WO2008015801A1 - Dispositif de commande pour malaxeur - Google Patents

Dispositif de commande pour malaxeur Download PDF

Info

Publication number
WO2008015801A1
WO2008015801A1 PCT/JP2007/053026 JP2007053026W WO2008015801A1 WO 2008015801 A1 WO2008015801 A1 WO 2008015801A1 JP 2007053026 W JP2007053026 W JP 2007053026W WO 2008015801 A1 WO2008015801 A1 WO 2008015801A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pilot
work arm
weight
work
Prior art date
Application number
PCT/JP2007/053026
Other languages
English (en)
French (fr)
Inventor
Hiroyasu Nishikawa
Sei Shimahara
Manabu Nakanishi
Original Assignee
Shin Caterpillar Mitsubishi Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Caterpillar Mitsubishi Ltd. filed Critical Shin Caterpillar Mitsubishi Ltd.
Priority to CN200780000074.3A priority Critical patent/CN101310114B/zh
Priority to US11/997,176 priority patent/US7930970B2/en
Priority to EP07737285A priority patent/EP2048371A4/en
Publication of WO2008015801A1 publication Critical patent/WO2008015801A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • E02F9/2012Setting the functions of the control levers, e.g. changing assigned functions among operations levers, setting functions dependent on the operator or seat orientation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a control device for a work machine that controls a pilot control pressure of a pilot operated control valve with an electromagnetic proportional valve.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-145720 (Page 3-4, Fig. 6)
  • the present invention has been made in view of the above points, and in a work machine that controls the pilot control pressure of a pilot operated control valve with an electromagnetic proportional valve, it is automatically performed even when the weight of the work arm is changed. It is an object of the present invention to provide a control device for a work machine that can obtain optimal operability.
  • the invention described in claim 1 is a work machine in which at least a part of a work arm operated by a fluid pressure actuator is provided in a replaceable manner.
  • a control device for a work machine comprising: a measuring means for measuring the pressure; and a controller for converting the characteristics of the manual operation amount of the electromagnetic proportional valve and the pilot control pressure into characteristics according to the weight of the work arm measured by the measuring means. It is.
  • the measurement means in the control device for the work machine according to claim 1 includes a pressure sensor that measures the holding pressure of the fluid pressure actuator of the work arm, and the controller includes the work arm.
  • the invention described in claim 3 is an operation table in which the controller in the work machine control device according to claim 1 or 2 represents characteristics of the manual operation amount of the electromagnetic proportional valve and the pilot control pressure. Is converted into an operation table having characteristics corresponding to the weight of the work arm measured by the measuring means.
  • the invention described in claim 4 is that when the controller in the control device for the work machine according to claim 3 is mounted with a standard work arm of an electromagnetic proportional valve that moves the work arm in the direction of gravity-facing or mounted with a standard packet
  • the operation table at the time is converted into an operation table with characteristics that gradually increase the pilot control pressure so that the pilot control pressure rises to the maximum at the pilot control pressure rise position.
  • the controller of the control device for the work machine according to claim 3 or 4 is equipped with a standard workarm of an electromagnetic proportional valve that moves the work arm in the direction of gravity.
  • the operation table when the standard packet is installed is converted to an operation table with characteristics that are gradually reduced so that the pilot control pressure above the intermediate range of the manual operation amount is gradually reduced.
  • the measuring means for measuring the weight of at least a part of the work arm, and the characteristics of the manual operation amount of the electromagnetic proportional valve and the pilot control pressure are measured in the measuring means. It is equipped with a controller that converts the characteristics according to the measured weight.
  • a work machine that controls the pilot control pressure of the operation type control valve with an electromagnetic proportional valve can automatically obtain good operability even when the weight of the work arm or a part thereof is changed.
  • the controller includes an automatic stop function for stopping the work arm in a constant holding pressure measurement posture and a holding measured by the pressure sensor in the constant holding pressure measurement posture. Since it has a weight calculation function that estimates the weight of the work arm from the pressure, the weight of the work arm can be easily estimated from only the holding pressure without detecting the posture of the work arm.
  • the controller uses the operation arm measured by the measuring means to display the operation table that represents the characteristics of the manual operation amount of the electromagnetic proportional valve and the notor control pressure. Since it is converted to an operation table with characteristics according to weight, even when the weight of the work arm or part of it is changed, this operation table can be used to quickly perform calculations that can automatically obtain good operability. .
  • the operation table at the time of mounting the standard work arm or the standard packet of the electromagnetic proportional valve that moves the work arm in the direction of gravity opposition is set to the middle of the manual operation amount.
  • the operation table when the standard work arm or the standard packet of the electromagnetic proportional valve that moves the work arm in the direction of gravity is attached to the intermediate range of the manual operation amount.
  • FIG. 1 is a circuit diagram showing an embodiment of a control device for a work machine according to the present invention.
  • FIG. 2 (a) is a side view showing the measurement preparation posture of a work machine equipped with the control device. ) Is a side view showing the holding pressure measurement posture.
  • FIG. 3 is a flowchart showing a control flow of the control device.
  • FIG. 4 (a) is an operation table for the gravity facing operation of the control device, and is a characteristic diagram showing the lever stroke-pilot secondary pressure (pilot control pressure) characteristics, and (b) is the lever stroke. -Characteristic diagram showing offset pressure characteristic, (c) is a characteristic diagram showing its holding pressure-maximum offset amount characteristic.
  • FIG. 5 (a) is an operation table for the operation in the direction of gravity in the control device, and is a characteristic diagram showing the lever stroke-pilot secondary pressure (pilot control pressure) characteristics, and (b) is the lever stroke. -Characteristic diagram showing offset pressure characteristic, (c) is a characteristic diagram showing its holding pressure-maximum offset amount characteristic.
  • FIG. 2 shows a hydraulic excavator type work machine A, and a swiveling as a fluid pressure actuator with respect to a lower traveling body 1 having a crawler belt driven by a traveling motor ltr as a fluid pressure actuator.
  • An upper swing body 2 that is swiveled by a motor 2sw is provided, and a work arm (front work device) 3 is mounted on the upper swing body 2.
  • the work arm 3 is pivotally supported on the upper swing body 2 by the base end portion of the boom 4 that is pivoted up and down by a boom cylinder 4bm as a fluid pressure actuator.
  • a stick 5 that is rotated in the stick-in / out direction by a stick cylinder 5st as a fluid pressure actuator is pivotally supported at the tip, and a bucket cylinder 6bk as a fluid pressure actuator is supported at the tip of the stick 5.
  • the bucket or attachment tool 6 that is rotated in the packet in / out direction by the shaft is pivotally supported.
  • the work arm 3 or the attachment tool 6 which is a part of the work arm 3 is provided in a replaceable manner.
  • Fig. 1 shows a control device of the work machine A, wherein hydraulic oil supply lines 12 from a plurality of main pumps 11 are connected to a control valve 13, and a return oil discharge port of the control valve 13 is a check valve. 14 and oil cooler 15 are connected to tank 16.
  • the control valve 13 includes left and right traveling motor spool valves 21 and 22, pilot motor spool valves 23, boom cylinder spool valves 24 and 25, and sticks as pilot-operated control valves for controlling the various fluid pressure actuators described above.
  • the cylinder spool valves 26 and 27, the bucket cylinder spool valve 28, and the attachment spool valve 29 and 30 for controlling the attachment actuator 7at for operating (opening and closing) the attachment tool 6 are incorporated.
  • pilot-operated control valves At one end and the other end of these various pilot-operated control valves, these various pilot-operated control valves are provided with a pilot control pressure (pilot secondary pressure) corresponding to an electric signal corresponding to a manual operation amount. ) are connected to pilot-controlled solenoid proportional valves 21ev, 22ev, 23ev, 24ev, 25ev, 26ev, 27ev, 28ev, 29ev, 30ev (hereinafter referred to as “21ev-30ev”). A pilot primary pressure line from the pilot pump llpi and a pilot return oil line to the tank 16 are connected to these solenoid proportional valves 21ev to 30ev, respectively.
  • the electromagnetic proportional valve includes an electromagnetic proportional pressure reducing valve.
  • the electromagnetic parts of these electromagnetic proportional valves 21ev to 30ev are connected to the signal output part of the controller 31, respectively.
  • an operation lever 32 for operation manually operated by an operator of the work machine A and an operation pedal 33 for traveling are connected to the signal input section of the controller 31.
  • the operation lever 32 and the operation pedal 33 convert the manual operation amount into an electric signal and inputs it to the controller 31.
  • pressure sensors 34bm, 35st, 36bk for measuring the holding pressure of the boom cylinder 4bm, the stick cylinder 5st and the bucket cylinder 6bk of the work arm 3 These fluid pressure actuator heads It is installed on the cable side line and the rod side line.
  • the weight of the work arm 3, that is, the front weight, can be estimated by measuring only at the three locations on the head side of the boom cylinder 4bm, the rod side of the stick cylinder 5st, and the rod side of the bucket cylinder 6bk.
  • the signal output parts of the pressure sensors 34bm, 35st, 36bk are connected to the signal input part of the controller 31.
  • the controller 31 converts the characteristics of the manually operated amount of the solenoid proportional valves 21ev to 30ev and the pilot control pressure into characteristics according to the weight of the work arm 3 measured by the pressure sensors 34bm, 35st, and 36bk. It has a function to do.
  • the controller 31 measures the holding pressure corresponding to the weight of the work arm 3 using only the pressure sensors 34bm, 35st, and 36bk. Therefore, it is necessary to measure the work arm 3 in a constant posture. Therefore, the automatic stop function that stops the work arm 3 at a constant holding pressure measurement posture and the holding pressure measured by the pressure sensors 34bm, 35st, and 36bk in the constant holding pressure measurement posture.
  • the weight of the work arm 3 or attachment tool 6 And a weight calculation function to estimate
  • the automatic stop function is changed to the measurement mode from the measurement preparation posture in which the stick cylinder 5st and the bucket cylinder 6bk of the work machine A are reduced to the shortest
  • the pilot control pressure secondary pressure
  • the solenoid proportional valves 26ev and 28ev and the pump discharge from the main pump 11 (swash plate tilt angle) Is a function that automatically stops after a stroke for a certain period of time in a state controlled to a predetermined value.
  • the weight calculation function is obtained from the holding pressures of the boom cylinder 4bm, the stick cylinder 5st, and the bucket cylinder 6bk measured by the pressure sensors 34bm, 35st, and 36bk in this constant holding pressure measurement posture.
  • the weight of the attachment tool 6 can be estimated. For example, from the differential pressure between the head side pressure and the rod side pressure of the boom cylinder 4bm and the known piston pressure receiving area, the holding force of the boom cylinder 4bm and the Since the torque of the boom cylinder 4bm is known, the holding force moment of the boom cylinder 4bm is known, and the holding force measuring posture force of the work arm 3 is divided.
  • the weight of the work arm 3 can be calculated from the balance with the moment of gravity! /.
  • the posture is changed from the constant measurement preparation posture shown in Fig. 2 (a) to the constant holding pressure measurement posture shown in Fig. 2 (b), and the boom cylinder 4bm, the stick cylinder 5st, and the bar
  • the controller 31 automatically calculates the weight of the attached workarm 3. Can be calculated automatically.
  • FIG. 3 shows the control flow of the controller 31.
  • a special work arm such as a long reach arm
  • the weight of the work arm 3 or the attachment tool 6 is measured by the above weight calculation function (step S1), and then the proportional solenoid valves 24ev, 25ev , 26ev, 27ev, 28ev manual operation amount (lever stroke) and pilot control pressure (pilot secondary pressure) characteristics of operation table with standard work arm or standard packet installed according to its weight Convert to an operation table with optimal characteristics (step S2).
  • the controller 31 controls the manual operation amount (lever stroke) of the solenoid proportional valves 2 4ev, 25ev, 26ev, 27ev, 28ev and the pilot control.
  • the operation table when the standard work arm is mounted or the standard packet is mounted, which shows the characteristics of the pressure (pilot secondary pressure), is measured by the pressure sensor 34bm, 35st, 36bk and calculated by the controller 31 or It is equipped with a function to convert it into an operation table with characteristics corresponding to the weight of the attachment tool 6.
  • the operation table is a characteristic of lever operation amount-spool operation amount control pressure.
  • Boom cylinder spool valves 24, 25, stick cylinder spool valves 26, 27, and bucket cylinder spool valves 28 spool operation amount control pressure with solenoid proportional valve 24ev, 25ev, 2 If it is an electrically controlled hydraulic excavator controlled by 6ev, 27ev, 28ev, this characteristic can be easily changed.
  • the maximum offset is the maximum displacement from the standard position (angle) of the work arm 3, and the maximum offset increases with the holding pressure as the weight of the work arm 3 increases.
  • FIG. 4 shows an operation table 41 in the case of a gravity facing operation such as a boom raising operation and a stick-out operation, and the controller 31 performs an actual machine measurement as shown in FIG. 4 (c). From the calculated holding pressure-maximum offset amount characteristic curve, obtain the maximum offset amount ⁇ at the measured holding pressure, and as shown in Fig. 4 (b), the offset pressure a force corresponding to this maximum offset amount a. Calculate the gradual decrease characteristic of the lever stroke-offset pressure. As shown in Fig. 4 (a), this lever stroke-offset pressure characteristic becomes the characteristic of the reburst stroke-pilot secondary pressure (pilot control pressure). to add.
  • the control pressure can be converted to the characteristic 41b that is gradually increased so that it becomes the maximum at the rising position of the pilot control pressure.By this conversion, the pilot control pressure up to the intermediate range is increased and the cylinder movement start position equivalent to the standard machine is realized. This eliminates the drawback that the working arm movement point becomes deeper than the conventional lever operation amount.
  • FIG. 5 shows an operation table 42 in the case of a gravity direction operation such as a boom lowering operation, a stick-in operation, and a packet-in operation, and the controller 31 is configured as shown in FIG.
  • the maximum offset amount j8 at the measured holding pressure is obtained from the holding pressure-maximum offset amount characteristic curve calculated by actual machine measurement, and this maximum offset amount / 3 is supported as shown in Fig. 5 (b).
  • the lever stroke-offset pressure characteristic is also calculated by lever lever-pilot secondary pressure (pilot control pressure). Subtract from the characteristics of
  • the characteristic 42a of the operation table 42 of the electromagnetic proportional valve 24ev, 25ev, 26ev, 2 7ev, 28ev that moves the work arm 3 in the direction of gravity is set in the middle range of the lever stroke (manual operation amount).
  • This can be converted into the characteristic 42b that gradually reduces the pilot control pressure so that the pilot control pressure is gradually reduced.By this conversion, the pilot control pressure in the intermediate range or lower can be reduced, the spool movement amount can be limited, and the cylinder speed of the standard machine can be suppressed.
  • the disadvantage of excessive cylinder speed due to the increased work arm weight can be eliminated.
  • the controller 31 has an automatic stop function for stopping the work arm 3 at a constant holding pressure measurement posture and a work arm from the holding pressure measured by the pressure sensors 34bm, 35st, and 36bk in the constant holding pressure measurement posture. Since the weight calculation function for estimating the weight of 3 is provided, only the holding pressure without detecting the posture of the work arm 3 can be easily estimated.
  • the controller 31 is an operation table 41 when the standard work arm is mounted or when the standard packet is mounted, which represents the characteristics of the manual operation amount of the solenoid proportional valves 24ev, 25ev, 26ev, 27ev, 28ev and the pie-port control pressure. Or 42 is converted into an operation table corresponding to the weight of work arm 3 measured by the pressure sensors 34bm, 35st, 36bk, so that the weight of work arm 3 or a part of it can be changed using this operation table. When this happens, calculations that can automatically obtain good operability can be performed quickly.
  • Solenoid proportional valve that moves the work arm 3 in the direction of gravity. 24ev, 25ev, 26ev, 27ev When the standard work arm is mounted or when the standard packet is mounted 41
  • the pilot control pressure By converting the pilot control pressure to the characteristic 41b that is gradually increased so as to become the maximum at the rising position of the pilot control pressure, it is possible to prevent the work arm 3 from starting deeper than the manual operation amount. That is, gravity against manual operation amount Fluid pressure actuator in the counter direction 4bm, 5st movement start reaction 3 ⁇ 4
  • Solenoid proportional valve for moving work arm 3 in the direction of gravity 24ev, 25ev, 26ev, 27ev, 28ev when operating with standard work arm or standard packet 42
  • the operating speed of the fluid pressure actuators 4bm, 5st, 6bk can be kept in the controllable region.
  • the present invention can be used for work machines such as hydraulic excavators and loaders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

明 細 書
作業機械の制御装置
技術分野
[0001] 本発明は、パイロット操作式制御弁のパイロット制御圧を電磁比例弁で制御する作 業機械の制御装置に関する。
背景技術
[0002] 複数の油圧ァクチユエータを備えた油圧ショベルなどの作業機械において、作業ァ ームの重量 (フロント重量)によらず一定の操作性を得るために、油圧ポンプから各油 圧ァクチユエータに分配される流量を演算して、電磁比例減圧弁により制御するよう にした油圧制御装置がある (例えば、特許文献 1参照)。
特許文献 1 :特開 2000— 145720号公報 (第 3— 4頁、図 6)
発明の開示
発明が解決しょうとする課題
[0003] 一方、油圧ショベルの作業アームの先端部に装着するアタッチメントツールや、ロン グリーチなどの特殊な作業アームを装着した場合は、その作業アームの重量が増加 し、以下の操作性を損なう問題が発生するが、上記特許文献 1の流量分配制御では 、この問題を解決できない。
[0004] すなわち、重力対抗方向への動作、例えばブーム上げ動作などにおいては、ブー ムシリンダの動き出しが鈍くなる。また、重力方向への動作、例えばブーム下げ動作 などにおいては、ブームシリンダ作動速度が速くなり、制御不能に陥るおそれもある。
[0005] 本発明は、このような点に鑑みなされたもので、パイロット操作式制御弁のパイロット 制御圧を電磁比例弁で制御する作業機械において、作業アームの重量が変更され た際も自動的に最適な操作性が得られる作業機械の制御装置を提供することを目的 とする。
課題を解決するための手段
[0006] 請求項 1に記載された発明は、流体圧ァクチユエータにより作動される作業アーム の少なくとも一部が交換可能に設けられた作業機械において、流体圧ァクチユエ一 タを制御するパイロット操作式制御弁と、パイロット操作式制御弁を手動操作量に対 応する電気信号に応じたパイロット制御圧によりパイロット制御する電磁比例弁と、作 業アームの少なくとも一部の重量を計測する計測手段と、電磁比例弁の手動操作量 とパイロット制御圧との特性を、計測手段により計測された作業アームの重量に応じ た特性に変換するコントローラとを具備した作業機械の制御装置である。
[0007] 請求項 2に記載された発明は、請求項 1記載の作業機械の制御装置における計測 手段が、作業アームの流体圧ァクチユエータの保持圧を計測する圧力センサを備え 、コントローラは、作業アームを一定の保持圧計測姿勢で停止させる自動停止機能と
、一定の保持圧計測姿勢における圧力センサで計測された保持圧力 作業アーム の重量を推定する重量演算機能とを備えたものである。
[0008] 請求項 3に記載された発明は、請求項 1または 2記載の作業機械の制御装置にお けるコントローラが、電磁比例弁の手動操作量とパイロット制御圧との特性を表わした 操作テーブルを、計測手段により計測された作業アームの重量に応じた特性の操作 テーブルに変換するものである。
[0009] 請求項 4に記載された発明は、請求項 3記載の作業機械の制御装置におけるコント ローラが、作業アームを重力対向方向に動作させる電磁比例弁の標準作業アーム 装着時または標準パケット装着時の操作テーブルを、手動操作量の中間域以下の ノ ィロット制御圧をパイロット制御圧の立ち上がり位置で最大となるよう漸増させた特 性の操作テーブルに変換するものである。
[0010] 請求項 5に記載された発明は、請求項 3または 4記載の作業機械の制御装置にお けるコントローラが、作業アームを重力方向に動作させる電磁比例弁の標準作業ァ ーム装着時または標準パケット装着時の操作テーブルを、手動操作量の中間域以 上のパイロット制御圧を漸次下げるよう漸減させた特性の操作テーブルに変換するも のである。
発明の効果
[0011] 請求項 1に記載された発明によれば、作業アームの少なくとも一部の重量を計測す る計測手段と、電磁比例弁の手動操作量とパイロット制御圧との特性を、計測手段に より計測された重量に応じた特性に変換するコントローラとを具備したので、ノ ィロット 操作式制御弁のパイロット制御圧を電磁比例弁で制御する作業機械にぉ 、て、作業 アームまたはその一部の重量が変更された際も自動的に良好な操作性が得られる。
[0012] 請求項 2に記載された発明によれば、コントローラは、作業アームを一定の保持圧 計測姿勢で停止させる自動停止機能と、一定の保持圧計測姿勢における圧力セン サで計測された保持圧から作業アームの重量を推定する重量演算機能とを備えたの で、作業アームの姿勢を検出することなぐ保持圧のみから作業アームの重量を簡単 に推定することができる。
[0013] 請求項 3に記載された発明によれば、コントローラが、電磁比例弁の手動操作量と ノ ィロット制御圧との特性を表わした操作テーブルを、計測手段により計測された作 業アームの重量に応じた特性の操作テーブルに変換するので、この操作テーブルを 用いて、作業アームまたはその一部の重量が変更された際も自動的に良好な操作 性が得られる演算を速やかに行なえる。
[0014] 請求項 4に記載された発明によれば、作業アームを重力対向方向に動作させる電 磁比例弁の標準作業アーム装着時または標準パケット装着時の操作テーブルを、手 動操作量の中間域以下のパイロット制御圧をパイロット制御圧の立ち上がり位置で最 大となるよう漸増させた特性の操作テーブルに変換することで、手動操作量に対し作 業アームの動き出しポイントが深くなることを防止できる。すなわち、手動操作量に対 する重力対抗方向への流体圧ァクチユエータの動き出し反応 ¾|¾くすることができる
[0015] 請求項 5に記載された発明によれば、作業アームを重力方向に動作させる電磁比 例弁の標準作業アーム装着時または標準パケット装着時の操作テーブルを、手動操 作量の中間域以上のパイロット制御圧を漸次下げるよう漸減させた特性の操作テー ブルに変換することで、作業アームの重量増加による重力方向の動作速度が過大と なることを防止できる。すなわち、流体圧ァクチユエータの作動速度を制御可能領域 に保つことができる。
図面の簡単な説明
[0016] [図 1]本発明に係る作業機械の制御装置の一実施の形態を示す回路図である。
[図 2] (a)は同上制御装置が搭載された作業機械の計測準備姿勢を示す側面図、(b )はその保持圧計測姿勢を示す側面図である。
[図 3]同上制御装置の制御フローを示すフローチャートである。
[図 4] (a)は同上制御装置における重力対向動作の場合の操作テーブルであってレ バーストローク-パイロット 2次圧 (パイロット制御圧)特性を示す特性図、(b)はそのレ バーストローク-オフセット圧特性を示す特性図、(c)はその保持圧-最大オフセット量 特性を示す特性図である。
[図 5] (a)は同上制御装置における重力方向動作の場合の操作テーブルであってレ バーストローク-パイロット 2次圧 (パイロット制御圧)特性を示す特性図、(b)はそのレ バーストローク-オフセット圧特性を示す特性図、(c)はその保持圧-最大オフセット量 特性を示す特性図である。
符号の説明
[0017] A 作業機械
3 作業アーム
4bm, 5st, 6bk 流体圧ァクチユエータ
24, 25, 26, 27, 28 パイロット操作式制御弁
24ev, 25ev, 26ev, 27ev, 28ev 電磁比例弁
31 コントローラ
34bm, 35st, 36bk 計測手段(圧力センサ)
41, 42 操作テーブル
発明を実施するための最良の形態
[0018] 以下、本発明を、図 1乃至図 5に示された一実施の形態を参照しながら詳細に説明 する。
[0019] 図 2は、油圧ショベル型の作業機械 Aを示し、流体圧ァクチユエータとしての走行モ ータ ltrにより駆動される履帯を備えた下部走行体 1に対し、流体圧ァクチユエータと しての旋回モータ 2swにより旋回駆動される上部旋回体 2が設けられ、この上部旋回 体 2に作業アーム (フロント作業装置) 3が搭載されている。
[0020] この作業アーム 3は、上部旋回体 2に対し、流体圧ァクチユエータとしてのブームシ リンダ 4bmにより上下方向に回動されるブーム 4の基端部が軸支され、このブーム 4の 先端部に、流体圧ァクチユエータとしてのスティックシリンダ 5stによりスティックイン/ァ ゥト方向に回動されるスティック 5が軸支され、このスティック 5の先端部に、流体圧ァ クチユエータとしてのバケツトシリンダ 6bkによりパケットイン/アウト方向に回動されるバ ケットまたはアタッチメントツール 6が軸支されて 、る。作業アーム 3またはこの作業ァ ーム 3の一部であるアタッチメントツール 6は、交換可能に設けられて 、る。
[0021] 図 1は、この作業機械 Aの制御装置を示し、複数のメインポンプ 11からの作動油供 給ライン 12がコントロール弁 13に接続され、このコントロール弁 13の戻り油排出ポート がチェック弁 14およびオイルクーラ 15を経てタンク 16に接続されている。コントロール 弁 13には、上記の各種流体圧ァクチユエータを制御するパイロット操作式制御弁とし ての左右走行モータ用スプール弁 21, 22、旋回モータ用スプール弁 23、ブームシリ ンダ用スプール弁 24, 25、スティックシリンダ用スプール弁 26, 27、バケツトシリンダ用 スプール弁 28、アタッチメントツール 6を作動(開閉など)するアタッチメント用ァクチュ エータ 7atを制御するアタッチメント用スプール弁 29, 30が内蔵されて 、る。
[0022] これらの各種パイロット操作式制御弁の一端部および他端部には、これらの各種パ ィロット操作式制御弁を手動操作量に対応する電気信号に応じたパイロット制御圧( パイロット 2次圧)によりパイロット制御する電磁比例弁 21ev, 22ev, 23ev, 24ev, 25ev , 26ev, 27ev, 28ev, 29ev, 30ev (以下、「21ev〜30ev」とする)が接続されている。これ らの電磁比例弁 21ev〜30evには、パイロットポンプ l lpiからのパイロット 1次圧ラインと 、タンク 16へのパイロット戻り油ラインとがそれぞれ接続されている。なお、電磁比例 弁には、電磁比例減圧弁が含まれる。
[0023] これらの電磁比例弁 21ev〜30evの電磁部は、コントローラ 31の信号出力部にそれ ぞれ接続されている。このコントローラ 31の信号入力部には、作業機械 Aのオペレー タにより手動操作される作業用の操作レバー 32および走行用の操作ペダル 33が接 続されている。操作レバー 32および操作ペダル 33は、手動操作量を電気信号に変 換してコントローラ 31に入力する。
[0024] 作業アーム 3またはアタッチメントツール 6の重量を計測する計測手段として、作業 アーム 3のブームシリンダ 4bm、スティックシリンダ 5stおよびバケツトシリンダ 6bkの保持 圧を計測する圧力センサ 34bm, 35st, 36bkが、これらの流体圧ァクチユエータのへッ ド側ラインおよびロッド側ラインにそれぞれ設置されている。なお、コストを下げるため
、ブームシリンダ 4bmのヘッド側、スティックシリンダ 5stのロッド側およびバケツトシリン ダ 6bkのロッド側の 3箇所のみでの計測でも、作業アーム 3の重量すなわちフロント重 量などの推測が可能である。圧力センサ 34bm, 35st, 36bkの信号出力部は、コント口 ーラ 31の信号入力部に接続されている。
[0025] コントローラ 31は、電磁比例弁 21ev〜30evの手動操作量とパイロット制御圧との特 性を、圧力センサ 34bm, 35st, 36bkにより計測された作業アーム 3の重量に応じた特 性に変換する機能を備えて 、る。
[0026] その前提として、コントローラ 31は、圧力センサ 34bm, 35st, 36bkのみで作業アーム 3の重量に応じた保持圧を計測するため、作業アーム 3を一定の姿勢にして計測す る必要があり、そこで、作業アーム 3を一定の保持圧計測姿勢で停止させる自動停止 機能と、一定の保持圧計測姿勢における圧力センサ 34bm, 35st, 36bkで計測された 保持圧力 作業アーム 3またはアタッチメントツール 6の重量を推定する重量演算機 能とを備えている。
[0027] 例えば、自動停止機能は、図 2 (a)に示されるように、作業機械 Aのスティックシリン ダ 5stおよびバケツトシリンダ 6bkが最短に縮小した計測準備姿勢から、計測モードに して、操作レバー 32をスティックイン方向およびバケツトイン方向にレバー操作したと きに、電磁比例弁 26ev, 28evからのパイロット制御圧(2次圧)およびメインポンプ 11か らのポンプ吐出量 (斜板傾転角)が、所定値に制御された状態で、一定時間、スティ にストローク動作させた後、自動的に停止させる機能であり、この自動停止機能により 、図 2 (b)に示されるように、作業機械 Aのスティックシリンダ 5stおよびバケツトシリンダ 6bkを、一定距離だけ伸長させた一定の保持圧計測姿勢を得ることができる。
[0028] さらに、重量演算機能は、この一定の保持圧計測姿勢における圧力センサ 34bm, 3 5st, 36bkで計測されたブームシリンダ 4bm、スティックシリンダ 5stおよびバケツトシリン ダ 6bkの保持圧から、作業アーム 3またはアタッチメントツール 6の重量を推定すること ができる。例えば、ブームシリンダ 4bmのヘッド側圧とロッド側圧との差圧および既知 のピストン受圧面積から、ブームシリンダ 4bmの保持力と、その保持力が作用するべク トルが分かるので、ブームシリンダ 4bmの保持力モーメントが分かり、また、一定の保 持圧計測姿勢力 作業アーム 3の重心位置が分力るので、ブームシリンダ 4bmの保 持力モーメントと作業アーム 3の重心モーメントとの釣り合!/、式から、作業アーム 3の 重量を演算できる。
[0029] このように、図 2 (a)に示される一定の計測準備姿勢から図 2 (b)に示される一定の 保持圧計測姿勢に姿勢変更して、ブームシリンダ 4bm、スティックシリンダ 5stおよびバ ケットシリンダ 6bkの各ロッド側およびヘッド側に装着した圧力センサ 34bm, 35st, 36b kのみによる各保持圧の計測を完了することで、コントローラ 31は、装着された作業ァ ーム 3の重量を自動的に演算することができる。
[0030] また、正確なフロント重量の算出を行わなくてもパケット装着時の保持圧とフロントァ タツチメント変更時の保持圧の比較より操作テーブルを変更することも可能である。
[0031] 次に、図 3は、コントローラ 31の制御フローを示し、作業アーム操作性自動最適化モ ードがスタートすると、最初に標準作業アームに替えて特殊作業アーム (ロングリーチ アームなど)を装着したり、パケットに替えてアタッチメントツール 6を装着した際に、上 記の重量演算機能により作業アーム 3またはアタッチメントツール 6の重量を計測し( ステップ S1)、次に、電磁比例弁 24ev, 25ev, 26ev, 27ev, 28evの手動操作量(レバー ストローク)とパイロット制御圧 (パイロット 2次圧)との特性を表わした標準作業アーム 装着時または標準パケット装着時の操作テーブルを、その重量に応じた最適な特性 の操作テーブルに変換する (ステップ S2)。
[0032] すなわち、コントローラ 31は、図 4 (a)および図 5 (a)に示されるように、電磁比例弁 2 4ev, 25ev, 26ev, 27ev, 28evの手動操作量(レバーストローク)とパイロット制御圧(パ ィロット 2次圧)との特性を表わした標準作業アーム装着時または標準パケット装着時 の操作テーブルを、圧力センサ 34bm, 35st, 36bkにより計測されコントローラ 31で演 算された作業アーム 3またはアタッチメントツール 6の重量に応じた特性の操作テー ブルに変換する機能を備えて 、る。
[0033] ここで、操作テーブルとは、レバー操作量-スプール操作量制御圧の特性のことで、 ブームシリンダ用スプール弁 24, 25、スティックシリンダ用スプール弁 26, 27およびバ ケットシリンダ用スプール弁 28のスプール操作量制御圧を電磁比例弁 24ev, 25ev, 2 6ev, 27ev, 28evで制御する電気制御式油圧ショベルであれば、この特性を容易に変 更することができる。
[0034] 次に、測定した保持圧力も演算された作業アーム重量に応じた操作テーブルに変 換する操作テーブル変換方法を、作業アーム 3の動作毎に分けて説明する。なお、 最大オフセット量とは、作業アーム 3の標準位置 (角度)からの最大変位量であり、作 業アーム 3の重量が増大するほど保持圧とともにこの最大オフセット量も増加する。
[0035] 先ず、図 4は、ブーム上げ動作およびスティックアウト動作のような重力対向動作の 場合の操作テーブル 41を示し、コントローラ 31は、図 4 (c)に示されるように、実機計 測により算出された保持圧-最大オフセット量特性のカーブから、計測された保持圧 における最大オフセット量 αを求め、図 4 (b)に示されるように、この最大オフセット量 aに対応するオフセット圧 a力 レバーストローク-オフセット圧の漸減特性を演算し 、図 4 (a)〖こ示されるように、このレバーストローク-オフセット圧の特性をレバースト口 ーク -パイロット 2次圧 (パイロット制御圧)の特性に加算する。
[0036] これにより、作業アーム 3を重力対向方向に動作させる電磁比例弁 24ev, 25ev, 26e v, 27evの操作テーブル 41の特性 41aを、レバーストローク(手動操作量)の中間域以 下のパイロット制御圧がノ ィロット制御圧の立ち上がり位置で最大となるよう漸増させ た特性 41bに変換でき、この変換により、中間域までのパイロット制御圧を高くし、標 準機と同等のシリンダ動き出し位置を実現でき、従来のレバー操作量に対し作業ァ ーム動き出しポイントが深くなる欠点を解消できる。
[0037] また、図 5は、ブーム下げ動作、スティックイン動作、パケットイン動作のような重力 方向動作の場合の操作テーブル 42を示し、コントローラ 31は、図 5 (c)に示されるよう に、実機計測により算出された保持圧-最大オフセット量特性のカーブから、計測さ れた保持圧における最大オフセット量 j8を求め、図 5 (b)に示されるように、この最大 オフセット量 /3に対応するオフセット圧 13力もレバーストローク-オフセット圧の漸増特 性を演算し、図 5 (a)に示されるように、このレバーストローク-オフセット圧の特性をレ バーストローク-パイロット 2次圧 (パイロット制御圧)の特性より減算する。
[0038] これにより、作業アーム 3を重力方向に動作させる電磁比例弁 24ev, 25ev, 26ev, 2 7ev, 28evの操作テーブル 42の特性 42aを、レバーストローク(手動操作量)の中間域 以上のパイロット制御圧を漸次下げるよう漸減させた特性 42bに変換でき、この変換 により、中間域以上のパイロット制御圧を下げ、スプール移動量を制限し、標準機の シリンダ速度まで抑制でき、従来の作業アーム重量の増加によりシリンダ速度が過大 となる欠点を解消できる。
[0039] 次に、図示された実施の形態の効果を説明する。
[0040] 作業アーム 3の少なくとも一部の重量を計測する計測手段の圧力センサ 34bm, 35st , 36bkと、電磁比例弁 24ev, 25ev, 26ev, 27ev, 28evの手動操作量とパイロット制御圧 (パイロット 2次圧)との特性を、圧力センサ 34bm, 35st, 36bkにより計測された重量に 応じた特性に変換するコントローラ 31とを具備したので、パイロット操作式制御弁 24, 25, 26, 27, 28のパイロット制御圧を電磁比例弁 24ev, 25ev, 26ev, 27ev, 28evで制 御する作業機械において、作業アーム 3またはその一部の重量が変更された際も自 動的に良好な操作性が得られる。
[0041] コントローラ 31は、作業アーム 3を一定の保持圧計測姿勢で停止させる自動停止機 能と、一定の保持圧計測姿勢における圧力センサ 34bm, 35st, 36bkで計測された保 持圧から作業アーム 3の重量を推定する重量演算機能とを備えたので、作業アーム 3の姿勢を検出することなぐ保持圧のみ力 作業アーム 3の重量を簡単に推定する ことができる。
[0042] コントローラ 31は、電磁比例弁 24ev, 25ev, 26ev, 27ev, 28evの手動操作量とパイ口 ット制御圧との特性を表わした標準作業アーム装着時または標準パケット装着時の 操作テーブル 41または 42を、圧力センサ 34bm, 35st, 36bkにより計測された作業ァ ーム 3の重量に応じた操作テーブルに変換するので、この操作テーブルを用いて、 作業アーム 3またはその一部の重量が変更された際も自動的に良好な操作性が得ら れる演算を速やかに行なえる。
[0043] 作業アーム 3を重力対向方向に動作させる電磁比例弁 24ev, 25ev, 26ev, 27evの 標準作業アーム装着時または標準パケット装着時の操作テーブル 41の特性 41aを、 手動操作量の中間域以下のパイロット制御圧をパイロット制御圧の立ち上がり位置で 最大となるよう漸増させた特性 41bに変換することで、手動操作量に対し作業アーム 3 の動き出しポイントが深くなることを防止できる。すなわち、手動操作量に対する重力 対抗方向への流体圧ァクチユエータ 4bm, 5stの動き出し反応 ¾|¾くすることができる
[0044] 作業アーム 3を重力方向に動作させる電磁比例弁 24ev, 25ev, 26ev, 27ev, 28evの 標準作業アーム装着時または標準パケット装着時の操作テーブル 42の特性 42aを、 手動操作量の中間域以上のパイロット制御圧を漸次下げるよう漸減させた特性 42bに 変換することで、作業アーム 3の重量増加による重力方向の動作速度が過大となるこ とを防止できる。すなわち、流体圧ァクチユエータ 4bm, 5st, 6bkの作動速度を制御可 能領域に保つことができる。
[0045] このように、電気制御式の油圧ショベルに適用して、あらゆるアタッチメントツールや 特殊作業アームを装着した際でも、自動的に最適な操作性が得られるようになり、重 力方向への動作、例えばブーム下げ動作などでも、ブームシリンダ作動速度を抑制 された速度に制御できるとともに、重力対抗方向への動作、例えばブーム上げ動作 などにおいては、ブームシリンダの動き出しを反応良くできる自動最適化システムを 提供できる。
産業上の利用可能性
[0046] 本発明は、油圧ショベル、ローダなどの作業機械に利用可能である。

Claims

請求の範囲
[1] 流体圧ァクチユエータにより作動される作業アームの少なくとも一部が交換可能に 設けられた作業機械において、
流体圧ァクチユエータを制御するパイロット操作式制御弁と、
パイロット操作式制御弁を手動操作量に対応する電気信号に応じたパイロット制御 圧によりパイロット制御する電磁比例弁と、
作業アームの少なくとも一部の重量を計測する計測手段と、
電磁比例弁の手動操作量とパイロット制御圧との特性を、計測手段により計測され た作業アームの重量に応じた特性に変換するコントローラと
を具備したことを特徴とする作業機械の制御装置。
[2] 計測手段は、
作業アームの流体圧ァクチユエータの保持圧を計測する圧力センサを備え、 コントローラは、
作業アームを一定の保持圧計測姿勢で停止させる自動停止機能と、
一定の保持圧計測姿勢における圧力センサで計測された保持圧力 作業アーム の重量を推定する重量演算機能とを備えた
ことを特徴とする請求項 1記載の作業機械の制御装置。
[3] コントローラは、
電磁比例弁の手動操作量とパイロット制御圧との特性を表わした操作テーブルを、 計測手段により計測された作業アームの重量に応じた特性の操作テーブルに変換 する
ことを特徴とする請求項 1または 2記載の作業機械の制御装置。
[4] コントローラは、
作業アームを重力対向方向に動作させる電磁比例弁の標準作業アーム装着時ま たは標準パケット装着時の操作テーブルを、手動操作量の中間域以下のパイロット 制御圧をパイロット制御圧の立ち上がり位置で最大となるよう漸増させた特性の操作 テーブルに変換する
ことを特徴とする請求項 3記載の作業機械の制御装置。 コントローラは、
作業アームを重力方向に動作させる電磁比例弁の標準作業アーム装着時または 標準パケット装着時の操作テーブルを、手動操作量の中間域以上のパイロット制御 圧を漸次下げるよう漸減させた特性の操作テーブルに変換する
ことを特徴とする請求項 3または 4記載の作業機械の制御装置。
PCT/JP2007/053026 2006-07-31 2007-02-20 Dispositif de commande pour malaxeur WO2008015801A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780000074.3A CN101310114B (zh) 2006-07-31 2007-02-20 作业机械的控制装置
US11/997,176 US7930970B2 (en) 2006-07-31 2007-02-20 Control unit for work machine
EP07737285A EP2048371A4 (en) 2006-07-31 2007-02-20 CONTROL DEVICE FOR A WORKING MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006208553A JP4931048B2 (ja) 2006-07-31 2006-07-31 作業機械の制御装置
JP2006-208553 2006-07-31

Publications (1)

Publication Number Publication Date
WO2008015801A1 true WO2008015801A1 (fr) 2008-02-07

Family

ID=38996987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053026 WO2008015801A1 (fr) 2006-07-31 2007-02-20 Dispositif de commande pour malaxeur

Country Status (5)

Country Link
US (1) US7930970B2 (ja)
EP (1) EP2048371A4 (ja)
JP (1) JP4931048B2 (ja)
CN (1) CN101310114B (ja)
WO (1) WO2008015801A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095281B2 (en) * 2008-12-11 2012-01-10 Caterpillar Inc. System for controlling a hydraulic system
USD630268S1 (en) * 2009-11-25 2011-01-04 John Cunningham Remote controlled vehicle
JP5448187B2 (ja) * 2010-06-25 2014-03-19 キャタピラー エス エー アール エル 作業機械の制御装置
CN102635137A (zh) * 2011-02-12 2012-08-15 上海派芬自动控制技术有限公司 机械设备的全功率控制系统
CN105008623B (zh) * 2014-06-04 2017-07-14 株式会社小松制作所 建筑机械的控制系统、建筑机械及建筑机械的控制方法
EP3020874B1 (en) * 2014-11-12 2022-07-06 John Deere Forestry Oy A hydraulic control system for controlling a moveable device
DE112015000055B4 (de) 2015-05-29 2019-05-16 Komatsu Ltd. Steuersystem einer Arbeitsmaschine und Arbeitsmaschine
JP6619163B2 (ja) * 2015-06-17 2019-12-11 日立建機株式会社 作業機械
EP3128077B1 (de) * 2015-08-04 2019-05-15 Joseph Vögele AG Strassenfertiger und verfahren zur bestimmung der bohlenkonfiguration
JP6746333B2 (ja) * 2016-03-22 2020-08-26 住友建機株式会社 ショベル
JP6589254B2 (ja) * 2016-09-28 2019-10-16 日立建機株式会社 作業車両
DE112016000708B4 (de) * 2016-11-09 2022-02-17 Komatsu Ltd. Arbeitsfahrzeug und Steuerungsverfahren
US10378563B2 (en) * 2016-11-09 2019-08-13 Komatsu Ltd. Work vehicle and data calibration method
JP6707053B2 (ja) * 2017-03-29 2020-06-10 日立建機株式会社 作業機械
PL3382099T3 (pl) 2017-03-29 2019-09-30 Joseph Vögele AG Układarka z elementem grzejnym dla belki równającej
JP7336853B2 (ja) * 2019-02-01 2023-09-01 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
CN112095709A (zh) * 2020-09-27 2020-12-18 徐州徐工挖掘机械有限公司 挖掘机的电控系统、控制方法、装置以及存储介质
JP2023157145A (ja) * 2022-04-14 2023-10-26 キャタピラー エス エー アール エル 作業機械におけるブーム下降制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361211A (en) 1990-10-31 1994-11-01 Samsung Heavy Industries Co., Ltd. Control system for automatically controlling actuators of an excavator
JPH0735105A (ja) * 1993-07-21 1995-02-03 Komatsu Ltd 油圧駆動機械の不感帯自動補正装置およびその不感帯自動補正方法
JP2000145720A (ja) 1998-11-12 2000-05-26 Shin Caterpillar Mitsubishi Ltd 作業機械における油圧制御装置
JP2001182100A (ja) * 1999-12-22 2001-07-03 Shin Caterpillar Mitsubishi Ltd 作業機械の油圧回路
JP2003106304A (ja) * 2001-09-28 2003-04-09 Kobelco Contstruction Machinery Ltd 液圧シリンダ回路
EP1416096A1 (en) 2002-10-31 2004-05-06 Kobelco Construction Machinery Co., Ltd. Hydraulic circuit of hydraulic excavator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218820A (en) * 1991-06-25 1993-06-15 The University Of British Columbia Hydraulic control system with pressure responsive rate control
US5261234A (en) * 1992-01-07 1993-11-16 Caterpillar Inc. Hydraulic control apparatus
JP3747424B2 (ja) * 1998-02-17 2006-02-22 住友建機製造株式会社 リフティングマグネット作業量計測器
KR100533790B1 (ko) * 1998-03-31 2005-12-06 신갸타피라 미쓰비시 가부시키가이샤 작업용 기계의 유압제어회로
JP3531904B2 (ja) * 1998-03-31 2004-05-31 新キャタピラー三菱株式会社 作業用機械の油圧制御回路
US6286412B1 (en) * 1999-11-22 2001-09-11 Caterpillar Inc. Method and system for electrohydraulic valve control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361211A (en) 1990-10-31 1994-11-01 Samsung Heavy Industries Co., Ltd. Control system for automatically controlling actuators of an excavator
JPH0735105A (ja) * 1993-07-21 1995-02-03 Komatsu Ltd 油圧駆動機械の不感帯自動補正装置およびその不感帯自動補正方法
JP2000145720A (ja) 1998-11-12 2000-05-26 Shin Caterpillar Mitsubishi Ltd 作業機械における油圧制御装置
JP2001182100A (ja) * 1999-12-22 2001-07-03 Shin Caterpillar Mitsubishi Ltd 作業機械の油圧回路
JP2003106304A (ja) * 2001-09-28 2003-04-09 Kobelco Contstruction Machinery Ltd 液圧シリンダ回路
EP1416096A1 (en) 2002-10-31 2004-05-06 Kobelco Construction Machinery Co., Ltd. Hydraulic circuit of hydraulic excavator
JP2004150198A (ja) * 2002-10-31 2004-05-27 Kobelco Contstruction Machinery Ltd 油圧ショベルの油圧回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2048371A4 *

Also Published As

Publication number Publication date
JP2008032174A (ja) 2008-02-14
CN101310114B (zh) 2014-06-25
JP4931048B2 (ja) 2012-05-16
EP2048371A4 (en) 2011-03-09
EP2048371A1 (en) 2009-04-15
US7930970B2 (en) 2011-04-26
US20090090237A1 (en) 2009-04-09
CN101310114A (zh) 2008-11-19

Similar Documents

Publication Publication Date Title
WO2008015801A1 (fr) Dispositif de commande pour malaxeur
EP2072691B1 (en) Shock absorption device and control method thereof for small swing radius excavator
US10087599B2 (en) Shovel and method of controlling shovel
US10550542B2 (en) Construction machine
JP5814190B2 (ja) 速度に基づくフィードフォワード制御を実装するリフトシステム
JP6096428B2 (ja) 特定の角度範囲に並行リフトを実行するシステム
JP5986114B2 (ja) シリンダ停滞ストラテジを有する油圧制御システム
JP5903165B2 (ja) 掘削機を利用した平坦化整地作業制御システム
US10914328B2 (en) Work machine
WO2006070501A1 (ja) 建設機械の制御回路
US10508415B2 (en) Swing control apparatus of construction equipment and control method thereof
CN109715889B (zh) 工程机械的控制系统及工程机械的控制方法
JP4106892B2 (ja) 液圧シリンダ回路
JP2014029180A (ja) 作業機械の油圧制御装置
EP3725959B1 (en) Excavator
JP6692568B2 (ja) 建設機械
JPH10310374A (ja) 旋回式作業機械の旋回停止制御方法および同装置
JP6943798B2 (ja) ショベル
KR20170058125A (ko) 건설기계의 제어 방법
WO2022180997A1 (ja) 作業機械
JP2018119667A (ja) 旋回制御装置
JP2009256058A (ja) クレーン機能付きの油圧ショベル
JP3319490B2 (ja) 建設機械の操作装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000074.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007737285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11997176

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU