EP2087206B1 - Turbinenschaufel - Google Patents

Turbinenschaufel Download PDF

Info

Publication number
EP2087206B1
EP2087206B1 EP07820379A EP07820379A EP2087206B1 EP 2087206 B1 EP2087206 B1 EP 2087206B1 EP 07820379 A EP07820379 A EP 07820379A EP 07820379 A EP07820379 A EP 07820379A EP 2087206 B1 EP2087206 B1 EP 2087206B1
Authority
EP
European Patent Office
Prior art keywords
cooling
turbine blade
elements
wall section
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07820379A
Other languages
English (en)
French (fr)
Other versions
EP2087206A1 (de
Inventor
Heinz-Jürgen GROSS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07820379A priority Critical patent/EP2087206B1/de
Publication of EP2087206A1 publication Critical patent/EP2087206A1/de
Application granted granted Critical
Publication of EP2087206B1 publication Critical patent/EP2087206B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a turbine blade according to the preamble of claim 1.
  • Turbine blades in particular turbine blades for gas turbines are exposed to high temperatures during operation, which quickly exceed the limit of the material stress. This applies in particular to the regions in the vicinity of the flow inlet edge at which the hot process gas flow first of all occurs on the blade profile of the turbine blade.
  • turbine blades In order to use turbine blades even at high temperatures, it has long been known to cool turbine blades suitable, so that they have a higher temperature resistance. With turbine blades, which have a higher temperature resistance, higher energy efficiencies can be achieved in particular.
  • Cooling types include convection cooling, impingement cooling and film cooling.
  • convection cooling cooling air passes through channels in the interior of the blade and uses the convective effect to dissipate the heat.
  • impingement cooling a cooling air flow impinges on the inner blade surface from the inside. In this way, a very good cooling effect is made possible at the point of impact, but this is limited only to the narrow area of the point of impact and the closer environment.
  • This type of cooling is therefore usually used for cooling the flow inlet edge, which is also referred to as the leading edge, a turbine blade.
  • film cooling cooling air is directed out through openings in the turbine blade from the interior of the turbine blade. This cooling air flows around the turbine blade and forms an insulating layer between the hot process gas and the blade surface.
  • the described Cooling types are suitably combined depending on the application, in order to achieve the most effective blade cooling possible.
  • coolants such as turbulators, which are mostly provided in the form of ribs
  • turbulators which are mostly provided in the form of ribs
  • These are arranged within the cooling channels provided for the convection flow, which run in the interior of the turbine blade.
  • the incorporation of fins in the cooling channels causes the flow of cooling air in the boundary layers to be detached and entangled. Due to the forced disruption of the flow, the heat transfer can be increased in the presence of a temperature difference between the cooling channel wall and the cooling air.
  • the ribbing constantly causes the flow to form new "recovery areas" in which a substantial increase in the local heat transfer coefficient can be achieved.
  • turbine blades In order to cool the flow inlet leading edge, ie leading edge, of turbine blades, which is usually very heavily stressed during operation, turbine blades often run parallel and close to the flow inlet edge Cooling channels formed, which is supplied by further formed in the blades cooling channels cooling air.
  • the convective cooling of the flow inlet edge realized in this way is usually supplemented by impingement cooling of the inner wall of the cooling channel extending near the flow inlet edge in the case of film-sensed blades.
  • convective cooling is intensified by turbulators disposed on the inner wall of the cooling duct.
  • the invention has for its object to provide a turbine blade, which can be cooled more effectively compared to known solutions both existing and in the absence of film cooling and has a longer service life.
  • the turbine blade has a front edge extending on one side of the turbine blade, the cooling channel being delimited by a wall portion opposite the leading edge and having two or more peg-shaped cooling elements of different lengths extending into the cooling channel from this wall portion and the length thereof is different for adaptation to the local cooling demand.
  • the generally thermally stressed front edge can thus be cooled very effectively.
  • the cooling elements according to the invention which extend from the wall portion into the cooling channel, and in particular cause a strong turbulence of the cooling medium, the heat transfer can be significantly increased at a temperature difference between the wall portion and the cooling medium, along with a substantial increase of the local heat transfer coefficients. Overall, in this way, the heat in the vicinity of the leading edge can be dissipated very effectively, along with a very effective cooling of the leading edge.
  • the cooling elements first impinged by the cooling medium in a bump-cooling manner are in the form of pegs.
  • Pine-shaped cooling elements cause on the one hand an enlargement of the coolable wall surface and on the other hand after impact cooling a very strong turbulence of the cooling medium, for example in the form of cooling air, which is enforced by the strong forced disruption of the flow at a temperature difference between a wall of the cooling channel and the cooling medium Heat transfer can be increased, along with a significant increase in the local heat transfer coefficient.
  • the invention provided peg-shaped design of the cooling elements which are formed during operation of the turbine blade in the cooling elements thermal stresses are minimized, so that it can come to any êtanrissen, in particular in this case the thermal stresses are significantly lower than the thermal stresses form in known turbulators. According to the invention, therefore, the entire voltage situation is improved and it can be a significant increase in the life of the cooling elements over known solutions can be achieved, with the high life of the cooling elements and a long service life and service life of the turbine blade is connected.
  • the turbine blade according to the invention can be exposed to higher gas temperatures compared to known solutions, even if no film cooling is provided. If film cooling is provided, even higher gas temperatures are possible. This in turn gives rise to the possibility of being able to form the turbine blade according to the invention with thinner outer walls.
  • the cooling capacity of each individual peg-shaped cooling element over a suitably formed length is equal to the predetermined local cooling requirement in the environment of the Cooling element adapted. Cooling elements in the vicinity of which a high cooling requirement exists, according to the invention have a greater length than cooling elements in the environment of the cooling demand is less pronounced. By increasing the length of a single cooling element, on the one hand, the "swirl area" and the surface to be cooled are increased, along with a significant increase in the local heat transfer coefficient.
  • the wall section has a wall surface facing the cooling channel, wherein the at least one cooling element or the two or more Cooling elements extend orthogonal to the wall surface or orthogonal to the curved wall surface in the cooling channel inside.
  • the inventively provided extension in a direction orthogonal to the wall surface of the cooling channel causes a very effective turbulence of the cooling medium, which is accompanied by a very effective cooling, in particular the leading edge, since according to the invention a directed substantially perpendicular to the longitudinal extent of the cooling elements directed flow of the cooling elements with the cooling medium can.
  • the cooling channel is preferably limited by a wall portion facing the cooling channel having a curved wall surface, wherein two or more cooling elements are provided, wherein the cooling elements have a longitudinal extent extending into the cooling channel, and wherein the two or more cooling elements are directed with their longitudinal extent to the center of the curvature of the wall surface.
  • cooling elements which are directed with their longitudinal extent to the center of the curvature of the wall surface, a very effective turbulence of the cooling elements flowing against the cooling medium can be achieved.
  • the convection cooling realized by means of the cooling elements can be very effectively combined with impingement cooling, such that the cooling medium flows in such a way onto the cooling elements that it impinges on the cooling elements, so that a very high cooling effect is achieved in the respective impingement point can be, which causes in conjunction with the provided convection cooling a very effective cooling of the turbine blade according to the invention.
  • turbine blades In operation, turbine blades generally have a very inhomogeneous temperature distribution, which is associated with large thermal loads acting on the turbine blades, which in particular have a detrimental effect on the service life of the turbine blade.
  • an inhomogeneous temperature distribution forming along the radial direction results for the leading edge.
  • the temperature distribution for example at the leading edge, can be "evened out", since according to the invention in comparatively hot places by appropriately trained cooling elements, a correspondingly strong cooling and vice versa.
  • the turbine blade according to the invention can thus be cooled in a manner which counteracts an inhomogeneous temperature distribution, which is advantageous in particular with regard to effective cooling of the leading edge.
  • a cooling channel partially delimiting the wall portion opposite rear wall is provided in which one or more impingement cooling holes are provided.
  • impingement cooling holes are provided. These are preferably placed and aligned in the back wall so that the cooling air jets flowing through them are directed onto the cooling elements, whereby a particularly efficient cooling of the leading edge can be achieved.
  • the distance between the cooling element tip, on the one hand, and the mouth of the impact cooling opening, on the other hand can be kept comparatively small.
  • This also applies to a comparatively large outflow cross section of the cooling channel. A disturbance of the impingement cooling jets by transversely to the rays, d. H. along the cooling channel flowing cooling air can thus be safely avoided.
  • the invention relates generally to a turbine blade having a leading edge, a cooling channel formed in the turbine blade for carrying cooling air, which extends at least partially along the leading edge, and a number of cooling elements, which are arranged in the longitudinal direction of the cooling channel in this sequentially stationary, each individual cooling element has a cooling capacity which is adapted to a predetermined cooling requirement for the leading edge in the vicinity of the cooling element, and wherein the cooling channel preferably extends parallel to the leading edge through the turbine blade.
  • FIG. 1 shows a sketch-like sectional view of a front portion of an airfoil of a turbine blade 10 according to the invention, with a flat sectional surface perpendicular to the front edge 12.
  • the leading edge 12 may also be referred to as a flow inlet edge.
  • a cooling channel 14 extending parallel to the front edge 12 (ie, a radially extending channel 14 in the case of axially through-flowed turbines) is formed near the front edge 12, which is delimited by a wall section 24 in relation to the front edge 12.
  • peg-shaped cooling elements 18 extend into the cooling channel 14, wherein the cooling elements 18 are directed with their longitudinal extent to the center of the curvature of the wall surface 16.
  • openings 22 are formed to supply the cooling channel 14 of further cooling channels (not shown), which are formed in the rear region of the turbine blade 10, cooling air chilling cooling.
  • FIG. 2 shows a further sectional view of the front portion of the turbine blade 10 according to the invention, with a flat sectional surface parallel to the leading edge 12.
  • the formed on the curved wall surface 16 of the cooling channel 14 cooling elements 18 extend orthogonally from the curved wall surface 16 into the cooling channel 14. As out FIG. 2 in the radial direction R, the length of the cooling elements 18 varies. According to the invention, this counteracts the inhomogeneous temperature distribution which forms along the leading edge 12 when the turbine blade 10 is used.
  • the frusto-conical cooling elements 18 have a greater length in the middle region than in the edge regions, since, as stated above, by increasing the length of the cooling elements 18, the local heat transfer coefficient and thus the cooling capacity the cooling elements 18 can be increased.
  • the impingement cooling comprises the impact of cooling air emerging from the openings 22 on the arched wall surface 16 or the cooling elements 18 in order to locally enable a very good cooling effect there.
  • the invention provides that the cooling elements 18 are directed with their longitudinal extent to the center of the curvature of the wall surface 16, a very effective impingement cooling can be provided with the overall convection cooling in conjunction with a very effective cooling of the turbine blade 10 can be provided ,
  • the cooling passage 14 is opened on both sides of the turbine blade 10 to flow the cooling air in two directions out of the cooling passage 14. As a result, a temperature harmonization of the turbine blade 10 is favored, since where cooling air is needed, cooling air is provided, and the effect of the impingement cooling is not reduced by a cross-flow.
  • the cooling elements 18 may also be formed rib-shaped, which extend along the cooling channel 14, ie in the flow direction of the cooling air.
  • the surface of the wall surface 16 is significantly increased in order to improve the cooling of the then preferably convectively cooled turbine blade 10. It is conceivable that the height of the ribs due to the aforementioned locally different temperatures at the front edge 12 can be adapted to match.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung betrifft eine Turbinenschaufel gemäß dem Oberbegriff des Anspruchs 1.
  • Turbinenschaufeln, insbesondere Turbinenschaufeln für Gasturbinen werden während des Betriebs hohen Temperaturen ausgesetzt, welche schnell die Grenze der Materialbeanspruchung überschreiten. Dies gilt insbesondere für die Bereiche in Umgebung der Strömungseintrittskante, an der die heiße Prozessgasströmung zu allererst auf das Schaufelprofil der Turbinenschaufel auftritt. Um Turbinenschaufeln auch bei hohen Temperaturen einsetzen zu können, ist es schon seit langem bekannt, Turbinenschaufeln geeignet zu kühlen, so dass sie eine höhere Temperaturbeständigkeit aufweisen. Mit Turbinenschaufeln, die eine höhere Temperaturbeständigkeit aufweisen, lassen sich insbesondere höhere energetische Wirkungsgrade erzielen.
  • Bekannte Kühlarten sind unter anderem die Konvektionskühlung, die Prallkühlung und die Filmkühlung. Bei der Konvektionskühlung führt man Kühlluft durch Kanäle im Schaufelinneren und nutzt den konvektiven Effekt, um die Wärme abzuführen. Bei der Prallkühlung prallt ein Kühlluftstrom von innen auf die innere Schaufeloberfläche. Auf diese Weise wird im Auftreffpunkt eine sehr gute Kühlwirkung ermöglicht, die allerdings nur auf den engen Bereich des Auftreffpunkts und die nähere Umgebung beschränkt ist. Diese Art der Kühlung wird deshalb meist zur Kühlung der Strömungseintrittskante, welche auch als Vorderkante bezeichnet wird, einer Turbinenschaufel verwendet. Bei der Filmkühlung wird Kühlluft über Öffnungen in der Turbinenschaufel vom Inneren der Turbinenschaufel nach außen geführt. Diese Kühlluft umströmt die Turbinenschaufel und bildet eine isolierende Schicht zwischen dem heißen Prozessgas und der Schaufeloberfläche aus. Die beschriebenen Kühlarten werden je nach Anwendungsfall geeignet kombiniert, um eine möglichst wirksame Schaufelkühlung zu erzielen.
  • Aus der EP 1 473 439 A2 ist eine derartige Turbinenschaufel mit prallgekühlter Anströmkante bekannt, die auf der dem Prallkühlkanal zugewandten Innenfläche Rippen und Turbulatoren aufweist. Dabei sind in einer die Saugseitenwand mit der Druckseitenwand verbindenden Brücke Prallkühlöffnungen vorgesehen, durch welche Kühlluft auf die an der Innenfläche angeordneten Rippen geleitet werden kann.
  • Ergänzend zu den oben beschriebenen Kühlarten ist die Verwendung von Kühlmitteln, wie Turbulatoren, die meist, in Form von Rippen bereitgestellt sind, sehr verbreitet. Diese sind innerhalb der für die Konvektionsströmung vorgesehenen Kühlkanäle angeordnet, die im Inneren der Turbinenschaufel verlaufen. Der Einbau von Rippen in den Kühlkanälen bewirkt, dass die Strömung der Kühlluft in den Grenzschichten abgelöst und verwirbelt wird. Durch die so erzwungene Störung der Strömung kann bei einem vorliegenden Temperaturunterschied zwischen Kühlkanalwand und Kühlluft der Wärmeübergang gesteigert werden. Durch die Berippung wird die Strömung ständig dazu veranlasst neue "Wiederanlegegebiete" zu bilden, in denen eine wesentliche Steigerung des lokalen Wärmeübergangskoeffizienten erzielt werden kann. Die Lebensdauer bekannter Rippen ist infolge der hohen Betriebstemperaturen eingeschränkt, was insbesondere eine Folge der bekannten Rippen zugrundeliegenden Geometrie ist. Die mit den bekannten Rippen-Geometrien verbundenen thermischen Spannungen haben Innenanrisse zur Folge, welche die Lebensdauer der Rippe und damit letztlich auch die Einsatzdauer der Turbinenschaufel einschränken können.
  • Zur Kühlung der während des Betriebs thermisch meist sehr stark beanspruchten Strömungseintrittskante, d.h. Vorderkante, von Turbinenschaufeln sind in Turbinenschaufeln oft parallel und nahe zur Strömungseintrittskante verlaufende Kühlkanäle ausgebildet, denen durch weitere in den Schaufeln ausgebildete Kühlkanäle Kühlluft zugeführt wird. Die so realisierte konvektive Kühlung der Strömungseintrittskante wird bei filmgefühlten Schaufeln meist durch eine Prallkühlung der Innenwand des nahe der Strömungseintrittskante verlaufenden Kühlkanals ergänzt. In Anwendungen, bei denen keine Filmkühlung der Turbinenschaufeln vorgenommen wird, wird die konvektive Kühlung durch an der Innenwand des Kühlkanals angeordnete Turbulatoren intensiviert.
  • Insgesamt betrachtet besteht gegenwärtig sowohl bei filmgekühlten als auch bei nicht filmgekühlten Schaufeln hinsichtlich der Kühlung, insbesondere in Bezug auf die Kühlung der Strömungseintrittskante, noch deutlicher Verbesserungbedarf. Insbesondere berücksichtigen die gegenwärtigen Kühl-Lösungen auch keine sich während des Einsatzes von Turbinenschaufeln ausbildende inhomogene Temperaturverteilung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Turbinenschaufel anzugeben, die sowohl bei vorhandener als auch bei nicht vorhandener Filmkühlung gegenüber bekannten Lösungen wirksamer gekühlt werden kann und die eine höhere Einsatzdauer aufweist.
  • Diese Aufgabe ist erfindungsgemäß mit einer Turbinenschaufel gemäß den Merkmalen des Anspruchs 1 gelöst.
  • Die Turbinenschaufel weist eine sich an einer Seite der Turbinenschaufel erstreckende Vorderkante auf, wobei der Kühlkanal gegenüber der Vorderkante durch einen Wandabschnitt begrenzt ist und zwei oder mehr zapfenförmige Kühlelemente mit unterschiedlichen Längen aufweist, welche sich von diesem Wandabschnitt ausgehend in den Kühlkanal hinein erstrecken und deren Länge zur Anpassung an den örtlich vorgegebenen Kühlbedarf unterschiedlich ist.
  • Die in der Regel thermisch stark beanspruchte Vorderkante kann somit sehr wirksam gekühlt werden. Mittels der erfindungsgemäßen Kühlelemente, die sich von dem Wandabschnitt in den Kühlkanal hinein erstrecken, und die insbesondere eine starke Verwirbelung des Kühlmediums bewirken, kann bei einem vorliegenden Temperaturunterschied zwischen dem Wandabschnitt und dem Kühlmedium der Wärmeübergang deutlich gesteigert werden, einhergehend mit einer wesentlichen Steigerung des lokalen Wärmeübergangskoeffizienten. Insgesamt betrachtet kann auf diese Weise die Wärme in Umgebung der Vorderkante sehr wirksam abgeführt werden, einhergehend mit einer sehr wirksamen Kühlung der Vorderkante.
  • Erfindungsgemäß sind die von dem Kühlmedium zuerst prallkühlartig angeströmten Kühlelemente zapfenförmig ausgebildet. Zapfenförmig ausgebildete Kühlelemente bewirken einerseits eine Vergrößerung der kühlbaren Wandfläche und andererseits nach erfolgter Prallkühlung eine sehr starke Verwirbelung des Kühlmediums, beispielsweise in Form von Kühlluft, wobei durch die so erzwungene starke Störung der Strömung bei einem vorliegenden Temperaturunterschied zwischen einer Wand des Kühlkanals und dem Kühlmedium der Wärmeübergang gesteigert werden, einhergehend mit einer wesentlichen Steigerung des lokalen Wärmeübergangskoeffizienten.
  • Ferner können mit der erfindungsgemäß vorgesehenen zapfenförmigen Ausbildung der Kühlelemente die sich während des Betriebs der Turbinenschaufel in den Kühlelementen ausbildenden thermischen Spannungen minimal gehalten werden, so dass es zu keinen Innenanrissen kommen kann, insbesondere sind hierbei die thermischen Spannungen deutlich geringer als die thermischen Spannungen, die sich in bekannten Turbulatoren ausbilden. Erfindungsgemäß wird also die gesamte Spannungssituation verbessert und es kann eine deutliche Erhöhung der Lebensdauer der Kühlelemente gegenüber bekannten Lösungen erzielt werden, wobei mit der hohen Lebensdauer der Kühlelemente auch eine hohe Einatzdauer bzw. Lebensdauer der Turbinenschaufel verbunden ist.
  • Die erfindungsgemäße Turbinenschaufel kann gegenüber bekannten Lösungen höheren Gastemperaturen ausgesetzt werden, selbst wenn keine Filmkühlung vorgesehen ist. Sofern Filmkühlung vorgesehen ist, sind noch höhere Gastemperaturen möglich. Hieraus wiederum ergibt sich die Möglichkeit, die erfindungsgemäße Turbinenschaufel mit dünneren Außenwänden ausbilden zu können.
  • Erfindungsgemäß ist das Kühlvermögen.jedes einzelnen zapfenförmigen Kühlelements über eine geeignet ausgebildete Länge dem vorgegebenen örtlichen Kühlbedarf in der Umgebung des Kühlelements angepasst. Kühlelemente, in deren Umgebung ein hoher Kühlbedarf besteht, weisen erfindungsgemäß eine größere Länge auf als Kühlelemente in deren Umgebung der Kühlbedarf geringer ausgeprägt ist. Durch Erhöhung der Länge eines einzelnen Kühlelements wird zum einen der "Verwirbelungsbereich" als auch die zu kühlende Oberfläche vergrößert, einhergehend mit einer deutlichen Erhöhung des lokalen Wärmeübergangskoeffizienten.
  • Bei einer praktischen Weiterbildung der Erfindung weist der Wandabschnitt eine zum Kühlkanal gewandte Wandfläche auf, wobei das mindestens eine Kühlelement bzw. die zwei oder mehr Kühlelemente sich orthogonal zu der Wandfläche bzw. orthogonal zu der gewölbten Wandfläche in den Kühlkanal hinein erstrecken. Die erfindungsgemäß vorgesehene Erstreckung in einer Richtung orthogonal zur Wandfläche des Kühlkanals bewirkt eine sehr wirksame Verwirbelung des Kühlmediums, die mit einer sehr wirksamen Kühlung, insbesondere der Vorderkante einhergeht, da erfindungsgemäß eine im Wesentlichen rechtwinkelig zur Längserstreckung der Kühlelemente gerichtete Anströmung der Kühlelemente mit dem Kühlmedium erfolgen kann.
  • Bei einer weiteren vorteilhaften Weiterbildung der Erfindung ist der Kühlkanal bevorzugt durch einen Wandabschnitt begrenzt, der zum Kühlkanal gewandt eine gewölbte Wandfläche aufweist, wobei zwei oder mehr Kühlelemente vorgesehen sind, wobei die Kühlelemente eine in den Kühlkanal sich hinein erstreckende Längserstreckung aufweisen, und wobei die zwei oder mehr Kühlelemente mit ihrer Längserstreckung auf das Zentrum der Wölbung der Wandfläche gerichtet sind.
  • Mittels Kühlelementen, die mit ihrer Längserstreckung auf das Zentrum der Wölbung der Wandfläche gerichtet sind, kann eine sehr wirksame Verwirbelung des die Kühlelemente anströmenden Kühlmediums erzielt werden. Insbesondere kann mittels dieser erfindungsgemäßen Weiterbildung die mittels der Kühlelemente realisierte Konvektionskühlung sehr wirksam mit einer Prallkühlung kombiniert werden, derart, dass das Kühlmedium auf eine Weise auf die Kühlelemente zuströmt, dass es auf die Kühlelemente aufprallt, so dass im jeweiligen Auftreffpunkt eine sehr hohe Kühlwirkung erzielt werden kann, die in Verbindung mit der bereitgestellten Konvektionskühlung eine sehr wirksame Kühlung der erfindungsgemäßen Turbinenschaufel bewirkt.
  • Turbinenschaufeln weisen im Betrieb in der Regel eine sehr inhomogene Temperaturverteilung auf, die mit großen, auf die Turbinenschaufeln einwirkenden thermischen Belastungen verbunden sind, die sich insbesondere nachteilig auf die Lebensdauer der Turbinenschaufel auswirken. So ergibt sich beispielsweise für Turbinenschaufeln, die in axial durchströmten Turbinen zum Einsatz kommen, für die Vorderkante ein sich entlang der radialen Richtung ausbildende inhomogene Temperaturverteilung. Durch den erfindungsgemäßen Einsatz von Kühlelementen innerhalb des vorzugsweise nahe der Vorderkante verlaufenden Kühlkanals, deren Kühlvermögen über ihre Länge einem vorgegebenen Kühlbedarf, beispielsweise für die Vorderkante in der Umgebung des Kühlelements angepasst ist, kann die Temperaturverteilung, beispielsweise an der Vorderkante, "vergleichmäßigt" werden, da erfindungsgemäß an vergleichsweise heißen Stellen durch geeignet ausgebildete Kühlelemente eine entsprechend starke Kühlung erfolgt und umgekehrt. Die erfindungsgemäße Turbinenschaufel kann somit auf eine Weise gekühlt werden, die einer inhomogenen Temperaturverteilung entgegenwirkt, was insbesondere im Hinblick auf eine wirksame Kühlung der Vorderkante von Vorteil ist.
  • Bevorzugtermassen ist als Mittel zum Prallkühlen des Wandabschnittes eine den Kühlkanal teilweise begrenzende, dem Wandabschnitt gegenüberliegende Rückwand vorgesehen, in der ein oder mehrere Prallkühlöffnungen vorgesehen sind. Diese sind vorzugsweise derartig in der Rückwand platziert und ausgerichtet, dass die durch sie hindurchströmenden Kühlluftstrahlen auf die Kühlelemente geleitet werden, wodurch eine besonders effiziente Kühlung von der Vorderkante erreicht werden kann. Insbesondere aufgrund der vergleichsweise großen Längserstreckung der Kühlelemente in den Kühlkanal hinein kann der Abstand zwischen Kühlelementspitze einerseits und der Mündung der Prallkühlöffnung andererseits vergleichweise klein gehalten werden. Dies gilt auch bei einem vergleichsweise großen Abströmquerschnitt des Kühlkanals. Eine Störung der Prallkühlstrahlen durch quer zu den Strahlen, d. h. entlang des Kühlkanals strömender Kühlluft kann somit sicher vermieden werden.
  • Die Erfindung betrifft insgesamt eine Turbinenschaufel mit einer Vorderkante, einem in der Turbinenschaufel ausgebildeten Kühlkanal zur Durchführung von Kühlluft, der sich wenigstens abschnittsweise längs der Vorderkante erstreckt, und einer Anzahl von Kühlelementen, die in Längsrichtung des Kühlkanals in diesem aufeinanderfolgend ortsfest angeordnet sind, wobei jedes einzelne Kühlelement ein Kühlvermögen aufweist, welches einem vorgegebenen Kühlbedarf für die Vorderkante in der Umgebung des Kühlelements angepasst ist, und wobei sich der Kühlkanal bevorzugt parallel zur Vorderkante durchgehend durch die Turbinenschaufel erstreckt.
  • Nachfolgend wird ein Ausführungsbeispiel einer erfindungsgemäßen Turbinenschaufel anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
  • FIG 1
    eine skizzenhafte Querschnittdarstellung einer erfindungsgemäßen Turbinenschaufel mit einer Anzahl von in einem Kühlkanal angeordneten zapfenförmigen Kühlelementen und
    FIG 2
    einen Längsschnitt durch die Turbinenschaufel entlang einer Vorderkante.
  • FIG 1 zeigt eine skizzenhafte Schnittdarstellung eines vorderen Abschnitts eines Schaufelblattes einer erfindungsgemäßen Turbinenschaufel 10, mit einer ebenen Schnittfläche rechtwinkelig zu deren Vorderkante 12. Die Vorderkante 12 kann auch als Strömungseintrittskante bezeichnet werden. Im Inneren der Turbinenschaufel 10 ist nahe der Vorderkante 12 ein sich parallel zur Vorderkante 12 erstreckender Kühlkanal 14 ausgebildet (also ein sich radial erstreckender Kanal 14 bei axial durchströmten Turbinen), der gegenüber der Vorderkante 12 durch einen Wandabschnitt 24 begrenzt ist. Von einer gewölbten Wandfläche 16 des Kühlkanals 14 erstrecken sich zapfenförmige Kühlelemente 18 in den Kühlkanal 14 hinein, wobei die Kühlelemente 18 mit ihrer Längserstreckung auf das Zentrum der Wölbung der Wandfläche 16 gerichtet sind.
  • In einer Rückwand 20 des Kühlkanals 14 sind Öffnungen 22 ausgebildet, um dem Kühlkanal 14 von weiteren Kühlkanälen (nicht dargestellt), die im hinteren Bereich der Turbinenschaufel 10 ausgebildet sind, Kühlluft prallkühlend zuzuführen.
  • FIG 2 zeigt eine weitere Schnittdarstellung des vorderen Abschnitts der erfindungsgemäßen Turbinenschaufel 10, mit einer ebenen Schnittfläche parallel zur Vorderkante 12. Die an der gewölbten Wandfläche 16 des Kühlkanals 14 ausgebildeten Kühlelemente 18 erstrecken sich orthogonal von der gewölbten Wandfläche 16 hinein in den Kühlkanal 14. Wie aus FIG 2 ersichtlich variiert in radialer Richtung R die Länge der Kühlelemente 18. Dies dient erfindungemäß dazu, der sich bei Einsatz der Turbinenschaufel 10 entlang der Vorderkante 12 ausbildenden inhomogenen Temperaturverteilung entgegenzuwirken. So wird insbesondere zum Zentrum der Vorderkante 12 der Turbinenschaufel 10 hin diese eine höhere Betriebstemperatur aufweisen als in den Randbereichen der Vorderkante 12. Aus diesem Grund weisen die kegelstumpfförmigen Kühlelemente 18 im mittleren Bereich eine größere Länge auf als in den Randbereichen, da, wie oben dargelegt, durch eine Erhöhung der Länge der Kühlelemente 18 der lokale Wärmeübergangskoeffizient und damit das Kühlvermögen der Kühlelemente 18 erhöht werden kann.
  • Die Prallkühlung umfasst vorliegend den Aufprall von aus den Öffnungen 22 austretender Kühlluft auf die gewölbte Wandfläche 16 bzw. die Kühlelemente 18, um dort lokal eine sehr gute Kühlwirkung zu ermöglichen. Da erfindungsgemäß vorgesehen ist, dass die Kühlelemente 18 mit ihrer Längserstreckung auf das Zentrum der Wölbung der Wandfläche 16 gerichtet sind, kann eine sehr wirksame Prallkühlung bereitgestellt werden, mit der in Verbindung mit der entsprechenden Konvektionskühlung insgesamt eine sehr wirksame Kühlung der Turbinenschaufel 10 bereitgestellt werden kann. Der Kühlkanal 14 ist zu beiden Seiten der Turbinenschaufel 10 geöffnet, um die Kühlluft in zwei Richtungen aus dem Kühlkanal 14 strömen zu lassen. Dadurch wird eine Temperaturharmonisierung der Turbinenschaufel 10 begünstigt, da dort, wo Kühlluft benötigt wird, auch Kühlluft zur Verfügung gestellt wird, und die Wirkung der Prallkühlung nicht durch eine Querströmung reduziert wird.
  • Anstelle von kegelstumpfförmigen Gebilden können die Kühlelemente 18 auch rippenförmig ausgebildet sein, die sich entlang des Kühlkanals 14, also in Strömungsrichtung der Kühlluft erstrecken. Dabei wird die Oberfläche der Wandfläche 16 signifikant erhöht, um die Kühlung der dann vorzugsweise konvektiv gekühlten Turbinenschaufel 10 zu verbessern. Dabei ist denkbar, dass die Höhe der Rippen aufgrund der vorgenannten lokal unterschiedlichen Temperaturen an der Vorderkante 12 dazu korrespondierend angepasst sein kann.

Claims (7)

  1. Turbinenschaufel (10),
    mit einem einen Kühlkanal (14) aufweisenden Schaufelblatt und einer sich entlang des Schaufelblatts erstreckenden Vorderkante (12), wobei der Kühlkanal (14) gegenüber der Vorderkante (12) durch einen Wandabschnitt (24) begrenzt ist, wobei Mittel zum Prallkühlen des Wandabschnittes (24) vorgesehen sind,
    dadurch gekennzeichnet, dass
    vom Wandabschnitt (24) ausgehend sich zwei oder mehr zapfenförmige Kühlelemente (18) mit unterschiedlichen Längen in den Kühlkanal (14) hinein erstrecken, wobei
    deren Länge einem vorgegebenen örtlichen Kühlbedarf angepasst ist.
  2. Turbinenschaufel (10) nach Anspruch 1,
    bei der der Wandabschnitt (24) eine zum Kühlkanal (14) zugewandte Wandfläche (16) aufweist und bei der sich das mindestens eine Kühlelement (18) orthogonal zu der Wandfläche (16) in den Kühlkanal (14) hinein erstreckt.
  3. Turbinenschaufel (10) nach Anspruch 1 oder 2,
    bei der der Wandabschnitt (24) eine zum Kühlkanal (14) zugewandte, gewölbte Wandfläche (16) aufweist, bei der zwei oder mehr Kühlelemente (18) vorgesehen sind, bei der die Kühlelemente (18) eine in den Kühlkanal (14) sich hinein erstreckende Längserstreckung aufweisen, und bei der die zwei oder mehr Kühlelemente (18) mit ihrer Längserstreckung auf das Zentrum der Wölbung der Wandfläche (16) gerichtet sind.
  4. Turbinenschaufel nach einem der vorangehenden Ansprüche, bei der das mindestens eine Kühlelement (18) oder zwei oder mehr Kühlelemente (18) einstückig mit dem Wandabschnitt (24) ausgebildet ist bzw. sind.
  5. Turbinenschaufel (10) nach einem der vorangehenden Ansprüche,
    bei der sich der Kühlkanal (14) zumindest teilweise parallel zur Vorderkante (12) durchgehend durch die Turbinenschaufel (10) erstreckt.
  6. Turbinenschaufel (10) nach einem der vorangehenden Ansprüche,
    bei der das Mittel zum Prallkühlen des Wandabschnittes (24) eine den Kühlkanal (14) begrenzende, dem Wandabschnitt (24) gegenüberliegende Rückwand (20) ist, in der mehrere Prallkühlöffnungen (22) vorgesehen sind.
  7. Turbinenschaufel (10) nach Anspruch 6,
    bei der die Prallkühlöffnungen (22) derartig angeordnet sind, dass die durch sie hindurchströmende Kühlluftstrahlen auf die Kühlelemente (18) geleitet werden.
EP07820379A 2006-11-08 2007-09-20 Turbinenschaufel Not-in-force EP2087206B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07820379A EP2087206B1 (de) 2006-11-08 2007-09-20 Turbinenschaufel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06023274A EP1921268A1 (de) 2006-11-08 2006-11-08 Turbinenschaufel
EP07820379A EP2087206B1 (de) 2006-11-08 2007-09-20 Turbinenschaufel
PCT/EP2007/059935 WO2008055737A1 (de) 2006-11-08 2007-09-20 Turbinenschaufel

Publications (2)

Publication Number Publication Date
EP2087206A1 EP2087206A1 (de) 2009-08-12
EP2087206B1 true EP2087206B1 (de) 2010-03-03

Family

ID=37951488

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06023274A Withdrawn EP1921268A1 (de) 2006-11-08 2006-11-08 Turbinenschaufel
EP07820379A Not-in-force EP2087206B1 (de) 2006-11-08 2007-09-20 Turbinenschaufel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06023274A Withdrawn EP1921268A1 (de) 2006-11-08 2006-11-08 Turbinenschaufel

Country Status (7)

Country Link
US (1) US8297926B2 (de)
EP (2) EP1921268A1 (de)
JP (2) JP2010509532A (de)
CN (1) CN101535602B (de)
AT (1) ATE459785T1 (de)
DE (1) DE502007003044D1 (de)
WO (1) WO2008055737A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957816B2 (en) 2014-05-29 2018-05-01 General Electric Company Angled impingement insert
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8348613B2 (en) 2009-03-30 2013-01-08 United Technologies Corporation Airflow influencing airfoil feature array
US8523524B2 (en) * 2010-03-25 2013-09-03 General Electric Company Airfoil cooling hole flag region
EP2584145A1 (de) * 2011-10-20 2013-04-24 Siemens Aktiengesellschaft Gekühlte Turbinenleitschaufel oder gekühltes Turbinenleitblatt für eine Turbomaschine
JP2013100765A (ja) * 2011-11-08 2013-05-23 Ihi Corp インピンジ冷却機構、タービン翼及び燃焼器
JP5834876B2 (ja) 2011-12-15 2015-12-24 株式会社Ihi インピンジ冷却機構、タービン翼及び燃焼器
EP2703601B8 (de) * 2012-08-30 2016-09-14 General Electric Technology GmbH Modulare Schaufel für eine Gasturbine und Gasturbine mit der Schaufel
KR101513474B1 (ko) * 2013-02-27 2015-04-23 두산중공업 주식회사 터빈 블레이드
US9850762B2 (en) 2013-03-13 2017-12-26 General Electric Company Dust mitigation for turbine blade tip turns
US20150204197A1 (en) * 2014-01-23 2015-07-23 Siemens Aktiengesellschaft Airfoil leading edge chamber cooling with angled impingement
US10001013B2 (en) * 2014-03-06 2018-06-19 General Electric Company Turbine rotor blades with platform cooling arrangements
US10422235B2 (en) 2014-05-29 2019-09-24 General Electric Company Angled impingement inserts with cooling features
CA2950011C (en) 2014-05-29 2020-01-28 General Electric Company Fastback turbulator
US10364684B2 (en) 2014-05-29 2019-07-30 General Electric Company Fastback vorticor pin
US10408064B2 (en) 2014-07-09 2019-09-10 Siemens Aktiengesellschaft Impingement jet strike channel system within internal cooling systems
US20160201476A1 (en) * 2014-10-31 2016-07-14 General Electric Company Airfoil for a turbine engine
US10233775B2 (en) 2014-10-31 2019-03-19 General Electric Company Engine component for a gas turbine engine
US10280785B2 (en) 2014-10-31 2019-05-07 General Electric Company Shroud assembly for a turbine engine
US20160333701A1 (en) * 2015-05-12 2016-11-17 United Technologies Corporation Airfoil impingement cavity
US20170107827A1 (en) * 2015-10-15 2017-04-20 General Electric Company Turbine blade
US10352177B2 (en) 2016-02-16 2019-07-16 General Electric Company Airfoil having impingement openings
KR101906701B1 (ko) * 2017-01-03 2018-10-10 두산중공업 주식회사 가스터빈 블레이드
EP3396297A1 (de) * 2017-04-28 2018-10-31 Siemens Aktiengesellschaft Kühlvorrichtung
US10830049B2 (en) 2017-05-02 2020-11-10 Raytheon Technologies Corporation Leading edge hybrid cavities and cores for airfoils of gas turbine engine
JP7096695B2 (ja) * 2018-04-17 2022-07-06 三菱重工業株式会社 タービン翼及びガスタービン
US10907480B2 (en) * 2018-09-28 2021-02-02 Raytheon Technologies Corporation Ribbed pin fins
CN113374535A (zh) * 2021-06-28 2021-09-10 常州大学 一种格子阵列式双层冷却燃气涡轮叶片

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1350424A (en) * 1971-07-02 1974-04-18 Rolls Royce Cooled blade for a gas turbine engine
JPS6163401U (de) 1984-06-20 1986-04-30
JPS61187501A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd 流体冷却構造
JPH0663442B2 (ja) * 1989-09-04 1994-08-22 株式会社日立製作所 タービン翼
FR2678318B1 (fr) * 1991-06-25 1993-09-10 Snecma Aube refroidie de distributeur de turbine.
US5468125A (en) * 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
JPH08296403A (ja) * 1995-04-25 1996-11-12 Toshiba Corp ガスタービン空冷翼
WO1998000627A1 (en) * 1996-06-28 1998-01-08 United Technologies Corporation Coolable airfoil for a gas turbine engine
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
EP0945595A3 (de) * 1998-03-26 2001-10-10 Mitsubishi Heavy Industries, Ltd. Gekühlte Gasturbinenschaufel
US6142734A (en) * 1999-04-06 2000-11-07 General Electric Company Internally grooved turbine wall
EP1077311A1 (de) * 1999-08-17 2001-02-21 Siemens Aktiengesellschaft Gekühlte Gasturbinenschaufel
DE10248548A1 (de) * 2002-10-18 2004-04-29 Alstom (Switzerland) Ltd. Kühlbares Bauteil
US6890153B2 (en) * 2003-04-29 2005-05-10 General Electric Company Castellated turbine airfoil
DE50309922D1 (de) * 2003-07-29 2008-07-10 Siemens Ag Gekühlte Turbinenschaufel
US7104757B2 (en) * 2003-07-29 2006-09-12 Siemens Aktiengesellschaft Cooled turbine blade
CA2476803C (en) * 2003-08-14 2010-10-26 Mitsubishi Heavy Industries, Ltd. Heat exchanging wall, gas turbine using the same, and flying body with gas turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
US9957816B2 (en) 2014-05-29 2018-05-01 General Electric Company Angled impingement insert
US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features

Also Published As

Publication number Publication date
JP5269223B2 (ja) 2013-08-21
JP2012137089A (ja) 2012-07-19
US20100143153A1 (en) 2010-06-10
ATE459785T1 (de) 2010-03-15
JP2010509532A (ja) 2010-03-25
CN101535602A (zh) 2009-09-16
CN101535602B (zh) 2012-01-11
DE502007003044D1 (de) 2010-04-15
EP2087206A1 (de) 2009-08-12
EP1921268A1 (de) 2008-05-14
WO2008055737A1 (de) 2008-05-15
US8297926B2 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
EP2087206B1 (de) Turbinenschaufel
DE60025074T2 (de) Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel
DE69838015T2 (de) Schaufelkühlung
DE60017437T2 (de) Rippen zur erhöhung der wärmeübertragung einer mittels kühlluft innengekühlten turbinenschaufel
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
EP3762587B1 (de) Schaufelblatt für eine turbinenschaufel
EP1223308B1 (de) Komponente einer Strömungsmaschine
EP2828484B2 (de) Turbinenschaufel
DE69910913T2 (de) Kühlbare Schaufel für Gasturbinen
EP2087207B1 (de) Turbinenschaufel
DE60122050T2 (de) Turbinenleitschaufel mit Einsatz mit Bereichen zur Prallkühlung und Konvektionskühlung
EP3658751B1 (de) Schaufelblatt für eine turbinenschaufel
EP1260678A1 (de) Kühlvorrichtung für Gasturbinenkomponenten
WO2008092725A1 (de) Turbinenschaufel
EP3473808B1 (de) Schaufelblatt für eine innengekühlte turbinenlaufschaufel sowie verfahren zur herstellung einer solchen
EP1292760B1 (de) Konfiguration einer kühlbaren turbinenschaufel
EP0892150B1 (de) Kühlsystem für den Hinterkantenbereich einer hohlen Gasturbinenschaufel
EP3819470A1 (de) Vorrichtung zur kühlung eines bauteils einer gasturbine/strömungsmaschine mittels prallkühlung
EP3232001A1 (de) Laufschaufel für eine turbine
EP1857635A1 (de) Turbinenschaufel für eine Gasturbine
EP3762586A1 (de) Bauteilwand eines heissgasbauteils
EP0992653A1 (de) Filmgekühlte Komponenten mit Filmkühlungkanälen mit dreieckigem Querschnitt
EP1445423B1 (de) Kühlbare Turbomaschinenschaufel
EP2868867A1 (de) Turbinenschaufel
EP0825333B1 (de) Kühlbare Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROSS, HEINZ-JUERGEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007003044

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100604

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100703

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100603

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

26N No opposition filed

Effective date: 20101206

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100920

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 459785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120920

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150910

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 9

Ref country code: CH

Payment date: 20151202

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007003044

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160920

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160920