WO2008025351A2 - Verfahren zur herstellung eines bioreaktors oder lab-on-a-chip-systems sowie damit hergestellte bioreaktoren oder lab-on-a-chip- systeme - Google Patents

Verfahren zur herstellung eines bioreaktors oder lab-on-a-chip-systems sowie damit hergestellte bioreaktoren oder lab-on-a-chip- systeme Download PDF

Info

Publication number
WO2008025351A2
WO2008025351A2 PCT/DE2007/001578 DE2007001578W WO2008025351A2 WO 2008025351 A2 WO2008025351 A2 WO 2008025351A2 DE 2007001578 W DE2007001578 W DE 2007001578W WO 2008025351 A2 WO2008025351 A2 WO 2008025351A2
Authority
WO
WIPO (PCT)
Prior art keywords
lab
wavelength
electromagnetic radiation
bioreactor
contact surface
Prior art date
Application number
PCT/DE2007/001578
Other languages
English (en)
French (fr)
Other versions
WO2008025351A3 (de
Inventor
Volker Franke
Frank Sonntag
Jan Hauptmann
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP07801315A priority Critical patent/EP2061589A2/de
Priority to US12/310,319 priority patent/US20090297403A1/en
Priority to DE200711002709 priority patent/DE112007002709A5/de
Publication of WO2008025351A2 publication Critical patent/WO2008025351A2/de
Publication of WO2008025351A3 publication Critical patent/WO2008025351A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • B29C66/73116Melting point of different melting point, i.e. the melting point of one of the parts to be joined being different from the melting point of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73361General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being opaque to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7461Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00853Employing electrode arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1409Visible light radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • B29C65/1416Near-infrared radiation [NIR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • B29C65/1422Far-infrared radiation [FIR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1622Far infrared radiation [FIR], e.g. by FIR lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02241Cutting, e.g. by using waterjets, or sawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Definitions

  • the invention relates to a method for producing a bioreactor or lab-on-a-chip system and bioreactors or lab-on-a-chip systems produced therewith.
  • at least two different components are connected to each other, wherein the two components are first brought into contact with each other and then one of the components is thereby melted at its contact surface to the other component.
  • electromagnetic radiation is radiated through one of the components onto the contact surface.
  • both components are melted at their surfaces to be joined.
  • the molten areas of the components mix and establish a firm connection after curing.
  • the problem with welding is, on the one hand, that the components must be connected to each other as long as the surfaces have melted. This is particularly relevant when welding by means of an arc or with a flame, if the surfaces in the connected state are not accessible from the outside.
  • a major disadvantage of welding is that both bodies must be melted. Bodies whose melting points are very different can not be joined by welding if the melting temperature of the higher melting body is above the temperature at which the colder melting body is already beginning to decompose.
  • Object of the present invention is therefore to provide a method by which bodies with very different melting points, namely a ceramic and a polymer can be connected to each other, regardless of whether the surfaces to be connected are accessible from the outside or not.
  • the inventive method is based on the idea to connect two bodies by melting while they are in contact with each other.
  • one of the two bodies to be connected is irradiated from a polymer of electromagnetic radiation of a certain wavelength ⁇ while the other body absorbs electromagnetic radiation of the same wavelength ⁇ from a ceramic.
  • the two bodies to be connected are first brought into contact with each other and then the electromagnetic radiation is irradiated by the body transparent to the respective wavelengths of the electromagnetic radiation onto the boundary surface between the two bodies.
  • the electro- Magnetic radiation is absorbed by the other body, resulting in heating of the interface.
  • the melting point of the two bodies lies in very different areas.
  • the respective fusible body need not necessarily be meltable as a whole, it is sufficient if it is meltable in the area in which a connection to the other body is to be produced.
  • the absorptivity and transparency of the two bodies need only be given for those wavelengths at which the heating of the interface is to be carried out.
  • the absorption behavior or the transmittivity at other wavelengths does not matter.
  • the wavelength for establishing a specific connection between two of these bodies is then selected so that the body lying in the direction of incidence of the radiation behind the interface to be bonded absorbs the corresponding radiation, while all the bodies lying in front of the interface in the direction of incidence of the beam are exposed to the radiation are transparent.
  • the method according to the invention is particularly suitable for connecting the at least two bodies which can not be melted together. It is particularly advantageous if the surface of that body made of ceramic, which does not melt during bonding, is roughened or structured on the contact surface with the melting body of polymer.
  • the roughening can, for example, way done by means of a laser beam or by means of sandpaper. Also files or other mechanical effects such as water and / or sandblasting or milling, or even chemical etching methods are possible. It is crucial that depressions and structures in the micrometer range can be generated in the surface.
  • the use of a laser, advantageously of a pulsed laser, for structuring is particularly advantageous, since in this way a targeted structure can be realized.
  • the structures may be on the order of a few micrometers or a few millimeters.
  • grooves or holes come into question.
  • the grooves may for example have a triangular cross-section, wherein the apex of the triangle may be oriented to the surface or in the direction of the body.
  • grooves with rectangular cross sections or round cross sections, in particular circular sectors, are possible.
  • the holes may be pyramidal, with the tips of the pyramids being oriented toward the surface or into the body. In the former case, the pyramidal hole would have a small opening at the surface.
  • the depressions can also be introduced at a shallow angle to the surface.
  • the method described above can also be realized without a specific structuring of the surface of the non-fusible body.
  • the molten material flows into the pre-existing surface roughness of the infusible body.
  • This pressing can be done for example by means of any mechanical devices, such as brackets, screws or clamps, but is preferably done with a pneumatic and / or hydraulic press o- a different type of press.
  • a pressure of 1 bar is particularly well.
  • the material properties of the bodies to be joined and the gap between them but also a higher or lower pressure can be applied.
  • the heat conduction takes place because of the very small thermal conductivity of the ceramic almost exclusively in the area in which the actual connection of the two bodies to be produced and in which the electromagnetic radiation is effective.
  • the pressure can also be applied selectively, for example by a sliding or rolling welding head. This can be designed so that it brings the same time for pressing the electromagnetic radiation to the joint.
  • thermoplastic polymers According to the invention, a large number of different materials can be joined together. Particularly suitable is the method described for the connection of ceramics with thermoplastic polymers.
  • the electromagnetic radiation for melting the meltable body of polymer can be produced in different ways. Particularly advantageous is the use of a laser, advantageously a continuous laser. Its wavelength may be in the visible range and / or in the near infrared range and / or in the far infrared range. For example, a wavelength between 800 nm and 1090 nm is particularly suitable for bonding ceramic with a thermoplastic.
  • the power of the laser is selected so that the desired temperature is established during absorption in the boundary region. But it is also possible to generate the electromagnetic radiation by means of a sufficiently strong incandescent lamp.
  • At least one contact surface of the two bodies can be at least partially activated by a suitable treatment.
  • a suitable treatment all conventional measures for the surface activation of solids are suitable for this, but the activation preferably takes place chemically or energetically.
  • chemical activ For example, etching processes or surface derivatization, for example with reactive compounds, may be used as energetic activation, in particular irradiations, preferably with ultraviolet irradiation.
  • mechanical measures for roughening or structuring are also suitable for this purpose.
  • the essential advantage of the method according to the invention is that materials with very different melting points can be connected to one another.
  • fusible bodies can be connected to such bodies that decompose when heated, such as thermosets.
  • the bioreactors or lab-on-a-chip systems produced according to the invention have at least one ceramic-containing or existing processing region.
  • the processing area is closed at least on one side with a transparent window comprising a polymer or thermoplastic.
  • the transparent window is connected to the processing area by the method according to the invention.
  • the processing region can have at least one disk-shaped subdivider which can be arranged parallel next to the at least one transparent window, sealingly contacting it.
  • the divider divides the processing area into at least one compartment. There may also be at least two dividers for the formation of several compartments.
  • Another advantage is that no additives have to be used for bonding, whereby impairments of the function of the connected component can be avoided.
  • very strong compounds can be produced without a material conversion takes place. There are almost no mechanical stresses in the joining area, even with thermal cycling.
  • FIG 1 shows the principle of the method according to the invention
  • FIG. 2 shows a layer system produced by means of the method according to the invention.
  • FIG. 3 shows a number of layers of a bioreactor to be connected, which can be closed with the aid of the method according to the invention with an optically transparent window.
  • FIG. 1 shows the principle of the method according to the invention.
  • A shows an overall view
  • B shows an enlargement of the boundary area between the bodies 1 and 2.
  • a fusible body 1 made of polymer is connected to a ceramic body 2 which is not fusible at the same temperature.
  • the body 1 is arranged touching the body 2 and pressed the two bodies 1 and 2 with a pressure 3 against each other.
  • Electromagnetic radiation 4 is now radiated through the melting body 1 onto the non-melting body 2.
  • the fusible body 1 for electromagnetic radiation 4 of the given wavelength is transparent, while the non-melting body 2 is not transparent to the electromagnetic radiation of this wavelength, but absorbs it.
  • the transparency of the melting body 1 for electromagnetic radiation 4 of the irradiated wavelength need not be one hundred percent, it only has to be so great that the fusible body 1 does not melt even by the absorption of the incident radiation itself. Accordingly, the degree of absorption of the body 2 which is not meltable at the given temperature need only be so great that sufficient heat is produced at the interface between the two bodies that the melting temperature of the melting body 1 is reached.
  • the enlargement B of FIG. 1 shows an idealized representation of the boundary region ⁇ between the fusible body 1 and the non-melting body 2.
  • the non-fusible body 2 is provided with depressions 5. Viewed over the entire surface, these depressions 5 represent a roughening or structuring. The diameter of these depressions is, for example, in the micrometer or in the millimeter range.
  • FIG. 2 shows the cross section through a layer system, which was prepared by the method according to the invention.
  • a layer system can be, for example, a lab-on-a-chip system for analyzing cell growth under defined conditions or a microbiological reactor.
  • a bioreactor has several layers 2a, 2b, 2c of a Low Temperature Cofired Ceramics (LTCC). These are connected via border areas 6 with transparent polystyrene windows 1 '. Through microchannels 12 different media can be passed through the bioreactor.
  • the uppermost layer of the LTCC 2a layer system was connected to the polystyrene window 1 'in the process according to the invention. For this purpose, first the LTCC layers 2a, 2b, 2c were finished assembled and sintered.
  • LTCC Low Temperature Cofired Ceramics
  • the surface area was then structured with a pulsed Nd: YAG laser. Subsequently, the polystyrene window 1 'at the joint in the boundary region ⁇ was pressed against the uppermost LTCC layer 2a, and then the melting was carried out with a continuous laser beam 4.
  • the surface of the reactor chambers was first structured from LTCC. An average of seventeen craters per mm 2 were randomly distributed on the surface. The production of the craters was made with a pulsed laser with a pulse frequency of 10 kHz and pulse durations of about 100 ns with a mean laser power (pulsed) of 20 watts. Approx. 10 pulses were irradiated per crater.
  • the polystyrene window became 1 'connected to the body 2, as a cell reactor of LTCC ceramic by irradiation of electromagnetic radiation 4.
  • a laser with the wavelength of 1064 nm and a laser power (cw) of 45 watts at a speed of 15 mm / s on the
  • the window 1 'formed of thermoplastic polymer was pressed against the reactor chamber made of LTCC at a pressure in the joining zone of 1.4 bar (60 N to 4.2 cm 2 ).
  • a window 1 ' can also be a functional element at the same time or alone.
  • a microfluidic system with microfluidic elements e.g. Channels, which in turn may have inlet and outlet openings, between the functional element / window 1 'and body 2 are formed.
  • the partial elements of LTCC 2a, 2b and 2c were connected to each other by sintering to the reactor chamber.
  • FIG. 3 shows the various layers 2a, 2b, 2c, 2d, 2e of a five-layer LTCC multilayer system.
  • Each layer contains 4 identical subunits of the lab-on-a-chip system or bioreactor. All layers contain large circular openings 7a, 7b, 7c, 7d, which form the cell reactors when the LTCC layers 2a, 2b, 2c, 2d, 2e are stacked on top of each other.
  • meandering channels 8a, 8b, 8c, 8d are introduced, which with a tempered
  • Liquid can be flowed through in order to produce a constant temperature within the cell reactor can.
  • the overlying layer 2c has LTCC-based sensors 9a, 9b, 9c, 9d, with which, for example, impedance and temperature can be measured.
  • Through holes 10 provide an electrical connection fertilize the sensors to the overlying layers ago.
  • An impedance measurement is used, for example, to investigate changes in cell growth, eg the adsorption of cells on a surface. This makes it possible to analyze the reaction of a cell culture to various test media or growth conditions.
  • Various media can be introduced through the microchannels IIa, IIb, 11c, Hd in position 2b.
  • the meandering structure opens up the possibility of mixing two different test liquids or of carrying out a dilution.
  • the lab-on-a-chip system can be connected to the necessary supply devices and electronic measuring devices.
  • the individual layers 2a to 2e of the unsintered ceramic are cut and patterned with the aid of a pulsed laser system.
  • the layers are then stacked and sintered.
  • the bioreactor can be hermetically sealed with a window 1 'made of polystyrene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bioreaktors oder Lab-on-a-Chip-Systems sowie damit hergestellte Bioreaktoren oder Lab-on-a-Chip-Systeme. Dabei werden mindestens zwei unterschiedliche Bauteile miteinander verbunden. Bei dem Verfahren werden ein erster Körper aus einem Polymer (1), der zumindest teilweise transparent für elektromagnetische Strahlung (4) ist, und ein zweiter Körper aus einer Keramik (2), die elektromagnetische Strahlung (4) absorbiert, miteinander verbunden. Der erste Körper ist zumindest bereichsweise schmelzbar (5). In einem ersten Schritt werden der erste Körper (1) und der zweite Körper (2) sich unter Ausbildung von Berührungsflächen so berührend angeordnet, dass der Körper in zumindest einem Bereich seiner Berührungsfläche zum anderen Körper schmelzbar ist. In einem zweiten Schritt wird der zumindest eine schmelzbare Bereich der Berührungsfläche dadurch zum Schmelzen gebracht wird, dass elektromagnetische Strahlung (4) durch den ersten Körper hindurch auf den schmelzbaren Bereich der Berührungsfläche gestrahlt wird.

Description

Verfahren zur Herstellung eines Bioreaktors oder Lab- on-a-Chip-Systems sowie damit hergestellte Bioreaktoren oder Lab-on-a-Chip-Systeme
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bioreaktors oder Lab-on-a-Chip-Systems sowie damit hergestellte Bioreaktoren oder Lab-on-a-Chip- Systeme. Dabei werden mindestens zwei unterschiedliche Bauteile miteinander verbunden, wobei die beiden Bauteile zunächst in Kontakt miteinander gebracht werden und dann eines der Bauteile dadurch an seiner Kontaktfläche zum anderen Bauteil aufgeschmolzen wird. Dabei wird elektromagnetische Strahlung durch eines der Bauteile hindurch auf die Kontaktfläche ge- strahlt.
Zum Verbinden von Körpern sind nach dem Stand der Technik zum einen Technologien bekannt, bei welchen die zu verbindenden Körper miteinander verklebt wer- den. Hierbei wird ein Klebstoff zwischen die beiden zu verbindenden Körper eingebracht und anschließend die Klebung z.B. durch Aushärten des Klebstoffs fixiert. Ein wesentlicher Nachteil des Klebens ist, dass ein zusätzlicher Stoff in das zu verbindende System eingebracht werden muss, welcher u.U. unerwünschte Auswirkungen auf die Funktion des fertigen Bauteils hat.
Nach dem Stand der Technik ist darüber hinaus be- kannt, Bauteile miteinander zu verschweißen. Hierzu werden beide Bauteile an ihren zu verbindenden Flächen aufgeschmolzen. Die aufgeschmolzenen Bereiche der Bauteile vermischen sich und stellen nach dem Aushärten eine feste Verbindung her. Problematisch beim Schweißen ist zum einen, dass die Bauteile miteinander in Verbindung gebracht werden müssen, solange die Oberflächen geschmolzen sind. Dies ist insbesondere beim Schweißen mittels eines Lichtbogens oder mit einer Flamme relevant, wenn die Oberflächen im verbundenen Zustand von außen nicht zugänglich sind. Ein wesentlicher Nachteil des Schweißens ist auch, dass beide Körper aufgeschmolzen werden müssen. Körper, deren Schmelzpunkte sehr unterschiedlich sind, können durch Schweißen nicht verbunden werden, wenn die Schmelztemperatur des höher schmelzenden Körpers über jener Temperatur liegt, bei welcher der kälter schmelzende Körper bereits beginnt, sich zu zersetzen.
So ist es z.B. bei der Herstellung von Lab-on-a-Chip- Systemen oder Bioreaktoren notwendig eine optische Detektion von außen im inneren vornehmen zu können. Hierfür sind optisch transparente Fenster erforderlich. Diese werden bisher durch eine Klebverbindung an einem Keramikkörper befestigt, wobei aber die vorab bereits genannten Nachteile berücksichtigt werden müssen. Klebverbindungen sind in der Regel aber nicht dauerhaft Dicht, was bei den erfindungsgemäß herzustellenden Gegenständen aber erforderlich ist. Eine solche Möglichkeit ist von W. Srαetana u.a. in „Set-up of a biological monitoring module realized in LTCC technology"; SPIE Photonics West; San Jose; 20.-25. Januar 2007 beschrieben.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren anzugeben, mit dem Körper mit sehr unterschiedlichen Schmelzpunkten, nämlich einer Keramik und einem Polymer miteinander verbunden werden können, unabhängig davon, ob die zu verbindenden Flächen von außen zugänglich sind oder nicht.
Diese Aufgabe wird durch das Verfahren nach Anspruch 1 und damit hergestellte Bioreaktoren oder Lab-on-a- Chip-Systeme nach Anspruch 20 gelöst. Vorteilhafte Weiterbildungen des Verfahrens, der Vorrichtung und des Bioreaktors sind in den jeweiligen abhängigen Ansprüchen gegeben.
Dem erfindungsgemäßen Verfahren liegt die Idee zugrunde, zwei Körper durch Schmelzen zu verbinden, während sie miteinander in Kontakt stehen. Hierbei wird einer der beiden zu verbindenden Körper aus einem Polymer von elektromagnetischer Strahlung einer bestimmten Wellenlänge λ durchstrahlt während der andere Körper aus einer Keramik elektromagnetische Strahlung der gleichen Wellenlänge λ absorbiert. Die beiden zu verbindenden Körper werden zunächst miteinander in Kontakt gebracht und anschließend die elektromagnetische Strahlung durch den für die entsprechenden Wellenlängen der elektromagnetischen Strahlung transparenten Körper auf die Grenzfläche zwischen den beiden Körpern gestrahlt. Die elektro- magnetische Strahlung wird von dem anderen Körper absorbiert und führt damit zu einer Erwärmung der Grenzfläche. Im vorliegenden Fall, liegt der Schmelzpunkt der beiden Körper in sehr unterschiedlichen Be- reichen. Dadurch wird durch das Einstrahlen der e- lektromagnetischen Strahlung nur einer der beiden Körper, nämlich der aus Polymer aufgeschmolzen. Der jeweils schmelzbare Körper muss nicht unbedingt als Ganzes schmelzbar sein, es genügt, wenn er in dem Be- reich schmelzbar ist, in welchem eine Verbindung zum jeweils anderen Körper hergestellt werden soll. Das Absorptionsvermögen und die Transparenz der beiden Körper müssen nur für jene Wellenlängen gegeben sein, bei denen die Erwärmung der Grenzfläche durchgeführt werden soll. Das Absorptionsverhalten bzw. die Trans- missivität bei anderen Wellenlängen spielt keine Rolle. Insbesondere ist es möglich, mehr als nur zwei Körper miteinander zu verbinden. So kann z.B. auch eine größere Zahl von Körpern übereinander gestapelt werden. Die Wellenlänge zur Herstellung einer bestimmten Verbindung zwischen zweien dieser Körper wird dann so gewählt, dass der in Einfallsrichtung der Strahlung hinter der zu verbindenden Grenzfläche liegende Körper die entsprechende Strahlung absor- biert, während alle in Einfallsrichtung des Strahles vor der Grenzfläche liegenden Körper für die Strahlung transparent sind.
Das erfindungsgemäße Verfahren ist besonders geeig- net, um die mindestens zwei Körper miteinander zu verbinden, die nicht beide zusammen aufgeschmolzen werden können. Dabei ist es besonders vorteilhaft, wenn die Oberfläche jenes Körpers aus Keramik, der beim Verbinden nicht schmilzt, an der Berührungsflä- che zum schmelzenden Körper aus Polymer aufgeraut o- der strukturiert wird. Die Aufrauung kann beispiels- weise mittels eines Laserstrahls oder mittels Sandpapier erfolgen. Auch Feilen oder andere mechanische Einwirkungen wie Wasser- und/oder Sandstrahlen oder Fräsen, oder auch chemische Ätzmethoden sind möglich. Entscheidend ist, dass in der Oberfläche Vertiefungen und Strukturen im Mikrometerbereich erzeugt werden können. Besonders vorteilhaft ist jedoch die Verwendung eines Lasers, vorteilhafterweise eines gepulsten Lasers, zur Strukturierung, weil hierdurch eine ge- zielte Struktur realisiert werden kann. Je nach Anwendungsbereich des fertigen Produktes können die Strukturen von der Größenordnung einiger Mikrometeroder einiger Millimeter sein. Als Form der Struktur kommen z.B. Rillen oder Löcher in Frage. Die Rillen können beispielsweise einen dreieckigen Querschnitt haben, wobei die Spitze des Dreiecks zur Oberfläche oder in Richtung des Körpers orientiert sein kann. Auch Rillen mit rechteckigen Querschnitten oder runden Querschnitten, insbesondere Kreissektoren, sind möglich. Im Falle einer Strukturierung durch Löcher können die Löcher pyramidenförmig sein, wobei die Spitzen der Pyramiden zur Oberfläche hin oder in den Körper hin orientiert sein können. Im ersteren Falle hätte das pyramidenförmige Loch an der Oberfläche ei- ne kleine Öffnung. Die Vertiefungen können auch in einem flachen Winkel zur Oberfläche eingebracht werden.
Durch eine solche Strukturierung der Oberfläche des nicht schmelzenden Körpers aus Keramik kann zwischen dem schmelzenden und dem nicht schmelzenden Körper eine äußerst feste Verbindung erzielt werden. Hierbei kommt es darauf an, dass der geschmolzene Polymer des schmelzbaren Körpers in die Strukturen der Oberfläche des nicht schmelzbaren Körpers aus Keramik fließt und anschließend dort erstarrt. Auf diese Weise kann sich der schmelzbare Körper in dem nicht schmelzbaren gleichsam verhaken.
Das oben beschriebene Verfahren lässt sich auch ohne eine gezielte Strukturierung der Oberfläche des nicht schmelzbaren Körpers verwirklichen. In diesem Falle fließt das geschmolzene Material in die von vorneher- ein vorhandenen Oberflächenrauigkeiten des nicht schmelzbaren Körpers. Sowohl im Falle einer vorherge- henden Strukturierung als auch im Falle einer Verbindung von unstrukturierten Körpern ist es jedoch vorteilhaft, wenn die beiden Körper während des Geschmolzenseins der Oberfläche des schmelzbaren Körpers gegeneinander gepresst werden. Dieses Pressen kann beispielsweise mittels beliebiger mechanischer Vorrichtungen, beispielsweise Klammern, Schrauben o- der Zwingen erfolgen, geschieht bevorzugt aber mit einer pneumatischen und/oder hydraulischen Presse o- der einer anders gearteten Presse. Zur Verbindung beispielsweise eines schmelzbaren Polymers mit einer Keramik eignet sich ein Druck von 1 bar besonders gut. In Abhängigkeit von der Größe und Form der Oberflächenstrukturen, den Materialeigenschaften der zu verbindenden Körper und dem Spalt zwischen ihnen kann aber auch ein höherer oder niedrigerer Druck angewandt werden. Entscheidend ist einerseits, dass das geschmolzene Material in die Oberflächenstrukturen des nicht schmelzenden Körpers aus Keramik gepresst wird und andererseits, dass die Wärmeleitung zwischen den Körpern hinreichend groß ist, um ein Aufschmelzen zu bewirken. Die Wärmeleitung erfolgt dabei wegen der sehr kleinen Wärmeleitfähigkeit der Keramik nahezu ausschließlich im Bereich in dem die eigentliche Verbindung der beiden Körper hergestellt werden soll und in dem die elektromagnetische Strahlung wirksam ist. Der Druck kann darüberhinaus auch punktuell, beispielsweise durch einen gleitenden oder rollenden Schweißkopf, aufgebracht werden. Dieser kann so ausgestaltet sein, dass er gleichzeitig zum Pressen die elektromagnetische Strahlung an die Fügestelle bringt .
Erfindungsgemäß kann eine große Zahl verschiedener Materialien miteinander verbunden werden. Besonders geeignet ist das beschriebene Verfahren für die Verbindung von Keramiken mit thermoplastischen Polymeren.
Die elektromagnetische Strahlung zum Schmelzen des schmelzbaren Körpers aus Polymer kann auf unterschiedliche Weise erzeugt werden. Besonders vorteilhaft ist die Verwendung eines Lasers, vorteilhafterweise eines kontinuierlichen Lasers. Seine Wellenlänge kann im sichtbaren Bereich und/oder im nahen Inf- rarotbereich und/oder im fernen Infrarotbereich liegen. Besonders geeignet zur Verbindung von Keramik mit einem Thermoplast ist beispielsweise eine Wellenlänge zwischen 800 nm und 1090 nm. Die Leistung des Lasers wird so gewählt, dass sich bei der Absorption im Grenzbereich die gewünschte Temperatur einstellt. Es ist aber auch möglich, die elektromagnetische Strahlung mittels einer hinreichend starken Glühlampe zu erzeugen.
In einer weiteren vorteilhaften Ausführungsform kann zumindest eine Berührungsfläche der beiden Körper zumindest teilweise durch eine geeignete Behandlung aktiviert werden. Hierzu eignen sich prinzipiell alle gängigen Maßnahmen zur Oberflächenaktivierung von Festkörpern, bevorzugt erfolgt die Aktivierung jedoch chemisch oder energetisch. Als chemische Aktivie- rungsverfahren kommen beispielsweise Ätzprozesse oder die Oberflächenderivatisierung z.B. mit reaktiven Verbindungen in Frage, als energetische Aktivierung insbesondere Bestrahlungen, vorzugsweise mit ultravi- oletter Bestrahlung. Prinzipiell sind hierzu auch schon zuvor genannten mechanischen Maßnahmen zur Auf- rauung oder Strukturierung geeignet.
Der wesentliche Vorteil des erfindungsgemäßen Verfah- rens ist, dass Materialien mit sehr unterschiedlichen Schmelzpunkten miteinander verbunden werden können. Darüber können auch schmelzbare Körper mit solchen Körpern verbunden werden, die sich bei Erwärmung zersetzen, wie zum Beispiel Duroplasten.
Die erfindungsgemäß hergestellten Bioreaktoren oder Lab-on-a-Chip-Systeme weisen zumindest einen Keramik enthaltenden oder daraus bestehenden Verarbeitungsbereich auf. Der Verarbeitungsbereich ist zumindest an einer Seite mit einem transparenten Fenster, das einen Polymer oder Thermoplast aufweist, verschlossen. Das transparente Fenster ist mit dem Verarbeitungsbereich durch das erfindungsgemäße Verfahren verbunden.
Der Verarbeitungsbereich kann zumindest einen schei- benförmigen Unterteiler aufweisen, der parallel neben dem zumindest einen transparenten Fenster, dieses abdichtend berührend, angeordnet sein. Der Unterteiler teilt den Verarbeitungsbereich in zumindest ein Kom- partiment. Es können auch mindestens zwei Unterteiler für die Ausbildung mehrerer Kompartimente vorhanden sein.
Ein weiterer Vorteil ist, dass keine Zusatzstoffe zum Verbinden eingesetzt werden müssen, wodurch Beeinträchtigungen der Funktion des verbundenen Bauteils vermieden werden können. Durch das erfindungsgemäße Verfahren können sehr feste Verbindungen hergestellt werden ohne dass eine Materialumwandlung stattfindet. Es treten nahezu keine mechanischen Spannungen im Fügebereich, auch bei Temperaturwechselbeanspruchung auf.
Im Folgenden wird das erfindungsgemäße Verfahren anhand einiger Beispiele im Detail erläutert. Es zeigen
Figur 1 das Prinzip des erfindungsgemäßen Verfahrens;
Figur 2 ein mittels des erfindungsgemäßen Verfah- rens hergestelltes Schichtsystem; und
Figur 3 eine Anzahl von zu verbindenden Schichten eines Bioreaktors, der mit Hilfe des erfindungsgemäßen Verfahrens mit einem optisch transparenten Fenster abgeschlossen werden kann.
Figur 1 zeigt das Prinzip des erfindungsgemäßen Verfahrens. Dabei zeigt A eine Gesamtansicht und B eine Vergrößerung des Grenzbereichs zwischen den Körpern 1 und 2. Im gezeigten Beispiel wird ein schmelzbarer Körper 1 aus Polymer mit einem bei gleicher Temperatur nicht schmelzbaren Körper 2 aus einer Keramik verbunden. Zunächst wird der Körper 1 an den Körper 2 berührend angeordnet und die beiden Körper 1 und 2 mit einem Druck 3 gegeneinander gepresst. Es wird nun elektromagnetische Strahlung 4 durch den schmelzenden Körper 1 hindurch auf den nicht schmelzenden Körper 2 gestrahlt. Hierbei ist wesentlich, dass der schmelz- bare Körper 1 für elektromagnetische Strahlung 4 der gegebenen Wellenlänge transparent ist, während der nicht schmelzende Körper 2 für die elektromagnetische Strahlung dieser Wellenlänge nicht transparent ist, sondern diese absorbiert. Die Transparenz des schmelzenden Körpers 1 für elektromagnetische Strahlung 4 der eingestrahlten Wellenlänge muss nicht hundertprozentig sein, sie muss nur so groß sein, dass der schmelzbare Körper 1 nicht schon durch die Absorption der eingestrahlten Strahlung selbst schmilzt. Entsprechend muss der Absorptionsgrad des bei der gege- benen Temperatur nicht schmelzbaren Körpers 2 nur so groß sein, dass hinreichend viel Wärme an der Grenzfläche zwischen den beiden Körpern produziert wird, dass die Schmelztemperatur des schmelzenden Körpers 1 erreicht wird.
Die Vergrößerung B der Figur 1 zeigt eine idealisierte Darstellung des Grenzbereichs β zwischen dem schmelzbaren Körper 1 und dem nicht schmelzenden Körper 2. Man erkennt, dass der nicht schmelzbare Körper 2 mit Vertiefungen 5 versehen ist. Über die gesamte Oberfläche betrachtet stellen diese Vertiefungen 5 eine Aufrauung oder Strukturierung dar. Der Durchmesser dieser Vertiefungen liegt beispielsweise im Mikrometer- oder im Millimeterbereich. Wird nun elektro- magnetische Strahlung durch den transparenten, schmelzbaren Körper 1 hindurch auf den nicht transparenten, nicht schmelzbaren Körper 2 gestrahlt, so absorbiert der nicht schmelzbare Körper 2 die elektromagnetische Strahlung 4 und erwärmt den Grenzbereich 6 zwischen den beiden Körpern. Hierdurch wird der schmelzbare Körper 1 aufgeschmolzen und sein Material fließt in die Vertiefungen 5 im nicht schmelzbaren Körper 2. Wird die Einstrahlung der elektromagnetischen Strahlung beendet, kühlt die Grenzfläche ab, das Material des schmelzbaren Körpers 1 härtet aus und verhakt diesen Körper in den Vertiefungen 5 im nicht schmelzbaren Körper 2.
Figur 2 zeigt den Querschnitt durch ein Schichtsystem, welches mittels des erfindungsgemäßen Verfahrens hergestellt wurde. Ein solches Schichtsystem kann beispielsweise ein Lab-on-a-Chip-System zur Analyse von Zellwachstum unter definierten Bedingungen oder ein mikrobiologischen Reaktor sein. Ein solcher Bioreaktor weist mehrere Schichten 2a, 2b, 2c einer Low Temperature Cofired Ceramics (LTCC) auf. Diese sind über Grenzbereiche 6 mit transparenten Fenstern aus Polystyrol 1' verbunden. Durch Mikrokanäle 12 können verschiedene Medien durch den Bioreaktor geleitet werden. Die oberste Schicht des Schichtsystems aus LTCC 2a wurde mit dem Polystyrolfenster 1' im erfindungsgemäßen Verfahren verbunden. Hierfür wurden zunächst die LTCC-Schichten 2a, 2b, 2c fertig zusammengesetzt und gesintert. Der Oberflächenbereich wurde dann mit einem gepulsten Nd:YAG-Laser gezielt struk- turiert. Es wurde anschließend das Polystyrolfenster 1' an der Verbindungsstelle im Grenzbereich β gegen die oberste LTCC-Schicht 2a gepresst und dann das Schmelzen mit einem kontinuierlichen Laserstrahl 4durchgeführt . Zum Herstellen der Verbindung wurde zunächst die Oberfläche der Reaktorkämmer aus LTCC strukturiert. Hierzu wurden im Mittel siebzehn Krater pro mm2 zufällig verteilt an der Oberfläche hergestellt. Die Herstellung der Krater wurde mit einem gepulsten Laser mit einer Pulsfrequenz von 10 kHz und Pulsdauern von ca. 100 ns bei einer mittleren Laserleistung (gepulst) von 20 Watt hergestellt. Pro Krater wurden ca. 10 Pulse eingestrahlt. Neben den genannten Kraterstrukturen wurden auch Strukturen aus parallelen feinen Linien hergestellt sowie Kombinati- onen aus Kratern und Linien. Im Anschluss an die O- berflächenstrukturierung wurde das Polystyrolfenster 1' mit dem Körper 2, als Zellreaktor aus LTCC-Keramik durch Einstrahlung von elektromagnetischer Strahlung 4 verbunden. Hierzu wurde ein Laser mit der Wellenlänge 1064 nm und einer Laserleistung (cw) von 45 Watt mit einer Geschwindigkeit von 15 mm/s über die
Verbindungsstelle gefahren. Das aus thermoplastischem Polymer gebildete Fenster 1' wurde mit einem Druck in der Fügezone von 1,4 bar (60 N auf 4,2 cm2) gegen die Reaktorkammer aus LTCC gepresst.
Ein Fenster 1' kann aber auch gleichzeitig oder allein ein Funktionselement sein. Mit einem Funktionselement und/oder Fenster 1' kann auch ein Mikrofluid- system mit mikrofluidischen Elementen, z.B. Kanälen, die wiederum ein- und Auslassöffnungen aufweisen können, zwischen Funktionselement/Fenster 1' und Körper 2 ausgebildet werden.
Die Teilelemente aus LTCC 2a, 2b und 2c wurden durch Sintern miteinander zur Reaktorkammer verbunden.
Figur 3 zeigt die verschiedenen Lagen 2a, 2b, 2c, 2d, 2e eines LTCC-Multilagensystems mit fünf Lagen. Jede Lage enthält 4 identische Untereinheiten des Lab-on- a-Chip-Systems bzw. Bioreaktors. Alle Lagen enthalten große kreisförmige Öffnungen 7a, 7b, 7c, 7d, welche die Zellreaktoren bilden, wenn die LTCC-Lagen 2a, 2b, 2c, 2d, 2e übereinander geschichtet werden. Am Boden der LTCC-Schicht 2d sind mäanderförmige Kanäle 8a, 8b, 8c, 8d eingebracht, die mit einer temperierten
Flüssigkeit durchflössen werden können, um eine konstante Temperatur innerhalb des Zellreaktors herstellen zu können. Die darüber liegende Lage 2c weist LTCC-basierte Sensoren 9a, 9b, 9c, 9d auf, mit denen z.B. Impedanz und Temperatur gemessen werden können. Durchlasslöcher 10 stellen eine elektrische Verbin- düng der Sensoren zu den darüber liegenden Lagen her. Eine Impedanzmessung wird z.B. verwendet um Veränderungen im Zellwachstum, z.B. die Adsorption von Zellen auf einer Oberfläche, zu untersuchen. Es wird da- durch möglich, die Reaktion einer Zellkultur auf verschiedene Testmedien oder Wachstumsbedingungen zu a- nalysieren. Verschiedene Medien können durch die Mik- rokanäle IIa, IIb, 11c, Hd in Lage 2b eingeleitet werden. Jeweils zwei Kanäle mit einem größeren Quer- schnitt werden verwendet, um den Zellen kontinuierlich Nährlösung zuzuführen, während die engeren, mä- anderförmigen Kanäle zur Zuführung von Testmedien verwendet werden. Die mäanderförmige Struktur eröffnet die Möglichkeit, zwei verschiedene Testflüssig- keiten miteinander zu mischen oder eine Verdünnung durchzuführen. Über die Durchführungslöcher 13 der obersten Schicht 2a kann das Lab-on-a-Chip-System mit den notwendigen Versorgungsvorrichtungen und elektronischen Messeinrichtungen verbunden werden. Die ein- zelnen Lagen 2a bis 2e der ungesinterten Keramik werden mit Hilfe eines gepulsten Lasersystems geschnitten und strukturiert. Die Lagen werden dann aufeinander gestapelt und gesintert. Mit Hilfe des oben beschriebenen erfindungsgemäßen Fügeverfahrens kann der Bioreaktor mit einem Fenster 1' aus Polystyrol hermetisch verschlossen werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Bioreaktors oder Lab-on-a-Chip-Systems, bei dem ein erster Körper (1, 1' ) aus einem Polymer, der zumindest teilweise transparent für elektromagnetische Strahlung (4) mindestens einer Wellenlänge λ ist, und ein zweiter Körper (2) aus einer Keramik, die elektromagnetische Strahlung (4) der mindestens einen Wellenlänge λ absorbiert, und wobei der erste Körper (1, 1' ) zumindest bereichsweise schmelzbar ist, dadurch gekennzeichnet, dass in einem ersten Schritt der erste Körper (1, 1') und der zweite Körper (2) sich unter Ausbildung von Berührungsflächen so berührend angeordnet werden, dass der Körper (1, 1') in zumindest einem Bereich seiner Berührungsfläche zum anderen Körper (2) schmelzbar ist, und in einem zweiten Schritt der zumindest eine schmelzbare Bereich der Berührungsfläche dadurch zum Schmelzen gebracht wird, dass elektromagnetische Strahlung (4) der Wellenlänge λ durch den ersten Körper (1, 1' ) hindurch auf den schmelzbaren Bereich der Berührungsfläche gestrahlt wird.
2. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der erste Körper (1, 1') und der zweite Körper (2) während und/oder nach dem zweiten Schritt gegeneinander gepresst werden.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Körper (1, 1') und der zweite Körper (2) während und/oder nach dem zweiten Schritt mit einem Druck von 1 bar oder mit einem Druck größer als
1 bar gegeneinander gepresst werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Körper (1, 1') und der zweite Körper (2) durch eine mechanische Vorrichtung aneinandergepresst werden.
5. Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass die mechanische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus pneumatischen Pressen und/oder hydraulischen
Pressen.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für den zweiten Körper (2) eine LTCC-Keramik eingesetzt wird.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der zweite Körper (2) aus mehreren Schichten (2a bis 2e) gebildet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Körper (1, 1') ein Polymer und/oder ein Thermoplast aufweist oder daraus besteht.
9. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass vor dem ersten Schritt der erste Körper (1, 1') und/oder der zweite Körper (2) zumindest bereichsweise an seiner Berührungsfläche zum jeweils anderen Körper aufgeraut und/oder strukturiert wird.
10. Verfahren nach einem der vorhergehenden Ansprü- che, dadurch gekennzeichnet, dass vor dem ersten Schritt der zweite Körper (2) zumindest bereichsweise an seiner Berührungsfläche zum ersten Körper (1, 1') aufgeraut und/oder struktu- riert wird.
11. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Körper (1, 1') und/oder der zweite Körper (2) mit Strukturen im Mikrometer-Bereich aufgeraut bzw. strukturiert wird.
12. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Strukturen Löcher und/oder Rillen sind.
13. Verfahren nach einem der vier vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aufrauung bzw. Strukturierung durch Mikrostrukturierung mit einem Laser erfolgt.
14. Verfahren nach einem der fünf vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aufrauung bzw. Strukturierung durch Reiben der Berührungsfläche mit Sandpapier, mit einer Fräse und/oder durch Strahlen erfolgt.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektromagnetische Strahlung (4) der mindestens einen Wellenlänge λ mit einem Laser erzeugt wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektro- magnetische Strahlung der mindestens einen Wellenlänge λ mit einer Glühlampe erzeugt wird.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellenlänge λ im sichtbaren Bereich und/oder im nahen Infrarot-Bereich und/oder im fernen Infrarot-
Bereich und/oder zwischen 800 nm und 1090 nm liegt.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teilbereich der Berührungsfläche zumindest eines
Körpers (1, lf oder 2) vor der berührenden Anordnung chemisch und/oder energetisch aktiviert wird.
19. Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass die energetische Aktivierung durch Beaufschlagung mit ultravioletter Strahlung erfolgt.
20. Bioreaktor oder Lab-on-a-Chip-System der/das mit zumindest einem Keramik enthaltenden oder daraus bestehenden Verarbeitungsbereich, der auf zumindest einer Seite mit einem transparenten Fenster (I' ) und/oder Funktionselement, das ein Polymer oder Thermoplast aufweist, verschlossen ist, dadurch gekennzeichnet, dass das transparente Fenster (I' ) und/oder Funktionselement mit dem Verarbeitungsbereich durch ein Verfahren nach einem der Ansprüche 1 bis 19 verbunden ist.
21. Bioreaktor oder Lab-on-a-Chip-System nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Verarbeitungsbereich zumindest einen scheibenförmigen Unterteiler aufweist, der pa- rallel neben dem zumindest einen transparenten
Fenster (1'), dieses abdichtend berührend, angeordnet ist und der den Verarbeitungsbereich in zumindest ein Kompartiment unterteilt.
22. Bioreaktor oder Lab-on-a-Chip-System nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Verarbeitungsbereich zumindest zwei scheibenförmige Unterteiler aufweist, die einander abdichtend berührend parallel nebeneinander und parallel neben dem mindestens einen transparenten Fenster (1') angeordnet sind und deren zumindest eine Kompartimente zumindest teilweise miteinander in Verbindung stehen.
PCT/DE2007/001578 2006-08-31 2007-08-29 Verfahren zur herstellung eines bioreaktors oder lab-on-a-chip-systems sowie damit hergestellte bioreaktoren oder lab-on-a-chip- systeme WO2008025351A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07801315A EP2061589A2 (de) 2006-08-31 2007-08-29 Verfahren zur herstellung eines bioreaktors oder lab-on-a-chip-systems sowie damit hergestellte bioreaktoren oder lab-on-a-chip- systeme
US12/310,319 US20090297403A1 (en) 2006-08-31 2007-08-29 Method for producing a bioreactor or lab-on-a-chip system and bioreactors or lab-on-a-chip systems produced therewith
DE200711002709 DE112007002709A5 (de) 2006-08-31 2007-08-29 Verfahren zur Herstellung eines Bioreaktors oder Lab-on-a-Chip-Systems sowie damit hergestellte Bioreaktoren oder Lab-on-a-Chip-Systeme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006040773 2006-08-31
DE102006040773.3 2006-08-31

Publications (2)

Publication Number Publication Date
WO2008025351A2 true WO2008025351A2 (de) 2008-03-06
WO2008025351A3 WO2008025351A3 (de) 2008-05-29

Family

ID=39048954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001578 WO2008025351A2 (de) 2006-08-31 2007-08-29 Verfahren zur herstellung eines bioreaktors oder lab-on-a-chip-systems sowie damit hergestellte bioreaktoren oder lab-on-a-chip- systeme

Country Status (4)

Country Link
US (1) US20090297403A1 (de)
EP (1) EP2061589A2 (de)
DE (1) DE112007002709A5 (de)
WO (1) WO2008025351A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084275A1 (en) * 2010-12-20 2012-06-28 Agilent Technologies, Inc. Sealed fluidic component comprising a composite material of different paek materials
WO2013163433A1 (en) 2012-04-26 2013-10-31 Alere San Diego, Inc. Laser joining device
EP2735432A1 (de) * 2012-11-27 2014-05-28 Robert Bosch GmbH Verfahren zum Verbinden zweier Bauteile und Bauteilverbund
WO2015003997A1 (de) * 2013-07-10 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zirkulationssystem sowie verfahren zur vitalversorgung von zellkulturen in einem mikrofluidischen netzwerk
WO2015090581A1 (de) * 2013-12-20 2015-06-25 Karlsruher Institut für Technologie Mikrofluidischer bioreaktor mit modularem aufbau zur synthese von zellmetaboliten, das verfahren zur nutzung sowie dessen verwendung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9787345B2 (en) * 2014-03-31 2017-10-10 Apple Inc. Laser welding of transparent and opaque materials
US10200516B2 (en) 2014-08-28 2019-02-05 Apple Inc. Interlocking ceramic and optical members
WO2016180836A1 (en) 2015-05-11 2016-11-17 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Well inserts with brittle membranes
DE102017223372A1 (de) * 2017-12-20 2019-06-27 Robert Bosch Gmbh Laserbondverfahren und mikromechanische Vorrichtung mit Laserbondverbindung
EP3840883A1 (de) 2018-08-24 2021-06-30 Zoetis Services LLC Mikrofluidische rotorvorrichtung
BR112021003169A2 (pt) 2018-08-24 2021-05-11 Zoetis Services Llc sistemas e métodos para a inspecionar um dispositivo de rotor microfluídico
CA3108277C (en) 2018-08-24 2023-08-08 Zoetis Services Llc Microfluidic rotor device
ES2963294T3 (es) * 2018-08-24 2024-03-26 Zoetis Services Llc Procedimientos para la fabricación de un dispositivo de rotor microfluídico

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080997A1 (en) 2000-04-19 2001-11-01 Corning Incorporated Multi-well plate and method of manufacture
WO2002028532A2 (en) 2000-10-06 2002-04-11 Protasis Corporation Microfluidic substrate assembly and method for making same
WO2003032377A1 (de) 2001-10-05 2003-04-17 Robert Bosch Gmbh Verfahren zur verbindung einer siliziumplatte mit einer weiteren platte
US20030106799A1 (en) 2001-12-06 2003-06-12 Nanostream, Inc Adhesiveless microfluidic device fabrication
WO2006000273A1 (de) 2004-06-24 2006-01-05 Forschungszentrum Karlsruhe Gmbh Verfahren zum verbinden von werkstücken aus kunststoff

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252294A (en) * 1988-06-01 1993-10-12 Messerschmitt-Bolkow-Blohm Gmbh Micromechanical structure
US5455385A (en) * 1993-06-28 1995-10-03 Harris Corporation Multilayer LTCC tub architecture for hermetically sealing semiconductor die, external electrical access for which is provided by way of sidewall recesses
US6572830B1 (en) * 1998-10-09 2003-06-03 Motorola, Inc. Integrated multilayered microfludic devices and methods for making the same
US6521324B1 (en) * 1999-11-30 2003-02-18 3M Innovative Properties Company Thermal transfer of microstructured layers
DE10338588A1 (de) * 2003-08-22 2005-03-24 Bayer Ag Verfahren zum Verbinden von Formteilen aus Kunststoff und Metall
JP4164678B2 (ja) * 2004-02-09 2008-10-15 株式会社デンソー 複合製品の製造方法並びに製造装置
JP4553296B2 (ja) * 2004-06-23 2010-09-29 株式会社小糸製作所 車輌用灯具の製造方法及び車輌用灯具の製造装置。

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080997A1 (en) 2000-04-19 2001-11-01 Corning Incorporated Multi-well plate and method of manufacture
WO2002028532A2 (en) 2000-10-06 2002-04-11 Protasis Corporation Microfluidic substrate assembly and method for making same
WO2003032377A1 (de) 2001-10-05 2003-04-17 Robert Bosch Gmbh Verfahren zur verbindung einer siliziumplatte mit einer weiteren platte
US20030106799A1 (en) 2001-12-06 2003-06-12 Nanostream, Inc Adhesiveless microfluidic device fabrication
WO2006000273A1 (de) 2004-06-24 2006-01-05 Forschungszentrum Karlsruhe Gmbh Verfahren zum verbinden von werkstücken aus kunststoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. SMETANA U.A: "Set-up of a biological monitoring module realized in LTCC technology", SPIE PHOTONICS WEST; SAN JOSE; 20.-25. JANUAR 2007, 20 January 2007 (2007-01-20)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084275A1 (en) * 2010-12-20 2012-06-28 Agilent Technologies, Inc. Sealed fluidic component comprising a composite material of different paek materials
CN103270411A (zh) * 2010-12-20 2013-08-28 安捷伦科技有限公司 包括不同paek材料的复合材料的密封流体部件
US10012621B2 (en) 2010-12-20 2018-07-03 Agilent Technologies, Inc. Sealed fluidic component comprising a composite material of different paek materials
WO2013163433A1 (en) 2012-04-26 2013-10-31 Alere San Diego, Inc. Laser joining device
EP2844419A4 (de) * 2012-04-26 2016-03-30 Alere San Diego Inc Laserfügungsvorrichtung
EP2735432A1 (de) * 2012-11-27 2014-05-28 Robert Bosch GmbH Verfahren zum Verbinden zweier Bauteile und Bauteilverbund
WO2015003997A1 (de) * 2013-07-10 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zirkulationssystem sowie verfahren zur vitalversorgung von zellkulturen in einem mikrofluidischen netzwerk
EP3019589B1 (de) 2013-07-10 2017-05-17 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Zirkulationssystem sowie verfahren zur vitalversorgung von zellkulturen in einem mikrofluidischen netzwerk
WO2015090581A1 (de) * 2013-12-20 2015-06-25 Karlsruher Institut für Technologie Mikrofluidischer bioreaktor mit modularem aufbau zur synthese von zellmetaboliten, das verfahren zur nutzung sowie dessen verwendung

Also Published As

Publication number Publication date
EP2061589A2 (de) 2009-05-27
US20090297403A1 (en) 2009-12-03
DE112007002709A5 (de) 2009-08-13
WO2008025351A3 (de) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2008025351A2 (de) Verfahren zur herstellung eines bioreaktors oder lab-on-a-chip-systems sowie damit hergestellte bioreaktoren oder lab-on-a-chip- systeme
EP1216141B1 (de) Verfahren zum fremdstofffreien verbinden von zwei werkstücken aus kunststoff
EP0997261B9 (de) Laserfügeverfahren und Vorrichtung zum Verbinden von verschiedenen Werkstücken aus Kunststoff oder Kunststoff mit anderen Materialien
DE69533878T2 (de) Verfahren zum perforieren dünner bahnenmaterialien
EP2313252B1 (de) Verfahren und vorrichtung zur anbringung von kantenbändern auf schmalflächen von werkstücken
EP1758729A1 (de) Verfahren zum verbinden von werkstücken aus kunststoff
EP2321115B1 (de) Verfahren zur herstellung eines verbundteils durch durchstrahllaserschweissen
DE3742770A1 (de) Mikro-/ultrafiltrationsmembranen mit definierter porengroesse durch bestrahlung mit gepulsten lasern und verfahren zur herstellung
DE102008062519A1 (de) Lochplatte und Verfahren zu deren Herstellung
EP2687354B1 (de) Thermoplastische Schaumstoffplatten mit einer Schweißnahtdicke von 30 bis 200 Mikrometer
EP3059074A1 (de) Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
EP2701555B1 (de) Kunststoffkante, möbelpaneel und verfahren zur herstellung eines möbelpaneels mit kunststoffkante
EP2548718B1 (de) Verwendung einer Vorrichtung und Verfahren zum schichtweisen Laser-Sintern von dreidimensionalen Objekten
EP2548719A1 (de) Vorrichtung und Verfahren zur schichtweisen Laser-Sintern von dreidimensionalen Objekten und dadurch erhaltenes Objekt
EP1492672B1 (de) Vorrichtung und verfahren zur herstellung von verbundwerkstoffen
WO2016008878A1 (de) Verfahren, vorrichtung und syntheseelement zum verbinden eines kantenmaterials mit einem werkstück
DE10058251B4 (de) Verfahren zum Verbinden eines Filtermediums mit einem Grundkörper
EP3746286B1 (de) Verfahren zur herstellung eines behälters und behälter
EP2022619A1 (de) Vorrichtung und Verfahren zum Verschweissen von Bahnen
EP2029289B1 (de) Verfahren zum erzeugen eines bauteils mit einer nanostrukturierten beschichtung
WO2022175361A1 (de) Mikrofluidisches system aus einer gefalteten folie und herstellungsverfahren
DE102016213624A1 (de) Medizinisches Packmittel, insbesondere Pharmaverpackung sowie Verfahren zum Verbinden von Kunststoffteilen von medizinischen Packmitteln
DE19542328A1 (de) Verfahren und Einrichtung zum Herstellen eines dreidimensionalen Schichtkörpers
AT523200B1 (de) Vorrichtung zur additiven fertigung
DE10122076B4 (de) Verfahren und Anordnung zur Herstellung eines geklebten Verbundes aus saugfähigen Materialien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801315

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2007801315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007801315

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1120070027096

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12310319

Country of ref document: US

REF Corresponds to

Ref document number: 112007002709

Country of ref document: DE

Date of ref document: 20090813

Kind code of ref document: P