WO2008020509A1 - Heat-resistant tempered glass and process for producing the same - Google Patents

Heat-resistant tempered glass and process for producing the same Download PDF

Info

Publication number
WO2008020509A1
WO2008020509A1 PCT/JP2007/063172 JP2007063172W WO2008020509A1 WO 2008020509 A1 WO2008020509 A1 WO 2008020509A1 JP 2007063172 W JP2007063172 W JP 2007063172W WO 2008020509 A1 WO2008020509 A1 WO 2008020509A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass plate
omm
glass
tempered glass
Prior art date
Application number
PCT/JP2007/063172
Other languages
French (fr)
Japanese (ja)
Inventor
Masafumi Yamamoto
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39082037&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008020509(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2008529826A priority Critical patent/JP5799482B2/en
Priority to KR1020147029725A priority patent/KR20140135846A/en
Priority to CN2007800301702A priority patent/CN101500956B/en
Priority to KR1020157020353A priority patent/KR20150095942A/en
Publication of WO2008020509A1 publication Critical patent/WO2008020509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a heat-resistant tempered glass, and more particularly to a heat-resistant tempered glass used for building or residential fireproof windows and fireproof doors, and a method for producing the heat-resistant tempered glass.
  • the glass plate is at a corner portion at the boundary between the glass plate surface and the end surface when a tensile stress is applied to the end portion.
  • a tensile stress is applied to the end portion.
  • the stress is concentrated on the cracked portion of the wheel cutter and the diamond cutter, resulting in destruction. Therefore, in order to improve the strength of the end surface of the glass plate (hereinafter referred to as “edge strength”), how to chamfer is important.
  • the edge strength refers to the tensile stress generated on the end surface when the end of the glass plate is broken.
  • Cited Document 2 proposes a fireproof glass in which only the yarn surfaces at both ends of the end surface of the glass are chamfered and the edge strength is improved by physical strengthening treatment.
  • the glass that has been subjected to the physical strengthening treatment after cutting the glass plate and polishing the end portion thereof by a method different from a normal one to increase the heat-resistant strength is called a heat-resistant toughened glass.
  • the performance required for heat-resistant tempered glass is, for example, that it satisfies the flame shielding performance stipulated in Article 2, Item 9-2 of the Building Standards Act and Article 64 of the Building Standards Act.
  • As a test for evaluating this for example, there is a fire prevention test based on the heating temperature curve of IS0834-1: 1999. In order to pass this, it is required that there is no damage such as cracks through which the flame passes during the fire prevention test, and there are no gaps.
  • the glass does not break.
  • the value obtained by adding the edge strength before physical strengthening after edge processing and the surface compressive stress near the edge by physical strengthening that is, the edge strength possessed by the glass plate after physical strengthening is obtained. It is necessary to exceed at least the edge tensile stress generated during the above test.
  • the edge strength after the physical strengthening treatment increases as the surface compressive stress of the edge increases, and the reliability against the tensile stress generated during the test increases.
  • the glass temperature at the start of quenching is too high in the physical strengthening process to increase the surface compressive stress of the edge, as described above, heat treatment marks and warpage appear on the glass plate, resulting in poor flatness. The image quality as a board cannot be satisfied.
  • heat-resistant tempered glass has been used in buildings such as condominiums and offices. Recently, demand for residential use has been increasing. However, when glass is used for residential windows and doors, the end face is processed using either of the methods of cited references 1 and 2, and physical strengthening treatment is performed under the same conditions as before, building Because it is thinner than the glass used in the film, heat treatment traces and warpage are likely to occur, and video quality is likely to be a problem immediately.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 71429
  • Patent Document 2 Japanese Patent Laid-Open No. 11-79769 Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and is a glass for windows and doors for buildings or houses, and is a heat-resistant tempered glass that satisfies the flame-shielding performance even if the surface compressive stress is small, and It aims at providing the manufacturing method of heat-resistant tempered glass.
  • Another object of the present invention is to provide a heat-resistant tempered glass and a method for producing the heat-resistant tempered glass that satisfy the flame shielding performance even when the surface compressive stress is small and have high image quality.
  • the present invention has been carried out by finding a method for processing an end portion that can ensure the strength as a heat-resistant tempered glass even if the surface compressive stress is reduced.
  • the present invention finds and implements a physical enhancement processing method that satisfies high image quality.
  • a glass plate cut into a predetermined size is a tempered glass subjected to a physical strengthening treatment, and is a ridge portion inclined with respect to the glass plate surface and the end surface. An angle formed with the glass plate surface.
  • the corner portion formed by the ridge-polished surface and the glass plate surface (also referred to as “chip”) has a ridge line length of 200 ⁇ m or less,
  • the maximum width in the direction perpendicular to the ridgeline is 100 ⁇ m or less.
  • the compressive stress on the surface of the glass plate is such that the plate thickness is 2.5 mm or more and less than 3.5 mm, 70 MPa or more and 155 MPa or less, 3.5 mm or more and less than 4.5 mm, 75 MPa or more and 160 MPa.
  • the end face of the glass plate is polished.
  • the tempered glass of the present invention is characterized in that the ridge polished surface is thrown onto the glass end surface.
  • the shadow width is preferably 0.3 mm or more and 1.3 mm or less, and the projection width on the glass plate surface side is preferably 0.3 mm or more and 3 mm or less.
  • a tempered glass including a step of adding an end portion of a glass plate cut to a predetermined size and a step of physically strengthening the glass plate after the end portion processing.
  • the step of processing the end portion is performed by polishing an angle formed by a surface of the ridge portion and the glass plate surface with respect to the glass plate surface and the end surface to 135 degrees or more and 170 degrees or less.
  • Form a ridge-polished surface, and the length of the chip in the corner between the ridge-polished surface and the glass plate surface is 200 ⁇ m or less, and the maximum width perpendicular to the ridgeline is 100 ⁇ m or less. It is characterized by that.
  • the physical strengthening step includes the steps of heating the polished glass plate to 620 ° C. or higher and 660 ° C. or lower; A process of rapidly cooling the glass plate with compressed air at a temperature of not less than 80 ° C and not more than 80 ° C.
  • the pressure of the compressed air is not less than 2.5mm and less than 5mm, and lOkPa or more and 25kPa or less, 3. 5 mm or more, less than 5 mm, 7 kPa or more, 20 kPa or less, 4.5 mm or more 7.
  • Omm less than Omm, 6 kPa or more, 15 kPa or less, 7.0 mm or more, less than 9.0 mm, 5 kPa or more, 1 3 kPa or less, 9.0 mm or more, less than Omm 4kPa or more and 12kPa or less, 11. Omm or more 2 0. Omm or less, 2kPa or more lOkPa or less is preferable!
  • the process of processing the said edge part adds grinding
  • the projected width of the ridge portion polished surface on the glass end surface side is 0.3 mm or more and 1.3 mm or less, and the glass plate surface side is processed. It is preferable to polish the projection width of 0.3mm to 3mm! /.
  • the edge strength before the heat treatment by the physical strengthening treatment can be improved, a heat-resistant tempered glass and a method for producing the heat-resistant tempered glass satisfying the flame shielding performance even when the surface compressive stress by the heat treatment is low are obtained. Can do. Furthermore, since the necessary surface compressive stress can be reduced, the glass temperature of the heat treatment can be lowered, and a heat-resistant tempered glass having high image quality and a method for producing the heat-resistant tempered glass can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a tempered glass sheet according to an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory diagram of a method for polishing a glass plate end according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a polished state of a tempered glass sheet according to an embodiment of the present invention using a cylindrical grindstone.
  • FIG. 4 is a schematic cross-sectional view of a polished state of a tempered glass sheet according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional dimension and part explanatory diagram of an end portion of a glass plate according to this example.
  • FIG. 6 A plot (Weibull plot) on the Weibull probability axis based on the test results in Table 1.
  • FIG. 1 is a schematic cross-sectional view of a tempered glass according to an embodiment of the present invention. As shown in FIG. 1, the glass plate 1 is cut to a predetermined size, and only the ridges on both ends of the end surface lb are polished, so that the glass plate surface la and the ridge polishing surface lc inclined with respect to the end surface lb are formed. It is formed.
  • the end face lb of the glass plate 1 may be left in the state of being cut, but in order to stabilize the variation in the edge strength due to the cutting quality, it is better to polish it, especially parallel polishing (glass A polishing method using a feeding (conveying) direction for polishing and a rotating method of the turret where the glass and the mortar's polishing surface hit each other is preferable.
  • the angle A formed by the glass plate surface la and the edge-polished surface lc is not less than 135 degrees and not more than 170 degrees.
  • the angle A is smaller than 135 degrees, the edge formed by the ridge polished surface lc and the glass plate surface la is chipped, and the edge strength before the physical strengthening process is insufficient. High cooling processing is required, causing distortion and deformation in the glass, resulting in poor image quality. Also, if the angle A is greater than 170 degrees, high-accuracy ridge polishing is required, which increases the equipment cost. Preferred is 151 ° or more and 170 ° or less, which is less likely to cause chipping. More preferable It is 154 degrees or more and 170 degrees or less. Note that the angle A in FIG. 1 does not have to be the same for the upper and lower glass surfaces as long as they are within these ranges.
  • the angle A is set to a range that adds a manufacturing error to 135 degrees. If the corner is left without polishing the ridge, the corner will not be removed during post-processing or transportation. This is because it is easy to break, and it is not intended to positively improve the edge strength.
  • the angle A is set larger than usual in order to positively improve the edge strength. The reason why the edge strength is improved by increasing the angle A and the edge strength is improved by reducing the fracture starting from the corner Id after edge polishing, as will be described later, is expected. In the end machining, the direction of the reaction vector by pressing the mortar at the corner Id is almost perpendicular to the ridge polished surface lc.
  • the reaction force vector is about half of the angle A, so that the force from the glass plate surface la and the edge polishing surface lc hardly occurs.
  • the reaction force vector is close to the glass plate surface la, so that the chipping from the glass plate surface la is likely to occur.
  • the length in the ridge line direction of the chip means the length of a ridge line (virtual ridge line) lost due to a chip generated on the ridge line of the corner Id.
  • the maximum width in the direction perpendicular to the edge of the chip needs to be 100 m or less.
  • the maximum width in the vertical direction to the edge of the chip means the maximum in the vertical direction with respect to the edge (virtual edge) lost due to the chip generated on the edge of the corner Id.
  • the size of the chip should be measured using a digital microscope (for example, Keyence Co., Ltd., product name Digital Microscope Model No. VH-6200) by observing the corner 1d of the polished glass and measuring each distance. Obtained by.
  • the angle A is set to 135 degrees or more and 170 degrees or less
  • the length of the force existing in the corner Id is 200 ⁇ m or less in the ridgeline direction
  • the maximum width in the direction perpendicular to the ridgeline is 100 ⁇ m.
  • the 3 ⁇ lower limit value of the edge strength of the glass plate 1 exceeds 70 MPa. In order to ensure the edge strength, it is important to manage the surface roughness after grinding of the ridges based on the presence and size of the chip rather than the force that is an influence factor of the edge strength.
  • the edge strength can be remarkably improved by the edge processing method according to the present invention, so that the flameproof performance can be improved as a heat-resistant tempered glass.
  • the edge compressive stress can be reduced by the improvement in edge strength, and even if the glass temperature at the start of cooling is lowered in the physical strengthening process, the image quality is maintained while maintaining the flameproof performance required for heat-resistant tempered glass. It can be improved.
  • the flame by the burner and the radiant heat in the furnace are applied from one side of the glass plate.
  • the tensile stress generated at the edge of the glass plate is added to the stress generated by the temperature difference between the center and the edge of the glass plate, and the bending stress generated by the deformation of the edge due to the deformation of the sash.
  • the edge strength after physical strengthening treatment must exceed this tensile stress.
  • the tensile stress generated at the edge during this fireproof test was relatively high at least at the center of the glass plate, and it occurred at the time of temperature, and the rigidity of the glass plate changed due to warping, so it was not always obvious. For this reason, the edge strength after the physical strengthening treatment is on the safe side in the past, so it is relatively thick! Based on the results of the fire prevention test on the glass plate for buildings! Regardless, the required surface compressive stress was determined by assuming a constant tensile stress.
  • the relationship between the thickness of the glass plate and the tensile stress is tested for fire prevention. It was determined by experiment. As a result, the thinner the plate thickness is, the shorter the time required to start the heating at which the maximum value is generated, the lower the glass temperature, and the smaller the deformation of the edge, so the temperature difference between the center and the edge of the glass plate It has been found that the maximum value of the generated stress is reduced. As a result, the plate thickness is about 2.5 to 9.
  • the surface compressive stress is almost the same as that of), but it has a flame shielding performance even at a relatively low surface compressive stress in a thin plate, and high image quality can be obtained.
  • the tensile stress generated at the edge during the fire prevention test is about 60 MPa less than 2.5 mm and less than 3.5 mm, and about 55 MPa less than 3.5 mm and less than 4.5 mm, compared to the case where the plate thickness is 10 mm. 4.5mm or more 5.5 less than 5mm, approx. 45MPa decrease, 5.5mm or more 6. Less than 3mm, approx. 35MPa decrease, 6.3mm or more 7. Less than Omm approx. 25MPa decrease, 7. Omm or more 9 Reduced by about 15 MPa below 0 mm. In addition, it increases about 15MPa at 11.Omm or more and 20.Omm or less.
  • each surface compressive stress with respect to the thickness of the glass plate is 2.5 mm or more and less than 3.5 mm, 70 MPa or more and 155 MPa or less, 3.5 mm or more and less than 4.5 mm, and 75 MPa or more. 160 MPa or less, 4.5 mm or more 5. Less than 5 mm 85 MPa or more 170 MPa or less, 5.5 mm or more 6. Less than 3 mm 95 MPa or more 180 MPa or less, 6.3 mm or more 7. Less than Omm 105 MPa or more 190 MPa or less, 7. Omm or more 9. Less than Omm 120MPa or more and 205MPa or less 9. Omm or more 11. Less than Omm 135MPa or more 22OMPa or less 11. Omm or more 20. Omm or less 150MPa or more and 240MPa or less is preferable.
  • More preferable range of surface compressive stress is that the thickness of the glass plate is 2.5 mm or more and less than 3.5 mm, 70 MPa or more and 130 MPa or less, 3.5 mm or more and less than 5 mm, 75 MPa or more and 135 MPa or less, 4.5 mm or more 5 Less than 5mm 85MPa or more 140MPa or less, 5.5mm or more 6. Less than 3mm 95MPa or more 150MPa or less, 6. 3mm or more 7. Less than Omm 105MPa or more 160MPa or less 7. Omm or more 9. Less than Omm 120MPa or more 175 MPa or less, 9. Omm or more 11. Less than Omm, 135 MPa or more and 190 MPa or less, 11.
  • the margin for the tensile stress generated during the fire prevention test is relatively favorable. Although it is lower than the preferred range, it can maintain the necessary flameproof performance, and it is much closer to the image quality before physical strengthening processing, and can provide tempered glass.
  • the surface compressive stress can be measured with a differential refractometer described in JIS R3222 (2003 edition).
  • the surface compressive stress is more likely not to be distributed in the plane of the glass plate because the glass plate is more likely to warp when the force on the image quality differs greatly between the edge and the center of the glass plate. It is preferable to satisfy the above range at least from the end face to 50mm.
  • the projection width B on the end surface lb side of the ridge polished surface lc and the projection width C of the ridge polished surface lc on the glass plate surface la side are appropriately determined according to the thickness of the glass plate.
  • B is 0.3 mm or more and 1.3 mm or less
  • C is 0.3 mm.
  • C is preferably 3 mm or less
  • C is preferably 0.5 mm or more and 1.3 mm or less.
  • FIG. 2 is a schematic explanatory view of a method for polishing a glass plate end portion according to an embodiment of the present invention
  • FIG. 3 is a diagram of polishing with a reinforced glass cylindrical mortar according to an embodiment of the present invention. It is a schematic sectional view of a state.
  • FIG. 4 is a schematic cross-sectional view of a polished state of tempered glass according to another embodiment of the present invention.
  • a glass plate 1 to be polished is conveyed as shown by an arrow D, and a plurality of (three in the illustrated example) cylindrical bullion stones 2a for ridge polishing along the conveyance path, 2b and 2c are continuously arranged on a straight line.
  • the grinding wheels 2a, 2b, 2c for polishing ridges arranged in a row are first equipped with a grinding wheel 2a with a large average abrasive grain size and high polishing efficiency.
  • the final grindstone 2c is provided with a grindstone with a grain size corresponding to the required finished surface (rough finish, polished finish, polished finish, etc.).
  • # 200 average gun grain size 100 ⁇ m) for rough finish
  • # 500 average grain size 45 ⁇ m
  • polished finish # 800 (average grain size 30 ⁇ m) for polished finish ) Is usually used.
  • a cylindrical mortar 2 having a substantially U-shaped barrel layer 3 formed on the circumference of a cylinder and provided with a rotation shaft 4 at the center of the cylinder, End face of glass plate 1 with respect to lb cross section If the glass plate 1 is cut with a cutting line (cutting groove) on the glass plate surface la with a wheel cutter, etc., the portion is weakest in strength and the portion (where cracks from the wheel cutter remain) ) Will be polished by each mortar 2.
  • the length of the force existing in the corner Id formed by the polishing surface lc and the glass plate surface la after this polishing step is 200 ⁇ m or less in the ridge line direction, and the maximum width in the direction perpendicular to the ridge line is 100 Since it is finished to ⁇ m or less, stress concentration at the chip when tensile stress is generated at the edge can be kept small.
  • the end surface lb has a cutting surface quality that can be either polished or not depending on the shape of the cylindrical grindstone 2 as shown in FIG. 3 (b). It has a stable and high edge strength.
  • the corner formed by the end surface 1 b of the glass plate 1 and the edge polishing surface lc is substantially chamfered, but this shape is not sufficient for edge strength. There is no effect. Further, when the end surface lb is subjected to parallel polishing before the ridge portion polishing of the present invention, higher edge strength can be obtained.
  • This polishing step is not limited to the above-described polishing method using the cylindrical grindstone 2.
  • the bullet layer 3 is mounted on the disk 5, Using a cup-shaped mortar 2 with a rotation axis 4 at its center, tilting the rotation axis 4 with respect to the end surface lb, and only the ridge lc (the corner of the boundary between the glass plate surface la and the end surface lb)
  • the puff polishing method in which the outer peripheral surface of the polishing belt 6 is brought into contact with the ridge lc of the glass plate 1 as the workpiece, and polishing is performed, as shown in FIG. 4 (c).
  • FIG. 4 (c) As shown in Fig.
  • a method is used in which a granule layer 3 is mounted on a cylinder 7 and a cylindrical mortar 2 having a rotation shaft 4 in its center is used and the rotation shaft 4 is inclined with respect to the end face lb. Or you may carry out by the grinding
  • the edge lc is polished according to the above-described embodiment of the present invention, and the length of the chip existing at the corner Id is 200 m or less in the ridge line direction and the maximum width in the direction perpendicular to the ridge line. Should be finished to less than 100 m.
  • the heat capacity differs when the glass plate thickness is different, and it is necessary to adjust the cooling rate according to the glass plate thickness. is there.
  • the cooling rate varies depending on the glass plate temperature, compressed air temperature, and pressure before quenching.
  • the cooling rate needs to be increased in order to increase the temperature difference in the thickness direction of the glass plate where the heat capacity decreases as the plate thickness decreases. For this reason, in order to ensure the surface compressive stress required when the plate thickness is small, the glass temperature before quenching can be increased, or the temperature of the compressed air can be decreased compared to when the plate thickness is large. It is necessary to increase the pressure of the pressure air.
  • the glass plate after the polishing step is heated to 620 ° C. or higher and 660 ° C. or lower to uniformly apply surface compressive stress to the glass surface.
  • the temperature of the compressed air becomes higher than the outside air temperature due to the rotational energy of the blower, and in some cases, it may rise to nearly 80 ° C.
  • the cooling air can be lowered to nearly 5 ° C by cooling with a cooler.
  • the physical strengthening process according to the present invention sets the surface compressive stress required for a thin plate to be smaller, so the compressed air required for the expression of the surface compressive stress is used.
  • the pressure of the plate is 2.5 mm or more and less than 3.5 mm, lOkPa or more and 25 kPa or less, 3.5 mm or more, less than 5 mm, 7 kPa or more and 20 kPa or less, 4.5 mm or more, 7 mm or less, 6 kPa or more and 15 kPa or less, 7 Omm or more 9. Less than Omm 5 kPa or more and 13 kPa or less, 9. Omm or more 11.
  • Example 1 Float glass with a nominal thickness of 3 mm (average measured thickness 3.15 mm) 29 pieces are used in the order of cylindrical turret # 140, # 325, # 600 The ridges and end faces were polished.
  • Example 2 Float glass with a nominal thickness of 3 mm (average thickness measured 3.17 mm) 29 pieces were used in the order of cylindrical mortar # 120, # 270, # 500 The ridges and end faces were polished.
  • Example 3 26 glass floats with a nominal thickness of 4 mm (average measured thickness of 3.75 mm) were used in the order of cylindrical mortar # 120, # 270, # 500 The ridges and end faces were polished.
  • FIG. 5A is a cross-sectional dimension and part explanatory diagram of the glass plate end part according to the present example
  • FIG. 5B is a cross-sectional dimension and part explanatory diagram of the glass end part according to the comparative example.
  • the fracture starting point is the glass plate surface e, m, the angle f, 1, the ridge polishing surface g, k, the ridge polishing surface, and the end surface.
  • the strength test was performed at a room temperature of 16-21 ° C and a relative humidity of 45-55%. 4-point bending with a load span of 30 cm and a support span of 90 cm capable of loading a uniform tensile stress on the center 30 cm of the processed side of the sample. Performed by test.
  • Table 1 shows the results of the strength test (fracture stress, the position and number of fracture start points) and the cross-sectional dimensions of glass plate 1. The size of the chip is determined by observing the corner 1d of the polished glass using a digital microscope (manufactured by Keyence Corporation, product name Digital Microscope Model No. VH-6200) and measuring each distance. Obtained.
  • the fracture stress in Table 1 is the end It is the value for the glass before physical strengthening after processing.
  • Figure 6 shows a plot on the Weibull probability axis (hereinafter referred to as the “Weibull plot”) based on the test results in Table 1.
  • the Weibull plot is often used to evaluate the strength of materials with a large variation in fracture stress, such as glass, and plots the results of all fracture stresses except samples where the fracture origin is outside the load span. In this figure, the plot on the right indicates that the fracture stress is greater.
  • the average fracture stress value increased by 30 MPa or more (about 1.5 times) compared to Comparative Example 1 in which both ends of the end face were chamfered. Even the lower limit of fracture stress 3 ⁇ increased by about 19MPa or more (about 1.4 times).
  • the 3 ⁇ lower limit value means the failure probability of about 1Z1000, where ⁇ is the standard deviation value and ⁇ is the number of samples. When the stress shown by the 3 ⁇ lower limit value occurs, about 1000 sheets This means that one of the glass plates will crack.
  • the fracture stress of Examples 1 to 3 from Fig. 6 is less than the fracture stress of Comparative Example 1, and the cumulative fracture probability that is important in the design of heat-resistant toughened glass is small. It is a big thing in the area.
  • the location of the fracture starting point in this strength test is 5% or less at the corner Id (f, 1 in Fig. 5), which has been frequently generated in the past. Yes.
  • glass breakage occurs when the angle A formed by the ridge polished surface lc and the glass plate surface la is not less than 135 degrees and not more than 170 degrees, and the corner Id formed by the ridge polished surface lc and the glass plate surface lb has a crack. It was confirmed that this can be suppressed by setting the length in the ridge line direction to 200 ⁇ m or less and the maximum width in the direction perpendicular to the ridge line to 100 ⁇ m or less.
  • the glass plate after the end processing is subjected to a physical strengthening treatment with a surface compressive stress of 150 MPa (for example, glass temperature before quenching 650 ° C, compressed air temperature 42 ° C, compressed air pressure 15.2 kPa).
  • a surface compressive stress of 150 MPa for example, glass temperature before quenching 650 ° C, compressed air temperature 42 ° C, compressed air pressure 15.2 kPa.
  • the edge strength necessary for flameproof performance can be obtained and high image quality can be obtained.
  • the glass plate after the end processing described above is subjected to physical strengthening treatment with a surface compressive stress of 105 MPa (for example, glass temperature before quenching 635 ° C, compressed air temperature 41 ° C, compressed air pressure 8. OkPa). Edge strength necessary for flame performance is obtained and higher image quality is obtained.
  • the 3 ⁇ lower limit value of the edge strength of the glass plate 1 exceeds 70 MPa. Therefore, in order to obtain the edge strength necessary for the flame barrier performance, the glass plate 1 can be improved in productivity if it is subjected to a physical strengthening treatment that imparts a lower surface compressive stress than in the past. Degradation of the image quality of the glass plate due to physical strengthening treatment of heat-resistant tempered glass plate with a thickness of 3 to 6 mm can be avoided.
  • the product name FSM-30 manufactured by Orihara Seisakusho Co., Ltd.
  • each point in the 50 mm area from the end face at the center of each of the four sides was measured and averaged.
  • the glass quality when the glass quality is very good, the glass quality was evaluated as ⁇ , when it was good, ⁇ , and when it was not good, it was evaluated as ⁇ .
  • Judgment criteria for flameproofing performance in the fire prevention test in the table is to the non-heating side There is no flame eruption that lasts for more than 10 seconds, there is no flame that continues for more than 10 seconds to the non-heated side, there is no damage such as cracks through which the flame passes, and there are no gaps. When all of these were satisfied, it was determined to be acceptable.
  • the tempered glass according to the present invention satisfies the flame barrier performance, achieves both the flame barrier performance and the image quality by making the surface compressive stress within a preferable range, and further increases the surface compressive stress. It was found that by setting it within the preferred range, the flame shielding performance can be maintained and higher image quality can be satisfied.
  • the fire prevention test was performed for the thickness of 7.7 mm under the processing conditions of Example 3 (surface compressive stress is 162 MPa) and the processing conditions of Comparative Example 1 (surface compressive stress is 198 MPa).
  • the preferred surface compressive stress for other thicknesses is that the smaller the plate thickness found in connection with the present invention, the smaller the required surface compressive stress. It was determined based on the edge strength improvement obtained by polishing according to the present invention. Also, the pressure of compressed air required for each plate thickness was determined based on the required surface compressive stress.
  • Example 8 Example 9
  • Example 10 Example 11 1 Thickness (mm) 5.7 5.5.7 5.7 5.7 End processing method
  • Example 3 Example 3
  • Example 3 Surface compressive stress (MPa) 1 1 0 1 2 1 1 6 8 1 8 3 Glass temperature before quenching (in) 6 3 0 6 3 3 6 4 7 6 6 1 Compressed air temperature rc) 3 7 4 0 4 1 3 7
  • the present invention can provide a heat-resistant tempered glass for homes having edge strength that satisfies flame barrier performance and high image quality. In addition, it is suitable for physical strengthening treatment of heat ray reflective glass or heat ray absorbing glass that usually requires heat resistance. It should be noted that the entire contents of the description, claims, drawings and abstract of Japanese Patent Application 2006-221114 filed on August 14, 2006 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Special Wing (AREA)

Abstract

A heat-resistant tempered glass that is for windows and doors of building and housing unit, having a strength satisfying flame shielding performance, and that realizes high image quality. The tempered glass is one resulting from physical strengthening processing of a glass plate cut into given size, characterized in that there is provided an edge portion polished plane inclined against the surface of glass plate and an end face thereof, and that the edge portion polished plane has an angle of 135° to 170° against the glass plate surface, and that a break in a corner portion made by the edge portion polished plane and the glass plate surface has a length of 200 μm or less in the direction of edge line and has a maximum width of 100 μm or less in the direction perpendicular to the edge line.

Description

明 細 書  Specification
耐熱強化ガラス及び耐熱強化ガラスの製造方法  Heat-resistant tempered glass and method for producing heat-resistant tempered glass
技術分野  Technical field
[0001] 本発明は、耐熱強化ガラスに関し、特にビル用又は住宅用の防火窓及び防火扉用 に用いられる耐熱強化ガラス及び耐熱強化ガラスの製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a heat-resistant tempered glass, and more particularly to a heat-resistant tempered glass used for building or residential fireproof windows and fireproof doors, and a method for producing the heat-resistant tempered glass.
背景技術  Background art
[0002] 一般のソーダライムガラスでは、建築基準法に定める防火戸の防火試験時や火災 発生時に、端部に発生する引っ張り応力が破損の原因となる。この引っ張り応力は、 サッシ枠中に嵌め込まれた端部と炎に晒される面部との温度差等に起因する。従来 、延焼防止等の目的で使用される防火ガラスとして、火災発生時にガラスが割れても 脱落による開口を生じな 、ように金属網を埋め込んだ網入りガラスが一般的に用いら れる。近年では、外観上の利点等から、金属網がなくても火災発生時にガラスが割れ ずに防火性能を発揮する防火ガラスが提案されている。  In general soda lime glass, the tensile stress generated at the end of the fire door during a fire test or fire that is stipulated in the Building Standards Law causes damage. This tensile stress is caused by a temperature difference between the end fitted in the sash frame and the surface exposed to the flame. Conventionally, as a fireproof glass used for the purpose of preventing the spread of fire, a glass with a metal net embedded so as not to cause an opening due to dropping even if the glass breaks in the event of a fire is generally used. In recent years, fire-resistant glass that exhibits fire-proof performance without breaking the glass in the event of a fire has been proposed because of its appearance and other advantages.
[0003] このような防火ガラスは端部の強度を確保するために、ガラス板を軟ィ匕点付近にカロ 熱後、圧縮空気などを吹き付けてガラス板を急冷する、物理強化ための熱処理、い わゆる物理強化処理によって表面圧縮応力を高めることが必要となる。この処理は、 ガラス板が比較的柔らかい状態力も圧縮空気などをガラス面に吹き付けて急冷する ために、ガラス表面に急冷の跡や反りが発生して平坦性が悪くなることがあり、映像 品質の低下が避けられない。  [0003] In order to ensure the strength of the edge of such a fireproof glass, after the glass plate is heated close to the soft saddle point, the glass plate is rapidly cooled by blowing compressed air or the like, heat treatment for physical strengthening, It is necessary to increase the surface compressive stress by so-called physical strengthening treatment. In this process, even if the glass plate is relatively soft, it is cooled rapidly by blowing compressed air or the like onto the glass surface, which may cause rapid cooling marks or warpage on the glass surface, resulting in poor flatness. A decline is inevitable.
[0004] また、ガラス板は、切断後のガラス切断端面を研摩していない状態では、端部に引 つ張り応力が負荷されると、ガラス板面と端面との境界にある角部にある微細なクラッ クゃ、特に切断の際にホイールカツタゃダイヤモンドカツタで亀裂を入れた部分に応 力が集中し破壊が起きる。このため、ガラス板の端部表面の強度 (以下「エッジ強度」 という)を向上させるためには、面取りを如何に行うかが重要となる。なお、エッジ強度 とは、ガラス板の端部の破壊時に端部表面に発生した引っ張り応力をいう。  [0004] In addition, when the glass cut end surface after cutting is not polished, the glass plate is at a corner portion at the boundary between the glass plate surface and the end surface when a tensile stress is applied to the end portion. In the case of a fine crack, especially when cutting, the stress is concentrated on the cracked portion of the wheel cutter and the diamond cutter, resulting in destruction. Therefore, in order to improve the strength of the end surface of the glass plate (hereinafter referred to as “edge strength”), how to chamfer is important. The edge strength refers to the tensile stress generated on the end surface when the end of the glass plate is broken.
[0005] 引用文献 1には、ガラスの端部を曲面形状に研磨した後に曲面端部と平面部 (板 面)との境界部分を研磨し、さらに物理強化処理によりエッジ強度を向上させた防火 ガラスが提案されている。し力しながら、この引用文献 1記載のガラス板の端部研磨 方法では、特殊な曲面形状の研磨ホイールを用いなければならず、新たな研磨ホイ ール製作が必要になり、ガラス端部の加工コストやその品質管理コストも増加する。 [0005] In cited document 1, fire resistance is obtained by polishing the edge of glass into a curved shape, then polishing the boundary between the curved edge and the flat surface (plate surface), and further improving the edge strength by physical strengthening treatment. Glass has been proposed. However, in the method for polishing the edge of the glass plate described in the cited reference 1, it is necessary to use a grinding wheel with a special curved surface, and it is necessary to manufacture a new polishing wheel. Processing costs and quality control costs also increase.
[0006] 引用文献 2には、ガラスの端面の両端部の糸面のみを面取りして、さらに物理強化 処理によりエッジ強度を向上させた防火ガラスが提案されている。  [0006] Cited Document 2 proposes a fireproof glass in which only the yarn surfaces at both ends of the end surface of the glass are chamfered and the edge strength is improved by physical strengthening treatment.
[0007] このようにガラス板を切断し端部を通常とは異なる方法で研磨した後に物理強化処 理をして耐熱強度を高めたガラスは、防火ガラスの中でも特に耐熱強化ガラスと呼ば れる。耐熱強化ガラスとして必要な性能は、例えば日本では建築基準法第 2条第 9号 の 2や、建築基準法第 64条に規定されている遮炎性能を満足することである。これを 評価する試験として、例えば IS0834— 1: 1999の加熱温度曲線に基づく防火試験 がある。これに合格するためには、防火試験中に火炎が通る亀裂などの損傷及び隙 間を生じないことなどが求められるため、基本的に網入りガラスのようにガラスが割れ ても脱落しないガラスを除いてガラスが割れないことが必要となる。このためには、端 部加工後の物理強化処理前のエッジ強度と、物理強化処理によるエッジ付近の表面 圧縮応力とを加算した値、すなわち、物理強化処理後のガラス板が保有するエッジ 強度が、少なくとも上記試験時に発生するエッジの引っ張り応力を上回る必要がある 。物理強化処理後のエッジ強度は、エッジの表面圧縮応力が高いほど大きくなり、試 験時に発生する引っ張り応力に対する信頼性が高まる。し力しながら、エッジの表面 圧縮応力を高めるために、物理強化処理において急冷開始のガラス温度を高くしす ぎると、前述のとおりガラス板に熱処理跡や反りが出て平坦度が悪くなり、ガラス板と しての映像品質を満足できなくなる。  [0007] As described above, among the fire-resistant glasses, the glass that has been subjected to the physical strengthening treatment after cutting the glass plate and polishing the end portion thereof by a method different from a normal one to increase the heat-resistant strength is called a heat-resistant toughened glass. The performance required for heat-resistant tempered glass is, for example, that it satisfies the flame shielding performance stipulated in Article 2, Item 9-2 of the Building Standards Act and Article 64 of the Building Standards Act. As a test for evaluating this, for example, there is a fire prevention test based on the heating temperature curve of IS0834-1: 1999. In order to pass this, it is required that there is no damage such as cracks through which the flame passes during the fire prevention test, and there are no gaps. Except for this, it is necessary that the glass does not break. For this purpose, the value obtained by adding the edge strength before physical strengthening after edge processing and the surface compressive stress near the edge by physical strengthening, that is, the edge strength possessed by the glass plate after physical strengthening is obtained. It is necessary to exceed at least the edge tensile stress generated during the above test. The edge strength after the physical strengthening treatment increases as the surface compressive stress of the edge increases, and the reliability against the tensile stress generated during the test increases. However, if the glass temperature at the start of quenching is too high in the physical strengthening process to increase the surface compressive stress of the edge, as described above, heat treatment marks and warpage appear on the glass plate, resulting in poor flatness. The image quality as a board cannot be satisfied.
また、耐熱強化ガラスは、マンションやオフィス等のビルに用いられてきた力 最近、 住宅用への需要も高まってきている。し力しながら、住宅用の窓や扉に用いられるガ ラスは、引用文献 1又は 2のどちらかの方法を用いて端面を加工し、従来と同じ条件 での物理強化処理を行うと、ビルに用いられるガラスに比べ厚みが薄いので、熱処理 跡や反りが発生しやすぐ映像品質が問題となりやすい。  In addition, heat-resistant tempered glass has been used in buildings such as condominiums and offices. Recently, demand for residential use has been increasing. However, when glass is used for residential windows and doors, the end face is processed using either of the methods of cited references 1 and 2, and physical strengthening treatment is performed under the same conditions as before, building Because it is thinner than the glass used in the film, heat treatment traces and warpage are likely to occur, and video quality is likely to be a problem immediately.
[0008] 特許文献 1 :特開平 9 71429号公報  Patent Document 1: Japanese Patent Laid-Open No. 9 71429
特許文献 2:特開平 11― 79769号公報 発明の開示 Patent Document 2: Japanese Patent Laid-Open No. 11-79769 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、上記の事情に鑑みてなされたものであり、ビル用又は住宅用の窓及び 扉のガラスであって、表面圧縮応力が小さくても遮炎性能を満たす耐熱強化ガラス 及び耐熱強化ガラスの製造方法の提供を目的とする。また、本発明は、表面圧縮応 力が小さくても遮炎性能を満たし、かつ高い映像品質である耐熱強化ガラス及び耐 熱強化ガラスの製造方法の提供を目的とする。  [0009] The present invention has been made in view of the above circumstances, and is a glass for windows and doors for buildings or houses, and is a heat-resistant tempered glass that satisfies the flame-shielding performance even if the surface compressive stress is small, and It aims at providing the manufacturing method of heat-resistant tempered glass. Another object of the present invention is to provide a heat-resistant tempered glass and a method for producing the heat-resistant tempered glass that satisfy the flame shielding performance even when the surface compressive stress is small and have high image quality.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、前記目的に応じて、表面圧縮応力を低減しても耐熱強化ガラスとしての 強度を確保できる端部の加工方法を見出して実施したものである。また、本発明はこ の端部の加工方法に加えて、高い映像品質を満足する物理強化処理の方法を見出 して実施したものである。 [0010] According to the above object, the present invention has been carried out by finding a method for processing an end portion that can ensure the strength as a heat-resistant tempered glass even if the surface compressive stress is reduced. In addition to this edge processing method, the present invention finds and implements a physical enhancement processing method that satisfies high image quality.
即ち、前記目的を達成するために、本発明の強化ガラスでは、所定寸法に切断さ れたガラス板が物理強化処理された強化ガラスであって、前記ガラス板面及び端面 に対し傾斜した稜部研磨面を有し、該稜部研磨面は前記ガラス板面とのなす角度が That is, in order to achieve the above object, in the tempered glass of the present invention, a glass plate cut into a predetermined size is a tempered glass subjected to a physical strengthening treatment, and is a ridge portion inclined with respect to the glass plate surface and the end surface. An angle formed with the glass plate surface.
135度以上 170度以下であり、前記稜部研磨面と前記ガラス板面とでなす角部の力 ケ(「チッビング (chip)」とも 、う)は稜線方向の長さが 200 μ m以下、稜線に垂直方 向の最大幅が 100 μ m以下であることを特徴とする。 135 degrees or more and 170 degrees or less, and the corner portion formed by the ridge-polished surface and the glass plate surface (also referred to as “chip”) has a ridge line length of 200 μm or less, The maximum width in the direction perpendicular to the ridgeline is 100 μm or less.
また、本発明の前記強化ガラスでは、ガラス板の表面の圧縮応力は、板厚が 2. 5m m以上 3. 5mm未満で 70MPa以上 155MPa以下、 3. 5mm以上 4. 5mm未満で 7 5MPa以上 160MPa以下、 4. 5mm以上 5. 5mm未満で 85MPa以上 170MPa以 下、 5. 5mm以上 6. 3mm未満で 95MPa以上 180MPa以下、 6. 3mm以上 7. Om m未満で 105MPa以上 190MPa以下、 7. Omm以上 9. Omm未満で 120MPa以上 205MPa以下、 9. Omm以上 11. Omm未満で 135MPa以上 220MPa以下、 11. 0 mm以上 20. Omm以下で 150MPa以上 240MPa以下であることが好ましい。  In the tempered glass of the present invention, the compressive stress on the surface of the glass plate is such that the plate thickness is 2.5 mm or more and less than 3.5 mm, 70 MPa or more and 155 MPa or less, 3.5 mm or more and less than 4.5 mm, 75 MPa or more and 160 MPa. Less than 4.5mm, less than 5mm, less than 85MPa, less than 170MPa, less than 5.5mm, less than 3mm, more than 95MPa, less than 180MPa, less than 6.3mm, less than Om 105, less than 105MPa, less than 190MPa, more than 7.Omm 9. Less than Omm, 120 MPa or more and 205 MPa or less, 9. Omm or more, 11. Less than Omm, 135 MPa or more and 220 MPa or less, 11.0 mm or more, 20. Omm or less, 150 MPa or more and 240 MPa or less.
[0011] さらに、本発明の前記強化ガラスでは、ガラス板の端面は、研磨されていることが好 ましい。 [0011] Further, in the tempered glass of the present invention, it is preferable that the end face of the glass plate is polished.
[0012] さらにまた、本発明の前記強化ガラスは、前記稜部研磨面のガラス端面側への投 影幅は、 0. 3mm以上 1. 3mm以下、ガラス板面側への投影幅は、 0. 3mm以上 3m m以下であることが好ま U、。 [0012] Furthermore, the tempered glass of the present invention is characterized in that the ridge polished surface is thrown onto the glass end surface. The shadow width is preferably 0.3 mm or more and 1.3 mm or less, and the projection width on the glass plate surface side is preferably 0.3 mm or more and 3 mm or less.
[0013] 本発明の強化ガラスの製造方法では、所定寸法に切断されたガラス板の端部を加 ェする工程と、前記端部加工後のガラス板を物理強化処理する工程とを含む強化ガ ラスの製造方法であって、前記端部を加工する工程は、前記ガラス板面及び端面に 対して稜部の面と前記ガラス板面とのなす角度を 135度以上 170度以下に研磨して 稜部研磨面を形成し、該稜部研磨面と前記ガラス板面とでなす角部に有するカケの 稜線方向の長さを 200 μ m以下、稜線に垂直方向の最大幅を 100 μ m以下とするこ とを特徴とする。 [0013] In the method for producing tempered glass of the present invention, a tempered glass including a step of adding an end portion of a glass plate cut to a predetermined size and a step of physically strengthening the glass plate after the end portion processing. In the manufacturing method of the lath, the step of processing the end portion is performed by polishing an angle formed by a surface of the ridge portion and the glass plate surface with respect to the glass plate surface and the end surface to 135 degrees or more and 170 degrees or less. Form a ridge-polished surface, and the length of the chip in the corner between the ridge-polished surface and the glass plate surface is 200 μm or less, and the maximum width perpendicular to the ridgeline is 100 μm or less. It is characterized by that.
また、本発明の前記強化ガラスの製造方法では、前記物理強化処理する工程は、 前記研磨後のガラス板を 620°C以上 660°C以下に加熱する工程と、前記加熱後の ガラス板に 5°C以上 80°C以下の圧縮空気をガラス板の両面力 吹き付けて急冷する 工程とを含み、前記圧縮空気の圧力を板厚が 2. 5mm以上 3. 5mm未満で lOkPa 以上 25kPa以下、 3. 5mm以上 4. 5mm未満で 7kPa以上 20kPa以下、 4. 5mm以 上 7. Omm未満で 6kPa以上 15kPa以下、 7. 0mm以上 9. 0mm未満で 5kPa以上 1 3kPa以下、 9. 0mm以上 11. Omm未満で 4kPa以上 12kPa以下、 11. Omm以上 2 0. Omm以下で 2kPa以上 lOkPa以下とすることが好まし!/、。  Further, in the method for producing tempered glass of the present invention, the physical strengthening step includes the steps of heating the polished glass plate to 620 ° C. or higher and 660 ° C. or lower; A process of rapidly cooling the glass plate with compressed air at a temperature of not less than 80 ° C and not more than 80 ° C. The pressure of the compressed air is not less than 2.5mm and less than 5mm, and lOkPa or more and 25kPa or less, 3. 5 mm or more, less than 5 mm, 7 kPa or more, 20 kPa or less, 4.5 mm or more 7. less than Omm, 6 kPa or more, 15 kPa or less, 7.0 mm or more, less than 9.0 mm, 5 kPa or more, 1 3 kPa or less, 9.0 mm or more, less than Omm 4kPa or more and 12kPa or less, 11. Omm or more 2 0. Omm or less, 2kPa or more lOkPa or less is preferable!
さらに、本発明の前記強化ガラスの製造方法では、前記端部を加工する工程は、 前記ガラス板の端面の研磨を加えることが好ま 、。  Furthermore, in the manufacturing method of the said tempered glass of this invention, it is preferable that the process of processing the said edge part adds grinding | polishing of the end surface of the said glass plate.
さらにまた、本発明の前記強化ガラスの製造方法では、前記端部を加工する工程 は、稜部研磨面のガラス端面側への投影幅を 0. 3mm以上 1. 3mm以下、ガラス板 面側への投影幅を 0. 3mm以上 3mm以下に研磨することが好まし!/、。  Furthermore, in the method for producing tempered glass according to the present invention, in the step of processing the end portion, the projected width of the ridge portion polished surface on the glass end surface side is 0.3 mm or more and 1.3 mm or less, and the glass plate surface side is processed. It is preferable to polish the projection width of 0.3mm to 3mm! /.
発明の効果  The invention's effect
[0014] 本発明によれば、物理強化処理による熱処理前のエッジ強度を向上できるので、 熱処理による表面圧縮応力が低くても遮炎性能を満たす耐熱強化ガラス及び耐熱 強化ガラスの製造方法を得ることができる。さらに、必要な表面圧縮応力を低減でき るので、熱処理のガラス温度を低くでき、高い映像品質を有する耐熱強化ガラス及び 耐熱強化ガラスの製造方法を得ることができる。 図面の簡単な説明 [0014] According to the present invention, since the edge strength before the heat treatment by the physical strengthening treatment can be improved, a heat-resistant tempered glass and a method for producing the heat-resistant tempered glass satisfying the flame shielding performance even when the surface compressive stress by the heat treatment is low are obtained. Can do. Furthermore, since the necessary surface compressive stress can be reduced, the glass temperature of the heat treatment can be lowered, and a heat-resistant tempered glass having high image quality and a method for producing the heat-resistant tempered glass can be obtained. Brief Description of Drawings
[0015] [図 1]本発明の実施の形態に係る強化ガラス板の概略断面図。  FIG. 1 is a schematic cross-sectional view of a tempered glass sheet according to an embodiment of the present invention.
[図 2]本発明の実施の形態に係るガラス板端部の研磨加工方法の概略説明図。  FIG. 2 is a schematic explanatory diagram of a method for polishing a glass plate end according to an embodiment of the present invention.
[図 3]本発明の実施の形態に係る強化ガラス板の筒状砥石による研磨状態の概略断 面図。  FIG. 3 is a schematic cross-sectional view of a polished state of a tempered glass sheet according to an embodiment of the present invention using a cylindrical grindstone.
[図 4]本発明の別の実施の形態に係る強化ガラス板の研磨状態の概略断面図。  FIG. 4 is a schematic cross-sectional view of a polished state of a tempered glass sheet according to another embodiment of the present invention.
[図 5]本実施例に係わるガラス板端部の断面寸法及び部位説明図。  FIG. 5 is a cross-sectional dimension and part explanatory diagram of an end portion of a glass plate according to this example.
[図 6]表 1の試験の結果に基づくワイブル確率軸上のプロット(ワイブルプロット)を示 す図。  [Fig. 6] A plot (Weibull plot) on the Weibull probability axis based on the test results in Table 1.
符号の説明  Explanation of symbols
[0016] 1 :ガラス板、 la :ガラス板面、 lb :端面、 lc :稜部研磨面、 Id:角部、  [0016] 1: glass plate, la: glass plate surface, lb: end surface, lc: ridge polished surface, Id: corner portion,
2 (2a, 2b、 2c):砥石、 3 :砥粒層、 4 :回転軸、 5 :円盤、  2 (2a, 2b, 2c): Grinding wheel, 3: Abrasive layer, 4: Rotating shaft, 5: Disk,
6 :研磨用ベルト、 7 :円筒。  6: Polishing belt, 7: Cylinder.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、図面に従って本発明の実施の形態に係る強化ガラスを説明する。  Hereinafter, the tempered glass according to the embodiment of the present invention will be described with reference to the drawings.
図 1は、本発明の実施の形態に係る強化ガラスの概略断面図である。図 1に示すよ うに、ガラス板 1は所定寸法に切断されており、端面 lbの両端側の稜部のみが研磨 されて、ガラス板面 la及び端面 lbに対し傾斜した稜部研磨面 lcが形成される。ガラ ス板 1の端面 lbは切断加工されたままの状態であってもよいが、切断品質によるエツ ジ強度のばらつきを安定ィ匕させるには研磨加工されているほうがよぐ特に平行研磨 (ガラスの研磨のための送り(搬送)方向と、ガラスと砲石の研磨面とが当たるところで の砲石の回転方向が同じになる研磨方法)による研磨カ卩ェがよい。  FIG. 1 is a schematic cross-sectional view of a tempered glass according to an embodiment of the present invention. As shown in FIG. 1, the glass plate 1 is cut to a predetermined size, and only the ridges on both ends of the end surface lb are polished, so that the glass plate surface la and the ridge polishing surface lc inclined with respect to the end surface lb are formed. It is formed. The end face lb of the glass plate 1 may be left in the state of being cut, but in order to stabilize the variation in the edge strength due to the cutting quality, it is better to polish it, especially parallel polishing (glass A polishing method using a feeding (conveying) direction for polishing and a rotating method of the turret where the glass and the mortar's polishing surface hit each other is preferable.
[0018] ガラス板面 laと稜部研磨面 lcとのなす角度 Aは、 135度以上 170度以下である。  [0018] The angle A formed by the glass plate surface la and the edge-polished surface lc is not less than 135 degrees and not more than 170 degrees.
角度 Aが 135度よりも小さいと、稜部研磨面 lcとガラス板面 laとで成す角部にカケが 発生しやすぐ物理強化処理前のエッジ強度が不足し、高温までの加熱や風圧の高 い冷却処理が必要になり、ガラスに歪や変形を生じて映像品質が悪くなる。また、角 度 Aが 170度よりも大きいと、高精度の稜部研磨が必要となり、設備コストが増大する 。好ましいのは、よりカケが発生しにくい 151度以上 170度以下である。より好ましい のは、 154度以上 170度以下である。なお、図 1の角度 Aは、これらの範囲に入って いれば上下のガラス面に対して同一でなくてもよい。 When the angle A is smaller than 135 degrees, the edge formed by the ridge polished surface lc and the glass plate surface la is chipped, and the edge strength before the physical strengthening process is insufficient. High cooling processing is required, causing distortion and deformation in the glass, resulting in poor image quality. Also, if the angle A is greater than 170 degrees, high-accuracy ridge polishing is required, which increases the equipment cost. Preferred is 151 ° or more and 170 ° or less, which is less likely to cause chipping. More preferable It is 154 degrees or more and 170 degrees or less. Note that the angle A in FIG. 1 does not have to be the same for the upper and lower glass surfaces as long as they are within these ranges.
通常の稜部の研磨において、角度 Aを 135度に製造誤差を加えた程度の範囲とす るのは、主に稜部を研磨しないまま角部を残すと後工程や運搬中に角部が割れやす いためであり、エッジの強度を積極的に向上することは意図していない。本発明に係 る稜部の研磨にお 、て、角度 Aはエッジ強度を積極的に向上させるために通常よりも 大きくする。角度 Aを大きくすることにより、後述するように端部研磨後の角部 Idを起 点とする破壊が減ってエッジ強度が向上する理由は明らかではないが、以下の要因 が予想される。端部加工において、角部 Idでの砲石を押し当てることによる反力べク トルの方向は、ほぼ稜部研磨面 lcに垂直な方向となる。角度 Aが大きい場合は、反 力ベクトルが角度 Aの半分あたりとなるため、ガラス板面 laと稜部研磨面 lcからの力 ケは起きにくい。他方、角度 Aが小さい場合は、反力ベクトルがガラス板面 laに近づ くため、ガラス板面 laからのカケが起きやすくなる。  In normal ridge polishing, the angle A is set to a range that adds a manufacturing error to 135 degrees. If the corner is left without polishing the ridge, the corner will not be removed during post-processing or transportation. This is because it is easy to break, and it is not intended to positively improve the edge strength. In polishing the ridge according to the present invention, the angle A is set larger than usual in order to positively improve the edge strength. The reason why the edge strength is improved by increasing the angle A and the edge strength is improved by reducing the fracture starting from the corner Id after edge polishing, as will be described later, is expected. In the end machining, the direction of the reaction vector by pressing the mortar at the corner Id is almost perpendicular to the ridge polished surface lc. When the angle A is large, the reaction force vector is about half of the angle A, so that the force from the glass plate surface la and the edge polishing surface lc hardly occurs. On the other hand, when the angle A is small, the reaction force vector is close to the glass plate surface la, so that the chipping from the glass plate surface la is likely to occur.
以上のような理由から、角度 Aが大きいほど、角部 Idからのカケが起きにくぐ端部 研磨後のエッジ強度が顕著に向上すると考えられる。  For the above reasons, it is considered that as the angle A is larger, the edge strength after polishing the end portion where the cracks from the corner portion Id are difficult to occur is remarkably improved.
一般のソーダライムガラスでは、火災発生時において、サッシ枠中に嵌め込まれた 端部と炎に晒される面部との温度差等により、端部を極大とする引っ張り応力を発生 することが破損の要因となる。破損のほとんどの場合が稜部に存在するカケを起点に している。したがって、稜部研磨面 lcとガラス板面 laとで成す角部 Idの稜線(図 1の 紙面に垂直方向に延びた稜線)上にカケを有している場合、そのカケの大きさは一 定限度以下であることが必要である。このカケの稜線方向の長さは 200 m以下であ ることが必要である。このカケの稜線方向の長さとは、角部 Idの稜線上に生じたカケ により失われた稜線 (仮想稜線)の長さをいう。また、カケの稜線に垂直方向の最大 幅は 100 m以下であることが必要である。カケの稜線に垂直方向の最大幅とは、角 部 Idの稜線上に生じたカケにより失われた稜線 (仮想稜線)に対して垂直方向の最 大幅をいう。カケの大きさは、デジタル顕微鏡 (例えば株式会社キーエンス製、製品 名デジタルマイクロスコープの型番 VH— 6200)を用いて、研磨後のガラスの角部 1 dを観察し、各々の距離を測定することによって得られる。 [0020] このように、角度 Aを 135度以上 170度以下とし、かつ角部 Idに存在する力ケの長 さを稜線方向に 200 μ m以下、稜線に垂直方向の最大幅を 100 μ m以下とすると、 ガラス板 1のエッジ強度の 3 σ 下限値が 70MPaを超える。エッジ強度を確保する ためには、稜部の研磨後の表面粗さもエッジ強度の影響因子である力 むしろカケの 存在及び大きさによって管理することが重要である。 In general soda lime glass, in the event of a fire, the occurrence of a tensile stress that maximizes the end due to the temperature difference between the end fitted in the sash frame and the surface exposed to the flame is the cause of damage. It becomes. Most of the damages start from the burrs on the edges. Therefore, if there is a chip on the ridge line of the corner Id (the ridge line extending in the direction perpendicular to the paper surface in FIG. 1) formed by the ridge polished surface lc and the glass plate surface la, the size of the chip is one. Must be below a certain limit. The length of this ridge in the ridgeline direction must be 200 m or less. The length in the ridge line direction of the chip means the length of a ridge line (virtual ridge line) lost due to a chip generated on the ridge line of the corner Id. The maximum width in the direction perpendicular to the edge of the chip needs to be 100 m or less. The maximum width in the vertical direction to the edge of the chip means the maximum in the vertical direction with respect to the edge (virtual edge) lost due to the chip generated on the edge of the corner Id. The size of the chip should be measured using a digital microscope (for example, Keyence Co., Ltd., product name Digital Microscope Model No. VH-6200) by observing the corner 1d of the polished glass and measuring each distance. Obtained by. [0020] As described above, the angle A is set to 135 degrees or more and 170 degrees or less, the length of the force existing in the corner Id is 200 μm or less in the ridgeline direction, and the maximum width in the direction perpendicular to the ridgeline is 100 μm. If the following, the 3 σ lower limit value of the edge strength of the glass plate 1 exceeds 70 MPa. In order to ensure the edge strength, it is important to manage the surface roughness after grinding of the ridges based on the presence and size of the chip rather than the force that is an influence factor of the edge strength.
[0021] 以上のように、本発明に係る端部の加工法によって、エッジ強度を顕著に向上でき るので、耐熱強化ガラスとして遮炎性能を向上できる。また、エッジ強度が向上する 分だけ端部の表面圧縮応力を小さくでき、物理強化処理において冷却開始のガラス 温度を下げても、耐熱強化ガラスとして必要な遮炎性能を維持したまま、映像品質を 向上できる。  [0021] As described above, the edge strength can be remarkably improved by the edge processing method according to the present invention, so that the flameproof performance can be improved as a heat-resistant tempered glass. In addition, the edge compressive stress can be reduced by the improvement in edge strength, and even if the glass temperature at the start of cooling is lowered in the physical strengthening process, the image quality is maintained while maintaining the flameproof performance required for heat-resistant tempered glass. It can be improved.
遮炎性能を評価する方法として、例えば前記の IS0834— 1: 1999の加熱曲線に 基づく防火試験では、強化ガラスをサッシに嵌め込み後、ガラス板の片面から、バー ナ一による火炎と炉内の輻射熱によってガラスを加熱する。この場合に、ガラス板の エッジに発生する引っ張り応力には、ガラス板の中央と端部との温度差によって発生 する応力に、サッシの変形によってエッジが変形して発生する曲げ応力も加わる。物 理強化処理後のエッジ強度は、この引っ張り応力を上回る必要がある。  As a method of evaluating the flame insulation performance, for example, in the fire prevention test based on the above-mentioned IS0834-1: 1999 heating curve, after inserting the tempered glass into the sash, the flame by the burner and the radiant heat in the furnace are applied from one side of the glass plate. To heat the glass. In this case, the tensile stress generated at the edge of the glass plate is added to the stress generated by the temperature difference between the center and the edge of the glass plate, and the bending stress generated by the deformation of the edge due to the deformation of the sash. The edge strength after physical strengthening treatment must exceed this tensile stress.
この防火試験時のエッジに発生する引っ張り応力は、少なくともガラス板中央が比 較的高!、温度の時点で発生し、反りによるガラス板としての剛性の変化が起こるため 必ずしも明らかではな力つた。このため、従来は物理強化処理後のエッジ強度として 安全側になるので、従来からある比較的厚!、ビル用のガラス板での防火試験の結果 に基づ!/、てガラス板の厚みによらず一定の引っ張り応力を想定して必要な表面圧縮 応力を決めていた。  The tensile stress generated at the edge during this fireproof test was relatively high at least at the center of the glass plate, and it occurred at the time of temperature, and the rigidity of the glass plate changed due to warping, so it was not always obvious. For this reason, the edge strength after the physical strengthening treatment is on the safe side in the past, so it is relatively thick! Based on the results of the fire prevention test on the glass plate for buildings! Regardless, the required surface compressive stress was determined by assuming a constant tensile stress.
これに対して、本発明では、遮炎性能の確保と、さらに遮炎性能の確保と一層の映 像品質の向上とを両立するために、ガラス板の厚みと引っ張り応力との関係を防火試 験などによって求めた。この結果、板厚が薄いものほど最大値が発生する加熱開始 力もの時間が短ぐガラス温度も低くなり、また端部の変形も小さくなるので、ガラス板 の中央と端部との温度差によって発生する応力の最大値が小さくなることを見出した 。これらによって、従来は板厚 2. 5〜9. Omm程度においても厚板 (板厚 10mm程度 )とほぼ同様の表面圧縮応力を設定していたが、薄板において相対的に低い表面圧 縮応力でも遮炎性能を有し、高い映像品質を得ることが可能となる。実際に、防火試 験時にエッジで発生する引っ張り応力は、板厚 10mmの場合に比べて、 2. 5mm以 上 3. 5mm未満で約 60MPa減少し、 3. 5mm以上 4. 5mm未満で約 55MPa減少 し、 4. 5mm以上 5. 5mm未満で約 45MPa減少し、 5. 5mm以上 6. 3mm未満で約 35MPa減少し、 6. 3mm以上 7. Omm未満で約 25MPa減少し、 7. Omm以上 9. 0 mm未満で約 15MPa減少する。なお、 11. Omm以上 20. Omm以下では、約 15M Pa増加する。 On the other hand, in the present invention, in order to achieve both of ensuring the flameproof performance and further ensuring the flameproof performance and further improving the image quality, the relationship between the thickness of the glass plate and the tensile stress is tested for fire prevention. It was determined by experiment. As a result, the thinner the plate thickness is, the shorter the time required to start the heating at which the maximum value is generated, the lower the glass temperature, and the smaller the deformation of the edge, so the temperature difference between the center and the edge of the glass plate It has been found that the maximum value of the generated stress is reduced. As a result, the plate thickness is about 2.5 to 9. The surface compressive stress is almost the same as that of), but it has a flame shielding performance even at a relatively low surface compressive stress in a thin plate, and high image quality can be obtained. Actually, the tensile stress generated at the edge during the fire prevention test is about 60 MPa less than 2.5 mm and less than 3.5 mm, and about 55 MPa less than 3.5 mm and less than 4.5 mm, compared to the case where the plate thickness is 10 mm. 4.5mm or more 5.5 less than 5mm, approx. 45MPa decrease, 5.5mm or more 6. Less than 3mm, approx. 35MPa decrease, 6.3mm or more 7. Less than Omm approx. 25MPa decrease, 7. Omm or more 9 Reduced by about 15 MPa below 0 mm. In addition, it increases about 15MPa at 11.Omm or more and 20.Omm or less.
以上に基づいて板厚が薄くなることに応じて必要な表面圧縮応力を低減することと 、前述の本発明に係る端部の加工方法によってエッジ強度を向上することとを合わ せて、耐熱強化ガラスとして必要な遮炎性能を維持したまま、さらに映像品質を向上 できる。  Based on the above, a combination of reducing the surface compressive stress required as the plate thickness is reduced and improving the edge strength by the edge processing method according to the present invention described above, enhances heat resistance. The image quality can be further improved while maintaining the flameproof performance required for glass.
即ち、本発明に係る強化ガラスは、前記ガラス板の板厚に対するそれぞれの表面 圧縮応力が、 2. 5mm以上 3. 5mm未満で 70MPa以上 155MPa以下、 3. 5mm以 上 4. 5mm未満で 75MPa以上 160MPa以下、 4. 5mm以上 5. 5mm未満で 85MP a以上 170MPa以下、 5. 5mm以上 6. 3mm未満で 95MPa以上 180MPa以下、 6 . 3mm以上 7. Omm未満で 105MPa以上 190MPa以下、 7. Omm以上 9. Omm未 満で 120MPa以上 205MPa以下、 9. Omm以上 11. Omm未満で 135MPa以上 22 OMPa以下、 11. Omm以上 20. Omm以下で 150MPa以上 240MPa以下となるこ とが好ましい。  That is, in the tempered glass according to the present invention, each surface compressive stress with respect to the thickness of the glass plate is 2.5 mm or more and less than 3.5 mm, 70 MPa or more and 155 MPa or less, 3.5 mm or more and less than 4.5 mm, and 75 MPa or more. 160 MPa or less, 4.5 mm or more 5. Less than 5 mm 85 MPa or more 170 MPa or less, 5.5 mm or more 6. Less than 3 mm 95 MPa or more 180 MPa or less, 6.3 mm or more 7. Less than Omm 105 MPa or more 190 MPa or less, 7. Omm or more 9. Less than Omm 120MPa or more and 205MPa or less 9. Omm or more 11. Less than Omm 135MPa or more 22OMPa or less 11. Omm or more 20. Omm or less 150MPa or more and 240MPa or less is preferable.
より好ましい表面圧縮応力の範囲は、前記ガラス板の板厚が 2. 5mm以上 3. 5mm 未満で 70MPa以上 130MPa以下、 3. 5mm以上 4. 5mm未満で 75MPa以上 135 MPa以下、 4. 5mm以上 5. 5mm未満で 85MPa以上 140MPa以下、 5. 5mm以 上 6. 3mm未満で 95MPa以上 150MPa以下、 6. 3mm以上 7. Omm未満で 105M Pa以上 160MPa以下、 7. Omm以上 9. Omm未満で 120MPa以上 175MPa以下 、 9. Omm以上 11. Omm未満で 135MPa以上 190MPa以下、 11. Omm以上 20. Omm以下で 150MPa以上 210MPa以下である。これらの範囲に表面圧縮応力を 設定することで、防火試験時に発生する引っ張り応力に対する余裕分が相対的に好 ましい範囲の場合よりも下がるものの、必要な遮炎性能を維持して、より一層物理強 化処理前の映像品質に近!、強化ガラスを提供できる。 More preferable range of surface compressive stress is that the thickness of the glass plate is 2.5 mm or more and less than 3.5 mm, 70 MPa or more and 130 MPa or less, 3.5 mm or more and less than 5 mm, 75 MPa or more and 135 MPa or less, 4.5 mm or more 5 Less than 5mm 85MPa or more 140MPa or less, 5.5mm or more 6. Less than 3mm 95MPa or more 150MPa or less, 6. 3mm or more 7. Less than Omm 105MPa or more 160MPa or less 7. Omm or more 9. Less than Omm 120MPa or more 175 MPa or less, 9. Omm or more 11. Less than Omm, 135 MPa or more and 190 MPa or less, 11. Omm or more, 20. Omm or less, 150 MPa or more and 210 MPa or less. By setting the surface compressive stress within these ranges, the margin for the tensile stress generated during the fire prevention test is relatively favorable. Although it is lower than the preferred range, it can maintain the necessary flameproof performance, and it is much closer to the image quality before physical strengthening processing, and can provide tempered glass.
なお、表面圧縮応力は、 JIS R3222 (2003年版)に記載のある示差屈折計によつ て測定できる。表面圧縮応力は、映像品質上力も端部とガラス板の中央部とで大きく 違う場合にガラス板の反りが出やすくなるので、ガラス板の面内で分布がない方がよ り好まし 、。少なくとも端面から 50mmまでの部分で上記の範囲を満足することが好 ましい。  The surface compressive stress can be measured with a differential refractometer described in JIS R3222 (2003 edition). The surface compressive stress is more likely not to be distributed in the plane of the glass plate because the glass plate is more likely to warp when the force on the image quality differs greatly between the edge and the center of the glass plate. It is preferable to satisfy the above range at least from the end face to 50mm.
[0022] 稜部研磨面 lcの端面 lb側への投影幅 B及び、稜部研磨面 lcのガラス板面 la側 への投影幅 Cの大きさは、ガラス板の厚みに応じて適宜決定される力 ガラス板切断 時における切線を入れる工程で生ずるクラックによって、ガラス端部に引っ張り応力 が発生した場合の応力集中を小さく抑えるため、 Bは 0. 3mm以上 1. 3mm以下、 C は 0. 3mm以上 3mm以下であることが好ましぐ特に Cは 0. 5mm以上 1. 3mm以下 であることが好ましい。  [0022] The projection width B on the end surface lb side of the ridge polished surface lc and the projection width C of the ridge polished surface lc on the glass plate surface la side are appropriately determined according to the thickness of the glass plate. In order to minimize the stress concentration when tensile stress is generated at the edge of the glass due to cracks that occur during the cutting process when cutting the glass sheet, B is 0.3 mm or more and 1.3 mm or less, and C is 0.3 mm. In particular, C is preferably 3 mm or less, and C is preferably 0.5 mm or more and 1.3 mm or less.
[0023] 図 2は、本発明の実施の形態に係るガラス板端部の研磨加工方法の概略説明図で あり、図 3は本発明の実施の形態に係る強化ガラスの筒状砲石による研磨状態の概 略断面図である。また、図 4は、本発明の別の実施の形態に係る強化ガラスの研磨 状態の概略断面図である。  FIG. 2 is a schematic explanatory view of a method for polishing a glass plate end portion according to an embodiment of the present invention, and FIG. 3 is a diagram of polishing with a reinforced glass cylindrical mortar according to an embodiment of the present invention. It is a schematic sectional view of a state. FIG. 4 is a schematic cross-sectional view of a polished state of tempered glass according to another embodiment of the present invention.
図 2に示すように、研磨すべきガラス板 1が矢印 Dのように搬送され、その搬送路に 沿って、複数個(図の例では 3個)の稜部研磨用筒状砲石 2a、 2b、 2cが連続的に一 直線上に配設される。複数個並んだ稜部研磨用の砥石 2a、 2b、 2cは、最初に平均 砥粒径が大きく研磨効率の高い砥石 2aが配設され、次の砥石 2bは砥石 2aよりも砥 粒径を小さくしたものを用い、最後の砥石 2cは、必要とされる仕上げ面 (粗摺り仕上 げ、磨き仕上げ、つや出し仕上げ等)に応じた砥粒径の番手の砥石が配設される。な お、粗摺り仕上げでは # 200番(平均砲粒径 100 μ m)、磨き仕上げでは # 500番( 平均砥粒径 45 μ m)、つや出し仕上げでは # 800番(平均砥粒径 30 μ m)の砥石が 通常用いられる。  As shown in FIG. 2, a glass plate 1 to be polished is conveyed as shown by an arrow D, and a plurality of (three in the illustrated example) cylindrical bullion stones 2a for ridge polishing along the conveyance path, 2b and 2c are continuously arranged on a straight line. The grinding wheels 2a, 2b, 2c for polishing ridges arranged in a row are first equipped with a grinding wheel 2a with a large average abrasive grain size and high polishing efficiency. The final grindstone 2c is provided with a grindstone with a grain size corresponding to the required finished surface (rough finish, polished finish, polished finish, etc.). # 200 (average gun grain size 100 μm) for rough finish, # 500 (average grain size 45 μm) for polished finish, # 800 (average grain size 30 μm) for polished finish ) Is usually used.
[0024] 図 3 (a)に示すように、円筒の円周に断面略 U字状の砲粒層 3を形成し、その円筒 の中心に回転軸 4を設けた円筒状砲石 2を、ガラス板 1の端面 lbの断面方向に対し て平行に配置し、ガラス板 1の、ホイールカツタ等でガラス板面 laに切線 (切断溝)を 入れ切断した場合に強度的に最も弱 、部分 (ホイールカツタによる亀裂が残留して ヽ る部分)となるガラス両稜部が、各砲石 2により研磨される。 [0024] As shown in Fig. 3 (a), a cylindrical mortar 2 having a substantially U-shaped barrel layer 3 formed on the circumference of a cylinder and provided with a rotation shaft 4 at the center of the cylinder, End face of glass plate 1 with respect to lb cross section If the glass plate 1 is cut with a cutting line (cutting groove) on the glass plate surface la with a wheel cutter, etc., the portion is weakest in strength and the portion (where cracks from the wheel cutter remain) ) Will be polished by each mortar 2.
[0025] この研磨工程を経た稜部研磨面 lcとガラス板面 laとで成す角部 Idに存在する力 ケの長さは稜線方向に 200 μ m以下、稜線に垂直方向の最大幅は 100 μ m以下に 仕上げられるので、端部に引っ張り応力が発生した場合のカケでの応力集中を小さ く抑えることができる。 [0025] The length of the force existing in the corner Id formed by the polishing surface lc and the glass plate surface la after this polishing step is 200 μm or less in the ridge line direction, and the maximum width in the direction perpendicular to the ridge line is 100 Since it is finished to μm or less, stress concentration at the chip when tensile stress is generated at the edge can be kept small.
[0026] 端面 lbは、図 3 (b)に示すように円筒状砥石 2の形状により、研磨加工を行うことも、 行わないこともできる力 研磨力卩ェを行ったほうが切断面の品質によらない安定した 高いエッジ強度を有する。このような砲石 2を使用して研磨すると、ガラス板 1の端面 1 bと稜部研磨面 lcとの成す角部は実質 R面取りされることとなるが、この形状はエッジ 強度には余り影響がない。また、本発明の稜部研磨前に端面 lbを平行研磨すると、 さらに高いエッジ強度を有することができる。  [0026] The end surface lb has a cutting surface quality that can be either polished or not depending on the shape of the cylindrical grindstone 2 as shown in FIG. 3 (b). It has a stable and high edge strength. When polishing using such a mortar 2, the corner formed by the end surface 1 b of the glass plate 1 and the edge polishing surface lc is substantially chamfered, but this shape is not sufficient for edge strength. There is no effect. Further, when the end surface lb is subjected to parallel polishing before the ridge portion polishing of the present invention, higher edge strength can be obtained.
[0027] この研磨工程は、上述した円筒状砥石 2を用いた研磨方法に限定されるものでは なぐ例えば、図 4 (a)に示すように、砲粒層 3を円盤 5上に装着し、その中心に回転 軸 4を設けたカップ形砲石 2を用い、その回転軸 4を端面 lbに対し傾斜させて、稜部 lc (ガラス板面 laと端面 lbとの間の境界の角)のみを研磨する方法、図 4 (b)に示す ように、研磨用ベルト 6の外周面を被加工物であるガラス板 1の稜部 lcに接触させて 研磨するパフ研磨方法、図 4 (c)に示すように砲粒層 3を円筒 7上に装着し、その中 心に回転軸 4を設けた円筒状砲石 2を用い、その回転軸 4を端面 lbに対し傾斜させ て研磨をする方法、又はこれらを併用する研磨方法により行ってもよい。何れの場合 にも、前述の本発明の実施の形態による稜部 lcの研磨を行って、角部 Idに存在す るカケの長さが稜線方向に 200 m以下、稜線に垂直方向の最大幅は 100 m以 下に仕上げられればよい。  [0027] This polishing step is not limited to the above-described polishing method using the cylindrical grindstone 2. For example, as shown in FIG. 4 (a), the bullet layer 3 is mounted on the disk 5, Using a cup-shaped mortar 2 with a rotation axis 4 at its center, tilting the rotation axis 4 with respect to the end surface lb, and only the ridge lc (the corner of the boundary between the glass plate surface la and the end surface lb) As shown in FIG. 4 (b), the puff polishing method in which the outer peripheral surface of the polishing belt 6 is brought into contact with the ridge lc of the glass plate 1 as the workpiece, and polishing is performed, as shown in FIG. 4 (c). As shown in Fig. 2, a method is used in which a granule layer 3 is mounted on a cylinder 7 and a cylindrical mortar 2 having a rotation shaft 4 in its center is used and the rotation shaft 4 is inclined with respect to the end face lb. Or you may carry out by the grinding | polishing method which uses these together. In any case, the edge lc is polished according to the above-described embodiment of the present invention, and the length of the chip existing at the corner Id is 200 m or less in the ridge line direction and the maximum width in the direction perpendicular to the ridge line. Should be finished to less than 100 m.
次に、本発明の実施の形態に係る物理強化処理について説明する。本発明に係る 物理強化処理では、前述のガラス板端部の研磨加工の工程を経たガラス板を複数 の搬送用ローラーに載せて水平に移動させながら加熱する加熱炉と、それに連続し て急冷のための圧縮空気をガラス板の上下面から吹き付ける冷却領域を備える水平 強化装置を用いる。 Next, the physical reinforcement | strengthening process which concerns on embodiment of this invention is demonstrated. In the physical strengthening treatment according to the present invention, a glass plate that has been subjected to the above-described polishing process of the glass plate end is placed on a plurality of transfer rollers and heated while being moved horizontally, and then a rapid cooling is performed. Horizontal with a cooling area for blowing compressed air from above and below the glass plate Use a strengthening device.
表面圧縮応力は、ガラス板の表面と内部との温度差に起因して発生するため、ガラ ス板厚が異なると熱容量が異なり、ガラス板厚に応じて冷却速度を変えて調整する必 要がある。冷却速度は、急冷前のガラス板の温度、圧縮空気の温度、圧力によって 変化する。また、板厚が小さいほど熱容量が小さぐガラス板厚方向での温度差を大 きくするために、冷却速度を早くする必要がある。このため、板厚が小さい場合に必 要な表面圧縮応力を確保するためには、板厚が大きい場合に比べて、急冷前のガラ ス温度を高くしたり、圧縮空気の温度を低くしたり、圧力空気の圧力を高くしたりする 必要がある。  Since the surface compressive stress is generated due to the temperature difference between the surface and the inside of the glass plate, the heat capacity differs when the glass plate thickness is different, and it is necessary to adjust the cooling rate according to the glass plate thickness. is there. The cooling rate varies depending on the glass plate temperature, compressed air temperature, and pressure before quenching. In addition, the cooling rate needs to be increased in order to increase the temperature difference in the thickness direction of the glass plate where the heat capacity decreases as the plate thickness decreases. For this reason, in order to ensure the surface compressive stress required when the plate thickness is small, the glass temperature before quenching can be increased, or the temperature of the compressed air can be decreased compared to when the plate thickness is large. It is necessary to increase the pressure of the pressure air.
本発明に係る物理強化処理においては、研磨工程後のガラス板を、 620°C以上 66 0°C以下に加熱し、ガラス表面に均一に表面圧縮応力を付与するために、ガラス板 の上下全面に対して 5°C以上 80°C以下の圧縮空気をノズル力 噴出して急冷するこ とが好ま 、。急冷前のガラス板の温度を 620°C以上とすることによって冷却過程で 一時的に発生する引っ張り応力による割れを防ぎ、かつ十分な残留歪、すなわち表 面圧縮応力を発生させて遮炎性能を確保し、他方で 660°C以下にすることによって 、熱処理の痕跡や反りを防いで良好な映像品質を確保する。圧縮空気の温度は、空 気が送風機によって圧縮されるため、送風機の回転エネルギーにより外気温よりも高 くなり、場合によっては 80°C近くまで上昇することがある。ただし、冷却風を冷却機に よって冷やすことで 5°C近くまで下げることができる。  In the physical strengthening treatment according to the present invention, the glass plate after the polishing step is heated to 620 ° C. or higher and 660 ° C. or lower to uniformly apply surface compressive stress to the glass surface. On the other hand, it is preferable to rapidly cool the compressed air at 5 ° C or more and 80 ° C or less by ejecting the nozzle force. By setting the temperature of the glass plate before quenching to 620 ° C or higher, cracks due to tensile stress temporarily generated during the cooling process can be prevented, and sufficient residual strain, that is, surface compressive stress, can be generated to improve flameproof performance. By ensuring that the temperature is 660 ° C. or less on the other side, traces and warpage of heat treatment are prevented, and good image quality is ensured. Since the air is compressed by the blower, the temperature of the compressed air becomes higher than the outside air temperature due to the rotational energy of the blower, and in some cases, it may rise to nearly 80 ° C. However, the cooling air can be lowered to nearly 5 ° C by cooling with a cooler.
前述の表面圧縮応力と冷却条件との関係に基づくと、本願発明に係る物理強化処 理では、薄板ほど必要な表面圧縮応力を小さく設定しているので、表面圧縮応力の 発現に必要な圧縮空気の圧力は、板厚が 2. 5mm以上 3. 5mm未満で lOkPa以上 25kPa以下、 3. 5mm以上 4. 5mm未満で 7kPa以上 20kPa以下、 4. 5mm以上 7 . Omm未満で 6kPa以上 15kPa以下、 7. Omm以上 9. Omm未満で 5kPa以上 13k Pa以下、 9. Omm以上 11. Omm未満で 4kPa以上 12kPa以下、 11. Omm以上 20 . Omm以下で 2kPa以上 lOkPa以下となることが好ましい。これにより、薄板の場合 の圧力は、従来のビル用の厚板を想定した場合に比べて小さくてもよいことになる。 実施例 [0028] 以下に本発明のさらに具体的な実施例について説明する。 Based on the relationship between the surface compressive stress and the cooling condition described above, the physical strengthening process according to the present invention sets the surface compressive stress required for a thin plate to be smaller, so the compressed air required for the expression of the surface compressive stress is used. The pressure of the plate is 2.5 mm or more and less than 3.5 mm, lOkPa or more and 25 kPa or less, 3.5 mm or more, less than 5 mm, 7 kPa or more and 20 kPa or less, 4.5 mm or more, 7 mm or less, 6 kPa or more and 15 kPa or less, 7 Omm or more 9. Less than Omm 5 kPa or more and 13 kPa or less, 9. Omm or more 11. Less than Omm 4 kPa or more and 12 kPa or less, 11. Omm or more 20 .Omm or less 2 kPa or more lOkPa or less. As a result, the pressure in the case of a thin plate may be smaller than the case where a conventional thick plate for a building is assumed. Example [0028] Specific examples of the present invention will be described below.
図 2に示した方法で、呼称厚 3mm及び 4mmのフロートガラス板 1 (縦 10cm X横 10 Float glass plate with nominal thickness of 3 mm and 4 mm 1 (length 10 cm x width 10
Ocm)を送り速度 4mZminで走行させ、砥石 3個をそれぞれ回転数 3400〜4000rp mで回転させて以下のようにサンプルの加工を行った。 Ocm) was run at a feed rate of 4 mZmin, and the three grindstones were each rotated at a rotational speed of 3400 to 4000 rpm, and the samples were processed as follows.
[0029] [実施例 1]:呼称厚 3mmのフロートガラス(平均板厚実測値 3. 15mm) 29枚を、円 筒状砲石 # 140番、 # 325番、 # 600番の順に使用して、稜部及び端面を研磨仕 上げした。 [0029] [Example 1]: Float glass with a nominal thickness of 3 mm (average measured thickness 3.15 mm) 29 pieces are used in the order of cylindrical turret # 140, # 325, # 600 The ridges and end faces were polished.
[0030] [実施例 2]:呼称厚 3mmのフロートガラス(平均板厚実測値 3. 17mm) 29枚を、円 筒状砲石 # 120番、 # 270番、 # 500番の順に使用して、稜部及び端面を研磨仕 上げした。  [0030] [Example 2]: Float glass with a nominal thickness of 3 mm (average thickness measured 3.17 mm) 29 pieces were used in the order of cylindrical mortar # 120, # 270, # 500 The ridges and end faces were polished.
[0031] [実施例 3]:呼称厚 4mmのフロートガラス(平均板厚実測値 3. 75mm) 26枚を、円 筒状砲石 # 120番、 # 270番、 # 500番の順に使用して、稜部及び端面を研磨仕 上げした。  [0031] [Example 3]: 26 glass floats with a nominal thickness of 4 mm (average measured thickness of 3.75 mm) were used in the order of cylindrical mortar # 120, # 270, # 500 The ridges and end faces were polished.
[0032] [比較例 1]:呼称厚 4mmのフロートガラス(平均板厚実測値 4. 26mm) 21枚を、引 用文献 2の公知技術のように端面の両端部を糸面取りした(図 4(a)の方法で # 500の 砥石を利用)。  [Comparative Example 1]: Float glass with a nominal thickness of 4 mm (average thickness measured 4.26 mm) was thread chamfered at both ends of the end surface as in the known technique of Reference 2 (FIG. 4). Use the # 500 grindstone with method (a)).
[0033] 図 5 (a)は本実施例に係わるガラス板端部の断面寸法及び部位説明図であり、 (b) は比較例に係わるガラス端部の断面寸法及び部位説明図である。本実施例におい て破壊起点を、ガラス板面 e、 m、ガラス板面と稜部研磨面との成す角 f、 1、稜部研磨 面 g、 k、稜部研磨面と端面との成す角 h、 j、端面 iの部位に分類した。なお、実施例 1 〜3のサンプルは円形状砲石で稜部及び端面を研磨仕上げしたため、稜部研磨面 と端面との成す角 h、jは R面取り形状となっている。強度試験は、室温 16〜21°C、相 対湿度 45〜55%の条件で、サンプルの加工辺の中央 30cm部分に均一な引張り応 力を載荷できる荷重スパン 30cm、支持スパン 90cmの 4点曲げ試験によって行った 。強度試験の結果 (破壊応力、破壊起点の位置とその枚数)及びガラス板 1の断面の 寸法を表 1に示す。カケの大きさは、デジタル顕微鏡 (株式会社キーエンス製、製品 名デジタルマイクロスコープの型番 VH— 6200)を用いて、研磨後のガラスの角部 1 dを観察し、各々の距離を測定することによって得た。なお、表 1の破壊応力は、端部 加工後の物理強化処理前のガラスに対する値である。 FIG. 5A is a cross-sectional dimension and part explanatory diagram of the glass plate end part according to the present example, and FIG. 5B is a cross-sectional dimension and part explanatory diagram of the glass end part according to the comparative example. In this example, the fracture starting point is the glass plate surface e, m, the angle f, 1, the ridge polishing surface g, k, the ridge polishing surface, and the end surface. Classified into h, j and end surface i. Since the ridges and end faces of the samples of Examples 1 to 3 were polished and finished with a circular mortar, the angles h and j formed by the ridge part polished surface and the end face have an R chamfered shape. The strength test was performed at a room temperature of 16-21 ° C and a relative humidity of 45-55%. 4-point bending with a load span of 30 cm and a support span of 90 cm capable of loading a uniform tensile stress on the center 30 cm of the processed side of the sample. Performed by test. Table 1 shows the results of the strength test (fracture stress, the position and number of fracture start points) and the cross-sectional dimensions of glass plate 1. The size of the chip is determined by observing the corner 1d of the polished glass using a digital microscope (manufactured by Keyence Corporation, product name Digital Microscope Model No. VH-6200) and measuring each distance. Obtained. The fracture stress in Table 1 is the end It is the value for the glass before physical strengthening after processing.
図 6に、表 1の試験の結果に基づくワイブル確率軸上のプロット(以下「ワイブルプロ ット」という)を示す。ワイブルプロットは、ガラスのような破壊応力のばらつきが大きい 材料の強度評価によく利用されるもので、破壊起点が荷重スパン外となったサンプル を除くすべての破壊応力の結果がプロットされている。この図では、プロットが右にあ るほど破壊応力が大きいことを表す。  Figure 6 shows a plot on the Weibull probability axis (hereinafter referred to as the “Weibull plot”) based on the test results in Table 1. The Weibull plot is often used to evaluate the strength of materials with a large variation in fracture stress, such as glass, and plots the results of all fracture stresses except samples where the fracture origin is outside the load span. In this figure, the plot on the right indicates that the fracture stress is greater.
[0034] [表 1] [0034] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0035] 表 1からわ力るように、実施例 1〜3の場合、端面の両端部を糸面取りした比較例 1 と比べ、平均破壊応力値で 30MPa以上増加 (約 1. 5倍)し、破壊応力 3 σ 下限 値でも約 19MPa以上増加 (約 1. 4倍)した。なお、 3 σ 下限値は、 σを標準偏差 値、 ηをサンプル数としたときの約 1Z1000の破壊確率を意味するもので、 3 σ 下 限値で示す応力が発生した場合に、約 1000枚のうち 1枚のガラス板に割れが起こる ことを意味する。 [0035] As shown in Table 1, in Examples 1 to 3, the average fracture stress value increased by 30 MPa or more (about 1.5 times) compared to Comparative Example 1 in which both ends of the end face were chamfered. Even the lower limit of fracture stress 3σ increased by about 19MPa or more (about 1.4 times). The 3σ lower limit value means the failure probability of about 1Z1000, where σ is the standard deviation value and η is the number of samples. When the stress shown by the 3σ lower limit value occurs, about 1000 sheets This means that one of the glass plates will crack.
また、図 6から実施例 1〜3の破壊応力は、比較例 1の破壊応力に比べて、耐熱強 化ガラスの設計上重要な累積破壊確率が小さ ヽ領域から大き!/ヽ領域までの全領域 で大きいことがわ力る。 [0036] この強度試験における破壊起点の位置は、実施例 1〜3の場合、従来発生頻度の 高力つた角部 Id (図 5における f、 1)での発生率は 5%以下となっている。すなわち、 ガラスの破壊は、稜部研磨面 lcとガラス板面 laとのなす角度 Aを 135度以上 170度 以下、かつ稜部研磨面 lcとガラス板面 lbとで成す角部 Idに有するカケの稜線方向 の長さを 200 μ m以下、稜線に垂直方向の最大幅を 100 μ m以下とすることで、抑 制することができることが確認できた。 In addition, the fracture stress of Examples 1 to 3 from Fig. 6 is less than the fracture stress of Comparative Example 1, and the cumulative fracture probability that is important in the design of heat-resistant toughened glass is small. It is a big thing in the area. [0036] In the case of Examples 1 to 3, the location of the fracture starting point in this strength test is 5% or less at the corner Id (f, 1 in Fig. 5), which has been frequently generated in the past. Yes. In other words, glass breakage occurs when the angle A formed by the ridge polished surface lc and the glass plate surface la is not less than 135 degrees and not more than 170 degrees, and the corner Id formed by the ridge polished surface lc and the glass plate surface lb has a crack. It was confirmed that this can be suppressed by setting the length in the ridge line direction to 200 μm or less and the maximum width in the direction perpendicular to the ridge line to 100 μm or less.
[0037] 上記の端部加工後のガラス板に表面圧縮応力 150MPa (例えば急冷前ガラス温 度 650°C、圧縮空気温度 42°C、圧縮空気圧力 15. 2kPa)の物理強化処理を施すこ とで遮炎性能に必要なエッジ強度が得られるとともに高い映像品質が得られる。また 、上記の端部加工後のガラス板に表面圧縮応力 105MPa (例えば急冷前ガラス温 度 635°C、圧縮空気温度 41°C、圧縮空気圧力 8. OkPa)の物理強化処理を施すこと で遮炎性能に必要なエッジ強度が得られるとともにより高い映像品質が得られる。  [0037] The glass plate after the end processing is subjected to a physical strengthening treatment with a surface compressive stress of 150 MPa (for example, glass temperature before quenching 650 ° C, compressed air temperature 42 ° C, compressed air pressure 15.2 kPa). As a result, the edge strength necessary for flameproof performance can be obtained and high image quality can be obtained. In addition, the glass plate after the end processing described above is subjected to physical strengthening treatment with a surface compressive stress of 105 MPa (for example, glass temperature before quenching 635 ° C, compressed air temperature 41 ° C, compressed air pressure 8. OkPa). Edge strength necessary for flame performance is obtained and higher image quality is obtained.
[0038] このように、実施例の条件で端部加工すれば、ガラス板 1のエッジ強度の 3 σ 下 限値が 70MPaを超える。したがって、ガラス板 1は遮炎性能に必要なエッジ強度を 得るために、従来に比較して低い表面圧縮応力を付与する物理強化処理を施され ればよぐ生産性が向上し、また特に板厚 3〜6mmの耐熱強化ガラス板の、物理強 化処理によるガラス板の映像品質低下を回避することができる。  [0038] As described above, when the end portion is processed under the conditions of the example, the 3σ lower limit value of the edge strength of the glass plate 1 exceeds 70 MPa. Therefore, in order to obtain the edge strength necessary for the flame barrier performance, the glass plate 1 can be improved in productivity if it is subjected to a physical strengthening treatment that imparts a lower surface compressive stress than in the past. Degradation of the image quality of the glass plate due to physical strengthening treatment of heat-resistant tempered glass plate with a thickness of 3 to 6 mm can be avoided.
さらに、本発明に係る強化ガラスが、耐熱強化ガラスとしての遮炎性能を満足して いることを確認するために、表 2に示す条件で製造した強化ガラスを用いて、 IS083 4- 1 : 1999の加熱曲線に基づいて防火試験を実施した。防火試験でのガラスは、 サイズが縦 1676mm、横 1176mmで、スチール製のサッシに端部 8mmを嵌め込ん だ。また、表 2に示す条件の強化ガラスに対して、防火試験前に縞模様を付けたボー ド (ゼブラボート)の縞模様を強化ガラスの表面に映して、映像品質を評価した。この 結果も、表 2に示す。表面圧縮応力は、製品名称 FSM— 30 (折原製作所社製)を利 用して、各 4辺の中央部の端面から 50mmの領域の各 1点を測定し平均値をとつた。 表中の映像品質の評価において、映像品質が物理強化処理をしたガラスとして、非 常に良好な場合を◎と、良好な場合を〇と、良好ではないが問題とならない場合を △と評価した。表中の防火試験での遮炎性能についての判定基準は、非加熱側へ の 10秒を超えて継続する火炎噴出がないこと、非加熱側への 10秒を超えて継続す る発炎がないこと、火炎が通る亀裂などの損傷及び隙間を生じないことであり、これら をすベて満たす場合に合格とした。 Furthermore, in order to confirm that the tempered glass according to the present invention satisfies the flame-shielding performance as a heat-resistant tempered glass, using the tempered glass manufactured under the conditions shown in Table 2, IS083 4-1: 1999 A fire test was carried out based on the heating curve. The glass in the fire test was 1676mm in length and 1176mm in width, and 8mm edge was fitted in a steel sash. In addition, for the tempered glass with the conditions shown in Table 2, the striped pattern of the board (zebra boat) with a striped pattern before the fire test was projected on the surface of the tempered glass to evaluate the image quality. The results are also shown in Table 2. For the surface compressive stress, the product name FSM-30 (manufactured by Orihara Seisakusho Co., Ltd.) was used, and each point in the 50 mm area from the end face at the center of each of the four sides was measured and averaged. In the evaluation of the video quality in the table, when the glass quality is very good, the glass quality was evaluated as ◎, when it was good, 〇, and when it was not good, it was evaluated as △. Judgment criteria for flameproofing performance in the fire prevention test in the table is to the non-heating side There is no flame eruption that lasts for more than 10 seconds, there is no flame that continues for more than 10 seconds to the non-heated side, there is no damage such as cracks through which the flame passes, and there are no gaps. When all of these were satisfied, it was determined to be acceptable.
表 2の結果から、本発明に係る強化ガラスは、遮炎性能を満足し、また表面圧縮応 力を好ましい範囲にすることで遮炎性能と映像品質とを両立し、さらに表面圧縮応力 をより好ましい範囲にすることで遮炎性能を維持してより高い映像品質を満足できる ことがわかった。  From the results shown in Table 2, the tempered glass according to the present invention satisfies the flame barrier performance, achieves both the flame barrier performance and the image quality by making the surface compressive stress within a preferable range, and further increases the surface compressive stress. It was found that by setting it within the preferred range, the flame shielding performance can be maintained and higher image quality can be satisfied.
表 2以外にも、防火試験を厚み 7. 7mmについて、実施例 3の加工条件 (表面圧縮 応力は 162MPa)、比較例 1の加工条件 (表面圧縮応力は 198MPa)で実施した。こ れらのデータを考慮して、その他の厚みに対する好ま 、表面圧縮応力につ ヽては 、前述した本発明に関わり見出した板厚が小さいほど必要な表面圧縮応力が小さく なるということと、本発明に係る研磨によって得られるエッジ強度向上分とに基づいて 決定した。また、各板厚で必要な圧縮空気の圧力も、前記の必要な表面圧縮応力に 基づいて決定した。  In addition to Table 2, the fire prevention test was performed for the thickness of 7.7 mm under the processing conditions of Example 3 (surface compressive stress is 162 MPa) and the processing conditions of Comparative Example 1 (surface compressive stress is 198 MPa). In view of these data, the preferred surface compressive stress for other thicknesses is that the smaller the plate thickness found in connection with the present invention, the smaller the required surface compressive stress. It was determined based on the edge strength improvement obtained by polishing according to the present invention. Also, the pressure of compressed air required for each plate thickness was determined based on the required surface compressive stress.
[表 2A][Table 2A]
Figure imgf000016_0001
Figure imgf000016_0001
[表 2B] 製造条件及び評価結果 実施例 8 実施例 9 実施例 10 実施例 1 1 厚み (mm) 5 . 7 5 . 7 5 . 7 5 . 7 端部加工方法 実施例 3 実施例 3 実施例 3 実施例 3 表面圧縮応力(MPa) 1 1 0 1 2 1 1 6 8 1 8 3 急冷前ガラス温度(で) 6 3 0 6 3 3 6 4 7 6 6 1 圧縮空気温度 rc) 3 7 4 0 4 1 3 7 圧縮空気圧力(kPa) 7 · 1 8 . 0 1 3 . 2 1 5 . 7 防火試験の評価結果 合格 合格 合格 合格 [Table 2B] Manufacturing conditions and evaluation results Example 8 Example 9 Example 10 Example 11 1 Thickness (mm) 5.7 5.5.7 5.7 5.7 End processing method Example 3 Example 3 Example 3 Example 3 Surface compressive stress (MPa) 1 1 0 1 2 1 1 6 8 1 8 3 Glass temperature before quenching (in) 6 3 0 6 3 3 6 4 7 6 6 1 Compressed air temperature rc) 3 7 4 0 4 1 3 7 Compressed air pressure (kPa) 7 · 1 8. 0 1 3. 2 1 5.7 Fire test evaluation result Pass Pass Pass Pass
(遮炎性能)  (Flame shielding performance)
反射映像の評価結果 ◎ ◎ 〇 Δ  Reflected image evaluation result ◎ ◎ 〇 Δ
[表 2C] [Table 2C]
Figure imgf000017_0001
産業上の利用可能性
Figure imgf000017_0001
Industrial applicability
本発明は、遮炎性能を満たすエッジ強度を有し、かつ、高い映像品質である住宅 用の耐熱強化ガラスの提供ができる。また、通常でも耐熱強度が必要とされる熱線反 射ガラスや熱線吸収ガラスの物理強化処理に好適である。 なお、 2006年 8月 14日に出願された日本特許出願 2006— 221114の明細書、 特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。  INDUSTRIAL APPLICABILITY The present invention can provide a heat-resistant tempered glass for homes having edge strength that satisfies flame barrier performance and high image quality. In addition, it is suitable for physical strengthening treatment of heat ray reflective glass or heat ray absorbing glass that usually requires heat resistance. It should be noted that the entire contents of the description, claims, drawings and abstract of Japanese Patent Application 2006-221114 filed on August 14, 2006 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims

請求の範囲  The scope of the claims
[1] 所定寸法に切断されたガラス板が物理強化処理された強化ガラスであって、前記 ガラス板面及び端面に対し傾斜した稜部研磨面を有し、該稜部研磨面は前記ガラス 板面とのなす角度が 135度以上 170度以下であり、前記稜部研磨面と前記ガラス板 面とでなす角部のカケは稜線方向の長さが 200 m以下、稜線に垂直方向の最大 幅が 100 μ m以下であることを特徴とする強化ガラス。  [1] A tempered glass in which a glass plate cut into a predetermined dimension is physically strengthened, and has a ridge-polished surface inclined with respect to the glass plate surface and the end surface, and the ridge-polished surface is the glass plate The angle formed by the surface is 135 ° or more and 170 ° or less, and the corner portion formed by the ridge polished surface and the glass plate surface has a ridge line length of 200 m or less and the maximum width perpendicular to the ridge line. Tempered glass characterized by having a thickness of 100 μm or less.
[2] 前記強化ガラスの表面の圧縮応力は、 [2] The compressive stress on the surface of the tempered glass is
板厚が 2. 5mm以上 3. 5mm未満で 70MPa以上 155MPa以下、  Thickness of 2.5 mm or more and less than 5 mm, 70 MPa or more and 155 MPa or less,
3. 5mm以上 4. 5mm未満で 75MPa以上 160MPa以下、  3. 5mm or more 4. Less than 5mm, 75MPa or more and 160MPa or less,
4. omm以上 5. 5mm未満で 85MPa以上 170MPa以下、  4. omm or more 5.5 and less than 5mm, 85MPa or more and 170MPa or less,
5. omm以上 6. 3mm未満で 95MPa以上 180MPa以下、  5. omm or more 6. less than 3mm, 95MPa or more, 180MPa or less,
6. 3mm以上 7. Omm未満で 105MPa以上 190MPa以下、  6. 3mm or more 7. Less than Omm 105MPa or more and 190MPa or less,
7. Omm以上 9. Omm未満で 120MPa以上 205MPa以下、  7. Omm or more 9. Less than Omm 120MPa or more and 205MPa or less,
9. Omm以上 11 . Omm未満で 135MPa以上 220MPa以下、  9. Omm or more 11. Less than Omm 135MPa or more and 220MPa or less,
11. Omm以上 20. Omm以下で 150MPa以上 240MPa以下  11. Omm or more 20. Omm or less 150MPa or more and 240MPa or less
である請求項 1に記載の強化ガラス。  The tempered glass according to claim 1, wherein
[3] 前記ガラス板の端面は、研磨されている請求項 1又は 2に記載の強化ガラス。  [3] The tempered glass according to claim 1 or 2, wherein an end surface of the glass plate is polished.
[4] 前記稜部研磨面のガラス板の端面側への投影幅は、 0. 3mm以上 1. 3mm以下、 ガラス板面側への投影幅は、 0. 3mm以上 3mm以下である請求項 1から 3のいずれ かに記載の強化ガラス。  [4] The projected width of the ridge-polished surface onto the end surface side of the glass plate is 0.3 mm to 1.3 mm, and the projected width onto the glass plate surface side is 0.3 mm to 3 mm. 4. The tempered glass according to any one of items 1 to 3.
[5] 所定寸法に切断されたガラス板の端部を加工する工程と、前記端部加工後のガラ ス板を物理強化処理する工程とを含む強化ガラスの製造方法であって、前記端部を 加工する工程は、前記ガラス板の端部の稜部を前記ガラス板面とのなす角度が 135 度以上 170度以下になるように研磨して稜部研磨面を形成し、該稜部研磨面と前記 ガラス板面とでなす角部に有するカケの稜線方向の長さを 200 m以下、稜線に垂 直方向の最大幅を 100 μ m以下とすることを特徴とする強化ガラスの製造方法。  [5] A method for producing tempered glass, comprising a step of processing an end portion of a glass plate cut into a predetermined dimension, and a step of physically strengthening the glass plate after the end portion processing, wherein the end portion And polishing the edge of the glass plate so that an angle between the glass plate surface and the glass plate surface is not less than 135 degrees and not more than 170 degrees to form an edge-polished surface. A method for producing tempered glass, characterized in that the length in the ridge line direction of a chip having a corner formed by a surface and the glass plate surface is 200 m or less and the maximum width in the direction perpendicular to the ridge line is 100 μm or less. .
[6] 前記物理強化処理する工程は、前記研磨後のガラス板を 620°C以上 660°C以下 に加熱する工程と、前記加熱後のガラス板に 5°C以上 80°C以下の圧縮空気をガラス 板の両面力 吹き付けて急冷する工程とを含み、前記圧縮空気の圧力を、 板厚が 2. 5mm以上 3. 5mm未満で lOkPa以上 25kPa以下、 [6] The physical strengthening process includes a step of heating the polished glass plate to 620 ° C. or more and 660 ° C. or less, and a compressed air of 5 ° C. or more and 80 ° C. or less to the heated glass plate. The glass The pressure of the compressed air is adjusted to a pressure of the plate thickness of 2.5 mm or more and less than 3.5 mm, lOkPa or more and 25 kPa or less,
3. 5mm以上 4. 5mm未満で 7kPa以上 20kPa以下、  3. 5mm or more 4. Less than 5mm, 7kPa or more and 20kPa or less,
4. 5mm以上 7. Omm未満で 6kPa以上 15kPa以下、  4. 5 mm or more 7. Less than Omm 6 kPa or more and 15 kPa or less,
7. Omm以上 9. Omm未満で 5kPa以上 13kPa以下、  7. Omm or more 9. Less than Omm 5kPa or more and 13kPa or less,
9. Omm以上 11. Omm未満で 4kPa以上 12kPa以下、  9. Omm or more 11. Less than Omm 4kPa or more and 12kPa or less,
11. Omm以上 20. Omm以下で 2kPa以上 lOkPa以下  11. Omm or more 20. Omm or less 2kPa or more lOkPa or less
とする請求項 5に記載の強化ガラスの製造方法。  The method for producing tempered glass according to claim 5.
[7] 前記端部を加工する工程は、前記ガラス板の端面の研磨が加えられる請求項 5又 は 6に記載の強化ガラスの製造方法。 [7] The method for producing tempered glass according to [5] or [6], wherein the step of processing the end portion is performed by polishing the end face of the glass plate.
[8] 前記端部を加工する工程は、前記稜部研磨面のガラス板の端面側への投影幅を 0[8] In the step of processing the end portion, the projected width of the ridge portion polished surface onto the end surface side of the glass plate is set to 0.
. 3mm以上 1. 3mm以下、ガラス板面側への投影幅を 0. 3mm以上 3mm以下に研 磨する請求項 5から 7のいずれかに記載の強化ガラスの製造方法。 The method for producing tempered glass according to any one of claims 5 to 7, wherein polishing is performed to 3 mm or more and 3 mm or less and a projection width on the glass plate surface side of 0.3 mm or more and 3 mm or less.
PCT/JP2007/063172 2006-08-14 2007-06-29 Heat-resistant tempered glass and process for producing the same WO2008020509A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008529826A JP5799482B2 (en) 2006-08-14 2007-06-29 Heat-resistant tempered glass and method for producing heat-resistant tempered glass
KR1020147029725A KR20140135846A (en) 2006-08-14 2007-06-29 Heat-resistant tempered glass and process for producing the same
CN2007800301702A CN101500956B (en) 2006-08-14 2007-06-29 Heat-resistant tempered glass and process for producing the same
KR1020157020353A KR20150095942A (en) 2006-08-14 2007-06-29 Heat-resistant tempered glass and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-221114 2006-08-14
JP2006221114 2006-08-14

Publications (1)

Publication Number Publication Date
WO2008020509A1 true WO2008020509A1 (en) 2008-02-21

Family

ID=39082037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063172 WO2008020509A1 (en) 2006-08-14 2007-06-29 Heat-resistant tempered glass and process for producing the same

Country Status (4)

Country Link
JP (2) JP5799482B2 (en)
KR (3) KR20140135846A (en)
CN (1) CN101500956B (en)
WO (1) WO2008020509A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026195A (en) * 2009-07-24 2011-02-10 Corning Inc Method for processing edge of glass plate
CN102341214A (en) * 2009-03-10 2012-02-01 日本电气硝子株式会社 Glass substrate and method for manufacturing same
RU2507165C2 (en) * 2008-09-08 2014-02-20 Ту Бергакадеми Фрайберг Method of obtaining thermally hardened glass
CN104284868A (en) * 2012-06-21 2015-01-14 日本电气硝子株式会社 Method for producing tempered glass
CN104308673A (en) * 2014-11-17 2015-01-28 合肥鑫晟光电科技有限公司 Edge polishing method and device of display glass
US9296638B2 (en) 2014-07-31 2016-03-29 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
JP2017186197A (en) * 2016-04-05 2017-10-12 Ykk Ap株式会社 Production method and production apparatus of physically strengthened glass
WO2017191401A1 (en) * 2016-05-03 2017-11-09 Saint-Gobain Glass France Shaping of glass following tempering
EP3620441A1 (en) * 2018-09-06 2020-03-11 O'Keeffe, William F. Fire-rated glass unit
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US20220017401A1 (en) * 2020-07-14 2022-01-20 Schott Ag Device and method for length cutting in ultrathin glasses
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035331B2 (en) * 2011-06-24 2018-07-31 Corning Incorporated Light-weight hybrid glass laminates
US9616641B2 (en) 2011-06-24 2017-04-11 Corning Incorporated Light-weight hybrid glass laminates
CN102863146A (en) * 2011-07-06 2013-01-09 常州亚玛顿股份有限公司 Physical toughened glass, solar cell panel and manufacture methods of physical toughened glass and solar cell panel
KR101983754B1 (en) 2011-11-01 2019-05-29 닛폰 이타가라스 가부시키가이샤 Single glass for fire door and double glass for fire door
KR102218982B1 (en) * 2014-05-19 2021-02-23 동우 화인켐 주식회사 Method for processing a cutting part of glass substrate
KR102218983B1 (en) * 2014-05-19 2021-02-23 동우 화인켐 주식회사 Method for processing a cutting part of glass substrate and apparatus for processing a cutting part of glass substrate
KR102399877B1 (en) * 2015-06-11 2022-05-20 삼성디스플레이 주식회사 A polishing device and a polishing method of a plate
KR102607582B1 (en) * 2016-08-30 2023-11-30 삼성디스플레이 주식회사 Cover window, display device including a cover window, and method of manufacturing a cover window
JPWO2018117078A1 (en) * 2016-12-22 2019-10-24 日本電気硝子株式会社 Tempered glass plate, device with tempered glass plate, and method for manufacturing device with tempered glass plate
JP6876902B2 (en) * 2017-03-30 2021-05-26 パナソニックIpマネジメント株式会社 Manufacturing method of induction heating cooker and induction heating cooker
CN107793019B (en) * 2017-11-27 2020-03-20 先进数字显示(深圳)有限公司 Process method for microstructure hot pressing of flat glass substrate for high-precision display
JP6798000B1 (en) * 2019-12-23 2020-12-09 株式会社フェローテックマテリアルテクノロジーズ Method of manufacturing a mixed member using SiC and Si
WO2021162109A1 (en) * 2020-02-14 2021-08-19 日昌株式会社 Glass and glass processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971429A (en) * 1995-09-08 1997-03-18 Nippon Sheet Glass Co Ltd Not-reinforced plate glass
JPH09208246A (en) * 1995-10-16 1997-08-12 Central Glass Co Ltd Fireproof glass
JPH1179769A (en) * 1997-09-05 1999-03-23 Asahi Glass Co Ltd Tempered glass
JP2000203895A (en) * 1998-12-28 2000-07-25 Nippon Sheet Glass Co Ltd Windowpane unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062594B2 (en) * 1987-03-26 1994-01-12 セントラル硝子株式会社 Method for manufacturing tempered glass plate
US5939175A (en) * 1996-04-11 1999-08-17 Nippon Sheet Glass Co., Ltd. Method of finishing heat-reinforced plate glass and edge regions thereof
JP3957348B2 (en) * 1996-11-21 2007-08-15 日本板硝子株式会社 Fire glass
JPH11130454A (en) * 1997-10-23 1999-05-18 Central Glass Co Ltd Tempered glass plate having protective cover on peripheral part thereof
JP2001087998A (en) * 1999-09-16 2001-04-03 Nippon Electric Glass Co Ltd Method and device for grinding plate glass
JP4274708B2 (en) * 2001-05-14 2009-06-10 Hoya株式会社 Glass substrate for magnetic recording medium and manufacturing method thereof
JP2004099370A (en) * 2002-09-10 2004-04-02 Nippon Electric Glass Co Ltd Fire prevention glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971429A (en) * 1995-09-08 1997-03-18 Nippon Sheet Glass Co Ltd Not-reinforced plate glass
JPH09208246A (en) * 1995-10-16 1997-08-12 Central Glass Co Ltd Fireproof glass
JPH1179769A (en) * 1997-09-05 1999-03-23 Asahi Glass Co Ltd Tempered glass
JP2000203895A (en) * 1998-12-28 2000-07-25 Nippon Sheet Glass Co Ltd Windowpane unit

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507165C2 (en) * 2008-09-08 2014-02-20 Ту Бергакадеми Фрайберг Method of obtaining thermally hardened glass
CN102341214A (en) * 2009-03-10 2012-02-01 日本电气硝子株式会社 Glass substrate and method for manufacturing same
CN102341214B (en) * 2009-03-10 2015-01-28 日本电气硝子株式会社 Glass substrate and method for manufacturing same
US9555516B2 (en) 2009-07-24 2017-01-31 Corning Incorporated Method for processing an edge of a glass plate
JP2011026195A (en) * 2009-07-24 2011-02-10 Corning Inc Method for processing edge of glass plate
TWI572450B (en) * 2009-07-24 2017-03-01 康寧公司 Method for processing an edge of a glass plate
CN104284868A (en) * 2012-06-21 2015-01-14 日本电气硝子株式会社 Method for producing tempered glass
US9783448B2 (en) 2014-07-31 2017-10-10 Corning Incorporated Thin dicing glass article
US10233111B2 (en) 2014-07-31 2019-03-19 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US9776905B2 (en) 2014-07-31 2017-10-03 Corning Incorporated Highly strengthened glass article
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US9802853B2 (en) 2014-07-31 2017-10-31 Corning Incorporated Fictive temperature in damage-resistant glass having improved mechanical characteristics
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US9296638B2 (en) 2014-07-31 2016-03-29 Corning Incorporated Thermally tempered glass and methods and apparatuses for thermal tempering of glass
US9975801B2 (en) 2014-07-31 2018-05-22 Corning Incorporated High strength glass having improved mechanical characteristics
US10005691B2 (en) 2014-07-31 2018-06-26 Corning Incorporated Damage resistant glass article
US10077204B2 (en) 2014-07-31 2018-09-18 Corning Incorporated Thin safety glass having improved mechanical characteristics
CN104308673A (en) * 2014-11-17 2015-01-28 合肥鑫晟光电科技有限公司 Edge polishing method and device of display glass
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
JP2017186197A (en) * 2016-04-05 2017-10-12 Ykk Ap株式会社 Production method and production apparatus of physically strengthened glass
FR3050990A1 (en) * 2016-05-03 2017-11-10 Saint Gobain GLASS FILLING AFTER TEMPERING
WO2017191401A1 (en) * 2016-05-03 2017-11-09 Saint-Gobain Glass France Shaping of glass following tempering
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
EP3620441A1 (en) * 2018-09-06 2020-03-11 O'Keeffe, William F. Fire-rated glass unit
JP2020059642A (en) * 2018-09-19 2020-04-16 ウィリアム エフ.オキーフWilliam F.O’Keeffe Fire resistant glass unit
JP7473312B2 (en) 2018-09-19 2024-04-23 エフ.オキーフ ウィリアム Fireproof glass unit
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US20220017401A1 (en) * 2020-07-14 2022-01-20 Schott Ag Device and method for length cutting in ultrathin glasses

Also Published As

Publication number Publication date
KR20150095942A (en) 2015-08-21
CN101500956A (en) 2009-08-05
JPWO2008020509A1 (en) 2010-01-07
CN101500956B (en) 2013-05-08
JP5799482B2 (en) 2015-10-28
JP2015187076A (en) 2015-10-29
KR20140135846A (en) 2014-11-26
KR20090041363A (en) 2009-04-28
JP5924439B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2008020509A1 (en) Heat-resistant tempered glass and process for producing the same
JP7163336B2 (en) Lamination of electrochromic devices on glass substrates
KR102492060B1 (en) Thin thermally and chemically strengthened glass-based articles
JP3313721B2 (en) Method for strengthening glass articles
EP2903825B1 (en) Physical vapor deposited layers for protection of glass surfaces
JP4535692B2 (en) Chemically tempered glass
CN108025939A (en) The vehicle glass of heat enhancing
JP3094166B2 (en) Method for making flat or curved glass sheet
WO2012027133A2 (en) Method of strengthening edge of glass article
US7618895B2 (en) Method for etching doughnut-type glass substrates
US20050142321A1 (en) Glass substrate for magnetic disks and process for its production
US20230295037A1 (en) Fire Rated Glass Unit
CN110409965B (en) Laminated glass with high fire resistance
KR20150111821A (en) Method of cutting and chamfering strengthened glass
CN109070304B (en) Shaping of tempered glass
KR20180033294A (en) Thermally enhanced glass and related systems and methods
KR101454451B1 (en) Method of cutting and chamfering strengthened glass
JP3968761B2 (en) Tempered glass
KR101454446B1 (en) Method of cutting and chamfering strengthened glass
JP5169209B2 (en) Glass substrate for flat panel display and manufacturing method thereof
JP2020132448A (en) Heat-proof strengthened glass plate, and method of manufacturing heat-proof strengthened glass plate
JP3638532B2 (en) Fireproof laminated glass
KR20050016393A (en) Glass cutting method which does not involve breaking
US20200172428A1 (en) Thin multilayer laminate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030170.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008529826

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020147029725

Country of ref document: KR