JP4535692B2 - Chemically tempered glass - Google Patents

Chemically tempered glass Download PDF

Info

Publication number
JP4535692B2
JP4535692B2 JP2003150000A JP2003150000A JP4535692B2 JP 4535692 B2 JP4535692 B2 JP 4535692B2 JP 2003150000 A JP2003150000 A JP 2003150000A JP 2003150000 A JP2003150000 A JP 2003150000A JP 4535692 B2 JP4535692 B2 JP 4535692B2
Authority
JP
Japan
Prior art keywords
glass
stress
pattern
chemically strengthened
stress pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003150000A
Other languages
Japanese (ja)
Other versions
JP2004352535A (en
Inventor
瑞樹 西
眞一 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003150000A priority Critical patent/JP4535692B2/en
Priority to CNB2004800055738A priority patent/CN100465119C/en
Priority to PCT/JP2004/007103 priority patent/WO2004106253A1/en
Priority to KR1020057013832A priority patent/KR100792771B1/en
Priority to TW093115363A priority patent/TWI276615B/en
Publication of JP2004352535A publication Critical patent/JP2004352535A/en
Application granted granted Critical
Publication of JP4535692B2 publication Critical patent/JP4535692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化学強化ガラス、特にタッチパネル等に使用される電子材料分野、自動車用および建築用などの分野に有用な化学強化ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
省資源・省エネルギーの観点あるいは社会的なニーズの変化から、強化ガラスの薄板化や強化度アップが進んでいる。一般的に用いられている風冷強化法では、3mm以下、特に2mm以下の板厚をもったガラスの生産が難しいことから、2mm以下のガラスでは、化学強化法が多く用いられている。また、化学強化ガラスは一般的に風冷法による強化ガラスよりも高い強度を得ることができるというメリットもある。
【0003】
化学強化ガラスが市場に多く受け入れられている理由として、前述した薄板ガラスでの強化性や高強度化に加え、一定の条件下では強化ガラスでも切断可能であることがあげられる。風冷強化ガラスでは、切断しようとしてクラックを導入すると、粉々割れてしまうので、切断はできない。
【0004】
これは、例えば図5(非特許文献1参照)に示すように、化学強化ガラスと風冷強化(物理強化)ガラスでは、ガラス内部に形成される応力パターンが大きく異なっているためである。風冷強化ガラスはガラス表層と内層の温度差及び粘性流動を利用するため、その応力パターンの概要は例えば2次曲線で近似される形状となる。これに対し、化学強化ガラスは例えば表層でのイオン交換を利用しているので、厳密にはFickの拡散則に依存するが、大きくは直線で近似されることが多い。風冷強化ガラスで所定の表面圧縮応力値を得ようとすると、必然的に内層にある引張応力が大きくなる。ガラスの破壊はこの内層の引張応力に依存するため、大きな引張応力下では細片化現象につながる。一方、化学強化ガラスの場合、圧縮応力値を大きくしても、通常の条件下では、内層の引張応力値はあまり大きくなることはない。化学強化ガラスの引張応力値は、大きくは表面圧縮応力値と圧縮応力層厚の関数となる。
【0005】
すなわち、風冷強化ガラスも化学強化ガラスも、ガラスとしての破壊強度は大きい。一方、風冷強化ガラスの場合には切断が不可能であり、化学強化ガラスの場合には切断可能性はあっても切断しにくいという問題を併せ持っていた。
【0006】
なお、化学強化ガラスの製造方法としては、種々の方法が考えられている。例えば、小さなイオン半径の原子を大きなイオン半径の原子に置き換える方法、ガラスの粘性流動を利用して大きなイオン半径の原子を小さなイオン半径の原子に置き換える方法、熱膨張率の差を利用する方法、結晶を晶出させる方法、上述の方法を組み合わせる方法など、多くの方法がある。一般に、ソーダ・ライム系ガラスでは小さなイオン半径の原子を大きなイオン半径の原子に置き換える方法が数多く用いられ、その中でも、多くの化学強化ガラスは化学強化処理槽中に浸漬する、いわゆる浸漬法で製造されている。すなわち、ガラスを高温の化学強化処理液、例えば硝酸カリウム溶液中に浸積し、ガラス中のナトリウムイオンを硝酸カリウム中のカリウムイオンと置換することにより、表層に圧縮応力層を形成する。また、ガラス中にリチウムを含む場合の化学強化処理液としては、硝酸ナトリウム、または硝酸ナトリウムと硝酸カリウムの混合塩が多用される。
【0007】
公知技術をみれば、例えば、切断したガラスを化学強化として使用することが(例えば、特許文献1参照)が、切断条件の重要な因子である表面応力の測定技術(例えば、特許文献2参照)が開示されている。また、ハードディスクドライブの化学強化に関する工程
1)予備加熱槽での予備加熱(0.5〜2時間程度かけて380〜500℃に昇温)
2)硝酸カリウム又は硝酸ナトリウムの溶融塩溶液での化学強化処理(0.5〜6時間程度)
3)送風冷却槽での冷却(5〜25m3/分の冷却風で面内温度差が5℃以内で溶融塩溶液の融点以下たる室温まで強制冷却)
が詳細に述べられている例(例えば、特許文献3参照)もある。
【0008】
【特許文献1】
特開2002-160932号公報
【特許文献2】
特公昭59-37451号公報
【特許文献3】
特開2000-344550号公報
【非特許文献1】
H.M.Garfinkel他, The Glass Industry, 50(1969), p.76.
【0009】
【発明が解決しようとする課題】
化学強化ガラスは切断可能とされている。しかし、切断可能といっても、この切断は非常に難しい技術であり、生産時の歩留低下の主因となっているし、製品となった後も切断不良による破壊の問題などが発生している。
【0010】
例えば、タッチパネル等に使用される化学強化した薄板ガラスにおいて、大板の化学強化ガラスから複数枚採りを行うことにより生産性アップを試みている。しかし、ホイールチップ方式の切断機でスクライブするとき、分断時にスクライブ線に沿って分割されず、スクライブ線から外れて分割されるという問題が数多く生じている。このため、複数採りのメリットが当初の予定とは異なった結果となっている場合が多い。また、スクライブされた化学強化ガラスを使ったパネルが、市場に出した後に想定荷重よりも小さな値でも破壊するという問題も発生している。
【0011】
このように、現実的には、化学強化ガラスの切断については、技術的に確立されているとは言えない状況にある。
【0012】
すなわち、特開2002-160932号公報の中で切断したガラスを化学強化として使用することが述べられているが、化学強化ガラスの切断方法を述べているわけではない。また、特公昭59-37451号公報の手法は表面応力の測定技術については知ることはできても、ガラスの切断につながる技術については示されていない。さらに、特開2000-344550号公報で示された化学強化方法は、直径60〜100mmのハードディスクドライブを化学強化する場合であり、切断性などについては述べられていない。
【0013】
【課題を解決するための手段】
本発明は、イオン交換することによりガラス表層に圧縮応力層を形成させた化学強化ガラスにおいて、ガラス表面に近い方の応力パターンAとガラス内層側の応力パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び応力パターンBをそれぞれ1次関数で近似する場合において、応力パターンAと応力パターンBは別の傾きを持ち、応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比が0.8以上0.95以下であることを特徴とする化学強化ガラスである。
【0016】
さらにまた、応力パターンAによる圧縮応力層厚が2μm以上15μm以下の上記の化学強化ガラスである。
【0017】
【発明の実施の形態】
本発明は、イオン交換することによりガラス表層に圧縮応力層を形成させた化学強化ガラスにおいて、ガラス表面に近い方の圧縮応力パターンAとガラス内層側の圧縮応力パターンBの2種類を圧縮応力層の中に有す化学強化ガラスである。 ガラスの切断性を改善するためには、ガラス中の応力パターンを2種類もつことが有用となる。応力パターンを2種類もつことにより、所定の圧縮応力層厚をもちながら、切断しやすい化学強化ガラスとすることができる。別の言い方をするならば、従来のFickの法則に依存した応力パターンの化学強化ガラスではなく、Fickの法則のみには依存しない、特に表層近傍での発生応力は別の関数形で表される化学強化ガラスである。
【0018】
また、応力パターンA及び応力パターンBをそれぞれ1次関数で近似する場合において、応力パターンAと応力パターンBは別の傾きをもつ上記の化学強化ガラスである。別の応力パターンを持たない、すなわち1種類のみの従来の化学強化ガラスは、破壊強度は大きな値をもつが、切断しにくいという問題点がある。一方、切断しやすくしようとすると、破壊強度は小さくなる。
【0019】
さらに、応力パターンAから求められる表面応力値は、応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値よりも小さな値となる化学強化ガラスである。もしも、大きな値となる場合は、切断しにくくなる。
【0020】
さらにまた、応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比が0.8以上0.95以下である上記の化学強化ガラスである。応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比が0.8以上0.95以下である。0.8未満であると表面圧縮応力が小さくなり、ガラスの強度が事実上低下する。また、0.95を越えると、切断性が下がる。望ましくは、0.85以上0.93以下である。
【0021】
この場合、条件によっては、図6に示すように応力パターンAの傾きは、応力パターンBと反対となることがある。すなわち、従来の化学強化ガラスでは表面圧縮応力が内層の応力値よりも常に大きいが、本発明の化学強化ガラスでは表面圧縮応力の値よりも少し内層に入った部分の応力値の方が大きい値を示すこともある。このような応力パターンをもった化学強化ガラスも当然ながら、本発明の範疇に入る。
【0022】
さらにまた、応力パターンAによる圧縮応力層厚が2μm以上15μm以下である。応力パターンAによる圧縮応力層厚が2μmよりも小さいとその切断性に対する効果が小さくなり、応力パターンAによる圧縮応力層厚が15μmを越えると化学強化ガラスの性質上破壊強度が実質的に小さくなるためである。3μm以上9μm以下が好ましい。
【0023】
なお、化学強化ガラスの生産管理を簡単に行うべく、化学強化ガラス内の応力パターンを1次近似して説明してきた。しかし厳密に述べると、応力パターンを1次関数で近似することができない場合も当然ながらでてくる。これは、前述したようにイオン交換は基本的にはFickの拡散法則に従い、拡散法則は1次関数ではないので、厳密には近似した直線から外れることが必然となるためである。また、ガラス内の応力生成は、イオン交換の他、温度分布、変形、板厚等多くの因子の影響も受ける。このように直線近似ができない場合又は近似しにくい場合、発生した応力パターンが1つの関数で表すことができるか、2つ以上の関数を必要とするのかの原則に戻るべきである。ここで、近似には3次以上の多次関数を用いない。近似には、極点を1つ有す又は極点を有しない関数を用いる。このような関数を用いて近似したとき、1つの関数で表すことができる場合は、従来の化学強化ガラスである。一方、2つ以上の関数を用いる必要がある場合は、本発明の化学強化ガラスとなる。また、関数近似を考える領域としては、圧縮応力領域とすべきである。ガラスの切断性及び破壊強度は圧縮応力値に依存すること、及び引張応力が一定値となり始める領域ではその応力生成が不安定になることがあり、その判定に誤りを発生させる恐れがあるからである。
【0024】
化学強化ガラスの圧縮応力層の厚さおよび圧縮応力の値は、化学強化時の処理温度と処理時間、さらには処理液の選択およびその活性特性に大きく影響されるので、単純ではない。また、ガラス内のイオン交換状況や結晶化状況によっても異なる。しかし、破壊強度を実用レベルに保ち、かつ切断性を向上した化学強化ガラスを得ることは可能である。以下、実施例に基づき、具体的に説明する。
【0025】
【実施例】
(実施例1)
厚さ0.7mmのソーダ石灰系フロートガラスを460℃の硝酸カリウム溶融塩の中に10時間浸漬してイオン交換処理後、510℃に設定した冷却槽に化学強化ガラスを移動し、さらにその中で60分間保持した。その後は、通常に行われている冷却速度(約10℃/min)で冷却し、所定の化学強化ガラスを得た。このガラスの応力パターンを図1に示す。図中のCは圧縮応力、Tは引張応力を示している。このように、ガラス表面に近い方の圧縮応力パターンAとガラス内層側の圧縮応力パターンBの2種類を圧縮応力層の中にもつ特徴を有す化学強化ガラスである。なお、この応力パターンは化学強化ガラスを切り出して研磨し、バビネの補償板と光学顕微鏡を用いて観察した結果を示したものである。応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比は0.93であった。また、応力パターンAによる圧縮応力層厚は4μmであった。
【0026】
この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準ずるスクライブ(負荷重量:2kg)および分断テストを行ったところ、問題なく切断することができた。
【0027】
(実施例2)
厚さ0.55mmのソーダ石灰系フロートガラスを470℃の硝酸カリウム溶融塩中で4時間浸漬して第1のイオン交換処理を行った後、510℃で20分間浸漬し第2のイオン交換処理を行い、その後は、通常に行われている冷却速度(約10℃/min)で冷却し、所定の化学強化ガラスを得た。このガラスの応力パターンを図2に示す。応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比は0.89であった。また、応力パターンAによる圧縮応力層厚は5μmであった。
【0028】
この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準ずるスクライブ(負荷重量:2kg)および分断テストを行ったところ、問題なく切断することができた。
【0029】
(比較例1)
厚さ0.7mmのソーダ石灰系フロートガラスを460℃の硝酸カリウム溶融塩の中に10時間浸漬してイオン交換処理後、380℃に設定した冷却槽に化学強化ガラスを移動し、通常に行われている冷却速度(約10℃/min)で冷却し、所定の化学強化ガラス製品を得た。このガラスの応力パターンを図3に示す。このように、1種類の応力パターンを有している。応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比は当然ながら1.0であった。また、圧縮応力層厚(応力パターンA及びB)は33μmであった。
【0030】
この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準ずるスクライブ(負荷重量:2kg)および分断テストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして(最終的な負荷重量:7kg)検討したところ、スクライブ線から線状の多くのガラス粉が発生し、化学強化ガラス製品として使用することはできなかった。また、スクライブ線に沿って分断できないところ、すなわち切断線からはずれていたところもあった。
【0031】
(比較例2) 厚さ0.7mmのソーダ石灰系フロートガラスを460℃の硝酸カリウム溶融塩の中に10時間浸漬してイオン交換処理後、410℃に設定した冷却槽に化学強化ガラスを移動し、さらにその中で60分間保持した。その後は、通常に行われている冷却速度(約10℃/min)で冷却し、所定の化学強化ガラスを得た。このガラスの応力パターンを図4に示す。応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比は0.7であった。また、応力パターンAによる圧縮応力層厚は17μmであった。
【0032】
この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準ずるスクライブ(負荷重量:2kg)および分断テストを行ったところ、スリップが顕著であった。そこで、負荷重量を5kgとして検討したところ、この化学強化ガラスは破壊してしまった。
【0033】
以上の結果から示されるように、本発明の工程をイオン交換工程後に付加することにより、切断しやすい化学強化ガラスを得ることができた。
【0034】
【発明の効果】
これまで、困難とされてきた化学強化ガラスの切断が安定してできるようになった。
【図面の簡単な説明】
【図1】実施例1に示す応力パターンの概略図である。
【図2】実施例2に示す応力パターンの概略図である。
【図3】比較例1に示す応力パターンの概略図である。
【図4】比較例2に示す応力パターンの概略図である。
【図5】化学強化ガラスと風冷(物理)強化ガラスの応力パターンを示す概略図である。
【図6】応力パターンAの特殊な例を示す概略図である。
【符号の説明】
1 化学強化ガラスの表面
2 応力パターンB
3 応力パターンA
4 応力パターンBの延長線
d 表面圧縮応力層厚
σ 表面圧縮応力値
σB 応力パターンBから推定される表面圧縮応力値
C 圧縮応力
T 引張応力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemically tempered glass, particularly a chemically tempered glass useful in fields such as electronic materials used for touch panels and the like, automobiles and buildings, and a method for producing the same.
[0002]
[Prior art]
From the viewpoints of resource and energy savings and changes in social needs, tempered glass is becoming thinner and the degree of strengthening is increasing. Since the production of glass having a plate thickness of 3 mm or less, particularly 2 mm or less is difficult with the commonly used air-cooling strengthening method, the chemical strengthening method is often used for glass of 2 mm or less. In addition, chemically tempered glass generally has an advantage that it can obtain higher strength than tempered glass obtained by air cooling.
[0003]
The reason why chemical tempered glass is widely accepted in the market is that, in addition to the above-mentioned strengthening and strengthening properties of thin glass, it can be cut even under certain conditions. In air-cooled tempered glass, if cracks are introduced in an attempt to cut, they break apart and cannot be cut.
[0004]
This is because, for example, as shown in FIG. 5 (see Non-Patent Document 1), the chemically tempered glass and the air-cooled tempered (physical tempered) glass have greatly different stress patterns formed inside the glass. Since the air-cooled tempered glass uses the temperature difference and the viscous flow between the glass surface layer and the inner layer, the outline of the stress pattern has a shape approximated by a quadratic curve, for example. In contrast, chemically tempered glass, for example, uses ion exchange on the surface layer, and strictly depends on Fick's diffusion law, but is often approximated by a straight line. When trying to obtain a predetermined surface compressive stress value with air-cooled tempered glass, the tensile stress in the inner layer inevitably increases. Since glass breakage depends on the tensile stress of this inner layer, it leads to a fragmentation phenomenon under a large tensile stress. On the other hand, in the case of chemically strengthened glass, even if the compressive stress value is increased, the tensile stress value of the inner layer is not so increased under normal conditions. The tensile stress value of chemically strengthened glass is largely a function of the surface compressive stress value and the compressive stress layer thickness.
[0005]
That is, both the air-cooled tempered glass and the chemically tempered glass have high breaking strength as glass. On the other hand, in the case of air-cooled tempered glass, it was impossible to cut, and in the case of chemically tempered glass, there was a problem that it was difficult to cut even though it could be cut.
[0006]
In addition, various methods are considered as a manufacturing method of chemically strengthened glass. For example, a method of replacing atoms of small ionic radius with atoms of large ionic radius, a method of replacing atoms of large ionic radius with atoms of small ionic radius using the viscous flow of glass, a method of utilizing difference in thermal expansion coefficient, There are many methods such as a method of crystallizing crystals and a method of combining the above methods. In general, many methods of replacing atoms with small ionic radii with soda-lime glass are used, and among them, many chemically strengthened glass is manufactured by the so-called immersion method, which is immersed in a chemical strengthening treatment tank. Has been. That is, a compressive stress layer is formed on the surface layer by immersing glass in a high-temperature chemical strengthening treatment solution, such as a potassium nitrate solution, and replacing sodium ions in the glass with potassium ions in potassium nitrate. In addition, as the chemical strengthening treatment liquid when the glass contains lithium, sodium nitrate or a mixed salt of sodium nitrate and potassium nitrate is frequently used.
[0007]
From the viewpoint of known technology, for example, the use of cut glass as chemical strengthening (see, for example, Patent Document 1) is a technique for measuring surface stress, which is an important factor in cutting conditions (see, for example, Patent Document 2). Is disclosed. Steps related to chemical strengthening of hard disk drives 1) Preheating in a preheating tank (heating to 380 to 500 ° C. over about 0.5 to 2 hours)
2) Chemical strengthening treatment with molten salt solution of potassium nitrate or sodium nitrate (about 0.5-6 hours)
3) Cooling in a blast cooling tank (forced cooling to a room temperature where the in-plane temperature difference is within 5 ° C. and below the melting point of the molten salt solution with cooling air of 5 to 25 m 3 / min)
Is also described in detail (for example, see Patent Document 3).
[0008]
[Patent Document 1]
JP 2002-160932 A [Patent Document 2]
Japanese Patent Publication No.59-37451 [Patent Document 3]
JP 2000-344550 A [Non-Patent Document 1]
HMGarfinkel et al., The Glass Industry, 50 (1969), p. 76.
[0009]
[Problems to be solved by the invention]
Chemically tempered glass can be cut. However, even though it is possible to cut, this cutting is a very difficult technology, which is the main cause of yield reduction during production, and even after it has become a product, there is a problem of destruction due to cutting failure etc. Yes.
[0010]
For example, in a chemically strengthened thin glass used for a touch panel or the like, an attempt is made to increase productivity by taking a plurality of sheets from a large chemically strengthened glass. However, when scribing with a wheel chip type cutting machine, there are many problems that it is not divided along the scribe line at the time of division, but separated from the scribe line. For this reason, there are many cases where the merit of using multiple results is different from the original plan. In addition, there is a problem that a panel using a scribed chemically strengthened glass breaks even when it is smaller than an assumed load after being put on the market.
[0011]
Thus, in reality, it cannot be said that the cutting of chemically strengthened glass is technically established.
[0012]
That is, in Japanese Patent Application Laid-Open No. 2002-160932, it is described that the cut glass is used for chemical strengthening, but the method for cutting chemically strengthened glass is not described. Moreover, although the technique of Japanese Examined Patent Publication No. 59-37451 can know the measurement technique of the surface stress, it does not show the technique that leads to the cutting of the glass. Furthermore, the chemical strengthening method disclosed in Japanese Patent Application Laid-Open No. 2000-344550 is a case where a hard disk drive having a diameter of 60 to 100 mm is chemically strengthened, and there is no mention of cutting ability.
[0013]
[Means for Solving the Problems]
The present invention compresses two types of stress patterns, a stress pattern A closer to the glass surface and a stress pattern B on the glass inner layer side, in a chemically strengthened glass in which a compressive stress layer is formed on the glass surface layer by ion exchange. When the stress pattern A and the stress pattern B are approximated by a linear function in the stress layer, the stress pattern A and the stress pattern B have different slopes, and the surface stress value obtained from the stress pattern A And a temporary surface stress value obtained from a line obtained by extending the compressive stress pattern B to the glass surface is a chemically tempered glass having a ratio of 0.8 to 0.95 .
[0016]
Furthermore, the above chemically strengthened glass has a compressive stress layer thickness of 2 μm or more and 15 μm or less by the stress pattern A.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a chemically tempered glass in which a compressive stress layer is formed on a glass surface layer by ion exchange. The compressive stress layer comprises two types of compressive stress pattern A closer to the glass surface and compressive stress pattern B on the inner glass layer side. Is a chemically strengthened glass. In order to improve the cutting property of glass, it is useful to have two types of stress patterns in the glass. By having two types of stress patterns, it is possible to obtain a chemically tempered glass that is easily cut while having a predetermined compressive stress layer thickness. In other words, it is not a chemically strengthened glass with a stress pattern that depends on Fick's law in the past, but it does not depend on Fick's law alone, especially the stress generated near the surface is expressed in another functional form. It is chemically strengthened glass.
[0018]
When the stress pattern A and the stress pattern B are approximated by a linear function, the stress pattern A and the stress pattern B are the above chemically strengthened glasses having different inclinations. The conventional chemically strengthened glass having no other stress pattern, that is, only one kind of conventional chemically strengthened glass has a problem that it has a large fracture strength but is difficult to cut. On the other hand, if it is attempted to cut easily, the breaking strength is reduced.
[0019]
Furthermore, the surface stress value calculated | required from the stress pattern A is chemically strengthened glass used as a value smaller than the temporary surface stress value calculated | required from the line which extended the stress pattern B to the glass surface. If the value is large, it becomes difficult to cut.
[0020]
Furthermore, the ratio between the surface stress value obtained from the stress pattern A and the provisional surface stress value obtained from a line obtained by extending the compression stress pattern B to the glass surface is 0.8 or more and 0.95 or less. It is chemically strengthened glass. The ratio with the temporary surface stress value calculated | required from the line which extended the stress pattern B to the glass surface is 0.8-0.95. If it is less than 0.8, the surface compressive stress is reduced, and the strength of the glass is substantially reduced. On the other hand, if it exceeds 0.95, the cutting ability is lowered. Desirably, it is 0.85 or more and 0.93 or less.
[0021]
In this case, depending on conditions, the inclination of the stress pattern A may be opposite to that of the stress pattern B as shown in FIG. That is, in the conventional chemically strengthened glass, the surface compressive stress is always larger than the stress value of the inner layer, but in the chemically strengthened glass of the present invention, the stress value of the portion entering the inner layer is slightly larger than the value of the surface compressive stress. May be indicated. Naturally, a chemically strengthened glass having such a stress pattern also falls within the scope of the present invention.
[0022]
Furthermore, the compressive stress layer thickness by the stress pattern A is 2 μm or more and 15 μm or less. If the compressive stress layer thickness due to the stress pattern A is smaller than 2 μm, the effect on the cutting property will be reduced, and if the compressive stress layer thickness due to the stress pattern A exceeds 15 μm, the fracture strength will be substantially reduced due to the properties of the chemically strengthened glass. Because. 3 μm or more and 9 μm or less are preferable.
[0023]
In addition, in order to perform the production management of chemically strengthened glass easily, the stress pattern in the chemically strengthened glass has been described as a first order approximation. However, strictly speaking, there are naturally cases where the stress pattern cannot be approximated by a linear function. This is because, as described above, ion exchange basically follows Fick's diffusion law, and since the diffusion law is not a linear function, strictly speaking, it is necessary to deviate from the approximate straight line. In addition, the stress generation in the glass is affected by many factors such as temperature distribution, deformation, and plate thickness in addition to ion exchange. If linear approximation is not possible or difficult to approximate in this way, the principle should be returned to whether the generated stress pattern can be represented by one function or requires two or more functions. Here, a multi-order function of third or higher order is not used for approximation. For the approximation, a function having one pole or no pole is used. When approximated using such a function, a conventional chemically strengthened glass can be represented by one function. On the other hand, when it is necessary to use two or more functions, the chemically tempered glass of the present invention is obtained. In addition, as a region considering functional approximation, it should be a compressive stress region. This is because the cutability and fracture strength of glass depend on the compressive stress value, and in the region where the tensile stress starts to become a constant value, the stress generation may become unstable, which may cause an error in the determination. is there.
[0024]
The thickness of the compressive stress layer and the compressive stress value of the chemically strengthened glass are not simple because they are greatly influenced by the processing temperature and processing time during chemical strengthening, as well as the selection of the processing liquid and its active properties. Moreover, it varies depending on the ion exchange status and crystallization status in the glass. However, it is possible to obtain chemically tempered glass that maintains the fracture strength at a practical level and has improved cutability. Hereinafter, based on an Example, it demonstrates concretely.
[0025]
【Example】
Example 1
A 0.7mm thick soda-lime float glass is immersed in molten potassium nitrate at 460 ° C for 10 hours and subjected to ion exchange treatment. Then, the chemically tempered glass is moved to a cooling bath set at 510 ° C. Hold for 60 minutes. Thereafter, the glass was cooled at a usual cooling rate (about 10 ° C./min) to obtain a predetermined chemically strengthened glass. The stress pattern of this glass is shown in FIG. In the figure, C indicates compressive stress, and T indicates tensile stress. Thus, it is a chemically strengthened glass having the characteristics that the compressive stress layer has two types of compressive stress pattern A closer to the glass surface and compressive stress pattern B on the inner side of the glass. This stress pattern shows the result of cutting and polishing chemically strengthened glass and observing it using a Babinet compensator and an optical microscope. The ratio between the surface stress value obtained from the stress pattern A and the provisional surface stress value obtained from the line obtained by extending the compressive stress pattern B to the glass surface was 0.93. The compressive stress layer thickness by the stress pattern A was 4 μm.
[0026]
When this chemically strengthened glass was subjected to a scribe (load weight: 2 kg) and a split test in accordance with a general cutting operation using a commercially available carbide wheel tip, it could be cut without any problem.
[0027]
(Example 2)
A first soda-lime float glass having a thickness of 0.55 mm was immersed in a molten salt of potassium nitrate at 470 ° C. for 4 hours to perform a first ion exchange treatment, and then immersed at 510 ° C. for 20 minutes to perform a second ion exchange treatment. After that, the glass was cooled at a cooling rate (about 10 ° C./min) that was normally used to obtain a predetermined chemically strengthened glass. The stress pattern of this glass is shown in FIG. The ratio between the surface stress value obtained from the stress pattern A and the provisional surface stress value obtained from the line obtained by extending the compressive stress pattern B to the glass surface was 0.89. The compressive stress layer thickness by the stress pattern A was 5 μm.
[0028]
When this chemically strengthened glass was subjected to a scribe (load weight: 2 kg) and a split test in accordance with a general cutting operation using a commercially available carbide wheel tip, it could be cut without any problem.
[0029]
(Comparative Example 1)
A soda-lime float glass with a thickness of 0.7 mm is immersed in a molten salt of potassium nitrate at 460 ° C. for 10 hours. After ion exchange treatment, the chemically strengthened glass is moved to a cooling bath set at 380 ° C. The product was cooled at a cooling rate of about 10 ° C./min to obtain a predetermined chemically strengthened glass product. The stress pattern of this glass is shown in FIG. Thus, it has one type of stress pattern. The ratio between the surface stress value obtained from the stress pattern A and the provisional surface stress value obtained from the line obtained by extending the compressive stress pattern B to the glass surface was naturally 1.0. The compressive stress layer thickness (stress patterns A and B) was 33 μm.
[0030]
When this chemically strengthened glass was subjected to a scribing (load weight: 2 kg) and a splitting test in accordance with a general cutting operation using a commercially available carbide wheel tip, slip was remarkable. Therefore, when the cutting pressure was increased (final load weight: 7 kg), a lot of linear glass powder was generated from the scribe line and could not be used as a chemically strengthened glass product. In addition, there were places where it was impossible to divide along the scribe line, that is, where it was off the cutting line.
[0031]
(Comparative Example 2) A soda-lime float glass having a thickness of 0.7 mm was immersed in a molten salt of potassium nitrate at 460 ° C. for 10 hours, subjected to ion exchange treatment, and then the chemically strengthened glass was moved to a cooling bath set at 410 ° C. In addition, it was held for 60 minutes. Thereafter, the glass was cooled at a usual cooling rate (about 10 ° C./min) to obtain a predetermined chemically strengthened glass. The stress pattern of this glass is shown in FIG. The ratio between the surface stress value obtained from the stress pattern A and the provisional surface stress value obtained from the line obtained by extending the compressive stress pattern B to the glass surface was 0.7. The compressive stress layer thickness by the stress pattern A was 17 μm.
[0032]
When this chemically strengthened glass was subjected to a scribe (load weight: 2 kg) and a split test according to a general cutting operation using a commercially available carbide wheel tip, slip was remarkable. Therefore, when the load weight was examined as 5 kg, this chemically strengthened glass was broken.
[0033]
As shown from the above results, chemically tempered glass that can be easily cut was obtained by adding the process of the present invention after the ion exchange process.
[0034]
【The invention's effect】
Up to now, it has become possible to stably cut chemically strengthened glass, which has been considered difficult.
[Brief description of the drawings]
1 is a schematic diagram of a stress pattern shown in Example 1. FIG.
2 is a schematic diagram of a stress pattern shown in Example 2. FIG.
3 is a schematic diagram of a stress pattern shown in Comparative Example 1. FIG.
4 is a schematic diagram of a stress pattern shown in Comparative Example 2. FIG.
FIG. 5 is a schematic diagram showing stress patterns of chemically tempered glass and air-cooled (physical) tempered glass.
6 is a schematic diagram showing a special example of a stress pattern A. FIG.
[Explanation of symbols]
1 Surface of chemically strengthened glass 2 Stress pattern B
3 Stress pattern A
4 Extension line d of stress pattern B Surface compressive stress layer thickness σ Surface compressive stress value σ Surface compressive stress value estimated from B stress pattern B C Compressive stress T Tensile stress

Claims (2)

イオン交換することによりガラス表層に圧縮応力層を形成させた化学強化ガラスにおいて、ガラス表面に近い方の応力パターンAとガラス内層側の応力パターンBとの2種類の応力パターンを圧縮応力層の中に有し、該応力パターンA及び応力パターンBをそれぞれ1次関数で近似する場合において、応力パターンAと応力パターンBは別の傾きを持ち、応力パターンAから求められる表面応力値と、圧縮応力パターンBをガラス表面まで延長させたラインから求められる仮の表面応力値との比が0.8以上0.95以下であることを特徴とする化学強化ガラス。 In chemically strengthened glass in which a compressive stress layer is formed on the glass surface layer by ion exchange, two types of stress patterns, stress pattern A closer to the glass surface and stress pattern B on the inner glass layer side, are contained in the compressive stress layer. When the stress pattern A and the stress pattern B are approximated by linear functions, the stress pattern A and the stress pattern B have different slopes, and the surface stress value obtained from the stress pattern A and the compressive stress A chemically tempered glass, characterized in that the ratio of the pattern B to a temporary surface stress value obtained from a line obtained by extending the pattern B to the glass surface is 0.8 or more and 0.95 or less. 応力パターンAによる圧縮応力層厚が2μm以上15μm以下であることを特徴とする請求項1または2のいずれかに記載の化学強化ガラス。The chemically strengthened glass according to claim 1, wherein the compressive stress layer thickness by the stress pattern A is 2 μm or more and 15 μm or less.
JP2003150000A 2003-05-28 2003-05-28 Chemically tempered glass Expired - Fee Related JP4535692B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003150000A JP4535692B2 (en) 2003-05-28 2003-05-28 Chemically tempered glass
CNB2004800055738A CN100465119C (en) 2003-05-28 2004-05-25 Chemically reinforced glass and method for production thereof
PCT/JP2004/007103 WO2004106253A1 (en) 2003-05-28 2004-05-25 Chemically reinforced glass and method for production thereof
KR1020057013832A KR100792771B1 (en) 2003-05-28 2004-05-25 Chemically reinforced glass and method for production thereof
TW093115363A TWI276615B (en) 2003-05-28 2004-05-28 Chemically reinforced glass and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150000A JP4535692B2 (en) 2003-05-28 2003-05-28 Chemically tempered glass

Publications (2)

Publication Number Publication Date
JP2004352535A JP2004352535A (en) 2004-12-16
JP4535692B2 true JP4535692B2 (en) 2010-09-01

Family

ID=34045927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150000A Expired - Fee Related JP4535692B2 (en) 2003-05-28 2003-05-28 Chemically tempered glass

Country Status (2)

Country Link
JP (1) JP4535692B2 (en)
CN (1) CN100465119C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047679A1 (en) 2011-09-29 2013-04-04 セントラル硝子株式会社 Chemically strengthened glass plate and method for manufacturing same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100119846A1 (en) 2007-03-02 2010-05-13 Masahiro Sawada Reinforced plate glass and method for manufacturing the same
JP5467490B2 (en) 2007-08-03 2014-04-09 日本電気硝子株式会社 Method for producing tempered glass substrate and tempered glass substrate
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
US8946590B2 (en) 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
US8584354B2 (en) * 2010-08-26 2013-11-19 Corning Incorporated Method for making glass interposer panels
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
US8616024B2 (en) 2010-11-30 2013-12-31 Corning Incorporated Methods for forming grooves and separating strengthened glass substrate sheets
US8539794B2 (en) 2011-02-01 2013-09-24 Corning Incorporated Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets
JP5649592B2 (en) * 2011-02-17 2015-01-07 Hoya株式会社 Manufacturing method of glass substrate of cover glass for portable electronic device, glass substrate of cover glass for portable electronic device, and portable electronic device
US8776547B2 (en) 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
CN103562997A (en) * 2011-06-30 2014-02-05 Hoya株式会社 Glass substrate for magnetic disk and method for manufacturing same
CN104054130B (en) * 2011-09-27 2017-07-28 Hoya株式会社 Glass substrate, the manufacture method using the information recording carrier of the glass substrate and the glass substrate
US20140248495A1 (en) * 2011-09-29 2014-09-04 Central Glass Company, Limited Chemically strengthened glass and method for producing same
CN105439445B (en) * 2011-12-16 2018-04-03 旭硝子株式会社 The manufacture method of display protective glass, display protective glass
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
CN106316155A (en) * 2013-07-19 2017-01-11 旭硝子株式会社 Chemically strengthened glass and method for producing same
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US9517968B2 (en) 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
TWI697403B (en) 2014-06-19 2020-07-01 美商康寧公司 Glasses having non-frangible stress profiles
KR20200045575A (en) * 2014-07-25 2020-05-04 코닝 인코포레이티드 Strengthened glass with deep depth of compression
CN112340984A (en) 2014-10-08 2021-02-09 康宁股份有限公司 Glasses and glass-ceramics comprising a concentration gradient of metal oxides
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
KR102459339B1 (en) 2014-11-04 2022-10-26 코닝 인코포레이티드 Deep non-frangible stress profiles and methods of making
US10180416B2 (en) 2015-06-04 2019-01-15 Corning Incorporated Methods of characterizing ion-exchanged chemically strengthened glasses containing lithium
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
TWI739442B (en) 2015-12-11 2021-09-11 美商康寧公司 Fusion-formable glass-based articles including a metal oxide concentration gradient
CN111423110A (en) 2016-04-08 2020-07-17 康宁股份有限公司 Glass-based articles comprising a concentration gradient of metal oxide
CN109265016A (en) * 2018-08-31 2019-01-25 伯恩高新科技(惠州)有限公司 A kind of GG5 material 3D glass reworking method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251541A (en) * 1985-04-30 1986-11-08 Asahi Glass Co Ltd Electro-optical element
JP2001348245A (en) * 2000-06-02 2001-12-18 Hoya Corp Reinforced glass, method for manufacturing the same and glass for display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290793A (en) * 1978-12-08 1981-09-22 Liberty Glass Company Fluid bed chemical strengthening of glass objects
CN1044448A (en) * 1990-02-27 1990-08-08 中国科学院光电技术研究所 Surface strengthening method for optical glass elements and high-strength products thereof
SG49584A1 (en) * 1994-12-28 1998-06-15 Hoya Corp Plate glass flattening method method of manufacturing an information recording glass substrate using flattened glass method of manufacturing a magnetic
CN1159240C (en) * 1998-07-07 2004-07-28 日本板硝子株式会社 Method for producing air-quench toughened glass plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251541A (en) * 1985-04-30 1986-11-08 Asahi Glass Co Ltd Electro-optical element
JP2001348245A (en) * 2000-06-02 2001-12-18 Hoya Corp Reinforced glass, method for manufacturing the same and glass for display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047679A1 (en) 2011-09-29 2013-04-04 セントラル硝子株式会社 Chemically strengthened glass plate and method for manufacturing same
KR20140075683A (en) 2011-09-29 2014-06-19 샌트랄 글래스 컴퍼니 리미티드 Chemically strengthened glass plate and method for manufacturing same
US9206079B2 (en) 2011-09-29 2015-12-08 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same

Also Published As

Publication number Publication date
CN1759074A (en) 2006-04-12
JP2004352535A (en) 2004-12-16
CN100465119C (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4535692B2 (en) Chemically tempered glass
KR100792771B1 (en) Chemically reinforced glass and method for production thereof
JP6352246B2 (en) Tempered glass article having shaped edges and manufacturing method
TWI814830B (en) Glass with improved drop performance
JP4863168B2 (en) Glass substrate for flat panel display and manufacturing method thereof
TWI394731B (en) Reinforced plate glass and manufacturing method thereof
KR102018396B1 (en) Cover glass for display device, and manufacturing method for same
EP2762461B1 (en) Chemically strengthened glass and method for producing same
JP2004083378A (en) Chemically strengthened glass
KR20220098402A (en) Glasses having improved drop performance
JP2008007384A (en) Method for manufacturing glass substrate
JP2012111661A (en) Glass substrate and method for production thereof
JP2012031018A (en) Tempered glass substrate, method for grooving tempered glass substrate, and method for cutting tempered glass substrate
WO2013187683A1 (en) Tempered glass cutting method and cutting apparatus
JP4289931B2 (en) Method for producing chemically strengthened glass
JP4289927B2 (en) Method for producing chemically strengthened glass
JP2001261355A (en) Method of improving strength of end face of glass substrate and glass substrate for flat panel display
JP2001192240A (en) Display device and method for manufacturing the same
KR20220063191A (en) Fracture-Resistant Glass-Based Articles
JP2004107131A (en) Chemically strengthened glass product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees