identifying nucleic acids containing cis acting elements
EP2691775B1 (en) Telomere length measurement in formalin-fixed, paraffin embedded (ffpe) samples by quantitative pcr
US9994900B2 (en) Composite biomarkers for non-invasive screening, diagnosis and prognosis of colorectal cancer
AU2010225937B2 (en) Abscription based molecular detection
CN106574303A (zh) 用于结肠直肠癌的甲基化的标志物
KR102019800B1 (ko) 리덕션 프로브를 이용한 유전자의 메틸화 검출 방법, 검출 키트 및 pcr 장치
El-Yazbi et al. Detecting UV-induced nucleic-acid damage
WO2008029668A1 (fr) Procédé de détermination d'activité inhibitrice sur la méthylation d'adn
US6013438A (en) Assay for detecting apoptotic cells
CN109266721B (zh) 一种基于无猝灭分子信标检测端粒酶活性的方法
Zhang et al. Catalytic single-molecule Förster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging
Li et al. Intracellular CircRNA imaging and signal amplification strategy based on the graphene oxide-DNA system
Huang et al. Profiling demethylase activity using epigenetically inactivated DNAzyme
JP5167485B2 (ja) メチルシトシンの簡便検出法
US20050260630A1 (en) Rapid methods for detecting methylation of a nucleic acid molecule
Mondal et al. Comet-FISH for ultrasensitive strand-specific detection of DNA damage in single cells
JP7482506B2 (ja) 短鎖ヘアピンDNAを用いた改良型in situ ハイブリダイゼーション反応
JP2021509284A (ja) 酵素相互作用時間に基づいてポリヌクレオチドを選択する方法
US8367340B2 (en) Prognostic tools to predict the efficacy of drug treatment targeting chromatin DNA or enzymes acting on DNA
CN109517877B (zh) 筛选m6A去修饰酶抑制剂的核苷酸底物、试剂盒和方法
WO2008029667A1 (fr) Procédé de détection d'un site de liaison à une protéine liant l'adn dans l'adn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07793068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07793068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP