EP1757773B1 - Hohle Turbinenschaufel - Google Patents

Hohle Turbinenschaufel Download PDF

Info

Publication number
EP1757773B1
EP1757773B1 EP05018595A EP05018595A EP1757773B1 EP 1757773 B1 EP1757773 B1 EP 1757773B1 EP 05018595 A EP05018595 A EP 05018595A EP 05018595 A EP05018595 A EP 05018595A EP 1757773 B1 EP1757773 B1 EP 1757773B1
Authority
EP
European Patent Office
Prior art keywords
profile
turbine blade
slot
profile wall
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05018595A
Other languages
English (en)
French (fr)
Other versions
EP1757773A1 (de
Inventor
Fathi Ahmad
Michael Dr. Dankert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP05018595A priority Critical patent/EP1757773B1/de
Priority to DE502005003344T priority patent/DE502005003344D1/de
Priority to ES05018595T priority patent/ES2303163T3/es
Priority to JP2006228883A priority patent/JP4689558B2/ja
Priority to CNA2006101463720A priority patent/CN1936273A/zh
Priority to US11/510,239 priority patent/US7845905B2/en
Publication of EP1757773A1 publication Critical patent/EP1757773A1/de
Application granted granted Critical
Publication of EP1757773B1 publication Critical patent/EP1757773B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades

Definitions

  • the invention relates to a hollow turbine blade with an airfoil profile formed by a suction-side profile wall and a pressure-side profile wall and having a profile height directed along a blade axis from a platform to a profile tip, with at least one support rib provided in the interior of the turbine blade which connects the pressure-side profile wall with the suction-side profile wall in each case in a connection region and with at least one slot provided in the profile wall on the hot gas side and extending along the blade axis. Furthermore, the invention relates to the use of a generic turbine blade.
  • the object of the invention is therefore to provide a turbine blade with extended life.
  • the object is achieved by a generic turbine blade in which the slot opposite hot gas side in the profile wall of the connecting rib formed by the support rib and the profile wall.
  • the invention is based on the recognition that the material of the airfoil profile heats up due to the outside flowing hot gas.
  • the extending between the pressure-side profile wall and the suction-side profile wall inside support rib is colder than the heated material of the profile walls.
  • the support rib merges integrally into the pressure-side or suction-side profile wall, heat energy is locally conducted from the respective profile wall into the support rib via the inner connection region and dissipated, so that a reduced material temperature along the overflow in the profile wall in the mouth region of the support rib Profile height extending connection area occurs.
  • the profile wall is hotter in many areas. As a result, thermal stresses occur in the material, which can cause crack generation and promote crack growth.
  • the invention proposes that the slot opposite the hot gas side in the profile wall of the connecting rib formed by the support rib and the profile wall.
  • the slot relieves the material by allowing locally larger thermal expansion of the profile wall.
  • the relief slot leads to a life-prolonging reduction of the thermally induced stresses in the profile wall.
  • the thermal stresses still occurring in the airfoil then occur in an order of magnitude that is harmless to the material. Cracks and / or crack growth are less likely to occur at this point, extending the life of the turbine blade.
  • the slot can also serve as a crack stopper or
  • Crack limiter serve, which in turn can extend the life of the turbine blade.
  • a gas turbine equipped with this long-life turbine blade has a longer operating time and a shorter service life, since the turbine blades are less likely to be examined for cracks with critical lengths and replaced if necessary.
  • the maintenance costs of gas turbines can be lowered and their cost-effectiveness can be further improved.
  • the slot extends along the blade axis and has at least a length of 10%, preferably at least 20% of the profile height.
  • this measure extends the service life of the gas turbine, since the support ribs provided in the interior of the turbine blade also extend along the blade axis and connect the pressure-side profile wall with the suction-side profile wall in each case in a connection region.
  • the slot or slits may also extend into the transition region.
  • the transition region can be protected from cracking.
  • crack propagation is delayed or limited in the transition region.
  • the slot provided in the hot gas-circumscribed outer surface can also extend beyond the transition region into the platform.
  • the locally occurring cold entry ie the heat extraction locally occurring due to the cooler support rib
  • the locally occurring cold entry can be lowered in a particularly effective manner, whereby the material of the profile wall, between the connection region and the outer surface opposite thereto, in comparison to The state of the art is warmer.
  • the thermal stresses are reduced, which leads to an extension of the service life of the turbine blade.
  • the slot is filled with a filler material to avoid possibly occurring aerodynamic losses in the hot gas due to edges.
  • the filling material is softer than the material of the profile wall. The occurring thermally induced strains of the profile wall can be compensated particularly well in this case of the soft filler.
  • FIG. 1 shows a gas turbine 1 in a longitudinal partial section. It has inside a rotatably mounted about a rotation axis 2 rotor 3, which is also referred to as a turbine runner. Along the rotor 3 successive an intake 4, a compressor 5, a toroidal annular combustion chamber 6 with a plurality of rotationally symmetrical to each other arranged burners 7, a turbine unit 8 and an exhaust housing 9.
  • the annular combustion chamber 6 forms a combustion chamber 17, which with a annular hot gas channel 18 communicates.
  • There four successive turbine stages 10 form the turbine unit 8. Each turbine stage 10 is formed of two blade rings.
  • vanes 13 As seen in the flow direction of a hot gas 11 produced in the annular combustion chamber 6, follows in the hot gas channel 18 in each case one row of vanes 13 a row 14 formed of blades 15.
  • the vanes 12 are attached to the stator, whereas the blades 15 a row 14 mounted by a turbine disk on the rotor 3 are.
  • a generator or a working machine (not shown) is coupled.
  • FIG. 2 shows a turbine blade 30 according to the invention in a perspective view.
  • the turbine blade 30 has a platform 32, on the surface 34 of which a hot air 11 umströmbares airfoil 36 is arranged.
  • the airfoil 36 extends from a leading edge 38 to a trailing edge 40. It also has an intake side profile wall 42 extending therebetween and a pressure side profile wall 44 also extending therebetween.
  • three cavities 46 are provided, which are separated from each other by two support ribs 48.
  • the support ribs 48 connect the suction-side profile wall 42 with the pressure-side profile wall 44 and serve to increase the rigidity of the airfoil profile 36.
  • the turbine blade 30 is typically manufactured by a casting process. In a casting apparatus three casting cores are used for this purpose, which are removed after the manufacture of the turbine blade 30 from this. At this point, the cavities remain 46, between which the support ribs 48 are arranged. Therefore, with cast turbine blade 30, the support ribs 48 integrally merge into and interconnect with the suction and / or pressure side profile walls 42, 44 in a connection region 50, providing particularly good thermal coupling of the profile wall 42, 44 to the support rib.
  • the airfoil 36 surrounded by the hot gas 11 is completely heated.
  • a temperature profile has hitherto formed which has a local temperature minimum in the region of each support rib 48. This caused by the cooler support rib 48 uneven heating of the airfoil profile 36 caused in the near-surface portion of the profile walls 42, 44 so large, thermally induced stresses that there cracks could occur and crack growth occurred more. This limited the life of the known turbine blade.
  • the slot 56 provided in a profile wall 42, 44 is now arranged in a section of the profile wall 42, 44 which corresponds to the connection area 50 and thus also the support rib 48 is opposite.
  • the slot 56 raises the local temperature minimum occurring in its area since the thermal conductivity of the connection area 50 has been reduced due to the reduced cross-section. Accordingly, the temperature gradients along the tread walls 42, 44 are reduced from the leading edge 38 to the trailing edge 40, which reduces stress in the portion having the slot 50. The thermal stresses are then at a harmless level and the material of the airfoil 36 can thereby withstand the loads occurring longer.
  • the slots 56 have a minimum length L, which corresponds to at least 10%, preferably at least 20% of the height H of the airfoil 36.
  • the height H of the airfoil 36 is determined between the surface 34 of the platform 32 and the apex 58 of the airfoil 36.
  • the slot 56 can extend into a rounded transition region 60, which is arranged between the platform 32 and the airfoil profile 36.
  • This configuration of the slots 56 is represented by the contours 62 shown in dashed line style.
  • a particularly good protection against crack-like wear can be achieved if the slot 62 also extends into the platform 32.
  • FIG. 3 shows a section through the turbine blade 30 according to the invention along the section line III FIG. 2 ,
  • the turbine blade 30 can be designed both as a moving blade and / or as a guide blade for a particular stationary gas turbine 1.
  • the airfoil profile 36 shown in cross-section shows the leading edge 38, the trailing edge 40, the suction-side profile wall 42, the pressure-side profile wall 44 and two support ribs 48 separating the cavities 46 which merge into the profile walls 42, 44 in a connection region 50.
  • the slots shown 56 are filled with a filler, whereby a particular aerodynamic surface contour of the airfoil 36 can bring about. Transverse to the flow direction of the hot gas 11 extending projections and edges are thereby avoided in the profile walls 42, 44.
  • the slots 56 each protrude into the profile walls 42, 44 with a penetration depth E. This can be so large that the slots 56 protrude into the connection region 50 and possibly even beyond it into the support ribs 48. This ensures that the temperature difference along the airfoil profile 36 from the leading edge 38 to the trailing edge 48 is made particularly effective, so as to further increase the life of the turbine blade 30.
  • the invention is particularly effective when the hollow turbine blade 30 and the airfoil profile 36 are flowed through by a coolant, for example compressor air taken from the compressor 5 of the gas turbine 1.
  • a coolant for example compressor air taken from the compressor 5 of the gas turbine 1.
  • the profile walls 42, 44 are cooled from the inside, as well as the support ribs 48.
  • the unwanted local cold entry or the local heat removal from the profile wall 42, 44 via the connecting portion 50 and the support ribs 48 is due to the particularly good thermoelectric coupling particularly effective. Accordingly, the temperature differences along the profile walls 42, 44 and thus also the thermal stresses in an internally cooled turbine blade 30 are particularly large.
  • the life, in particular of internally cooled turbine blades 30 can be extended particularly effective with the invention.
  • the serving for thermal relief slots 56 may also be provided in only one profile wall, for example, the suction-side profile wall 42 or the pressure-side profile wall 44.
  • the slots 56, 62 serve as boundaries for cracks occurring in the adjacent blade material. For example, if in the region of the central cavity 46 in one of the two profile walls 42, 44, a crack is present and this lengthens in the flow direction of the hot gas 11, this forcibly increased to a maximum of one of the two slots 56. The extension of the crack on the slot 56 is not possible.
  • the invention provides a measure for equalizing the thermal stress in a wing profile 36 of a turbine blade 30 in order to increase the service life of the turbine blade 30 and, accordingly, the operating times of a gas turbine 1 equipped therewith.
  • the invention proposes that the hollow turbine blade 30 in the region of the support ribs 48, which has a suction-side profile wall 42 with a pressure-side profile wall 44 in each case connect a connecting portion 50 together, has hot gas side arranged slots 56 for relief.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung betrifft eine hohle Turbinenschaufel, mit einem von einer saugseitigen Profilwand und einer druckseitigen Profilwand gebildeten und von einem Heißgas umströmbaren Tragflächenprofil, welches von einer Plattform bis zu einer Profilspitze eine entlang einer Schaufelachse gerichtete Profilhöhe aufweist, mit mindestens einer im Inneren der Turbinenschaufel vorgesehenen Stützrippe, die die druckseitige Profilwand mit der saugseitigen Profilwand in jeweils einem Verbindungsbereich verbindet sowie mit mindestens einem in der Profilwand heißgasseitig vorgesehenen sich entlang der Schaufelachse erstreckenden Schlitz. Ferner betrifft die Erfindung die Verwendung einer gattungsgemäßen Turbinenschaufel.
  • Aus der EP 1 508 399 A1 ist eine Turbinenschaufel für eine Gasturbine bekannt, die zur Verhinderung von unzulässig großen Rissen deren Wachstum durch einen im Bereich der Schaufelvorderkante verlaufenden Schlitz räumlich begrenzt. An der Schaufelvorderkante entstandene Risse können somit in axialer Richtung nur maximal bis zum Schlitz anwachsen. Dies führt zu einer verlängerten Lebensdauer der Turbinenschaufel.
  • Es hat sich jedoch herausgestellt, dass Rissentstehung - in Strömungsrichtung gesehen - auch hinter dem Schlitz, im mittleren Bereich des Schaufelprofils, auftreten kann. Die dort entstehenden Risse können sich anschließend in Richtung der Hinterkante ausbreiten. Weist ein derartiger Riss eine Länge auf, die größer ist als eine maximal zulässige kritische Risslänge, so ist ein sicherer Betrieb einer damit ausgestatteten Gasturbine nicht mehr gewährleistet, so dass diese Turbinenschaufel ausgetauscht werden muss.
  • Aufgabe der Erfindung ist daher die Bereitstellung einer Turbinenschaufel mit verlängerter Lebensdauer.
  • Die Aufgabe wird durch eine gattungsgemäße Turbinenschaufel gelöst, bei der der Schlitz heißgasseitig in der Profilwand dem von der Stützrippe und der Profilwand gebildeten Verbindungsbereich gegenüberliegt.
  • Die Erfindung geht von der Erkenntnis aus, dass das Material des Tragflächenprofils sich aufgrund des außen entlang strömenden Heißgases erwärmt. Die zwischen der druckseitigen Profilwand und der saugseitigen Profilwand im Inneren verlaufende Stützrippe ist dagegen kälter als das aufgeheizte Material der Profilwände. Da jedoch die Stützrippe in die druckseitige bzw. saugseitige Profilwand integral übergeht, wird lokal Wärmeenergie über den innen liegenden Verbindungsbereich aus der jeweiligen Profilwand in die Stützrippe geleitet und abgeführt, so dass im Mündungsbereich der Stützrippe in die Profilwand eine verringerte Materialtemperatur entlang des sich über die Profilhöhe erstreckenden Verbindungsbereichs auftritt. In Querrichtung zur Schaufelachse ist die Profilwand dagegen in weiten Bereichen heißer. Folglich treten thermisch bedingte Spannungen im Material auf, die Risserzeugung hervorrufen und Risswachstum begünstigen können.
  • Um diese thermisch bedingten und den Verschleiß hervorrufenden Spannungen im Material der Profilwand zu reduzieren, schlägt die Erfindung vor, dass der Schlitz heißgasseitig in der Profilwand dem von der Stützrippe und der Profilwand gebildeten Verbindungsbereich gegenüberliegt. Der Schlitz entlastet das Material, indem dieser lokal größere thermisch bedingte Dehnungen der Profilwand ermöglicht. Infolgedessen führt der Entlastungsschlitz zu einer lebensdauerverlängernden Verminderung der thermisch bedingten Spannungen in der Profilwand. Die weiterhin im Tragflächenprofil auftretenden thermischen Spannungen treten dann in einer Größenordnung auf, die unschädlich für das Material sind. An dieser Stelle kommt es seltener zu Rissen und/oder Risswachstum, wodurch die Lebensdauer der Turbinenschaufel verlängert wird. Außerdem kann der Schlitz darüber hinaus als Rissstopper bzw.
  • Rissbegrenzer dienen, wodurch wiederum die Lebensdauer der Turbinenschaufel verlängert werden kann. Eine mit dieser langlebigen Turbinenschaufel ausgestattete Gasturbine weist eine längere Betriebszeit und eine verkürzte Standzeit auf, da die Turbinenschaufeln seltener auf Risse mit kritischen Längen untersucht und ggf. ausgetauscht werden muss. Insofern können mit der Erfindung auch die Wartungskosten von Gasturbinen gesenkt und deren Wirtschaftlichkeit weiter verbessert werden.
  • Vorteilhafte Ausgestaltungen werden in den Unteransprüchen angegeben.
  • Vorzugsweise erstreckt sich der Schlitz entlang der Schaufelachse und weist mindestens eine Länge von 10 %, vorzugsweise von mindestens 20 % der Profilhöhe auf. Insbesondere diese Maßnahme verlängert die Lebensdauer der Gasturbine, da sich die im Inneren der Turbinenschaufel vorgesehenen Stützrippen ebenfalls entlang der Schaufelachse erstrecken und die druckseitige Profilwand mit der saugseitigen Profilwand in jeweils einem Verbindungsbereich verbinden.
  • Weil die von den vergleichsweise kühleren Stützrippen verursachten lokalen Temperaturabsenkungen und demgemäß die lokale Erhöhung der thermisch bedingten Spannungen insbesondere in einem abgerundeten Übergangsbereich zwischen der Plattform und dem Tragflächenprofil auftreten, kann sich der Schlitz oder können sich die Schlitze auch in den Übergangsbereich hinein erstrecken. Somit kann vorzugsweise auch der Übergangsbereich vor Rissentstehung geschützt werden. Außerdem wird dadurch im Übergangsbereich Risswachstum verzögert bzw. begrenzt. Zweckmäßigerweise kann sich der in der heißgasumströmten äußeren Oberfläche vorgesehene Schlitz über den Übergangsbereich hinaus auch bis in die Plattform hinein erstrecken.
  • Wenn der Schlitz eine Eindringtiefe aufweist, die sich von der heißgasseitigen Oberfläche der Profilwand bis in den Verbindungsbereich und/oder in die Stützrippe hinein erstreckt, kann besonders wirkungsvoll der lokal auftretende Kälteeintrag, d.h. der sich durch die kühlere Stützrippe lokal einstellende Wärmeentzug, gesenkt werden, wodurch das Material der Profilwand, zwischen dem Verbindungsbereich und der diesem gegenüberliegenden äußeren Oberfläche, im Vergleich zum Stand der Technik wärmer ist. Infolge dessen stellt sich entlang der Umströmungsrichtung in der Profilwand eine vergleichmäßigte Temperaturverteilung und somit ein verringerter Temperaturgradient ein. Dadurch werden die thermischen Spannungen reduziert, was zu einer Verlängerung der Lebensdauer der Turbinenschaufel führt.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Schlitz mit einem Füllmaterial aufgefüllt, um evtl. auftretende aerodynamische Verluste im Heißgas aufgrund von Kanten zu vermeiden. Dabei ist das Füllmaterial weicher als das Material der Profilwand. Die auftretenden thermisch bedingten Dehnungen der Profilwand können in diesem Fall von dem weichen Füllmaterial besonders gut kompensiert werden.
  • Die Erfindung wird anhand einer Zeichnung erläutert. Es zeigen:
  • FIG 1
    eine Gasturbine in einem Längsteilschnitt,
    FIG 2
    eine perspektivische Ansicht einer erfindungsgemäßen Turbinenschaufel und
    FIG 3
    den Querschnitt gemäß Schnittlinie III der Turbinenschaufel nach FIG 2.
  • FIG 1 zeigt eine Gasturbine 1 in einem Längsteilschnitt. Sie weist im Inneren einen um eine Rotationsachse 2 drehgelagerten Rotor 3 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 3 folgen aufeinander ein Ansauggehäuse 4, ein Verdichter 5, eine torusartige Ringbrennkammer 6 mit mehreren rotationssymmetrisch zueinander angeordneten Brennern 7, eine Turbineneinheit 8 und ein Abgasgehäuse 9. Die Ringbrennkammer 6 bildet einen Verbrennungsraum 17, der mit einem ringförmigen Heißgaskanal 18 kommuniziert. Dort bilden vier hintereinander geschaltete Turbinenstufen 10 die Turbineneinheit 8. Jede Turbinenstufe 10 ist aus zwei Schaufelringen gebildet. In Strömungsrichtung eines in der Ringbrennkammer 6 erzeugten Heißgases 11 gesehen, folgt im Heißgaskanal 18 jeweils einer Leitschaufelreihe 13 eine aus Laufschaufeln 15 gebildete Reihe 14. Die Leitschaufeln 12 sind am Stator befestigt, wohingegen die Laufschaufeln 15 einer Reihe 14 mittels einer Turbinenscheibe am Rotor 3 angebracht sind. An dem Rotor 3 ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) angekoppelt.
  • FIG 2 zeigt eine erfindungsgemäße Turbinenschaufel 30 in einer perspektivischen Ansicht. Die Turbinenschaufel 30 weist eine Plattform 32 auf, an deren Oberfläche 34 ein von dem Heißgas 11 umströmbares Tragflächenprofil 36 angeordnet ist. Das Tragflächenprofil 36 erstreckt sich von einer Vorderkante 38 zu einer Hinterkante 40. Es weist zudem eine dazwischen verlaufende saugseitige Profilwand 42 sowie eine ebenfalls dazwischen verlaufende druckseitige Profilwand 44 auf.
  • In der Turbinenschaufel 30 sind beispielsweise drei Hohlräume 46 vorgesehen, welche durch zwei Stützrippen 48 voneinander getrennt sind. Die Stützrippen 48 verbinden die saugseitige Profilwand 42 mit der druckseitigen Profilwand 44 und dienen zur Erhöhung der Steifigkeit des Tragflächenprofils 36.
  • Die Turbinenschaufel 30 wird in der Regel durch ein Gießverfahren hergestellt. In einer Gießvorrichtung sind dazu drei Gusskerne eingesetzt, welche nach der Herstellung der Turbinenschaufel 30 aus dieser entfernt werden. An dieser Stelle bleiben die Hohlräume 46 zurück, zwischen denen die Stützrippen 48 angeordnet sind. Daher gehen bei gegossenen Turbinenschaufel 30 die Stützrippen 48 integral in einem Verbindungsbereich 50 in die saugseitige und/oder druckseitige Profilwand 42, 44 über und sind mit diesen einstückig verbunden, was eine besonders gute wärmetechnische Kopplung der Profilwand 42, 44 mit der Stützrippe bewirkt.
  • Bei der Verwendung der Turbinenschaufel 30 in einer Gasturbine 1 wird das von dem Heißgas 11 umströmte Tragflächenprofil 36 vollständig erwärmt. Dabei stellte sich bei der aus dem Stand der Technik bekannten Turbinenschaufel im Material des Tragflächenprofils 36 entlang der Strömungsrichtung des Heißgases 11, also von der Vorderkante 38 zu der Hinterkante 40, bisher ein Temperaturverlauf ein, der im Bereich jeder Stützrippe 48 ein lokales Temperaturminimum aufwies. Diese von der kühleren Stützrippe 48 verursachte ungleichmäßige Erwärmung des Tragflächenprofils 36 rief im oberflächennahen Abschnitt der Profilwände 42, 44 derart große, thermisch bedingte Spannungen hervor, dass dort Risse entstehen konnten und Risswachstum vermehrt auftrat. Dies beschränkte die Lebensdauer der bekannten Turbinenschaufel.
  • Um einen gleichmäßigeren Temperaturverlauf von der Vorderkante 38 zu der Hinterkante 40 in den Profilwänden 42, 44 zu gewährleisten, ist erfindungsgemäß der in einer Profilwand 42, 44 heißgasseitig vorgesehene Schlitz 56 nun in einem Abschnitt der Profilwand 42, 44 angeordnet, welcher dem Verbindungsbereich 50 und somit auch der Stützrippe 48 gegenüberliegt. Der Schlitz 56 hebt das in seinem Bereich auftretende lokale Temperaturminimum an, da die Wärmeleitfähigkeit des Verbindungsbereichs 50 aufgrund des verminderten Querschnitts reduziert worden ist. Dementsprechend werden die Temperaturgradienten entlang der Profilwände 42, 44 von der Vorderkante 38 zu der Hinterkante 40 vermindert, was sich in dem den Schlitz 50 aufweisenden Abschnitt spannungsreduzierend auswirkt. Die thermischen Spannungen liegen dann auf einem unschädlichen Niveau und das Material des Tragflächenprofils 36 kann dadurch länger den auftretenden Belastungen standhalten.
  • Die Schlitze 56 weisen eine Mindestlänge L auf, die mindestens 10 %, vorzugsweise mindestens 20 % der Höhe H des Tragflächenprofils 36 entspricht. Die Höhe H des Tragflächenprofils 36 wird zwischen der Oberfläche 34 der Plattform 32 und der Spitze 58 des Tragflächenprofils 36 ermittelt.
  • Da das lokale Temperaturminimum insbesondere im plattformnahen Bereich des Tragflächenprofils 36 auftritt, kann sich der Schlitz 56 in einen abgerundeten Übergangsbereich 60, welcher zwischen der Plattform 32 und dem Tragflächenprofil 36 angeordnet ist, hinein erstrecken. Diese Konfiguration der Schlitze 56 ist durch die in gestrichelter Linienart gezeigten Konturen 62 dargestellt. Ein besonders guter Schutz gegen rissartigen Verschleiß kann außerdem erreicht werden, wenn sich der Schlitz 62 darüber hinaus bis in die Plattform 32 hinein erstreckt.
  • FIG 3 zeigt einen Schnitt durch die erfindungsgemäße Turbinenschaufel 30 entlang der Schnittlinie III aus FIG 2. Die Turbinenschaufel 30 kann sowohl als Laufschaufel und/oder als Leitschaufel für eine insbesondere stationäre Gasturbine 1 ausgebildet sein.
  • Das im Querschnitt gezeigte Tragflächenprofil 36 zeigt die Vorderkante 38, die Hinterkante 40, die saugseitige Profilwand 42, die druckseitige Profilwand 44 sowie zwei die Hohlräume 46 trennende Stützrippen 48, die in einem Verbindungsbereich 50 jeweils in die Profilwände 42, 44 übergehen. In der Schnittdarstellung gemäß FIG 3 sind die gezeigten Schlitze 56 mit einem Füllmaterial aufgefüllt, wodurch sich eine besondere aerodynamische Oberflächenkontur des Tragflächenprofils 36 herbeiführen lässt. Quer zur Strömungsrichtung des Heißgases 11 verlaufende Vorsprünge und Kanten werden dadurch in den Profilwänden 42, 44 vermieden.
  • Die Schlitze 56 ragen jeweils mit einer Eindringtiefe E in die Profilwände 42, 44 hinein. Diese kann derart groß sein, dass die Schlitze 56 in den Verbindungsbereich 50 und ggf. sogar darüber hinaus bis in die Stützrippen 48 hineinragen. Dadurch wird gewährleistet, dass der Temperaturunterschied entlang des Tragflächenprofils 36 von der Vorderkante 38 zu der Hinterkante 48 besonders wirksam vergleichmäßigt wird, um so die Lebensdauer der Turbinenschaufel 30 weiter zu erhöhen.
  • Besonders wirkungsvoll ist die Erfindung, wenn die hohle Turbinenschaufel 30 und das Tragflächenprofil 36 von einem Kühlmittel, beispielsweise von dem Verdichter 5 der Gasturbine 1 entnommener Verdichterluft, durchströmt werden. In diesem Fall werden bestimmungsgemäß zwar die Profilwände 42, 44 von innen gekühlt, aber ebenso die Stützrippen 48. Der ungewünschte lokale Kälteeintrag bzw. die lokale Wärmeabfuhr aus der Profilwand 42, 44 über den Verbindungsbereichs 50 und über die Stützrippen 48 ist aufgrund der besonders guten wärmetechnischen Kopplung besonders wirksam. Dementsprechend sind die Temperaturunterschiede entlang der Profilwände 42, 44 und somit auch die thermischen Spannungen bei einer innengekühlten Turbinenschaufel 30 besonders groß. So kann die Lebensdauer insbesondere von innengekühlten Turbinenschaufeln 30 mit der Erfindung besonders wirksam verlängert werden.
  • Die zur thermischen Entlastung dienenden Schlitze 56 können auch in nur einer Profilwand, beispielsweise der saugseitigen Profilwand 42 oder der druckseitigen Profilwand 44, vorgesehen sein. Außerdem dienen die Schlitze 56, 62 als Begrenzungen für im benachbarten Schaufelmaterial entstehende Risse. Wenn beispielsweise im Bereich des mittleren Hohlraums 46 in einer der beiden Profilwände 42, 44 ein Riss vorhanden ist und dieser sich in Strömungsrichtung des Heißgases 11 verlängert, vergrößert sich dieser zwangsweise maximal bis zu einem der beiden Schlitze 56. Die Verlängerung des Risses über den Schlitz 56 hinaus ist nicht möglich.
  • Insgesamt wird mit der Erfindung eine Maßnahme zur Vergleichmäßigung der thermischen Spannung in einem Tragflächenprofil 36 einer Turbinenschaufel 30 angegeben, um die Lebensdauer der Turbinenschaufel 30 und dementsprechend die Betriebszeiten einer damit ausgerüsteten Gasturbine 1 zu erhöhen. Hierzu schlägt die Erfindung vor, dass die hohle Turbinenschaufel 30 im Bereich der Stützrippen 48, welche eine saugseitige Profilwand 42 mit einer druckseitigen Profilwand 44 in jeweils einem Verbindungsbereich 50 miteinander verbinden, heißgasseitig angeordnete Schlitze 56 zur Entlastung aufweist.

Claims (8)

  1. Hohle Turbinenschaufel (30),
    mit einem von einer saugseitigen Profilwand (42) und einer druckseitigen Profilwand (44) gebildeten und von einem Heißgas (11) umströmbaren Tragflächenprofil (36), welches von einer Plattform (32) bis zu einer Profilspitze (58) eine entlang einer Schaufelachse gerichtete Profilhöhe (H) aufweist,
    mit mindestens einer im Inneren der Turbinenschaufel (30) vorgesehenen Stützrippe (48), die die druckseitige Profilwand (44) mit der saugseitigen Profilwand (42) in jeweils einem Verbindungsbereich (50) verbindet, und
    mit mindestens einem in der Profilwand (42, 44) heißgasseitig vorgesehenen Schlitz (56),
    dadurch gekennzeichnet,
    dass der Schlitz (56) heißgasseitig in der Profilwand (42, 44) dem von der Stützrippe (48) und der Profilwand (42, 44) gebildeten Verbindungsbereich (50) gegenüberliegt.
  2. Turbinenschaufel (30) nach Anspruch 1,
    bei der der Schlitz (56) sich entlang der Schaufelachse erstreckt und mindestens eine Länge von 10 %, vorzugsweise von mindestens 20 % der Profilhöhe H aufweist.
  3. Turbinenschaufel (30) nach Anspruch 1 oder 2,
    bei der zwischen der Plattform (32) und dem Tragflächenprofil (36) ein abgerundeter Übergangsbereich (60) vorgesehen ist, in welchen sich der Schlitz (56) hinein erstreckt.
  4. Turbinenschaufel (30) nach Anspruch 3,
    bei der sich der Schlitz (56) in die Plattform (32) hinein erstreckt.
  5. Turbinenschaufel (30) nach einem der Ansprüche 1 bis 4,
    bei der der Schlitz (56) eine Eindringtiefe (E) aufweist, die sich bis in den Verbindungsbereich (50) und/oder in die Stützrippe (48) hinein erstreckt.
  6. Turbinenschaufel (30) nach einem der Ansprüche 1 bis 5
    bei der der Schlitz (56) mit einem Füllmaterial aufgefüllt ist.
  7. Turbinenschaufel (30) nach Anspruch 6,
    bei der das Füllmaterial weicher ist als das Material der Profilwand (42, 44).
  8. Gekühlte Turbinenschaufel (30) nach einem der vorangehenden Ansprüche.
EP05018595A 2005-08-26 2005-08-26 Hohle Turbinenschaufel Not-in-force EP1757773B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05018595A EP1757773B1 (de) 2005-08-26 2005-08-26 Hohle Turbinenschaufel
DE502005003344T DE502005003344D1 (de) 2005-08-26 2005-08-26 Hohle Turbinenschaufel
ES05018595T ES2303163T3 (es) 2005-08-26 2005-08-26 Alabe de turbina hueco.
JP2006228883A JP4689558B2 (ja) 2005-08-26 2006-08-25 中空タービン翼
CNA2006101463720A CN1936273A (zh) 2005-08-26 2006-08-25 空心透平叶片
US11/510,239 US7845905B2 (en) 2005-08-26 2006-08-25 Hollow turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05018595A EP1757773B1 (de) 2005-08-26 2005-08-26 Hohle Turbinenschaufel

Publications (2)

Publication Number Publication Date
EP1757773A1 EP1757773A1 (de) 2007-02-28
EP1757773B1 true EP1757773B1 (de) 2008-03-19

Family

ID=36584564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05018595A Not-in-force EP1757773B1 (de) 2005-08-26 2005-08-26 Hohle Turbinenschaufel

Country Status (6)

Country Link
US (1) US7845905B2 (de)
EP (1) EP1757773B1 (de)
JP (1) JP4689558B2 (de)
CN (1) CN1936273A (de)
DE (1) DE502005003344D1 (de)
ES (1) ES2303163T3 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006003548D1 (de) * 2006-08-23 2009-06-04 Siemens Ag Beschichtete Turbinenschaufel
US8500411B2 (en) * 2010-06-07 2013-08-06 Siemens Energy, Inc. Turbine airfoil with outer wall thickness indicators
EP2863010A1 (de) * 2013-10-21 2015-04-22 Siemens Aktiengesellschaft Turbinenschaufel
CN104006000A (zh) * 2014-05-29 2014-08-27 安徽银龙泵阀股份有限公司 一种内置冷却管的泵芯
EP2990598A1 (de) * 2014-08-27 2016-03-02 Siemens Aktiengesellschaft Turbinenschaufel und Turbine
EP2998507A1 (de) * 2014-09-16 2016-03-23 Siemens Aktiengesellschaft Eine gekühlte Turbinenschaufel, welche interne Verbindungsrippen zwischen den Kühlräumen beinhaltet, welche Sollbruchstellen zur Verringerung von Thermischen Spannungen aufweisen
CN104747241A (zh) * 2015-01-23 2015-07-01 朱晓义 一种压力装置及涡轮发动机
US10731469B2 (en) 2016-05-16 2020-08-04 Raytheon Technologies Corporation Method and apparatus to enhance laminar flow for gas turbine engine components
US20170328206A1 (en) * 2016-05-16 2017-11-16 United Technologies Corporation Method and Apparatus to Enhance Laminar Flow for Gas Turbine Engine Components
US20180051566A1 (en) * 2016-08-16 2018-02-22 General Electric Company Airfoil for a turbine engine with a porous tip
CN106761953B (zh) * 2016-12-21 2018-05-08 中国南方航空工业(集团)有限公司 一种叶片内腔低熔点合金去除装置
CN106757045B (zh) * 2016-12-21 2018-12-14 中国南方航空工业(集团)有限公司 一种叶片内腔低熔点合金去除方法
CN106757044B (zh) * 2016-12-21 2018-12-14 中国南方航空工业(集团)有限公司 一种空心叶片内腔低熔点合金清理方法
CN106703897B (zh) * 2016-12-21 2018-01-12 中国南方航空工业(集团)有限公司 一种空心叶片内腔低熔点合金清理装置
DE102017208707A1 (de) 2017-05-23 2018-11-29 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Turbinenschaufel
DE102017218886A1 (de) 2017-10-23 2019-04-25 MTU Aero Engines AG Schaufel und Rotor für eine Strömungsmaschine sowie Strömungsmaschine
US11118462B2 (en) 2019-01-24 2021-09-14 Pratt & Whitney Canada Corp. Blade tip pocket rib
JP6799702B1 (ja) * 2020-03-19 2020-12-16 三菱パワー株式会社 静翼及びガスタービン
US11371359B2 (en) 2020-11-26 2022-06-28 Pratt & Whitney Canada Corp. Turbine blade for a gas turbine engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2807870A (en) * 1952-02-05 1957-10-01 Gen Motors Corp Method of making a propeller blade
US2882974A (en) * 1954-04-28 1959-04-21 Gen Motors Corp Propeller blade
US2933286A (en) * 1954-09-15 1960-04-19 Gen Electric Damping turbine buckets
US3290004A (en) * 1965-04-09 1966-12-06 Hitachi Ltd Device for damping vibration of long steam-turbine blades
US5690473A (en) * 1992-08-25 1997-11-25 General Electric Company Turbine blade having transpiration strip cooling and method of manufacture
JPH1061406A (ja) * 1996-08-27 1998-03-03 Mitsubishi Heavy Ind Ltd ガスタービン翼の冷却構造
JP3971009B2 (ja) * 1998-01-28 2007-09-05 Juki会津株式会社 ドレン穴付きノズル翼の製造方法
JP2000001801A (ja) 1998-06-13 2000-01-07 Sanwa:Kk 古紙を含んだコンクリート枕木又はコンクリートブロ ック又はコンクリートu字溝
JP2000018001A (ja) * 1998-06-30 2000-01-18 Mitsubishi Heavy Ind Ltd 動翼熱応力軽減装置
EP1508399B1 (de) 2003-08-22 2006-12-27 Siemens Aktiengesellschaft Schaufel einer Strömungsmaschine und Verfahren zur Verhinderung der Rissausbreitung in der Schaufel einer Strömungsmaschine
DE50306044D1 (de) * 2003-09-05 2007-02-01 Siemens Ag Schaufel einer Turbine
EP1525942A1 (de) * 2003-10-23 2005-04-27 Siemens Aktiengesellschaft Gasturbine und Laufschaufel für eine Strömungsmaschine
US7318699B2 (en) * 2005-05-31 2008-01-15 General Electric Company Moisture removal grooves on steam turbine buckets and covers and methods of manufacture

Also Published As

Publication number Publication date
ES2303163T3 (es) 2008-08-01
US7845905B2 (en) 2010-12-07
US20070128035A1 (en) 2007-06-07
JP4689558B2 (ja) 2011-05-25
CN1936273A (zh) 2007-03-28
EP1757773A1 (de) 2007-02-28
DE502005003344D1 (de) 2008-04-30
JP2007064219A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
EP1757773B1 (de) Hohle Turbinenschaufel
EP1907670B1 (de) Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
EP1834066B1 (de) Turbinenschaufel für eine gasturbine, verwendung einer turbinenschaufel sowie verfahren zum kühlen einer turbinenschaufel
EP1512489B1 (de) Schaufel einer Turbine
DE3019920C2 (de) Einrichtung zur äußeren Ummantelung der Laufschaufeln von Axialturbinen für Gasturbinentriebwerke
EP1766192B1 (de) Schaufelrad einer turbine mit einer schaufel und mindestens einem kühlkanal
EP2059655B1 (de) Gekühlte turbinenlaufschaufel
EP1907669A1 (de) Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel
WO2000053896A1 (de) Turbinenschaufel und verfahren zur herstellung einer turbinenschaufel
EP3999716B1 (de) Laufschaufel für eine strömungsmaschine, zugehöriges turbinenmodul und verwendung derselben
DE60035247T2 (de) Gasturbinenschaufel
EP3473808B1 (de) Schaufelblatt für eine innengekühlte turbinenlaufschaufel sowie verfahren zur herstellung einer solchen
EP2282014A1 (de) Rinförmiger Strömungskanalabschnitt für eine Turbomaschine
EP1675702B1 (de) Gasturbine und laufschaufel für eine strömungsmaschine
EP2394028B1 (de) Abdichtvorrichtung an dem Schaufelschaft einer Rotorstufe einer axialen Strömungsmaschine und ihre Verwendung
EP1857635A1 (de) Turbinenschaufel für eine Gasturbine
EP2299056A1 (de) Kühlung eines Gasturbinenbauteils ausgebildet als Rotorscheibe oder Turbinenschaufel
EP3039246B1 (de) Turbinenschaufel
EP3274561B1 (de) Laufschaufel für eine gasturbine, herstellungsverfahren und nachbearbeitungsverfahren
EP3232001A1 (de) Laufschaufel für eine turbine
WO2018010918A1 (de) Turbinenschaufel mit strebenförmigen kühlrippen
EP3623576B1 (de) Gasturbinen-laufschaufel
EP2650475B1 (de) Schaufel für eine Strömungsmaschine, Schaufelanordnung sowie Strömungsmaschine
EP0492207B1 (de) Schaufel für Strömungsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): CH DE ES GB IT LI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005003344

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2303163

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150928

Year of fee payment: 11

Ref country code: GB

Payment date: 20150812

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150825

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151102

Year of fee payment: 11

Ref country code: DE

Payment date: 20151016

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003344

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160827

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128