WO2008022830A1 - Gasturbinenschaufel mit gekühlter plattform - Google Patents

Gasturbinenschaufel mit gekühlter plattform Download PDF

Info

Publication number
WO2008022830A1
WO2008022830A1 PCT/EP2007/056422 EP2007056422W WO2008022830A1 WO 2008022830 A1 WO2008022830 A1 WO 2008022830A1 EP 2007056422 W EP2007056422 W EP 2007056422W WO 2008022830 A1 WO2008022830 A1 WO 2008022830A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
edge
slot
turbine blade
cooling
Prior art date
Application number
PCT/EP2007/056422
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Michael Dankert
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008022830A1 publication Critical patent/WO2008022830A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the invention relates to a turbine blade for a in particular ⁇ sondere stationary gas turbine, having an attachment area at which a platform and because a wing profile connects with an electrode disposed on the platform acted upon by a hot gas surface um signed- the platform edge front side of a a is be ⁇ adjacent edge surface, wherein in the peripheral surface of at least one utilizatckende located in the direction of the platform edge recess is preceded see ⁇ .
  • Such turbine blades are used in stationary gas turbines. In order for this to withstand the hot temperatures of the working medium of the gas turbine ⁇ , the turbine acting ⁇ feln are cooled. In addition, penetration of hot working medium into the gap formed by two platforms of adjacent turbine blades is avoided by providing one or more sealing sheets in each gap.
  • GB 2 169 356 A discloses the arrangement of two mutually spaced sealing sheets between two adjacent guide vanes. The sealing plates sit snugly in slots, which are each arranged on the opposite end faces of the platforms of adjacent turbine blades. The two sealing plates form a channel through which cooling air can flow along the platform longitudinal edge.
  • EP 1 008 723 A1 also discloses a cooling channel arranged between the platforms of adjacent turbine blades.
  • the cooling channel is formed by slots arranged in the platforms on the front side, which extend along the longitudinal edges of the platforms.
  • sealing strips are provided, which are inserted in the slots. Furthermore, it is known to lock the gap against the entry of hot gas by the blowing out of cooling air.
  • the cooling air can be supplied. Due to the prevailing pressure conditions in the turbine, the cooling air exits from this groove and thus prevents the harmful penetration of hot gas into the gap.
  • the cooling air flowing out of the groove cools the edge of the platform beyond the required requirement.
  • the material temperature near the edge of the platform is thus substantially lower than in the areas of the surface of the platform which are remote from the platform edge.
  • the temperature gradient and occurring the temperature-dependent material expansions can rak ⁇ reindeer, which occurs to wear in the form of crack formation and crack growth at this point may be.
  • the top surface of the platform a coating to protect against corrosion and heat input, in that this coating of flakes off on ⁇ ground locally to great material expansion of the platform, so that the protective effect is lost to the affected areas.
  • the object of the invention is therefore to provide a generic turbine blade for a particular statio ⁇ nary gas turbine, which has a particularly long life on ⁇ .
  • a gattungsge ⁇ bau health turbine blade which has the features of claim 1.
  • An ⁇ It is proposed that at least one of the recesses be formed as a slot with a slot opening provided in the edge surface and with a slot base opposite the slot opening and a supply of coolant in the region of the slot base is provided, wherein the slot is such extending deep into the platform, that the surface of the platform can be cooled convectively by the coolant flowing from the area of the slot bottom to the edge of the platform.
  • the material temperature of the platform is lowered in the region remote from the platform edge due to the cooling provided there, compared with a turbine blade known from the prior art. This is done by adding the coolant before the
  • Blowing is used in the gap formed by two adjacent turbine blades for planar cooling of the platform.
  • the coolant absorbs so much heat energy that its cooling effect at the edge of the platform, at which the coolant leaves the turbine blade, is less intense compared to the turbine blade known from the prior art.
  • the coolant is preheated, so to speak. Accordingly, the platform edge is no longer needed, but cooled as needed.
  • the material temperature of the platform, near the edge of the platform is no longer unduly lowered.
  • the temperature difference in the platform material between the platform edge and the area remote from the platform edge is adjusted, so that lower material stresses and temperature-related strains occur. Wear in the form of cracks thus occurs less often, or if cracks already exist, their growth will take place more slowly than in a known turbine blade.
  • the or each slot each having a slot opening opposite slot bottom, wherein the supply of coolant takes place in the region of the slot bottom.
  • the flat Platt ⁇ form cooling can be done relatively easily in convective manner.
  • the temperatures are lowered in the area remote from the platform edge, resulting in a further homogenization of the platform temperatures leads.
  • the turbine blade according to the invention has a prolonged service life compared with the known turbine blade.
  • the gap between the platforms of adjacent turbine blades can be closed by a sealing element, but the sealing element is then inserted in a separate seat in the platform.
  • the sealing elements are therefore not in the recess respectively. in the slot.
  • a sufficient amount of cooling air can be provided for the blocking of the gap without pressure loss, if in the turbine blade several, stacked inside the platform slots are provided, whose
  • the slot base is at least partially - viewed radially - disposed below the wing profile. This measure ensures that full and area cooling of the platform surface can be achieved and the coolant exiting the slot opening has been heated sufficiently to minimize crack initiation and crack growth at the platform edge.
  • the slot opening is provided in an edge surface adjacent to the longitudinal edge of the platform. An intake of hot gas in the gap formed by the platforms of adjacent turbine blades can thus be avoided, since the flowing out of the slot opening coolant blocks the entry of hot gas.
  • a particularly durable turbine blade can be specified, since there is usually arranged in the loading ⁇ area of the platform edge of damper wires constitute a white ⁇ tere mechanical stress, which, owing to the inventive design of the turbine blade but not savingsdauerverringernd effect.
  • FIG 2 shows the side view of the embodiment shown in FIG 1 Turbi ⁇ nenerinschaufel
  • FIG 3 shows the longitudinal section through a turbine blade ⁇ platform according to FIG 1 and
  • FIG 4 shows the longitudinal section through an alternative designed turbine blade platform.
  • a turbine blade 10 is shown in a perspective view.
  • the cast rotor blade has a designated as a blade root attachment region 12, at which a platform 14 and a wing profile 16 adjoins it.
  • the airfoil 16 During operation of the gas turbine to ⁇ flows a hot working fluid, the airfoil 16 and is thereby guided by the surface 18 of the platform 14 within an annular flow channel, not shown.
  • the surface 18 of the platform 14 is bounded by a circumferential platform edge 20.
  • the peripheral platform edge 20 is in two to each other parallel longitudinal edges 24 and two cross ver ⁇ running transverse edges 26 subdivided.
  • each slot 28 has a slot opening 32 located in the edge surface 22, wherein the slot bottom 34 opposite the slot opening 32 lies so deep inside the platform 14 that it ends near the wing profile 16 or even partially below it, seen radially. Furthermore, as seen in the operating position of the turbine blade 10, channels extending in the radial direction are provided in the form of bores 36 (cf., FIG. 2) through which a coolant flowable on the platform underside 38 can be supplied to the slot 28.
  • the surface 18 exposed to the hot gas of the platform 14 is crust-cooled in places.
  • the coolant flows due to the prevailing pressure gradient to the slot opening 28 and cools the platform 14 convectively.
  • the meanwhile warming coolant locks after the outflow from the slot openings 28 enclosed by two edge surfaces 22 of adjacent turbine blades 10 gap against hot gas intake. Since the coolant has already taken heat energy due to the impingement and the subsequent convective extensive cooling of the platform 14 to the way to the slot opening 32 side, the flat ⁇ shaped edge 20 of the platform longitudinal edge 24 in comparison to a known from the prior art turbine blade is less, but still sufficiently cooled.
  • the temperatures which are set from the blade center in the direction of the platform edge 20 are thus adjusted in a particularly efficient manner. As a result, less temperature-induced stresses in the platform 14, so that cracking delayed and
  • FIG. 3 further shows the section through the longitudinal FIG ⁇ section of the turbine blade according to the invention according to Figure 1, with identical features are designated by like reference numerals.
  • FIG. 4 shows an alternative embodiment of a turbine blade platform 14 according to the invention, in which a meandering slot 28 is cast. Again, the supply of coolant from the platform base 38, wherein the slot 28 extends in the illustrated example partially below the airfoil 16.
  • the invention specifies a turbine blade 10, whose service life is detected by equalizing the temperatures in the platform 14 in the direction of the airfoil 16 toward the platform edge 20 due to an increase in the cooling air temperature at the slot opening 28 relative to a known turbine blade , is extended. An inadmissibly strong cooling of the platform edge 20 is thus avoided.
  • the life, in particular LCF life (low cycle fatigue life) of the turbine blade 10 according to the invention can be further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Eine Turbinenschaufel (10), deren Lebensdauer durch eine Vergleichmäßigung der Temperaturen in der Plattform (14) in Richtung vom Tragflügelprofil (16) hin zum Plattformrand (20) aufgrund eineeiner Anhebung der Kühllufttemperatur beim (10) Austritt am Plattformrand verlängert ist. Die Anhebung der Kühllufttemperatur erfolgt, indem diese zur flächigen Plattformkühlung eingesetzt wird und währenddessen den vom Plattformrand (20) entfernten Bereich der Plattform (14) kühlt. Dementsprechend ist mindestens ein im Plattformrand (20) angeordneter Schlitz (28) vorgesehen, welcher sich vergleichsweise tief - vom Plattformrand (20) aus gesehen - in die Plattform (14) hinein erstreckt. Eine unzulässige starke Kühlung des Plattformrandes (20) kann so vermieden werden.

Description

Beschreibung
GASTURBINENSCHAUFEL MIT GEKÜHLTER PLATTFORM
Die Erfindung betrifft eine Turbinenschaufel für eine insbe¬ sondere stationäre Gasturbine, mit einem Befestigungsbereich, an dem sich eine Plattform und daran ein Tragflügelprofil anschließt, mit einer an der Plattform angeordneten von einem Heißgas beaufschlagbaren Oberfläche, die von einem umlaufen- den Plattformrand mit einer stirnseitigen Randoberfläche be¬ grenzt ist, wobei in der Randoberfläche mindestens eine sich in Richtung des Plattformrands ersteckende Ausnehmung vorge¬ sehen ist.
Derartige Turbinenschaufeln werden in stationären Gasturbinen eingesetzt. Damit diese den heißen Temperaturen des Arbeits¬ mediums der Gasturbine standhalten, sind die Turbinenschau¬ feln gekühlt. Zudem wird ein Eindringen von heißem Arbeitsmedium in den von zwei Plattformen benachbarter Turbinenlauf- schaufeln gebildeten Spalt vermieden, indem im Spalt jeweils ein oder mehrere Dichtbleche vorgesehen sind. Beispielsweise ist aus der GB 2 169 356 A die Anordnung von zwei zueinander beabstandeten Dichtblechen zwischen zwei benachbarten Leitschaufeln bekannt. Die Dichtbleche sitzen passgenau in Schlitzen, die jeweils an den einander gegenüberliegenden Stirnseiten der Plattformen benachbarter Turbinenschaufeln angeordnet sind. Die beiden Dichtbleche bilden einen Kanal, durch den Kühlluft entlang der Plattformlängskante strömen kann .
Auch die EP 1 008 723 Al offenbart einen zwischen den Plattformen benachbarter Turbinenschaufeln angeordneten Kühlkanal. Der Kühlkanal ist dabei von in den Plattformen stirnseitig angeordneten Schlitzen gebildet, welches sich entlang der Längskanten der Plattformen erstrecken. Um
Verluste an Kühlmittel durch den zwischen den Plattformen vorhandenen Spalt zu vermeiden, sind Dichtstreifen vorgesehen, die in den Schlitzen eingesetzt sind. Ferner ist bekannt den Spalt gegen den Einzug von Heißgas durch das Ausblasen von Kühlluft zu sperren. Hierzu ist jeweils eine in der Randoberfläche der Plattform angeordnete Nut vorgesehen, der Kühlluft zuführbar ist. Aufgrund der in der Turbine herrschenden Druckverhältnisse tritt aus dieser Nut die Kühlluft aus und verhindert so das schädliche Eindringen von Heißgas in den Spalt.
Es hat sich jedoch als nachteilig herausgestellt, dass die aus der Nut ausströmende Kühlluft den Plattformrand über den erforderlichen Bedarf hinaus kühlt. Die Materialtemperatur nahe dem Plattformrand ist somit wesentlich geringer als in den Bereichen der Oberfläche der Plattform, welche vom Platt- formrand entfernt liegen. Die dabei auftretenden Temperaturgradienten und auch die temperaturabhängigen Materialdehnungen können an dieser Stelle möglicherweise zu Verschleiß füh¬ ren, welcher in Form von Rissentstehung und Risswachstum auftritt. Des Weiteren kann es der Fall sein, sofern die Ober- fläche der Plattform eine Beschichtung zum Schutz vor Korrosion und Wärmeeintrag aufweist, dass diese Beschichtung auf¬ grund der zu großen Materialdehnungen der Plattform lokal abplatzt, wodurch die Schutzwirkung an den betroffenen Stellen verloren geht.
Aufgabe der Erfindung ist daher die Bereitstellung einer gattungsgemäßen Turbinenschaufel für eine insbesondere statio¬ näre Gasturbine, die eine besonders lange Lebensdauer auf¬ weist .
Die Aufgabe wird durch die Bereitstellung einer gattungsge¬ mäßen Turbinenschaufel gelöst, welche die Merkmale des An¬ spruchs 1 aufweist. Es wird vorgeschlagen, dass zumindest eine der Ausnehmungen als Schlitz mit einer in der Randoberfläche vorgesehenen Schlitzöffnung und mit einem der Schlitzöffnung gegenüberliegenden Schlitzgrund ausgebildet und eine Zuführung von Kühlmittel im Bereich des Schlitzgrundes vorgesehen ist, wobei sich der Schlitz derart tief in die Plattform hinein erstreckt, dass durch das vom Bereich des Schlitzgrunds zum Plattformrand hin strömende Kühlmittel die Oberfläche der Plattform flächig konvektiv kühlbar ist.
Mit der Erfindung wird erreicht, dass die Materialtemperatur der Plattform im vom Plattformrand entfernten Bereich aufgrund der dort vorgesehenen Kühlung abgesenkt wird, verglichen mit einer aus dem Stand der Technik bekannten Turbinen- schaufei. Dies geschieht, indem das Kühlmittel vor dem
Ausblasen in den von zwei benachbarten Turbinenschaufeln gebildeten Spalt zur flächigen Kühlung der Plattform eingesetzt wird. Dabei nimmt das Kühlmittel so viel Wärmeenergie auf, dass seine Kühlwirkung am Plattformrand, an der das Kühlmittel die Turbinenschaufel verlässt, verglichen mit der aus dem Stand der Technik bekannten Turbinenschaufel, weniger intensiv ist. Das Kühlmittel wird sozusagen vorgewärmt. Dementsprechend wird der Plattformrand nicht mehr über Bedarf, sondern bedarfsgerecht kühlt. Die Materialtemperatur der Plattform, nahe dem Plattformrand wird nicht mehr unzulässig stark abgesenkt. Somit wird die Temperaturdifferenz im Plattformmaterial zwischen dem Plattformrand und dem vom Plattformrand entfernten Bereich angeglichen, so dass geringere Materialspannungen und temperaturbehaftete Dehnungen auftreten. Verschleiß in Form von Rissen tritt somit auch seltener auf, bzw. sofern Risse bereits vorhanden sind, wird deren Wachstum langsamer stattfinden als bei einer bekannten Turbinenschaufel.
Um eine ausreichende Erwärmung der Kühlluft und gleichzeitig eine ausreichende Kühlung der von dem Plattformrand entfern¬ ten Oberfläche der Plattform zu erzielen, weist der oder jeder Schlitz jeweils einen der Schlitzöffnung gegenüberliegenden Schlitzgrund auf, wobei die Zuführung von Kühlmittel im Bereich des Schlitzgrundes erfolgt. Die flächige Platt¬ formkühlung kann in konvektiver Art und Weise vergleichsweise einfach erfolgen. Zudem werden dadurch die Temperaturen im vom Plattformrand entfernten Bereich gesenkt, was zu einer weiteren Vergleichmäßigung der Plattformtemperaturen führt.
Folglich weist die erfindungsgemäße Turbinenschaufel eine verlängerte Lebensdauer gegenüber der bekannten Turbinen- schaufei auf.
Prinzipiell kann dabei der Spalt zwischen den Plattformen benachbarter Turbinenschaufeln durch ein Dichtelement verschlossen sein, wobei jedoch das Dichtelement dann in einem separaten Sitz in der Plattform eingesetzt ist. Die Dichtelemente sitzen also nicht in der Ausnehmung resp. in dem Schlitz.
Weitere vorteilhafte Ausgestaltungen sind in den Unteransprü- chen angegeben.
Eine ausreichende Menge an Kühlluft kann für die Sperrung des Spaltes ohne Druckverlust bereitgestellt werden, wenn in der Turbinenschaufel mehrere, innerhalb der Plattform übereinander gestapelte Schlitze vorgesehen sind, deren
Schlitzöffnungen in der Randoberfläche des Plattformrandes münden. Zweckmäßigerweise weisen die Schlitze unter¬ schiedliche Schlitztiefen, von der Randoberfläche aus gese¬ hen, auf.
Vorzugsweise ist der Schlitzgrund zumindest teilweise - radial gesehen - unterhalb des Tragflügelprofils angeordnet. Durch diese Maßnahme wird gewährleistet, dass eine vollständige und flächige Kühlung der Plattformoberfläche erreicht werden kann und das an der Schlitzöffnung austretende Kühlmittel ausreichend erwärmt wurde, um Rissentstehung und Risswachstum an der Plattformkante zu minimieren .
Zweckmäßigerweise ist die Schlitzöffnung in einer an der Längskante der Plattform angrenzenden Randoberfläche vorgesehen. Ein Einzug von Heißgas in den von den Plattformen benachbarter Turbinenschaufeln gebildeten Spalt kann somit vermieden werden, da das aus der Schlitzöffnung strömende Kühlmittel den Eintritt von Heißgas blockiert.
Insbesondere, wenn die Turbinenschaufel als Laufschaufel für eine Turbine ausgebildet ist, kann eine besonders langlebige Turbinenschaufel angegeben werden, da üblicherweise im Be¬ reich des Plattformrands angeordnete Dämpferdrähte eine wei¬ tere mechanische Belastung darstellen, die sich aufgrund der erfindungsgemäßen Ausgestaltung der Turbinenschaufel jedoch nicht lebensdauerverringernd auswirkt.
Die Erfindung wird anhand einer Zeichnung erläutert. Es zeigen:
FIG 1 eine Turbinenlaufschaufel in einer perspektivischen Darstellung,
FIG 2 die Seitenansicht der in FIG 1 dargestellten Turbi¬ nenlaufschaufel,
FIG 3 den Längsschnitt durch eine Turbinenlaufschaufel¬ plattform gemäß FIG 1 und
FIG 4 den Längsschnitt durch eine alternative ausgestaltete Turbinenschaufelplattform.
In FIG 1 ist eine Turbinenlaufschaufel 10 in perspektivischer Darstellung gezeigt. Die gegossene Laufschaufei weist einen als Laufschaufelfuß bezeichneten Befestigungsbereich 12 auf, an dem sich eine Plattform 14 sowie daran ein Tragflügelprofil 16 anschließt. Während des Betriebes der Gasturbine um¬ strömt ein heißes Arbeitsmedium das Tragflügelprofil 16 und wird dabei auch von der Oberfläche 18 der Plattform 14 innerhalb eines ringförmigen, nicht dargestellten Strömungskanals geführt. Die Oberfläche 18 der Plattform 14 ist von einem um¬ laufenden Plattformrand 20 begrenzt. Am Plattformrand 20 grenzt eine ebenfalls umlaufende stirnseitige Randoberfläche 22 an. Der umlaufende Plattformrand 20 ist in zwei zueinander parallel verlaufende Längskanten 24 und zwei dazu quer ver¬ laufende Querkanten 26 unterteilbar.
In der zur Längskante 24 angrenzenden Randoberfläche 22 sind jeweils als Schlitze 28 ausgebildete Ausnehmungen 30 vorgese¬ hen, deren Schlitztiefe derart gewählt ist, dass sie ver¬ gleichsweise tief in die Plattform 14, bis weit vom Platt¬ formrand 20 weg, hineinragen. Jeder Schlitz 28 weist eine in der Randoberfläche 22 befindliche Schlitzöffnung 32 auf, wo- bei der der Schlitzöffnung 32 gegenüberliegende Schlitzgrund 34 derart tief innerhalb der Plattform 14 liegt, dass dieser nahe dem Tragflügelprofil 16 oder sogar teilweise darunter endet, radial gesehen. Des Weiteren sind, in der Betriebslage der Turbinenschaufel 10 gesehen, in Radialrichtung verlau- fende Kanäle in Form von Bohrungen 36 vorgesehen (vgl. FIG 2) , durch die ein auf der Plattformunterseite 38 strömbares Kühlmittel dem Schlitz 28 zugeführt werden kann. Dabei wird die dem Heißgas ausgesetzte Oberfläche 18 der Plattform 14 stellenweise prallgekühlt. Nach erfolgter Prallkühlung strömt das Kühlmittel aufgrund des herrschenden Druckgefälles zur Schlitzöffnung 28 hin und kühlt dabei die Plattform 14 konvektiv. Das sich währenddessen erwärmende Kühlmittel sperrt nach dem Ausströmen aus den Schlitzöffnungen 28 den von zwei Randoberflächen 22 benachbarter Turbinenschaufeln 10 eingeschlossenen Spalt gegen Heißgaseinzug. Da das Kühlmittel aufgrund der Prallkühlung und der anschließenden konvektiven flächigen Kühlung der Plattform 14 zum Weg zur Schlitzöffnung 32 hin bereits Wärmeenergie aufgenommen hat, wird der Platt¬ formrand 20 der Plattformlängskante 24 im Vergleich zu einer aus dem Stand der Technik bekannten Turbinenschaufel weniger, aber noch ausreichend gekühlt. Die Temperaturen, welche sich von der Schaufelmitte in Richtung Plattformrand 20 gesehen einstellen, werden somit besonders effizient angeglichen. Dadurch entstehen weniger temperaturbedingte Spannungen in der Plattform 14, so dass Rissentstehung verzögert und
Risswachstum verlangsamt abläuft, verglichen mit einer aus dem Stand der Technik bekannten Turbinenschaufel. Des Weiteren zeigt FIG 3 den Ausschnitt durch den Längs¬ schnitt der erfindungsgemäßen Turbinenschaufel gemäß FIG 1, wobei identische Merkmale mit gleichen Bezugszeichen versehen sind.
Daneben zeigt FIG 4 eine alternative Ausgestaltung einer erfindungsgemäßen Turbinenlaufschaufelplattform 14, in der ein mäanderförmiger Schlitz 28 eingegossen ist. Auch hier erfolgt die Zuführung von Kühlmittel von der Plattformunterseite 38, wobei der Schlitz 28 im dargestellten Beispiel teilweise unterhalb des Tragflügelprofils 16 verläuft .
Insgesamt wird mit der Erfindung eine Turbinenschaufel 10 an- gegeben, deren Lebensdauer durch eine Vergleichmäßigung der Temperaturen in der Plattform 14 in Richtung vom Tragflügelprofil 16 hin zum Plattformrand 20 aufgrund einer Anhebung der Kühllufttemperatur an der Schlitzöffnung 28, bezogen auf eine bekannte Turbinenschaufel, erfasst wird, verlängert ist. Eine unzulässig starke Kühlung des Plattformrands 20 wird so vermieden. Mit der vorgeschlagenen Maßnahme kann die Lebensdauer, insbesondere auch LCF-Lebensdauer (Low Cycle Fatigue- Lebensdauer) der erfindungsgemäßen Turbinenschaufel 10 weiter erhöht werden.

Claims

Patentansprüche
1. Turbinenschaufel (10) für eine insbesondere stationäre Gasturbine, mit einem Befestigungsbereich (12), an dem sich eine Plattform (14) und daran ein Tragflügelprofil (16) anschließt, mit einer an der Plattform (14) angeordneten, von einem Heißgas beaufschlagbaren Oberfläche (18), die von einem umlaufenden Plattformrand (20) mit einer stirnseitigen Randoberfläche (22) begrenzt ist, wobei in der Randoberfläche (22) mindestens eine sich in Richtung des Plattformrands (20) erstreckende Ausnehmung (30) vorgesehen ist, dadurch gekennzeichnet, dass zumindest eine der Ausnehmungen (30) als Schlitz (28) mit einer in der Randoberfläche (22) vorgesehenen Schlitzöffnung (32) und mit einem der Schlitzöffnung (32) gegenüberliegenden Schlitzgrund (34) ausgebildet und eine
Zuführung von Kühlmittel im Bereich des Schlitzgrundes (34; vorgesehen ist, wobei sich der Schlitz (28) derart tief in die Plattform (14) hinein erstreckt, dass durch das vom Bereich des Schlitzgrunds (34) zum Plattformrand (20) hin strömende
Kühlmittel die Oberfläche (18) der Plattform (14) flächig konvektiv kühlbar ist.
2. Turbinenschaufel (10) nach Anspruch 1, bei der mehrere innerhalb der Plattform (14) übereinander gestapelte Schlitze (28) vorgesehen sind.
3. Turbinenschaufel (10) nach Anspruch 2, bei der die Schlitze (28) unterschiedliche Schlitztiefen, von der Randoberfläche (22) aus gesehen, aufweisen.
4. Turbinenschaufel (10) nach Anspruch 1, 2 oder 3, bei der der Schlitzgrund (34) zumindest teilweise - radial gesehen - unterhalb des Tragflügelprofils (16) angeordnet ist .
5. Turbinenschaufel (10) nach Anspruch 1, 2, 3 oder 4, bei der die Schlitzöffnung (32) in einer an der Längskante (24) der Plattform (14) angrenzenden Randoberfläche (22) vorgesehen ist.
6. Turbinenschaufel (10) nach einem der vorangehenden Ansprüche, die als Laufschaufei ausgebildet ist.
PCT/EP2007/056422 2006-08-24 2007-06-27 Gasturbinenschaufel mit gekühlter plattform WO2008022830A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06017639.3 2006-08-24
EP06017639A EP1892383A1 (de) 2006-08-24 2006-08-24 Gasturbinenschaufel mit gekühlter Plattform

Publications (1)

Publication Number Publication Date
WO2008022830A1 true WO2008022830A1 (de) 2008-02-28

Family

ID=37685118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/056422 WO2008022830A1 (de) 2006-08-24 2007-06-27 Gasturbinenschaufel mit gekühlter plattform

Country Status (2)

Country Link
EP (1) EP1892383A1 (de)
WO (1) WO2008022830A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0910177D0 (en) * 2009-06-15 2009-07-29 Rolls Royce Plc A cooled component for a gas turbine engine
US10364680B2 (en) * 2012-08-14 2019-07-30 United Technologies Corporation Gas turbine engine component having platform trench

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915279A (en) * 1953-07-06 1959-12-01 Napier & Son Ltd Cooling of turbine blades
US3182955A (en) * 1960-10-29 1965-05-11 Ruston & Hornsby Ltd Construction of turbomachinery blade elements
GB2169356A (en) * 1984-12-17 1986-07-09 United Technologies Corp Coolable stator assembly for a gas turbine engine
EP0357984A1 (de) * 1988-08-31 1990-03-14 Westinghouse Electric Corporation Gasturbine mit einem gekühlten Leitschaufeldeckring
US5639216A (en) * 1994-08-24 1997-06-17 Westinghouse Electric Corporation Gas turbine blade with cooled platform
EP1008723A1 (de) * 1998-12-10 2000-06-14 ABB Alstom Power (Schweiz) AG Plattformkühlung in Turbomaschinen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915279A (en) * 1953-07-06 1959-12-01 Napier & Son Ltd Cooling of turbine blades
US3182955A (en) * 1960-10-29 1965-05-11 Ruston & Hornsby Ltd Construction of turbomachinery blade elements
GB2169356A (en) * 1984-12-17 1986-07-09 United Technologies Corp Coolable stator assembly for a gas turbine engine
EP0357984A1 (de) * 1988-08-31 1990-03-14 Westinghouse Electric Corporation Gasturbine mit einem gekühlten Leitschaufeldeckring
US5639216A (en) * 1994-08-24 1997-06-17 Westinghouse Electric Corporation Gas turbine blade with cooled platform
EP1008723A1 (de) * 1998-12-10 2000-06-14 ABB Alstom Power (Schweiz) AG Plattformkühlung in Turbomaschinen

Also Published As

Publication number Publication date
EP1892383A1 (de) 2008-02-27

Similar Documents

Publication Publication Date Title
EP1757773B1 (de) Hohle Turbinenschaufel
EP1895102B1 (de) Beschichtete Turbinenschaufel
DE69915786T2 (de) Turbinenschaufel mit gekühlter Plattform
EP1907670B1 (de) Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel
EP2087206B1 (de) Turbinenschaufel
DE60213328T2 (de) Gekühlte hohle Schaufelspitzenabdeckung einer Turbinenschaufel
DE3102575C2 (de)
EP1745195B1 (de) Strömungsmaschinenschaufel
DE19809008C2 (de) Gasturbinenschaufel
DE102006004437A1 (de) Plattform einer Laufschaufel einer Gasturbine, Verfahren zur Herstellung einer Laufschaufel, Dichtungsplatte und Gasturbine
DE19615549B4 (de) Vorrichtung zum thermischen Schutz eines Rotors eines Hochdruckverdichters
DE60035247T2 (de) Gasturbinenschaufel
WO2010149528A1 (de) Ringförmiger strömungskanalabschnitt für eine turbomaschine
EP3762587B1 (de) Schaufelblatt für eine turbinenschaufel
EP1905950A1 (de) Laufschaufel für eine Turbine
DE60201325T2 (de) Hochdruck-Turbinenschaufel mit gekühlter Abströmkante
EP2805023A1 (de) Turbinenschaufel sowie zugehöriges verfahren zum herstellen einer turbinenschaufel
WO2008022830A1 (de) Gasturbinenschaufel mit gekühlter plattform
DE19940556B4 (de) Vorrichtung zum Kühlen von Leit- oder Laufschaufeln in einer Gasturbine
EP1857635A1 (de) Turbinenschaufel für eine Gasturbine
DE102009044584B4 (de) Schaufelanordnung mit Kühlöffnungen für ein Turbinentriebwerk
EP3312388A1 (de) Pultdach dichtfin
EP3232001A1 (de) Laufschaufel für eine turbine
WO2015063021A1 (de) Turbinenschaufel mit einer mittigen ausblasung an der hinterkante
EP3293356B1 (de) Laufschaufel für eine turbomaschine mit beweglich gelagertem prallkühleinsatz sowie zugehöriges herstellungsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07786862

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07786862

Country of ref document: EP

Kind code of ref document: A1