WO2008023403A1 - Board - Google Patents

Board Download PDF

Info

Publication number
WO2008023403A1
WO2008023403A1 PCT/JP2006/316384 JP2006316384W WO2008023403A1 WO 2008023403 A1 WO2008023403 A1 WO 2008023403A1 JP 2006316384 W JP2006316384 W JP 2006316384W WO 2008023403 A1 WO2008023403 A1 WO 2008023403A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
substrate
bridging
solder
pair
Prior art date
Application number
PCT/JP2006/316384
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiro Motegi
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to PCT/JP2006/316384 priority Critical patent/WO2008023403A1/en
Publication of WO2008023403A1 publication Critical patent/WO2008023403A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/363Assembling flexible printed circuits with other printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09063Holes or slots in insulating substrate not used for electrical connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/09172Notches between edge pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/09181Notches in edge pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes

Definitions

  • the present invention is a substrate for soldering an electronic component such as a flexible substrate, and suppresses an increase in the occurrence rate of defects while suitably ensuring workability when miniaturized. It relates to the technical field of possible substrates.
  • a flexible substrate which is an example of this type of substrate, is a substrate made of polyimide film, liquid crystal polymer, glass “epoxy resin” or aramid film (hereinafter also referred to as “polyimide” as appropriate). Since it is used, it has flexibility. In other words, since it can be folded, it is often used for small products such as mobile phones and digital cameras that have limited mounting space.
  • solder land at one end of the wiring laid out in this way has a width or an area that allows at least hand and solder to be easily performed. Therefore, it is effective to make the outer shape of one end of the flexible substrate into a mountain-and-valley shape and to provide solder lands alternately in the peaks and valleys. When configured in this way, shorting between solder lands can be prevented while securing the width or area of the solder lands. That is, the workability when it is miniaturized is preferably ensured.
  • Patent Document 1 JP-A-9 245856
  • the present invention has been made in view of the above-mentioned problems, for example, and when it is miniaturized. It is an object of the present invention to provide a flexible substrate that can suppress the increase in the defect occurrence rate while suitably ensuring the workability of the above.
  • the substrate of the present invention is a substrate for soldering electronic components, and is alternately formed at a predetermined pitch on at least a part of the edge of the substrate. And the peak part and trough part which each have the solder land to which the said electronic component is soldered, and the bridge
  • the substrate according to the present embodiment is a flexible substrate having an insulating force such as polyimide, and is a substrate for attaching electronic components.
  • Crests and troughs are alternately formed at a predetermined pitch on at least a part of the edge of the substrate.
  • the “predetermined pitch” is a force that is an interval determined based on the wiring layout extending toward the solder lands in the peaks and valleys, and does not need to be particularly limited.
  • These peaks and valleys each have a solder land on which electronic components are soldered. When the peaks and valleys are formed in this way, short-circuit between the solder lands can be prevented while securing the width or area of the solder lands. In other words, workability when downsized is suitably secured.
  • the bridging means bridges at least a pair of peaks formed at a predetermined pitch with, for example, a member similar to the substrate.
  • crosslinking means connecting a pair of peaks with a predetermined member.
  • the mode of cross-linking in this way is to disperse the external force acting in the direction of turning or tearing one of the peaks at least to other peaks.
  • a plurality of cross-linking means in other words, “bridges” may be cross-linked per pair, The width of the bridge may be different for each pair. Then, this “bridge” may typically be bridged by skipping one of the adjacent mountain pairs or by arbitrary pairs.
  • the external force acting on the mountain is dispersed, making it difficult to turn this mountain.
  • the valley is substantially raised, or the height of the peak is substantially reduced, so that it is difficult for the foreign matter to be pulled to the peak.
  • the crosslinking means is an insulator.
  • the crosslinking means is an insulator such as polyimide. Therefore, it is possible to avoid short-circuiting between the solder lands of the bridged peaks.
  • the shape of the opening surrounded by the pair, the valley between the pair, and the bridging means for bridging the pair is arbitrary.
  • the shape of the opening can be selected and used in various shapes such as a circle, a triangle, a quadrangle, a polygon, an ellipse, a semicircle, and an arbitrary curve.
  • the shape of the opening portion is arbitrary, if it is cross-linked by the cross-linking means, the external force acting on the mountain portion is dispersed, and it becomes difficult to turn this mountain portion up and down.
  • the bridging means has an arch structure that warps in the height direction of the peak portion.
  • the bridging means since the bridging means has an arch structure that warps in the height direction of the peak portion, it can resist an external force by an axial force, a bending moment, and a shearing force. Therefore, the strength is increased as compared with the case where the bridging means has a linear single pillar structure.
  • the bridging means according to the present embodiment can adopt various structures such as a rigid frame structure rigidly joined to the mountain portion in addition to the arch structure described above.
  • the bridging means bridges portions that are a predetermined distance in the height direction from leading ends of the pair of crests.
  • the portions that are lowered by a predetermined distance in the height direction from the tips of the pair of peaks are bridged by the bridging means.
  • the “predetermined distance” refers to, for example, the positional relationship between the bridged portion and the solder land, while the strength of the mountain portion is expected to improve. It may be determined by experiment or simulation as the distance at which the shortage is unlikely to occur, in other words, the distance that satisfies both the structural mechanical requirements and the electromagnetic requirements. In other words, the predetermined distance is typically zero and does not prevent the predetermined distance from being set to a value larger than zero due to other requests.
  • the solder land is formed so as to avoid the portion.
  • the solder land is formed so as to avoid a portion that is cross-linked by the cross-linking means.
  • the above-mentioned predetermined distance is determined as a distance exceeding the area occupied by the tip force solder land of the mountain portion. If a solder land is formed in this way, a short circuit is less likely to occur while an improvement in the strength of the mountain is expected, which is very advantageous in practice.
  • the crests and troughs and the bridging means are provided, the workability when reduced in size is preferable while having a relatively simple configuration. It is possible to suppress an increase in the defect occurrence rate while ensuring the same.
  • FIG. 1 is a plan view showing a basic structure of a flexible substrate according to a comparative example.
  • FIG. 2 is a cross-sectional view in the I direction of a flexible substrate according to a comparative example.
  • FIG. 3 is a plan view showing a state where a crest of a flexible substrate is damaged according to a comparative example.
  • FIG. 4 is a plan view showing a basic structure of a flexible substrate according to the first embodiment.
  • FIG. 5 is a plan view showing a basic structure of a flexible substrate according to a second embodiment.
  • FIG. 6 is a plan view showing a basic structure of a flexible substrate according to a third embodiment.
  • FIG. 7 is a plan view showing a basic structure of a flexible substrate according to a fourth embodiment.
  • FIG. 8 is a plan view showing a basic structure of a flexible substrate according to a fifth embodiment.
  • a flexible substrate which is an example of a substrate according to the first embodiment, will be described with reference to FIGS.
  • FIG. 1 is a plan view showing a basic structure of a flexible substrate according to a comparative example.
  • a flexible substrate 1 according to a comparative example includes a substrate 2, a conductive portion 3, and a node land 4.
  • the flexible substrate 1 has flexibility. In other words, it can be folded.
  • the substrate 2 is an insulator and includes a flexible material, for example, a polyimide film using polyimide, a liquid crystal polymer, a glass / epoxy resin, or a amide film.
  • a flexible material for example, a polyimide film using polyimide, a liquid crystal polymer, a glass / epoxy resin, or a amide film.
  • the conductive portion 3 is an electronic component lead formed on the substrate 2, and is used for the surface of the copper wire subjected to preliminary soldering.
  • This spare solder includes Sn, Ni—Pd direction force Sn -Preferable for environmental measures compared to Pb.
  • the outer shape of one end of the substrate 2 forms a mountain-valley shape in order to spread as many conductive portions 3 as possible in a limited width on the substrate 2. That is, the substrate 2 has alternately the ridges 21 that are examples of the “peaks” according to the present invention and the valleys 22 that are examples of the “valleys” according to the present invention, for example, at an lmm pitch. A plurality of conductive portions 3 correspond to each of the valley portions 22.
  • the solder land 4 is provided with cream solder, and is electrically connected to the plurality of conductive portions 3 at the peak portion 21 or the valley portion 22. Therefore, the adjacent solder lands 4 are spatially separated, and each of the conductive portions 3 or the solder lands 4 is short-circuited, so-called solder bridge is prevented. At this time, since the width or area of the solder land 4 can be secured, manual soldering is facilitated.
  • FIG. 2 is a cross-sectional view of the flexible substrate in the I direction (see FIG. 1) according to the comparative example.
  • the flexible substrate 1 includes, for example, a base 201 having a polyimide film force, a conductive portion 3, and a force burley 202 having a polyimide film force and protecting the conductive portion 3, for example.
  • a base 201 having a polyimide film force As shown in FIG. 2 (a), the flexible substrate 1 includes, for example, a base 201 having a polyimide film force, a conductive portion 3, and a force burley 202 having a polyimide film force and protecting the conductive portion 3, for example.
  • a solder land 4 exposed for soldering is formed at the tip of the conductive portion 3, and solder 41 is attached to the conductive portion 3 in the solder land 4. Therefore, as shown in FIG. 2 (b), for example, the soldering object such as another flexible substrate 10 and the solder land 4 can be soldered.
  • the flexible substrate 1 according to the comparative example has the ridges 21 and the valleys 22, so that the width or area of the solder lands 4 is secured, In addition, it is possible to prevent short-circuiting between solder lands.
  • the solder land 4 is used for soldering with another flexible substrate.
  • FIG. 3 is a plan view showing a state in which the peak portion of the flexible substrate is damaged according to the comparative example.
  • the peak portion 21 of the flexible substrate 1 is damaged.
  • the solder land 4 is not formed in the damaged peak portion 23. In other words, cream solder is not applied.
  • FIG. 4 is a plan view showing the basic structure of the flexible substrate according to the first embodiment.
  • the same components as those of the flexible substrate 1 in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the flexible substrate 1 according to this embodiment further includes a bridging portion 5 in order to avoid damage to the peak portion 21.
  • the cross-linking part 5 is an example of the “cross-linking means” according to the present invention, and cross-links at least some of the adjacent peak parts 21. Typically, all adjacent peaks 21 are bridged. Therefore, compared to the case where the bridge part 5 is not provided, the probability that the foreign substance is attracted to the peak part 21 at the time of delivery of the parts is reduced. In addition, even if a foreign object is attracted to the peak 21, the cross-linked peaks 21 support each other, and the strength increases. Therefore, it is possible to prevent damage such as turning over, and it is possible to suppress an increase in the defect occurrence rate.
  • the bridging portion 5 is an insulator similar to the substrate 2 that avoids short-circuiting of the solder lands 4. That is, the bridging portion 5 and the mountain portion 21 are integral and are so-called rigidly joined to form a ramen structure. Therefore, it can resist external force by axial force, bending moment, and shear force.
  • the flexible substrate 1 according to the present embodiment further includes the bridging portion 5, damage to the peak portion 21 can be avoided. More specifically, by ensuring the width or area of the solder lands 4 and preventing the solder lands 4 from shorting together, the workability at the time of miniaturization is suitably secured while the defect occurrence rate is increased. Can be suppressed. At this time, the main difference between the comparative example and the present example is the design of the bridging portion 5, and the other manufacturing steps may be the same. [0049] (2) Second embodiment
  • FIG. 5 is a plan view showing the basic structure of the flexible substrate according to the second embodiment.
  • the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the bridging portion 5 bridges a part of the adjacent peak portions 21. In other words, not all of the adjacent peaks 21 are bridged.
  • FIG. 6 is a plan view showing the basic structure of the flexible substrate according to the third embodiment.
  • the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the width of the bridging portion 51 in other words, the area of the opening portion 6 surrounded by the peak portion 21, the valley portion 22, and the bridging portion 51 is shown in FIG. Compared to that in 4 is different. Specifically, the width of the bridging portion 51 is narrowed, and the opening 6 is extended in the height direction of the peak portion 21. As a result, it is possible to reduce the amount of material used for the bridging portion 51 and reduce the cost and weight, while suppressing the increase in the defect occurrence rate to a greater or lesser extent. On the contrary, if importance is attached to the strength, the width of the bridging portion 51 may be widened, and the opening 6 may be shortened in the height direction of the peak portion 21.
  • the shape of the opening 6 of the flexible substrate 1 may be variable according to the design concept.
  • the shape may be selected from various shapes such as a circle, a triangle, a quadrangle, a polygon, an ellipse, a semicircle, and an arbitrary curve, so that the degree of freedom in layout is improved.
  • FIG. 7 is a plan view showing the basic structure of the flexible substrate according to the fourth embodiment.
  • the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the bridge portion 52 is an arch structure that warps in the height direction of the mountain portion 21 that is not a linear single-column structure. Therefore, it can resist external force by axial force, bending moment, and shear force, so the strength is increased compared to the single pillar structure.
  • the bridging portion 52 does not need to have a linear one-column structure.
  • various structures that increase the strength or facilitate the soldering of the term solder can be employed.
  • FIG. 8 is a plan view showing the basic structure of the flexible substrate according to the fifth embodiment.
  • the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the portions that are lowered by a predetermined distance in the height direction of the ridge portion 21 from the tip of the ridge portion 21 adjacent to the bridging portion 53, that is, the middle portions of the ridge portion 21. are cross-linked. More specifically, the parts of the mountain 21 where the solder land 4 is not formed are bridged. Alternatively, the solder lands are formed to avoid cross-linked portions. Therefore, it is possible to prevent the solder of the solder land 4 in the mountain portion 21 from being short-circuited via the bridge portion 53 in FIG.
  • the substrate according to the present invention can be used as a substrate for attaching electronic components such as a flexible substrate, and is also mounted on an information recording device such as a BD (Blu-ray Disc) recorder. Is available.
  • BD Blu-ray Disc

Abstract

A board (1), on to which electronic parts are soldered, includes projection parts (21) and recess parts (22) which are alternately formed in at least a part of the edge of the board at predetermined pitches and each of which has a solder land to which an electronic part is soldered. The board further includes bridging means (5) for bridging at least one pair of projecting parts (21) formed at the predetermined pitches.

Description

明 細 書  Specification
基板  Substrate
技術分野  Technical field
[0001] 本発明は、例えばフレキシブル基板のような電子部品をノヽンダ付けするための基板 であって、小型化されたときの作業性を好適に確保しつつも、不良発生率の上昇を 抑制可能な基板の技術分野に関する。  [0001] The present invention is a substrate for soldering an electronic component such as a flexible substrate, and suppresses an increase in the occurrence rate of defects while suitably ensuring workability when miniaturized. It relates to the technical field of possible substrates.
背景技術  Background art
[0002] この種の基板の一例であるフレキシブル基板は、ポリイミドを使ったポリイミドフィル ム、液晶ポリマ、ガラス'エポキシ榭脂あるいはァラミド 'フィルム等(以下適宜、「ポリイ ミド等」ともいう)の基板が用いられているので、柔軟性を有する。言い換えれば、折り 曲げが可能なことから、実装スペースの限られる携帯電話やデジタルカメラなどの小 型製品に多用される。  [0002] A flexible substrate, which is an example of this type of substrate, is a substrate made of polyimide film, liquid crystal polymer, glass “epoxy resin” or aramid film (hereinafter also referred to as “polyimide” as appropriate). Since it is used, it has flexibility. In other words, since it can be folded, it is often used for small products such as mobile phones and digital cameras that have limited mounting space.
[0003] 力かる製品に用いられる場合には、小型化の要請から、当該基板上で限られた横 幅に配線を極力敷き詰めるための各種技術が提案されている。例えば、配線をショ ートさせ得るハンダブリッジを防止するための、フラットケーブル及びフラットケーブル の接合構造が提案されている(特許文献 1参照)。このように敷き詰められた配線の 一端にあるハンダランドは、少なくとも手ノ、ンダが容易に可能な程度の幅あるいは面 積を有することが好ましい。そこで、フレキシブル基板の一端の外形を山谷形状にし て、山部及び谷部にハンダランドを互い違いに設けることが有効である。このように構 成されると、ハンダランドの幅あるいは面積を確保しつつも、ハンダランド同士のショ ートが防止される。即ち、小型化されたときの作業性が好適に確保される。  [0003] When used for powerful products, various techniques for laying wiring as much as possible on a limited width on the substrate have been proposed in order to reduce the size. For example, there has been proposed a flat cable and a flat cable joining structure for preventing a solder bridge that can short-circuit the wiring (see Patent Document 1). It is preferable that the solder land at one end of the wiring laid out in this way has a width or an area that allows at least hand and solder to be easily performed. Therefore, it is effective to make the outer shape of one end of the flexible substrate into a mountain-and-valley shape and to provide solder lands alternately in the peaks and valleys. When configured in this way, shorting between solder lands can be prevented while securing the width or area of the solder lands. That is, the workability when it is miniaturized is preferably ensured.
[0004] 特許文献 1 :特開平 9 245856公報  [0004] Patent Document 1: JP-A-9 245856
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、前述のようにフレキシブル基板の一端の外形を山谷形状にすると、 強度上の問題から、不良発生率が上昇するおそれがある。 [0005] However, if the outer shape of one end of the flexible substrate is made into a mountain-and-valley shape as described above, the defect occurrence rate may increase due to the problem of strength.
[0006] 本発明は、例えば上述した問題点に鑑みてなされたものであり、小型化されたとき の作業性を好適に確保しつつも、不良発生率の上昇を抑制可能なフレキシブル基 板を提供することを課題とする。 [0006] The present invention has been made in view of the above-mentioned problems, for example, and when it is miniaturized. It is an object of the present invention to provide a flexible substrate that can suppress the increase in the defect occurrence rate while suitably ensuring the workability of the above.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の基板は上述の課題を解決するために、電子部品をノヽンダ付けするための 基板であって、前記基板の縁の少なくとも一部に所定ピッチで交互に形成されており 、かつ、前記電子部品がハンダ付けされるハンダランドを夫々有する山部及び谷部と 、前記所定ピッチで形成された前記山部のうち、少なくとも一対を架橋する架橋手段 とを備える。 [0007] In order to solve the above-mentioned problem, the substrate of the present invention is a substrate for soldering electronic components, and is alternately formed at a predetermined pitch on at least a part of the edge of the substrate. And the peak part and trough part which each have the solder land to which the said electronic component is soldered, and the bridge | crosslinking means which bridge | crosslinks at least one pair among the said peak parts formed at the said predetermined pitch.
[0008] 本実施形態によれば、例えば上述の課題力 次のように解決される。  [0008] According to the present embodiment, for example, the above-described problem power is solved as follows.
[0009] 先ず、本実施形態に係る基板は、例えばポリイミド等の絶縁体力 なるフレキシブ ル基板であり、電子部品をノ、ンダ付けするための基板である。  [0009] First, the substrate according to the present embodiment is a flexible substrate having an insulating force such as polyimide, and is a substrate for attaching electronic components.
[0010] この基板の縁の少なくとも一部には、山部及び谷部が所定ピッチで交互に形成さ れている。ここでいう「所定ピッチ」とは、山部及び谷部のハンダランドへと向力つて伸 びる配線のレイアウトに基づいて定められる間隔である力 特に限定的に定められる 必要はない。そして、これら山部及び谷部は、電子部品がハンダ付けされるハンダラ ンドを夫々有する。このように山部及び谷部が形成されると、ハンダランドの幅あるい は面積を確保しつつも、ハンダランド同士のショートが防止される。即ち、小型化され たときの作業性が好適に確保される。 [0010] Crests and troughs are alternately formed at a predetermined pitch on at least a part of the edge of the substrate. The “predetermined pitch” here is a force that is an interval determined based on the wiring layout extending toward the solder lands in the peaks and valleys, and does not need to be particularly limited. These peaks and valleys each have a solder land on which electronic components are soldered. When the peaks and valleys are formed in this way, short-circuit between the solder lands can be prevented while securing the width or area of the solder lands. In other words, workability when downsized is suitably secured.
[0011] ところが、本願発明者によると、これら山部及び谷部において以下のような技術的 問題が生ずる虞があることが判明している。例えば、部品納入時、リフロー時、あるい は組み立て時に、山部がめくれる、あるいは千切れることにより、山部及び谷部が形 成されない場合に比べて、不良発生率が高くなる虞がある。  However, according to the inventor of the present application, it has been found that there is a possibility that the following technical problems may occur in these peaks and valleys. For example, when a part is delivered, reflowed, or assembled, the crests are turned or broken, which may increase the defect occurrence rate compared to the case where crests and troughs are not formed.
[0012] そこで、架橋手段は、所定ピッチで形成された山部のうち少なくとも一対を、例えば 基板と同様の部材で、架橋する。ここでいう「架橋する」とは、所定の部材で一対の山 部をつなげることである。このように架橋する際の態様は、少なくとも一対の山部のう ち、一の山部をめくらせる、あるいは千切れさせる方向に働く外力を、他の山部へと 多少なりとも分散させることが可能である限りにおいて、特に限定される趣旨ではない 。例えば、架橋手段、言い換えれば「橋」は、一対あたり複数本架橋されてもよいし、 各対毎に橋の幅が異なってもよい。そして、この「橋」は、典型的には、隣り合う山部 の対のうち、全て、一つ飛ばしで、あるいは任意の対だけ、架橋するようにしてもよい 。いずれにせよ、山部に働く外力が分散されて、この山部がめくれ難くなる。加えて、 架橋手段により架橋されると谷部が実質的に底上げされることになる、あるいは山部 の高さが実質的に低くなるので、異物が山部に引つ力かり難くなる。 [0012] Therefore, the bridging means bridges at least a pair of peaks formed at a predetermined pitch with, for example, a member similar to the substrate. Here, “crosslinking” means connecting a pair of peaks with a predetermined member. The mode of cross-linking in this way is to disperse the external force acting in the direction of turning or tearing one of the peaks at least to other peaks. As long as it is possible, there is no particular limitation. For example, a plurality of cross-linking means, in other words, “bridges” may be cross-linked per pair, The width of the bridge may be different for each pair. Then, this “bridge” may typically be bridged by skipping one of the adjacent mountain pairs or by arbitrary pairs. In any case, the external force acting on the mountain is dispersed, making it difficult to turn this mountain. In addition, when cross-linking is performed by the cross-linking means, the valley is substantially raised, or the height of the peak is substantially reduced, so that it is difficult for the foreign matter to be pulled to the peak.
[0013] 従って、本実施形態によれば、小型化されたときの作業性を好適に確保しつつも、 不良発生率の上昇を抑制可能となり、実践上非常に有利である。  [0013] Therefore, according to the present embodiment, it is possible to suppress an increase in the defect occurrence rate while favorably ensuring workability when downsized, which is very advantageous in practice.
[0014] 本発明の基板の一態様では、前記架橋手段は、絶縁体である。 [0014] In one embodiment of the substrate of the present invention, the crosslinking means is an insulator.
[0015] この態様によれば、架橋手段は、例えばポリイミド等の絶縁体である。従って、架橋 された山部が有するハンダランド同士がショートすることを回避できる。 [0015] According to this aspect, the crosslinking means is an insulator such as polyimide. Therefore, it is possible to avoid short-circuiting between the solder lands of the bridged peaks.
[0016] 本発明の基板の他の態様では、前記一対、該一対に挟まれた前記谷部、及び前 記一対を架橋する架橋手段によって囲まれた開口部の形状は、任意である。 [0016] In another aspect of the substrate of the present invention, the shape of the opening surrounded by the pair, the valley between the pair, and the bridging means for bridging the pair is arbitrary.
[0017] この態様によれば、開口部の形状は、円形、三角形、四角形、多角形、楕円形、半 円形、任意曲線などの各種の形状力 選択使用することができる。言い換えれば、開 口部の形状が任意であっても、架橋手段によって架橋されていれば、山部に働く外 力が分散されて、この山部が大なり小なりめくれ難くなる。 [0017] According to this aspect, the shape of the opening can be selected and used in various shapes such as a circle, a triangle, a quadrangle, a polygon, an ellipse, a semicircle, and an arbitrary curve. In other words, even if the shape of the opening portion is arbitrary, if it is cross-linked by the cross-linking means, the external force acting on the mountain portion is dispersed, and it becomes difficult to turn this mountain portion up and down.
[0018] 本発明の基板の他の態様では、前記架橋手段は、前記山部の高さ方向に反った アーチ構造である。 In another aspect of the substrate of the present invention, the bridging means has an arch structure that warps in the height direction of the peak portion.
[0019] この態様によれば、架橋手段は、山部の高さ方向に反ったアーチ構造であるので、 軸力、曲げモーメント、せん断力によって、外力に抵抗することができる。従って、仮 に架橋手段が直線状の一柱構造である場合と比べて、強度が上がる。  [0019] According to this aspect, since the bridging means has an arch structure that warps in the height direction of the peak portion, it can resist an external force by an axial force, a bending moment, and a shearing force. Therefore, the strength is increased as compared with the case where the bridging means has a linear single pillar structure.
[0020] なお、本実施例に係る架橋手段は、上述したアーチ構造以外にも、山部と剛接合 されたラーメン構造のような各種構造を採用可能である。  [0020] It should be noted that the bridging means according to the present embodiment can adopt various structures such as a rigid frame structure rigidly joined to the mountain portion in addition to the arch structure described above.
[0021] 本発明の基板の他の態様では、前記架橋手段は、前記一対に係る前記山部の先 端から、前記高さ方向に所定距離下った部分同士を架橋する。  [0021] In another aspect of the substrate of the present invention, the bridging means bridges portions that are a predetermined distance in the height direction from leading ends of the pair of crests.
[0022] この態様によれば、一対に係る山部の先端から、高さ方向に所定距離下った部分 同士が、架橋手段によって架橋される。ここでいう「所定距離」とは、例えば架橋され る部分と、ハンダランドとの位置関係を考慮し、山部の強度向上が見込まれつつもシ ョートが生じ難いような距離として、言い換えれば構造力学的な要請と電磁気的な要 請とを共に満たすような距離として、実験あるいはシミュレーションによって定められる とよい。即ち、この所定距離は、典型的にはゼロである力 他の要請によりゼロよりも 大きな値とすることを妨げない趣旨である。 [0022] According to this aspect, the portions that are lowered by a predetermined distance in the height direction from the tips of the pair of peaks are bridged by the bridging means. Here, the “predetermined distance” refers to, for example, the positional relationship between the bridged portion and the solder land, while the strength of the mountain portion is expected to improve. It may be determined by experiment or simulation as the distance at which the shortage is unlikely to occur, in other words, the distance that satisfies both the structural mechanical requirements and the electromagnetic requirements. In other words, the predetermined distance is typically zero and does not prevent the predetermined distance from being set to a value larger than zero due to other requests.
[0023] 本発明の基板の他の態様では、前記ハンダランドは、前記部分を回避するように形 成される。 [0023] In another aspect of the substrate of the present invention, the solder land is formed so as to avoid the portion.
[0024] この態様によれば、ハンダランドは、架橋手段によって架橋される部分を回避するよ うに形成される。言い換えれば、上述の所定距離は、山部の先端力 ハンダランドが 占めている領域を超えるような距離として定められる。このようにハンダランドが形成さ れれば、山部の強度向上が見込まれつつもショートが一層生じ難くなるので、実践上 非常に有利である。  [0024] According to this aspect, the solder land is formed so as to avoid a portion that is cross-linked by the cross-linking means. In other words, the above-mentioned predetermined distance is determined as a distance exceeding the area occupied by the tip force solder land of the mountain portion. If a solder land is formed in this way, a short circuit is less likely to occur while an improvement in the strength of the mountain is expected, which is very advantageous in practice.
[0025] 以上、説明したように、本実施形態の基板によれば、山部及び谷部と架橋手段とを 備えるので、比較的簡単な構成ながらも、小型化されたときの作業性を好適に確保し つつ、不良発生率の上昇を抑制可能となる。  [0025] As described above, according to the substrate of the present embodiment, since the crests and troughs and the bridging means are provided, the workability when reduced in size is preferable while having a relatively simple configuration. It is possible to suppress an increase in the defect occurrence rate while ensuring the same.
[0026] 本実施形態の作用及び他の利得は次に説明する実施例力 明らかにされよう。  [0026] The operation and other advantages of the present embodiment will be made clear by the following example force.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]比較例に係る、フレキシブル基板の基本構造を示す平面図である。 FIG. 1 is a plan view showing a basic structure of a flexible substrate according to a comparative example.
[図 2]比較例に係る、フレキシブル基板の I方向での断面図である。  FIG. 2 is a cross-sectional view in the I direction of a flexible substrate according to a comparative example.
[図 3]比較例に係る、フレキシブル基板の山部が損傷した様子を示す平面図である。  FIG. 3 is a plan view showing a state where a crest of a flexible substrate is damaged according to a comparative example.
[図 4]第 1実施例に係る、フレキシブル基板の基本構造を示す平面図である。  FIG. 4 is a plan view showing a basic structure of a flexible substrate according to the first embodiment.
[図 5]第 2実施例に係る、フレキシブル基板の基本構造を示す平面図である。  FIG. 5 is a plan view showing a basic structure of a flexible substrate according to a second embodiment.
[図 6]第 3実施例に係る、フレキシブル基板の基本構造を示す平面図である。  FIG. 6 is a plan view showing a basic structure of a flexible substrate according to a third embodiment.
[図 7]第 4実施例に係る、フレキシブル基板の基本構造を示す平面図である。  FIG. 7 is a plan view showing a basic structure of a flexible substrate according to a fourth embodiment.
[図 8]第 5実施例に係る、フレキシブル基板の基本構造を示す平面図である。  FIG. 8 is a plan view showing a basic structure of a flexible substrate according to a fifth embodiment.
符号の説明  Explanation of symbols
[0028] 1 フレキシブル基板 [0028] 1 Flexible substrate
2 基板  2 Board
201 ベース 202 カバーレイ 201 base 202 coverlay
21 山部  21 Yamabe
22 谷部  22 Tanibe
23 損傷した山部  23 Damaged mountain
3 導電部  3 Conductive part
4 ノヽンダランド  4 Nordland
41 ハンダ  41 Solder
5、 51、 52、 53 架橋部  5, 51, 52, 53 Bridge
6 開口部  6 opening
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。 [0029] Hereinafter, the best mode for carrying out the present invention will be described in each embodiment in order with reference to the drawings.
[0030] (1)第 1実施例 [0030] (1) First Example
第 1実施例に係る基板の一例であるフレキシブル基板について図 1から図 4を参照 して説明する。  A flexible substrate, which is an example of a substrate according to the first embodiment, will be described with reference to FIGS.
[0031] 先ず、図 1を参照して、比較例に係る、フレキシブル基板の基本構造について説明 する。ここに、図 1は、比較例に係る、フレキシブル基板の基本構造を示す平面図で ある。  First, a basic structure of a flexible substrate according to a comparative example will be described with reference to FIG. FIG. 1 is a plan view showing a basic structure of a flexible substrate according to a comparative example.
[0032] 図 1において、比較例に係る、フレキシブル基板 1は、基板 2、導電部 3、およびノヽ ンダランド 4を備える。  In FIG. 1, a flexible substrate 1 according to a comparative example includes a substrate 2, a conductive portion 3, and a node land 4.
[0033] フレキシブル基板 1は、柔軟性を有する。言 、換えれば、折り曲げが可能である。  [0033] The flexible substrate 1 has flexibility. In other words, it can be folded.
従って、実装スペースの限られる携帯電話やデジタルカメラなどの小型製品に用いら れる。  Therefore, it is used for small products such as mobile phones and digital cameras where the mounting space is limited.
[0034] 基板 2は、絶縁体であり、かつ、柔軟性を有する材料、例えばポリイミドを使ったポリ イミドフィルム、液晶ポリマ、ガラス ·エポキシ榭脂あるいはァラミド 'フィルムを含んで 成る。  [0034] The substrate 2 is an insulator and includes a flexible material, for example, a polyimide film using polyimide, a liquid crystal polymer, a glass / epoxy resin, or a amide film.
[0035] 導電部 3は、基板 2上に形成された電子部品のリードであり、銅線の表面に予備ハ ンダ処理したものがに用いられる。この予備ハンダとしては、 Sn、 Ni— Pdの方力 Sn - Pbに比べて環境対策上好ま 、。 The conductive portion 3 is an electronic component lead formed on the substrate 2, and is used for the surface of the copper wire subjected to preliminary soldering. This spare solder includes Sn, Ni—Pd direction force Sn -Preferable for environmental measures compared to Pb.
[0036] ここで小型化の要請から、基板 2上で限られた横幅に導電部 3をできるだけ多く敷き 詰めるために、基板 2の一端の外形が山谷形状を形成する。即ち、基板 2は本発明 に係る「山部」の一例である山部 21および本発明に係る「谷部」の一例である谷部 22 を例えば lmmピッチで交互に有し、山部 21および谷部 22の各々に、複数本の導電 部 3が夫々対応する。 Here, due to a demand for miniaturization, the outer shape of one end of the substrate 2 forms a mountain-valley shape in order to spread as many conductive portions 3 as possible in a limited width on the substrate 2. That is, the substrate 2 has alternately the ridges 21 that are examples of the “peaks” according to the present invention and the valleys 22 that are examples of the “valleys” according to the present invention, for example, at an lmm pitch. A plurality of conductive portions 3 correspond to each of the valley portions 22.
[0037] ハンダランド 4は、クリームハンダを備えており、山部 21もしくは谷部 22において、 複数本の導電部 3と夫々電気的に接続されている。従って、隣り合うハンダランド 4は 空間的に隔離されることとなり、導電部 3あるいはハンダランド 4の各々がショートする こと、いわゆるハンダブリッジが防止される。この際、ハンダランド 4の幅あるいは面積 を確保することができるので、手ノヽンダが容易になる。  The solder land 4 is provided with cream solder, and is electrically connected to the plurality of conductive portions 3 at the peak portion 21 or the valley portion 22. Therefore, the adjacent solder lands 4 are spatially separated, and each of the conductive portions 3 or the solder lands 4 is short-circuited, so-called solder bridge is prevented. At this time, since the width or area of the solder land 4 can be secured, manual soldering is facilitated.
[0038] 次に、図 2を参照してフレキシブル基板 1の断面図について説明をカ卩える。ここに、 図 2は、比較例に係る、フレキシブル基板の I方向(図 1を参照)での断面図である。  Next, with reference to FIG. 2, a description of the cross-sectional view of the flexible substrate 1 will be given. FIG. 2 is a cross-sectional view of the flexible substrate in the I direction (see FIG. 1) according to the comparative example.
[0039] 図 2 (a)に示すように、フレキシブル基板 1は、例えばポリイミドフィルム力 なるベー ス 201と、導電部 3と、例えばポリイミドフィルム力 なり導電部 3を保護するための力 バーレイ 202とが積層されてなる。導電部 3の先端はハンダ付けのために露出したハ ンダランド 4が形成されており、ハンダランド 4において導電部 3にハンダ 41がのつて いる。従って、図 2 (b)に示すように、例えば他のフレキシブル基板 10のようなハンダ 付けの対象物とハンダランド 4でノ、ンダ付けが可能となる。  As shown in FIG. 2 (a), the flexible substrate 1 includes, for example, a base 201 having a polyimide film force, a conductive portion 3, and a force burley 202 having a polyimide film force and protecting the conductive portion 3, for example. Are laminated. A solder land 4 exposed for soldering is formed at the tip of the conductive portion 3, and solder 41 is attached to the conductive portion 3 in the solder land 4. Therefore, as shown in FIG. 2 (b), for example, the soldering object such as another flexible substrate 10 and the solder land 4 can be soldered.
[0040] 以上、図 1及び図 2を用いて説明したように、比較例に係る、フレキシブル基板 1は 、山部 21および谷部 22を有するので、ハンダランド 4の幅あるいは面積を確保し、か つ、ハンダランド同士のショートを防止可能である。そして、このハンダランド 4を用い て他のフレキシブル基板等とのハンダ付けが行われる。  [0040] As described above with reference to FIGS. 1 and 2, the flexible substrate 1 according to the comparative example has the ridges 21 and the valleys 22, so that the width or area of the solder lands 4 is secured, In addition, it is possible to prevent short-circuiting between solder lands. The solder land 4 is used for soldering with another flexible substrate.
[0041] し力しながら、このように山谷形状とすると、図 3に示すように、強度上の問題から、 部品納入時、あるいはリフロー時、組み立て時 (以下、部品納入時等ともいう)に、山 部 21が損傷するおそれがある。例えば、山部 21がめくれる、あるいは千切れるおそ れがあり、その結果不良発生率が上昇するおそれがある。ここに、図 3は、比較例に 係る、フレキシブル基板の山部が損傷した様子を示す平面図である。 [0042] 図 3において、損傷した山部 23に示すように、フレキシブル基板 1の山部 21がー部 損傷している。このため損傷した山部 23には、ハンダランド 4が形成されない。言い 換えれば、クリームハンダがのらない。 [0041] However, if the shape is such a valley and valley, as shown in Fig. 3, due to strength problems, it is necessary to supply parts, reflow, and assembly (hereinafter also referred to as parts delivery). The ridge 21 may be damaged. For example, there is a risk that the mountain part 21 will turn or may be broken, resulting in an increase in the defect rate. FIG. 3 is a plan view showing a state in which the peak portion of the flexible substrate is damaged according to the comparative example. In FIG. 3, as indicated by the damaged peak portion 23, the peak portion 21 of the flexible substrate 1 is damaged. For this reason, the solder land 4 is not formed in the damaged peak portion 23. In other words, cream solder is not applied.
[0043] そこで、本実施例に係るフレキシブル基板 1の構造を、図 4に示す構造とする。ここ に、図 4は、第 1実施例に係る、フレキシブル基板の基本構造を示す平面図である。 なお、図 4において、図 1におけるフレキシブル基板 1の構成と同様の構成には、同 一の参照符号を付し、その説明を適宜省略する。  Therefore, the structure of the flexible substrate 1 according to the present embodiment is the structure shown in FIG. FIG. 4 is a plan view showing the basic structure of the flexible substrate according to the first embodiment. In FIG. 4, the same components as those of the flexible substrate 1 in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
[0044] 本実施例では特に、図 4に示すように、本実施例に係るフレキシブル基板 1は、山 部 21の損傷を回避すべく架橋部 5を更に備える。  In particular, in this embodiment, as shown in FIG. 4, the flexible substrate 1 according to this embodiment further includes a bridging portion 5 in order to avoid damage to the peak portion 21.
[0045] 架橋部 5は、本発明に係る「架橋手段」の一例であり、少なくとも一部の隣り合う山部 21を架橋する。典型的には、隣り合う山部 21を全て架橋する。従って、架橋部 5がな い場合に比べて、部品納入時等に異物が山部 21に引つ力かる確率が低下する。加 えて、仮に異物が山部 21に引つ力かった場合でも、架橋された山部 21が互いに支 え合うため、強度が増加する。従って、めくれ等の損傷を防止することができ、不良発 生率の上昇を抑制可能となる。  The cross-linking part 5 is an example of the “cross-linking means” according to the present invention, and cross-links at least some of the adjacent peak parts 21. Typically, all adjacent peaks 21 are bridged. Therefore, compared to the case where the bridge part 5 is not provided, the probability that the foreign substance is attracted to the peak part 21 at the time of delivery of the parts is reduced. In addition, even if a foreign object is attracted to the peak 21, the cross-linked peaks 21 support each other, and the strength increases. Therefore, it is possible to prevent damage such as turning over, and it is possible to suppress an increase in the defect occurrence rate.
[0046] なお、架橋部 5は、ハンダランド 4のショートを回避すベぐ基板 2と同様の絶縁体で ある。すなわち、架橋部 5と山部 21とは一体であり、いわゆる剛接合されており、ラー メン構造を形成する。従って、軸力、曲げモーメント、せん断力によって、外力に抵抗 することができる。  Note that the bridging portion 5 is an insulator similar to the substrate 2 that avoids short-circuiting of the solder lands 4. That is, the bridging portion 5 and the mountain portion 21 are integral and are so-called rigidly joined to form a ramen structure. Therefore, it can resist external force by axial force, bending moment, and shear force.
[0047] また、架橋部 5があるので、隣り合う山部 21に属するハンダランド 4がショートしない ように注意を払いつつも、これらのハンダランド 4を幅方向に拡大可能である。従って 、作業スペースが確保され、手ハンダが一層容易になる。  [0047] Further, since there is the bridging portion 5, it is possible to expand these solder lands 4 in the width direction while paying attention not to short-circuit the solder lands 4 belonging to the adjacent mountain portions 21. Therefore, a working space is secured and hand soldering is further facilitated.
[0048] 以上、図 1から図 4を参照して説明したように、本実施例に係るフレキシブル基板 1 は架橋部 5を更に備えるので、山部 21の損傷を回避できる。より詳しくは、ハンダラン ド 4の幅あるいは面積を確保し、かつ、ハンダランド 4同士のショートを防止することで 、小型化されたときの作業性を好適に確保しつつも、不良発生率の上昇を抑制可能 となる。この際、比較例と本実施例とにおいて、主に相違するのは、架橋部 5の設計 であり、その他の製造工程はは同様でよい。 [0049] (2)第 2実施例 As described above with reference to FIGS. 1 to 4, since the flexible substrate 1 according to the present embodiment further includes the bridging portion 5, damage to the peak portion 21 can be avoided. More specifically, by ensuring the width or area of the solder lands 4 and preventing the solder lands 4 from shorting together, the workability at the time of miniaturization is suitably secured while the defect occurrence rate is increased. Can be suppressed. At this time, the main difference between the comparative example and the present example is the design of the bridging portion 5, and the other manufacturing steps may be the same. [0049] (2) Second embodiment
第 2実施例に係る基板の一例であるフレキシブル基板について図 1から図 4にカロえ て、図 5を参照して説明する。ここに、図 5は、第 2実施例に係る、フレキシブル基板の 基本構造を示す平面図である。なお、図 5において、図 4におけるフレキシブル基板 1の構成と同様の構成には、同一の参照符号を付し、その説明を適宜省略する。  A flexible substrate, which is an example of a substrate according to the second embodiment, will be described with reference to FIG. FIG. 5 is a plan view showing the basic structure of the flexible substrate according to the second embodiment. In FIG. 5, the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
[0050] 本実施例では特に、図 5に示すように、架橋部 5は、隣り合う山部 21の一部を架橋 する。言い換えれば、隣り合う山部 21の全てが架橋されるているわけではない。  [0050] Particularly in the present embodiment, as shown in Fig. 5, the bridging portion 5 bridges a part of the adjacent peak portions 21. In other words, not all of the adjacent peaks 21 are bridged.
[0051] 以上、図 5を参照して説明したように、両隣の山部 21のうち、一方の山部 21と架橋 されていれば、他方の山部 21と架橋されていなくとも、不良発生率の上昇を大なり小 なり抑制できる。  [0051] As described above with reference to FIG. 5, if both of the adjacent ridges 21 are bridged with one of the ridges 21, a defect occurs even if the bridge is not bridged with the other ridge 21. The increase in rate can be suppressed to a greater or lesser extent.
[0052] (3)第 3実施例  [0052] (3) Third Example
第 3実施例に係る基板の一例であるフレキシブル基板について図 1から図 4にカロえ て、図 6を参照して説明する。ここに、図 6は、第 3実施例に係る、フレキシブル基板の 基本構造を示す平面図である。なお、図 6において、図 4におけるフレキシブル基板 1の構成と同様の構成には、同一の参照符号を付し、その説明を適宜省略する。  A flexible substrate, which is an example of a substrate according to the third embodiment, will be described with reference to FIG. FIG. 6 is a plan view showing the basic structure of the flexible substrate according to the third embodiment. In FIG. 6, the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
[0053] 本実施例では特に、図 6に示すように、架橋部 51の幅が、言い換えれば、山部 21 、谷部 22、及び架橋部 51で囲まれた開口部 6の面積が、図 4におけるそれと比べて 、異なる。具体的には、架橋部 51の幅が狭められ、開口部 6が山部 21の高さ方向に 延長されている。その結果、架橋部 51に用いられる材料量を削減し、コスト削減及び 軽量化を図りつつつも、不良発生率の上昇を大なり小なり抑制できる。逆に、強度を 重視するなら、架橋部 51の幅が広げられ、開口部 6が山部 21の高さ方向に短縮され てもよい。  In the present embodiment, in particular, as shown in FIG. 6, the width of the bridging portion 51, in other words, the area of the opening portion 6 surrounded by the peak portion 21, the valley portion 22, and the bridging portion 51 is shown in FIG. Compared to that in 4 is different. Specifically, the width of the bridging portion 51 is narrowed, and the opening 6 is extended in the height direction of the peak portion 21. As a result, it is possible to reduce the amount of material used for the bridging portion 51 and reduce the cost and weight, while suppressing the increase in the defect occurrence rate to a greater or lesser extent. On the contrary, if importance is attached to the strength, the width of the bridging portion 51 may be widened, and the opening 6 may be shortened in the height direction of the peak portion 21.
[0054] 以上、図 6を参照して説明したように、本実施例に係るフレキシブル基板 1の開口部 6の形状は、設計コンセプトに応じて可変としてよい。例えば、上述した態様以外にも 、円形、三角形、四角形、多角形、楕円形、半円形、任意曲線などの各種の形状か ら選択使用してもよいので、レイアウトの自由度が向上する。  As described above with reference to FIG. 6, the shape of the opening 6 of the flexible substrate 1 according to the present embodiment may be variable according to the design concept. For example, in addition to the above-described aspects, the shape may be selected from various shapes such as a circle, a triangle, a quadrangle, a polygon, an ellipse, a semicircle, and an arbitrary curve, so that the degree of freedom in layout is improved.
[0055] (4)第 4実施例  [0055] (4) Fourth embodiment
第 4実施例に係る基板の一例であるフレキシブル基板について図 1から図 4にカロえ て、図 7を参照して説明する。ここに、図 7は、第 4実施例に係る、フレキシブル基板の 基本構造を示す平面図である。なお、図 7において、図 4におけるフレキシブル基板 1の構成と同様の構成には、同一の参照符号を付し、その説明を適宜省略する。 The flexible substrate, which is an example of the substrate according to the fourth embodiment, is shown in FIGS. This will be described with reference to FIG. FIG. 7 is a plan view showing the basic structure of the flexible substrate according to the fourth embodiment. In FIG. 7, the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
[0056] 本実施例では特に、図 7において、架橋部 52が直線状の一柱構造ではなぐ山部 21の高さ方向に反ったアーチ構造である。従って、軸力、曲げモーメント、せん断力 によって、外力に抵抗することができるので、一柱構造と比べて、強度が上がる。  In this embodiment, in particular, in FIG. 7, the bridge portion 52 is an arch structure that warps in the height direction of the mountain portion 21 that is not a linear single-column structure. Therefore, it can resist external force by axial force, bending moment, and shear force, so the strength is increased compared to the single pillar structure.
[0057] 以上、図 7を参照して説明したように、本実施例に係る架橋部 52は直線状の一柱 構造である必要はない。上述したアーチ構造以外にも、強度を上げ、あるいはタリー ムハンダがのりやすくするような各種構造を採用可能である。  As described above with reference to FIG. 7, the bridging portion 52 according to the present embodiment does not need to have a linear one-column structure. In addition to the arch structure described above, various structures that increase the strength or facilitate the soldering of the term solder can be employed.
[0058] (5)第 5実施例  [0058] (5) Fifth embodiment
第 5実施例に係る基板の一例であるフレキシブル基板について図 1から図 4にカロえ て、図 8を参照して説明する。ここに、図 8は、第 5実施例に係る、フレキシブル基板の 基本構造を示す平面図である。なお、図 8において、図 4におけるフレキシブル基板 1の構成と同様の構成には、同一の参照符号を付し、その説明を適宜省略する。  A flexible substrate, which is an example of a substrate according to the fifth embodiment, will be described with reference to FIG. FIG. 8 is a plan view showing the basic structure of the flexible substrate according to the fifth embodiment. In FIG. 8, the same components as those of the flexible substrate 1 in FIG. 4 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
[0059] 本実施例では特に、図 8において、架橋部 53が隣り合う山部 21の先端から、山部 2 1の高さ方向に所定距離下った部分同士を、すなわち山部 21の中腹同士を架橋し ている。より詳しくは、山部 21のうちハンダランド 4が形成されていない部分同士を架 橋している。あるいは、ハンダランドは、架橋された部分を回避するように形成される。 従って、山部 21のハンダランド 4のハンダが、図 4の架橋部 53を介して、ショートして しまうことを防止する。  In this embodiment, in particular, in FIG. 8, the portions that are lowered by a predetermined distance in the height direction of the ridge portion 21 from the tip of the ridge portion 21 adjacent to the bridging portion 53, that is, the middle portions of the ridge portion 21. Are cross-linked. More specifically, the parts of the mountain 21 where the solder land 4 is not formed are bridged. Alternatively, the solder lands are formed to avoid cross-linked portions. Therefore, it is possible to prevent the solder of the solder land 4 in the mountain portion 21 from being short-circuited via the bridge portion 53 in FIG.
[0060] 以上、図 8を参照して説明したように、本実施例に係るフレキシブル基板 1によると、 めくれ等の不良発生率の上昇を抑制しつつも、ハンダランド同士のショートを一層好 適に防止できる。  [0060] As described above with reference to FIG. 8, according to the flexible substrate 1 of this example, it is more preferable to short-circuit between solder lands while suppressing an increase in the occurrence rate of defects such as turning over. Can be prevented.
[0061] なお、本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書 全体力 読み取れる発明の要旨、あるいは思想に反しない範囲で適宜変更可能で あり、そのような変更を伴うフレキシブル基板もまた、本発明の技術的範囲に含まれる ものである。  It should be noted that the present invention is not limited to the above-described embodiments, but can be appropriately modified within the scope of the appended claims and the entire description. The accompanying flexible substrate is also included in the technical scope of the present invention.
産業上の利用可能性 本発明に係る基板は、例えばフレキシブル基板のような電子部品をノ、ンダ付けする ための基板に利用可能であり、更に BD (Blu-ray Disc)レコーダ等の情報記録装 置に搭載される基盤に利用可能である。 Industrial applicability The substrate according to the present invention can be used as a substrate for attaching electronic components such as a flexible substrate, and is also mounted on an information recording device such as a BD (Blu-ray Disc) recorder. Is available.

Claims

請求の範囲 The scope of the claims
[1] 電子部品をノ、ンダ付けするための基板であって、  [1] A board for mounting electronic components,
前記基板の縁の少なくとも一部に所定ピッチで交互に形成されており、かつ、前記 電子部品がハンダ付けされるハンダランドを夫々有する山部及び谷部と、  Crests and troughs that are alternately formed at a predetermined pitch on at least a part of the edge of the substrate and have solder lands on which the electronic components are soldered, respectively.
前記所定ピッチで形成された前記山部のうち、少なくとも一対を架橋する架橋手段 と  A bridging means for bridging at least a pair of the peaks formed at the predetermined pitch; and
を備えることを特徴とする基板。  A substrate characterized by comprising:
[2] 前記架橋手段は、絶縁体である  [2] The cross-linking means is an insulator.
ことを特徴とする請求項 1に記載の基板。  The substrate according to claim 1.
[3] 前記一対、該一対に挟まれた前記谷部、及び前記一対を架橋する架橋手段によつ て囲まれた開口部の形状は、任意である [3] The shape of the opening surrounded by the pair, the valley between the pair, and the bridging means for bridging the pair is arbitrary.
ことを特徴とする請求項 1又は 2に記載の基板。  The substrate according to claim 1 or 2, wherein
[4] 前記架橋手段は、前記山部の高さ方向に反ったアーチ構造である [4] The bridging means is an arch structure that warps in the height direction of the peak portion.
ことを特徴とする請求項 1又は 2に記載の基板。  The substrate according to claim 1 or 2, wherein
[5] 前記架橋手段は、前記一対に係る前記山部の先端から、前記高さ方向に所定距 離下った部分同士を架橋する [5] The bridging means bridges portions that are separated by a predetermined distance in the height direction from the ends of the peak portions of the pair.
ことを特徴とする請求項 1又は 2に記載の基板。  The substrate according to claim 1 or 2, wherein
[6] 前記ハンダランドは、前記部分を回避するように形成される [6] The solder land is formed so as to avoid the portion.
ことを特徴とする請求項 5に記載の基板。  The substrate according to claim 5.
PCT/JP2006/316384 2006-08-22 2006-08-22 Board WO2008023403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316384 WO2008023403A1 (en) 2006-08-22 2006-08-22 Board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316384 WO2008023403A1 (en) 2006-08-22 2006-08-22 Board

Publications (1)

Publication Number Publication Date
WO2008023403A1 true WO2008023403A1 (en) 2008-02-28

Family

ID=39106497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316384 WO2008023403A1 (en) 2006-08-22 2006-08-22 Board

Country Status (1)

Country Link
WO (1) WO2008023403A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204374A (en) * 1988-02-09 1989-08-16 Canon Inc Structure of connecting part of printed-circuit board
JPH02146627U (en) * 1989-05-15 1990-12-12
JPH04107898A (en) * 1990-08-27 1992-04-09 Canon Inc Printed wiring board
JP2006024813A (en) * 2004-07-09 2006-01-26 Nikon Corp Printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204374A (en) * 1988-02-09 1989-08-16 Canon Inc Structure of connecting part of printed-circuit board
JPH02146627U (en) * 1989-05-15 1990-12-12
JPH04107898A (en) * 1990-08-27 1992-04-09 Canon Inc Printed wiring board
JP2006024813A (en) * 2004-07-09 2006-01-26 Nikon Corp Printed circuit board

Similar Documents

Publication Publication Date Title
JP2007305881A (en) Tape carrier, semiconductor device, and semiconductor module device
JP4740708B2 (en) Wiring board and semiconductor device
JP2002083845A (en) Flexible wiring board, ic chip mounting flexible wiring board, display device using the same, ic chip mounting structure and method for bonding the same
JP2007242942A (en) Electronic device and method of manufacturing same
JP2008210993A (en) Printed wiring board and method of manufacturing the same
WO2011129130A1 (en) Board and method for manufacturing board
KR102382391B1 (en) Printed Circuit Board
CN106604540B (en) Circuit board
WO2008023403A1 (en) Board
JP2004356568A (en) Flexible circuit board
JP2007019550A (en) Manufacturing method of electronic device
JP6497942B2 (en) Electronic control unit
US10181437B2 (en) Package substrate and method of manufacturing package substrate
JP2010147084A (en) Circuit board and flexible substrate
JP5402107B2 (en) Semiconductor device and manufacturing method thereof
JP2010258178A (en) Structure and method for mounting electronic component on circuit board
JP2005116685A (en) Printed wiring board, electronic component module and electronic apparatus
US7277006B2 (en) Chip resistor
JP2007250815A (en) Flexible printed board and electronic component mounting circuit using it
JP6565167B2 (en) Mounting structure
JP2020096029A (en) Application method of material for joining electronic component, and circuit board on which electronic component is mounted
JP4209762B2 (en) Imaging device
WO2020044460A1 (en) Flexible printed board
US20220293346A1 (en) Board terminal electrode component
CN101621889A (en) Printed circuit board and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06782888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06782888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP