WO2008025319A1 - Anschlusseinheit eines bussystems - Google Patents

Anschlusseinheit eines bussystems Download PDF

Info

Publication number
WO2008025319A1
WO2008025319A1 PCT/DE2007/001394 DE2007001394W WO2008025319A1 WO 2008025319 A1 WO2008025319 A1 WO 2008025319A1 DE 2007001394 W DE2007001394 W DE 2007001394W WO 2008025319 A1 WO2008025319 A1 WO 2008025319A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
connection unit
unit according
printed circuit
line
Prior art date
Application number
PCT/DE2007/001394
Other languages
English (en)
French (fr)
Inventor
Pavel Krapek
Stepan Prochovnik
Original Assignee
Merten Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merten Gmbh & Co. Kg filed Critical Merten Gmbh & Co. Kg
Priority to DE502007005225T priority Critical patent/DE502007005225D1/de
Priority to EP07785695A priority patent/EP2057658B1/de
Priority to AT07785695T priority patent/ATE483245T1/de
Publication of WO2008025319A1 publication Critical patent/WO2008025319A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/03Application domotique, e.g. for house automation, bus connected switches, sensors, loads or intelligent wiring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/14Protecting elements, switches, relays or circuit breakers

Definitions

  • the invention relates to a connection unit of a bus system, comprising a microprocessor for generating an actuator command signal, a controlled by the actuator command signal switching member for switching a load-maintaining supply line and a magnetically sensitive current sensor for detecting or measuring the current in the supply line.
  • bus systems which have distribution units arranged in the building, which contain either a sensor and / or an actuator.
  • the connection units can communicate with one another via data telegrams, wherein a sensor can control a specific actuator or a plurality of actuators.
  • the actuator may be, for example, a switching device for switching a consumer, for. As a light act.
  • a connection unit for a data bus with switching state detection is described in EP 0 777 907 B1 where the switching state of a load circuit is monitored by magnetic field sensors and reported via a data bus. For this purpose, a differential Hall effect probe is used.
  • a problem with the use of current sensors is that they are disturbed by external magnetic fields or magnetic fields generated in the circuit concerned. Also need Current sensors a not inconsiderable place. If there are more than one such sensor, they must be spaced so as not to interfere with each other.
  • a method for current measurement in a switching device with the aid of current sensors is described in DE 102 53 018 A1.
  • current sensors are mounted on different sides of a current path.
  • the signals of the two current sensors are subtracted from each other and the difference signal is provided as a measurement signal.
  • the invention has for its object to provide a connection unit of a bus system with feedback for the execution of a Wegbetationes that can be made small format and insensitive to interference.
  • connection unit is defined by claim 1.
  • the supply line which contains the switching element, a arranged on a circuit board line section with forward and return line to the switching device.
  • the outgoing line and the return line each contain a main conductor track, wherein at least one main conductor track contains a measuring section running transversely to the main conductor track and current sensors are directed perpendicular to the printed circuit board onto the measuring section.
  • a magnetically sensitive current sensor is typically a Hall sensor or a field plate. Any type of sensor can be used which generates a signal representing the current intensity from the magnetic field generated by a current.
  • the term "transverse" is to be understood as meaning that the measuring section extends at an angle other than 0 to the main track, and this angle should preferably be in the range of 90 °, but is not limited to this, in particular angles between 60 ° and 120 °
  • the magnetically sensitive current sensor is compatible with the surface normal directed its measuring surface on the measuring section. This surface normal extends transversely to the longitudinal direction of the measuring section and preferably at right angles to it, whereby angles between 60 ° and 120 ° are also practicable here.
  • the electromagnetic current detection is arranged in small format on a printed circuit board structure, wherein the main conductors can be relatively close to each other, without interfering with each other. If the main conductors were parallel to each other and straight, then the electromagnetic fields would interfere with too close mutual arrangement and because of the different current directions in the outgoing and return lines, the fields would cancel each other out or at least disturb. By extending transversely to the main conductors measuring section such a crosstalk is avoided, so that the conductor tracks can run relatively close to each other, whereby a space-saving, small-scale realization of the magnetically sensitive current sensors is possible.
  • the forward line and the return line each have a measuring section extending transversely to the relevant main track, and a current sensor is provided for each measuring section.
  • the current sensors can be arranged side by side below or else above the printed circuit board plane in which the printed conductors are located.
  • the measuring sections of adjacent main conductors are preferably arranged along a straight line, but with mutual distances.
  • a further embodiment of the invention provides that a summing device which adds the output signals of both current sensors with different signs is provided.
  • a summing device which adds the output signals of both current sensors with different signs is provided.
  • the basic arrangement and design of the tracks depends essentially on the amount of current and can be optimized in particular by the use of multi-layer boards with respect to the conductor track surface, the conductor track thickness and the conductor track distances.
  • interconnects allow the enlargement of the conductor track area and thickness, so that a sufficient heat dissipation and current load is ensured without changing a predetermined PCB area.
  • the heat dissipation can be further improved by arranging additional areas adjacent to the current-carrying areas of the strip conductors, preferably separated therefrom by slots. Since the interconnect surface is increased by this arrangement overall, but claimed on the respective layer little area, minimum distances between different circuits can be easily met.
  • the printed circuit board surface can thus be used advantageously, wherein different variants can be realized.
  • each layer can be equipped with a separate circuit, on the other hand, the distances between the tracks can be made sufficiently large, so that different circuits are arranged on the same location. In both cases, the interactions between the different circuits are minimized.
  • the printed circuit board which carries the main conductive paths preferably also carries the switching element, which may be a relay or a semiconductor, such as a switching transistor or a thyristor.
  • the relevant printed circuit board can be referred to as a power circuit board.
  • the Current sensors are located on a measuring board, which is preferably arranged perpendicular to the power circuit board and fixed thereto.
  • the circuit board structure may include a third circuit board, which may be referred to as a processing board, carrying the microprocessor and other components for signal processing.
  • the tracks of the circuit boards are connected in a suitable manner. It is also conceivable arrangement of all components on a specially designed board, the components and circuits are functionally separated and placed trouble-free.
  • Another advantage of the electromagnetic current detection according to the invention is that there is no interference emission to other lines and sensors, since the measuring sections do not run next to each other.
  • the measuring sections have a small trace length, which contributes to a reduction in heat generation.
  • the preferred placement of the components for switching device, sensors and signal processing on separate boards electrical or magnetic interactions are avoided and the reliability is increased.
  • wiring input and output with counter-current sensors environmental interference is eliminated.
  • the electromagnetic current measurement can be used with both AC and DC.
  • Show it: 1 shows the structure of a bus system with a plurality of connection units for controlling consumers
  • Fig. 2 is a perspective view of the mechanical structure of a
  • FIG. 2 shows the circuit board structure according to FIG. 2,
  • Fig. 5 is a plan view of the power circuit board
  • Fig. 6 is a schematic representation of the arrangement of the current sensors of the forward and return lines with a representation of the signal processing.
  • FIG. 1 shows a bus system 10 for building system technology.
  • the bus system 10 has a two-wire bus 11 installed in a building, to which a plurality of terminal units 12 are connected, which are installed distributed in the building.
  • Each of the terminal units 12 includes a microprocessor.
  • the terminal units 12 are provided with distinctive identifiers so that they can be addressed.
  • the connection units 12 can exchange data telegrams with one another.
  • the sending terminal unit includes, for example, a sensor or a commander for manual / automatic command input.
  • This connection unit is capable of sending a data telegram to a very specific actuator connection unit 12, which may include, inter alia, a switching command.
  • the present invention is concerned only with the configuration of an actuator terminal unit for executing instructions.
  • connection unit 12 serves to control an external consumer 13, which is here marked with the symbol of a lamp.
  • the consumer 13 is connected to a supply current source 14, for example, the supply network with 230 V AC voltage, wherein the supply line 15 is connected to the connection unit 12.
  • the connection unit has corresponding connection terminals 16. From the connection terminals 16, an outgoing line 17 and a return line 18 lead to the two poles of a switching element 19 provided in the connection unit 12, which is a relay contact in this case.
  • the associated relay 20 is located on a circuit board structure 21.
  • the relay 20 is here an electromagnetic relay which is energized in accordance with an actuator command signal of the microprocessor and the switching member 19 is actuated accordingly.
  • each circuit board structure 21 includes two relays 20 so that two loads may be independently controlled by a terminal unit 12.
  • Figure 2 shows the mechanical structure of the printed circuit board structure 21. This has an upper first circuit board 22 and a lower second circuit board 23 and a third printed circuit board 24 arranged therebetween.
  • the printed circuit boards 22, 23 extend parallel to one another and between them the third printed circuit board 24 extends at right angles, so that all three printed circuit boards form an H-shaped structure.
  • the printed circuit boards 22 and 23 may be supported at the left in Figure 2 end by a parallel to the circuit board 24 support 27.
  • the forward and return lines 17, 18 form on the circuit board 22 a wide line section 25.
  • the first circuit board 22 also carries two terminals 16 for connecting the external load 13 to the line section 25. In addition, it carries two other terminals 26 for connection to the Bus lines 11.
  • On the circuit board 22 are also the two relays 20 whose relay contacts are not shown in FIG.
  • the forward line 17 and the return line 18 each consist of a main track 30, which extends in the longitudinal direction of the circuit board 22, and a measuring section 31 extending transversely thereto. As shown in FIG. 2, the measuring sections 31 are arranged along a line in mutual extension, without themselves to touch.
  • the main track 30 has an arcuate portion 32 which is connected to the outer end of the measuring section 31.
  • the main track 30 is thus substantially rectilinear, with only the sections arranged in its course, namely the arcuate section 32 and the measuring section 31, protrude laterally from the straight line.
  • the main track 30 is substantially wider than the measuring section 31.
  • An alternative to the conductor track design is to arrange a plurality of conductor tracks instead of a main track 30, which run in different planes of the circuit board and are repeatedly plated through. As a result, the total area of the strip conductors can be increased both for the current-carrying and for the heat-dissipating area, wherein each individual strip conductor is relatively narrow, so that the strip conductors can run next to one another at greater distances without interference.
  • the arc-shaped sections 32 and the measuring sections 31 of two adjacent main conductor tracks 30 lie in different planes, as can be seen from FIG.
  • the main conductive lines 30 are located on the upper side of the printed circuit board 22.
  • the measuring section 31 and the arcuate section 32 of the forward line 17 are likewise arranged on the upper side of the printed circuit board 22.
  • the measuring section 31a and the arcuate section 32a of the return line 18 are located inside the printed circuit board 22 (FIG. 4), which consists of several layers.
  • the circuit board 22 is a multilayer board having an upper layer 22a, a middle layer 22b, and a lower layer 22c. Between the layers are printed conductors, as Figure 4 shows.
  • the interconnects of the various levels are partially interconnected by plated-through.
  • the second printed circuit board 24 abuts against the upper printed circuit board 22 in the vicinity of the measuring sections 31, 31a, as FIG. 3 shows.
  • On the second circuit board 24 are current sensors 35, 36, which are arranged below the respective measuring sections 31 and 31a. A magnetic field generated by the measuring section is detected by the respective current sensor 35, 36. The signal of the current sensor is processed on the circuit board 24.
  • the lower circuit board 23 carries among other components a microprocessor 40 which processes the signal from the terminals 26 and generates therefrom the actuator command signal for the relays 20.
  • the printed conductors of the printed circuit boards 23 and 24 are not shown here for reasons of clarity.
  • Figure 5 shows in greater detail the structure of the first circuit board 22, which is shown here unpopulated, the position of the relay 20 is indicated by dashed lines. It can be seen that the main track 30 of the forward line 17 is arranged on the upper side of the printed circuit board, while the return line 18 contains the in-plane sections, namely the measuring section 31a and the arcuate section 32a.
  • FIG. 6 shows the two current sensors 35, 36 through which the Z-axis passes in the longitudinal direction.
  • the Y-axis extends in the longitudinal direction of the measuring sections 31 and 31a.
  • the X-axis runs in the longitudinal direction of the main track.
  • a current flow through the measuring section generates in the current sensor 35 an annular magnetic field Bi, in the XZ plane around the measuring section 31.
  • a magnetic field Bi is also generated, which acts on the current sensor 36, but is opposite to the magnetic field Bi of the measuring section 31.
  • the outputs of the two current sensors 35, 36 are fed to an operational amplifier 45, whose two inputs have different signs.
  • the operational amplifier 45 therefore causes the signals of the magnetic fields Bi, which are differently directed, to be subtracted from each other, which results in the amounts of the two signals being added together.
  • the operational amplifier therefore forms a summing device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Structure Of Printed Boards (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Small-Scale Networks (AREA)
  • Air Bags (AREA)
  • Exchange Systems With Centralized Control (AREA)
  • Electronic Switches (AREA)

Abstract

Die Erfindung betrifft eine Anschlusseinheit eines Bussystems (10), mit einem Mikroprozessor (40) zur Erzeugung eines Aktor-Befehlssignals, einem durch das Aktor-Befehlssignal gesteuerten Schaltorgan (19) zum Schalten einer eine Last (13) enthaltenden Versorgungsleitung (15) und einem magnetisch sensitiven Stromsensor (35, 36) zur Detektierung bzw. Messung des Stromes in der Versorgungsleitung (15). Um eine Anschlusseinheit eines Bussystems (10) mit Rückmeldung zur Ausführung eines Schaltbefehles zu schaffen, die kleinformatig und störunempfindlich ausgeführt werden kann, weist die Versorgungsleitung (15) einen auf einer Leiterplatte (22) angeordneten Leitungsabschnitt mit Hin- und Rückleitung (17, 18) zu dem Schaltorgan (19) auf, und weist die Hinleitung (17) und die Rückleitung (18) jeweils eine Hauptleiterbahn (30) auf, wobei mindestens eine Hauptleiterbahn (30) einen quer zu der Hauptleiterbahn verlaufenden Messabschnitt (31 ) enthält und der Stromsensor (35, 36) auf den Messabschnitt (31, 31a) der Leiterplatte (22) gerichtet ist.

Description

Titel: Anschlusseinheit eines Bussystems
Beschreibung
Die Erfindung betrifft eine Anschlusseinheit eines Bussystems, mit einem Mikroprozessor zur Erzeugung eines Aktor-Befehlssignals, einem durch das Aktor-Befehlssignal gesteuerten Schaltorgan zum Schalten einer eine Last einhaltende Versorgungsleitung und einem magnetisch sensitiven Stromsensor zur Detektierung bzw. Messung des Stromes in der Versorgungsleitung.
In der Gebäudesystemtechnik werden Bussysteme eingesetzt, die verteilt im Gebäude angeordnete Anschlusseinheiten aufweisen, welche entweder einen Sensor und/oder einen Aktor enthalten. Die Anschlusseinheiten können miteinander über Datentelegramme kommunizieren, wobei ein Sensor einen bestimmten Aktor oder mehrere Aktoren steuern kann. Bei dem Aktor kann es sich beispielsweise um ein Schaltorgan zum Schalten eines Verbrauchers, z. B. einer Leuchte, handeln.
Normalerweise erfolgt bei einem Bussystem keine Rückmeldung über die erfolgte Ausführung des Befehls. Wenn beispielsweise die zu schaltende Leuchte defekt ist und auf ein entsprechendes Aktor-Befehlssignal hin diese Leuchte zwar eingeschaltet wird, aber nicht leuchtet, wird dies von dem System nicht entdeckt und es erfolgt auch keine Fehlermeldung.
Eine Anschlusseinheit für einen Datenbus mit Schaltzustandserkennung ist beschrieben in EP 0 777 907 Bl Dort wird der Schaltzustand eines Lastkreises durch Magnetfeldsensoren überwacht und über einen Datenbus gemeldet. Zu diesem Zweck wird eine Differential-Hall-Effekt-Sonde eingesetzt. Ein Problem bei der Verwendung von Stromsensoren besteht darin, dass diese durch externe Magnetfelder oder auch Magnetfelder, die in der betreffenden Schaltung erzeugt werden, gestört werden. Außerdem benötigen Stromsensoren einen nicht unerheblichen Platz. Wenn mehrere solcher Sensoren vorhanden sind, müssen diese entsprechende Abstände haben, um sich nicht gegenseitig zu beeinflussen.
Ein Verfahren zur Strommessung in einem Schaltgerät mit Hilfe von Stromsensoren ist beschrieben in DE 102 53 018 A1. Hierbei sind Stromsensoren auf unterschiedlichen Seiten eines Strompfades angebracht. Die Signale der beiden Stromsensoren werden voneinander subtrahiert and das Differenzsignal wird als Messsignal zur Verfügung gestellt.
Der Erfindung liegt die Aufgabe zugrunde, eine Anschlusseinheit eines Bussystems mit Rückmeldung zur Ausführung eines Schaltbefehles zu schaffen, die kleinformatig und störunempfindlich ausgeführt werden kann.
Die erfindungsgemäße Anschlusseinheit ist durch den Anspruch 1 definiert. Nach der Erfindung weist die Versorgungsleitung, die das Schaltelement enthält, eine auf einer Leiterplatte angeordneten Leitungsabschnitt mit Hin- und Rückleitung zu dem Schaltorgan auf. Die Hinleitung und die Rückleitung enthalten jeweils eine Hauptleiterbahn, wobei mindestens eine Hauptleiterbahn einen quer zu der Hauptleiterbahn verlaufenden Messabschnitt enthält und Stromsensoren senkrecht zu der Leiterplatte auf den Messabschnitt gerichtet sind.
Ein magnetisch sensitiver Stromsensor ist typischerweise ein Hall-Sensor oder eine Feldplatte. Verwendet werden kann jede Art von Sensor, der anhand des durch einen Strom erzeugten Magnetfeldes ein Signal erzeugt, das die Stromstärke repräsentiert. Der Begriff „quer" ist so zu verstehen, dass der Messabschnitt unter einem von 0 verschiedenen Winkel zu der Hauptleiterbahn verläuft. Dieser Winkel sollte vorzugsweise im Bereich von 90° liegen, ist aber hierauf nicht beschränkt. Insbesondere sind Winkel zwischen 60° und 120° praktikabel. Der magnetisch sensitive Stromsensor ist mit der Flächennormalen seiner Messfläche auf den Messabschnitt gerichtet. Diese Flächennormale verläuft quer zu der Längsrichtung des Messabschnittes und vorzugsweise rechtwinklig dazu, wobei auch hier Winkel zwischen 60° und 120° praktikabel sind.
Bei der erfindungsgemäßen Anschlusseinheit ist die elektromagnetische Stromdetektierung kleinformatig auf einer Leiterplattenstruktur angeordnet, wobei die Hauptleiterbahnen relativ nahe beieinander liegen können, ohne sich störend zu beeinflussen. Würden die Hauptleiterbahnen parallel zueinander und geradlinig verlaufen, so würden sich bei zu naher gegenseitiger Anordnung die elektromagnetischen Felder überlagern und wegen der unterschiedlichen Stromrichtungen in Hin- und Rückleitung würden sich die Felder gegenseitig auslöschen oder zumindest stören. Durch den quer zu den Hauptleiterbahnen verlaufenden Messabschnitt wird ein derartiges Übersprechen vermieden, so dass die Leiterbahnen relativ nahe beieinander verlaufen können, wodurch eine platzsparende, kleinformatige Realisierung der magnetisch sensitiven Stromsensoren möglich ist.
Vorzugsweise haben die Hinleitung und die Rückleitung jeweils einen quer zu der betreffenden Hauptleiterbahn verlaufenden Messabschnitt und für jeden Messabschnitt ist ein Stromsensor vorgesehen. Die Stromsensoren können nebeneinander unter oder aber über der Leiterplattenebene angeordnet sein, in der sich die Leiterbahnen befinden. Die Messabschnitte benachbarter Hauptleiterbahnen sind vorzugsweise längs einer geraden Linie angeordnet, jedoch mit gegenseitigen Abständen.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass eine die Ausgangssignale beider Stromsensoren mit unterschiedlichen Vorzeichen addierende Summiervorrichtung vorgesehen ist. Dadurch werden die Signale der beiden Messabschnitte, von denen einer zur Hinleitung und der andere zur Rückleitung gehört, addiert, während die Einflüsse externer Felder, die auf beide Stromsensoren mit gleicher Feldrichtung einwirken, sich gegenseitig auslöschen. Das Stromsensor-System ist damit unempfindlich gegen externe Störfelder.
Die grundsätzliche Anordnung und Gestaltung der Leiterbahnen hängt wesentlich von der Höhe des Stromes ab und lässt sich insbesondere durch die Verwendung mehrlagiger Platinen hinsichtlich der Leiterbahnfläche, der Leiterbahndicke und der Leiterbahnabstände optimieren. In unterschiedlichen Lagen einer Leiterplatte angeordnete und druchkontaktierte Leiterbahnen ermöglichen die Vergrößerung der Leiterbahnfläche und -dicke, so dass eine hinreichende Wärmeableitung und Strombelastung gewährleistet wird, ohne eine vorgegebene Leiterplattenfläche zu verändern. Die Wärmeableitung kann weiter verbessert werden, indem zusätzliche Flächen neben den stromführenden Bereichen der Leiterbahnen, vorzugsweise davon durch Schlitze getrennt, angeordnet werden. Da die Leiterbahnfläche durch diese Anordnung insgesamt vergrößert wird, auf der jeweiligen Lage aber wenig Fläche beansprucht, lassen sich Mindestabstände zwischen unterschiedlichen Stromkreisen leicht einhalten.
Mittels mehrlagiger Leiterbahnanordnungen lässt sich die Leiterplattenfläche somit vorteilhaft nutzen, wobei verschiedene Varianten realisierbar sind. Einerseits kann jede Lage mit jeweils einem separaten Stromkreis bestückt werden, andererseits können die Abstände zwischen den Leiterbahnen ausreichend groß gestaltet werden, so dass verschiedene Stromkreise auf der gleichen Lage angeordnet sind. In beiden Fällen sind die Wechselwirkungen zwischen den verschiedenen Stromkreisen minimiert.
Diejenige Leiterplatte, die die Hauptleiterbahnen trägt, trägt vorzugsweise auch das Schaltorgan, bei dem es sich um ein Relais oder einen Halbleiter, beispielsweise einen Schalttransistor oder ein Thyristor handeln kann. Die betreffende Leiterplatte kann als Starkstromplatine bezeichnet werden. Die Stromsensoren befinden sich auf einer Messplatine, die vorzugsweise senkrecht zu der Starkstromplatine angeordnet und an dieser fixiert ist. Die Leiterplattenstruktur kann eine dritte Leiterplatte aufweisen, die als Verarbeitungsplatine bezeichnet werden kann und den Mikroprozessor und andere Komponenten für die Signalverarbeitung trägt. Die Leiterbahnen der Leiterplatten sind in geeigneter Weise verbunden. Denkbar ist auch eine Anordnung aller Bauelemente auf einer speziell ausgebildeten Platine, wobei die Bauelemente und Stromkreise funktionell getrennt und störungssicher platziert sind.
Ein weiterer Vorteil der erfindungsgemäßen elektromagnetischen Stromdetektion besteht darin, dass keine Störaussendung auf andere Leitungen und Sensoren erfolgt, da die Messabschnitte nicht nebeneinander verlaufen. Die Messabschnitte kommen mit einer geringen Leiterbahnlänge aus, was zu einer Reduzierung der Wärmeentwicklung beiträgt. Durch die bevorzugte Unterbringung der Komponenten für Schaltorgan, Sensorik und Signalverarbeitung auf separaten Platinen werden elektrische oder magnetische Wechselwirkungen vermieden und die Funktionssicherheit wird erhöht. Schließlich werden durch Beschaltung von Eingang und Ausgang mit gegenläufig angeordneten Stromsensoren umweltbedingte Störeinflüsse eliminiert. Die elektromagnetische Strommessung kann sowohl bei Wechselstrom als auch bei Gleichstrom verwendet werden.
Bei geringstmöglichem Platzbedarf wird eine exakte Strommessung möglich.
Im Folgenden wird unter Bezugnahme auf die Zeichnungen ein bevorzugtes Ausführungsbeispiel der Erfindung näher erläutert.
Es zeigen: Fig. 1 die Struktur eines Bussystems mit mehreren Anschlusseinheiten zur Steuerung von Verbrauchern,
Fig. 2 eine perspektivische Darstellung des mechanischen Aufbaus einer
Anschlussvorrichtung,
Fig. 3 die Leiterplatten-Struktur nach Figur 2,
Fig. 4 einen Schnitt entlang der Linie IV-IV von Figur 3,
Fig. 5 eine Draufsicht auf die Starkstromplatine und
Fig. 6 eine schematische Darstellung der Anordnung der Stromsensoren von Hin- und Rückleitung mit einer Darstellung der Signalverarbeitung.
Figur 1 zeigt ein Bussystem 10 für die Gebäudesystemtechnik. Das Bussystem 10 weist einen in einem Gebäude installierten zweiadrigen Bus 11 auf, an den mehrere Anschlusseinheiten 12 angeschlossen sind, die verteilt in dem Gebäude installiert werden. Jede der Anschlusseinheiten 12 enthält einen Mikroprozessor. Die Anschlusseinheiten 12 sind mit unverwechselbaren Kennungen ausgestattet, so dass sie adressiert werden können. Die Anschlusseinheiten 12 können untereinander Datentelegramme austauschen. Die sendende Anschlusseinheit enthält beispielsweise einen Sensor oder einen Befehlsgeber für die manuelle/automatische Befehlseingabe. Diese Anschlusseinheit ist imstande, an eine ganz bestimmte Aktor-Anschlusseinheit 12 ein Datentelegramm zu senden, das u. a. einen Schaltbefehl enthalten kann. Die vorliegende Erfindung befasst sich nur mit der Ausgestaltung einer Aktor- Anschlusseinheit zur Ausführung von Befehlen. Die Anschlusseinheit 12 dient zum Steuern eines externen Verbrauchers 13, der hier mit dem Symbol einer Lampe gekennzeichnet ist. Der Verbraucher 13 wird an eine Versorgungsstromquelle 14, beispielsweise das Versorgungsnetz mit 230 V Wechselspannung, angeschlossen, wobei die Versorgungsleitung 15 mit der Anschlusseinheit 12 verbunden ist. Zu diesem Zweck weist die Anschlusseinheit entsprechende Anschlussklemmen 16 auf. Von den Anschlussklemmen 16 führen eine Hinleitung 17 und eine Rückleitung 18 zu den beiden Polen eines in der Anschlusseinheit 12 vorgesehenen Schaltorgans 19, bei dem es sich hier um einen Relaiskontakt handelt. Das zugehörige Relais 20 befindet sich auf einer Leiterplattenstruktur 21. Das Relais 20 ist hier ein elektromagnetisches Relais, das entsprechend einem Aktor-Befehlssignal des Mikroprozessors erregt wird und das Schaltorgan 19 entsprechend betätigt.
Bei dem dargestellten Ausführungsbeispiel enthält jede Leiterplattenstruktur 21 zwei Relais 20, so dass zwei Verbraucher unabhängig voneinander von einer Anschlusseinheit 12 gesteuert werden können.
Figur 2 zeigt den mechanischen Aufbau der Leiterplattenstruktur 21. Diese weist eine obere erste Leiterplatte 22 und eine untere zweite Leiterplatte 23 sowie eine dazwischen angeordnete dritte Leiterplatte 24 auf. Die Leiterplatten 22, 23 verlaufen parallel zueinander und zwischen ihnen erstreckt sich rechtwinklig die dritte Leiterplatte 24, so dass alle drei Leiterplatten eine H- förmige Struktur bilden. Die Leiterplatten 22 und 23 können an dem in Figur 2 linken Ende durch eine zur Leiterplatte 24 parallele Stütze 27 abgestützt sein.
Die Hin- und Rückleitungen 17, 18 bilden auf der Leiterplatte 22 einen breiten Leitungsabschnitt 25. Die erste Leiterplatte 22 trägt ferner zwei Anschlussklemmen 16 zum Anschluss des externen Verbrauchers 13 an den Leitungsabschnitt 25. Außerdem trägt sie zwei weitere Anschlussklemmen 26 für den Anschluss an die Busleitungen 11. Auf der Leiterplatte 22 befinden sich auch die beiden Relais 20, deren Relaiskontakte in Figur 2 nicht dargestellt sind.
Die Hinleitung 17 und die Rückleitung 18 bestehen jeweils aus einer Hauptleiterbahn 30, die in Längsrichtung der Leiterplatte 22 verläuft, und einem hierzu quer verlaufenden Messabschnitt 31. Wie aus Figur 2 hervorgeht, sind die Messabschnitte 31 entlang einer Linie in gegenseitiger Verlängerung angeordnet, ohne sich zu berühren. Die Hauptleiterbahn 30 weist einen bogenförmigen Abschnitt 32 auf, der mit dem äußeren Ende des Messabschnittes 31 verbunden ist. Die Hauptleiterbahn 30 ist somit im wesentlichen geradlinig, wobei lediglich die in ihrem Verlaufe angeordneten Abschnitte, nämlich der bogenförmige Abschnitt 32 und der Messabschnitt 31 , aus der geraden Linie seitlich herausragen.
Die Hauptleiterbahn 30 ist wesentlich breiter als der Messabschnitt 31. Je größer die Leiterbahnfläche ist, desto geringer ist die Hitzeentwicklung. Eine Alternative der Leiterbahngestaltung liegt darin, an Stelle einer Hauptleiterbahn 30 mehrere Leiterbahnen anzuordnen, die in unterschiedlichen Ebenen der Leiterplatte verlaufen und mehrfach durchkontaktiert sind. Dadurch lässt sich die Gesamtfläche der Leiterbahnen sowohl für den Strom führenden als auch für den Wärme ableitenden Bereich vergrößern, wobei jede einzelne Leiterbahn relativ schmal ist, so dass die Leiterbahnen mit größerem Abstand störungsfrei nebeneinander verlaufen können.
Die bogenförmigen Abschnitte 32 und die Messabschnitte 31 zweier benachbarter Hauptleiterbahnen 30 liegen in unterschiedlichen Ebenen, wie sich aus Figur 4 ergibt. Die Hauptleiterbahnen 30 befinden sich auf der Oberseite der Leiterplatte 22. Der Messabschnitt 31 und der bogenförmige Abschnitt 32 der Hinleitung 17 sind ebenfalls auf der Oberseite der Leiterplatte 22 angeordnet. Der Messabschnitt 31a und der bogenförmige Abschnitt 32a der Rückleitung 18 befinden sich dagegen im Innern der Leiterplatte 22 (Figur 4), die aus mehreren Schichten besteht. Die Leiterplatte 22 ist eine Mehrschichtplatte mit einer oberen Schicht 22a, einer mittleren Schicht 22b und einer unteren Schicht 22c. Zwischen den Schichten befinden sich Leiterbahnen, wie Figur 4 zeigt. Die Leiterbahnen der verschiedenen Ebenen sind teilweise durch Durchkontaktierung miteinander verbunden.
Die zweite Leiterplatte 24 stößt in der Nähe der Messabschnitte 31 , 31a gegen die obere Leiterplatte 22, wie Figur 3 zeigt. An der zweiten Leiterplatte 24 befinden sich Stromsensoren 35, 36, die unterhalb der jeweiligen Messabschnitte 31 bzw. 31a angeordnet sind. Ein von dem Messabschnitt erzeugtes Magnetfeld wird von dem betreffenden Stromsensor 35, 36 detektiert. Das Signal des Stromsensor wird auf der Leiterplatte 24 verarbeitet.
Die untere Leiterplatte 23 trägt neben anderen Komponenten einen Mikroprozessor 40, der das Signal der Anschlussklemmen 26 verarbeitet und daraus das Aktor-Befehlssignal für die Relais 20 erzeugt. Die Leiterbahnen der Leiterplatten 23 und 24 sind aus Gründen der Übersichtlichkeit hier nicht dargestellt.
Figur 5 zeigt in größerem Detail den Aufbau der ersten Leiterplatte 22, die hier unbestückt dargestellt ist, wobei die Position der Relais 20 gestrichelt angedeutet ist. Man erkennt, dass die Hauptleiterbahn 30 der Hinleitung 17 auf der Oberseite der Leiterplatte angeordnet ist, während die Rückleitung 18 die in der Ebene versetzten Abschnitte, nämlich den Messabschnitt 31a und den bogenförmigen Abschnitt 32a, enthält.
Figur 6 zeigt die beiden Stromsensoren 35, 36 durch die die Z-Achse in Längsrichtung hindurch geht. Die Y-Achse verläuft in Längsrichtung der Messabschnitte 31 bzw. 31a. Die X-Achse verläuft in Längsrichtung der Hauptleiterbahn. Ein Stromfluss durch den Messabschnitt erzeugt in dem Stromsensor 35 ein ringförmiges Magnetfeld Bi, in der XZ-Ebene um den Messabschnitt 31 herum. In dem Messabschnitt 31a der Rückleitung wird ebenfalls ein Magnetfeld Bi erzeugt, das auf den Stromsensor 36 einwirkt, jedoch dem Magnetfeld Bi des Messabschnitt 31 entgegengesetzt gerichtet ist. Die Ausgänge der beiden Stromsensoren 35, 36 werden einem Operationsverstärker 45 zugeführt, dessen beide Eingänge unterschiedliche Vorzeichen haben. Der Operationsverstärker 45 bewirkt daher, dass die Signale der Magnetfelder Bi, die unterschiedlich gerichtet sind, voneinander subtrahiert werden, was dazu führt, dass die Beträge der beiden Signale addiert werden. Der Operationsverstärker bildet daher eine Summiereinrichtung.
Im Falle eines externen Störfeldes BE wirkt dieses Störfeld auf beide Stromsensoren 35, 36 aus gleicher Richtung ein. Die Signalanteile, die von dem externen Magnetfeld erzeugt werden, werden im Operationsverstärker 45 subtrahiert und kompensieren sich. Das Ausgangsignal A des Operationsverstärkers 45 ergibt sich somit zu
A = (BE + B,) - (BE - BI) = 2 X B|.
Man erkennt, dass die Einflüsse des externen Magnetfeldes eliminiert werden, während die Einflüsse der internen Magnetfelder, die von den Messabschnitten 31 , 31a erzeugt werden, summiert werden.

Claims

Patentansprüche
1. Anschlusseinheit eines Bussystems (10), mit einem Mikroprozessor (40) zur Erzeugung eines Aktor-Befehlssignals, einem durch das Aktor- Befehlssignal gesteuerten Schaltorgan (19) zum Schalten einer eine Last (13) enthaltenden Versorgungsleitung (15) und einem magnetisch sensitiven Stromsensor (35, 36) zur Detektierung bzw. Messung des Stromes in der Versorgungsleitung (15),
d a d u r c h g e k e n n z e i c h n e t,
dass die Versorgungsleitung (15) einen auf einer Leiterplatte (22) angeordneten Leitungsabschnitt mit Hin- und Rückleitung (17, 18) zu dem Schaltorgan (19) aufweist, und
dass die Hinleitung (17) und die Rückleitung (18) jeweils eine Hauptleiterbahn (30) aufweist, wobei mindestens eine Hauptleiterbahn (30) einen quer zu der Hauptleiterbahn verlaufenden Messabschnitt (31) enthält und der Stromsensor (35, 36) auf den Messabschnitt (31 , 31a) der Leiterplatte (22) gerichtet ist.
2. Anschlusseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Hinleitung (17) und die Rückleitung (18) jeweils einen quer zu der betreffenden Hauptleiterbahn (30) verlaufenden Messabschnitt (31 , 31a) enthält und für jeden Messabschnitt ein Stromsensor (35, 36) vorgesehen ist.
3. Anschlusseinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine die Ausgangssignale beider Stromsensoren (35, 36) mit unterschiedlichen Vorzeichen addierende Summiervorrichtung (45) vorgesehen ist.
4. Anschlusseinheit nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Messabschnitte (31 , 31a) in unterschiedlichen Ebenen der Leiterplatte (22) angeordnet sind.
5. Anschlusseinheit nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass der mindestens eine Stromsensor (35, 36) an einer senkrecht zu der ersten Leiterplatte (22) verlaufenden Hilfsleiterplatte (24) angeordnet ist.
6. Anschlusseinheit nach Anspruch 5, dadurch gekennzeichnet, dass parallel zu der ersten Leiterplatte (22) eine zweite Leiterplatte (23) verläuft, wobei beide Leiterplatten durch die Hilfsleiterplatte (24) verbunden sind.
7. Anschlusseinheit nach Anspruch 6, dadurch gekennzeichnet, dass die zweite Leiterplatte (23) unter anderem den Mikroprozessor (40) trägt.
8. Anschlusseinheit nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass der Messabschnitt (31 , 31a) schmaler ist als die Hauptleiterbahn (30).
9. Anschlusseinheit nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass separate Leiterplatten (22-24) für das Schaltorgan (19), den Stromsensor (35, 36) und die Signalverarbeitung vorgesehen sind.
10. Anschlusseinheit nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, dass die Leiterbahnen auf der Leiterplatte (22) mehrlagig aufgebaut sind.
11. Anschlusseinheit nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass der Messabschnitt eine geringere Breite hat als die übrigen Bereiche der Leiterbahnen.
PCT/DE2007/001394 2006-08-30 2007-08-04 Anschlusseinheit eines bussystems WO2008025319A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502007005225T DE502007005225D1 (de) 2006-08-30 2007-08-04 Anschlusseinheit eines bussystems
EP07785695A EP2057658B1 (de) 2006-08-30 2007-08-04 Anschlusseinheit eines bussystems
AT07785695T ATE483245T1 (de) 2006-08-30 2007-08-04 Anschlusseinheit eines bussystems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006013311.9 2006-08-30
DE202006013311U DE202006013311U1 (de) 2006-08-30 2006-08-30 Anschlusseinheit eines Bussystems

Publications (1)

Publication Number Publication Date
WO2008025319A1 true WO2008025319A1 (de) 2008-03-06

Family

ID=38800916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001394 WO2008025319A1 (de) 2006-08-30 2007-08-04 Anschlusseinheit eines bussystems

Country Status (5)

Country Link
EP (1) EP2057658B1 (de)
AT (1) ATE483245T1 (de)
DE (2) DE202006013311U1 (de)
ES (1) ES2353024T3 (de)
WO (1) WO2008025319A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741417A1 (de) * 1997-09-19 1999-04-01 Klaus Bruchmann Strommessgerät mit Hallsensor
DE10045563A1 (de) * 1999-09-16 2001-04-19 Int Rectifier Corp Leistungshalbleiter-Baugruppe mit integrierter Strommessung
DE10045670A1 (de) * 1999-09-17 2001-09-27 Yazaki Corp Stromerfassungsvorrichtung und Stromerfassungsverfahren
EP1865331A2 (de) * 2006-06-06 2007-12-12 INSTA ELEKTRO GmbH & Co. KG Elektrisches/elektronisches Gerät

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390872A (ja) * 1989-09-01 1991-04-16 Toshiba Corp 半導体装置
US5508611A (en) * 1994-04-25 1996-04-16 General Motors Corporation Ultrathin magnetoresistive sensor package
DE19511795A1 (de) * 1994-08-26 1996-10-02 Siemens Ag Elektromechanisches Schaltgerät
DE4434553A1 (de) * 1994-09-28 1996-04-04 Wolfgang Schenk Felddaten-Digitalwandler
DE19507772A1 (de) * 1995-03-06 1996-09-12 Horstmann Gmbh Dipl Ing H Kurzschlußanzeiger
DE19704216A1 (de) * 1997-02-05 1998-08-06 Deutsche Telekom Ag Überwachungseinrichtung für netzbetriebene Haushaltsgeräte
DE19821492A1 (de) * 1998-05-14 1999-11-25 Daimler Chrysler Ag Verfahren zur berührungslosen Messung eines einen Leiter durchfließenden Stromes mittels eines Hallsensors sowie Hallsensoranordnung
DE19913471A1 (de) * 1999-03-25 2000-09-28 Abb Patent Gmbh Überwachungseinrichtung für elektrische Verbraucher
DE19928399B4 (de) * 1999-06-22 2004-07-08 Honeywell Ag Stromsensor
DE19946935B4 (de) * 1999-09-30 2004-02-05 Daimlerchrysler Ag Vorrichtung zur induktiven Strommessung mit mindestens einem Differenzsensor
JP3852554B2 (ja) * 1999-12-09 2006-11-29 サンケン電気株式会社 ホール素子を備えた電流検出装置
JP4164615B2 (ja) * 1999-12-20 2008-10-15 サンケン電気株式会社 ホ−ル素子を備えた電流検出装置
DE10007967C2 (de) * 2000-02-22 2002-01-17 Daimler Chrysler Ag Mehrschichtige Anordnung elektrischer Leiter mit integrierter Stromerfassung
DE10049071B4 (de) * 2000-10-02 2004-12-16 Micronas Gmbh Sicherungsvorrichtung für einen Stromkreis insbesondere in Kraftfahrzeugen
DE20017512U1 (de) * 2000-10-11 2001-02-08 Honeywell Ag, 63067 Offenbach Einrichtung zum Messen von Strom auf Leiterplatten
DE10108159A1 (de) * 2001-02-20 2002-08-29 Christian Schoeller System und Verfahren zur Ansteuerung von elektrischen Verbrauchern sowie Siegnalstation
EP1267173A3 (de) * 2001-06-15 2005-03-23 Sanken Electric Co., Ltd. Hall-Effektstromdetektor
DE10253018B4 (de) * 2002-11-14 2013-02-28 Abb Ag Schaltgerät sowie System und Verfahren zur Strommessung in dem Schaltgerät

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741417A1 (de) * 1997-09-19 1999-04-01 Klaus Bruchmann Strommessgerät mit Hallsensor
DE10045563A1 (de) * 1999-09-16 2001-04-19 Int Rectifier Corp Leistungshalbleiter-Baugruppe mit integrierter Strommessung
DE10045670A1 (de) * 1999-09-17 2001-09-27 Yazaki Corp Stromerfassungsvorrichtung und Stromerfassungsverfahren
EP1865331A2 (de) * 2006-06-06 2007-12-12 INSTA ELEKTRO GmbH & Co. KG Elektrisches/elektronisches Gerät

Also Published As

Publication number Publication date
DE502007005225D1 (de) 2010-11-11
ATE483245T1 (de) 2010-10-15
EP2057658B1 (de) 2010-09-29
DE202006013311U1 (de) 2008-01-03
ES2353024T3 (es) 2011-02-24
EP2057658A1 (de) 2009-05-13

Similar Documents

Publication Publication Date Title
DE4440102C1 (de) Modulare Steuerungsanlage mit integriertem Feldbusanschluß
EP3361836B1 (de) Niederinduktive halbbrückenanordnung
EP1110094A1 (de) Vorrichtung und verfahren zur bildung eines oder mehrerer magnetfeldgradienten durch einen geraden leiter
EP2856184B1 (de) Vorrichtung zum testen einer elektrischen komponente
DE69402288T2 (de) Steckmatrixbrett
DE102006003377B3 (de) Halbleiterbaustein mit einem integrierten Halbleiterchip und einem Chipgehäuse und elektronisches Bauteil
WO2018149687A1 (de) Multilayer-leiterplatte sowie elektronische anordnung mit einer solchen
EP2057658B1 (de) Anschlusseinheit eines bussystems
DE602004005750T2 (de) Stromsensor mit verringerter empfindlichkeit gegenüber magnetischen streufeldern
WO2017215798A1 (de) Leitungsintegrierter halbleiterschalter und verfahren zu dessen herstellung
DE102010027130A1 (de) Modul und Anordnung zur Messung eines Hochfrequenzstroms durch einen Leiter
DE19809570C2 (de) Signalverbindung
EP3834591B1 (de) Zwischenkreisanordnung und wechselrichter
EP1139104A2 (de) Mehrschichtige Anordnung elektrischer Leiter mit integrierter Stromerfassung
DE102016004508A1 (de) Leiterplatte und Kraftfahrzeug
DE212020000764U1 (de) Struktur einer gedruckten Leiterplatte und Technik zur Unterdrückung von induktivem Rauschen
DE202021101496U1 (de) Stromerfassungsvorrichtung
EP1479166B1 (de) Standardzellenanordung für ein magneto-resistives bauelement
EP2200411A1 (de) Leiterplatte
WO2015124577A1 (de) Flurförderzeug mit einer überwachungseinrichtung
EP1937042A2 (de) Anschlusssystem für ein Display-Modul
DE10220653A1 (de) Integrierte Leiterbahnanordnung
DE102015209057B4 (de) Mehrfunktionale Hochstromleiterplatte
DE3542208A1 (de) Leiterbahnen-anordnung
WO2022269069A1 (de) Stromschiene zur strommessung eines gleich- und/oder wechselstroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007785695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU