WO2008012098A2 - Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium - Google Patents
Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium Download PDFInfo
- Publication number
- WO2008012098A2 WO2008012098A2 PCT/EP2007/006665 EP2007006665W WO2008012098A2 WO 2008012098 A2 WO2008012098 A2 WO 2008012098A2 EP 2007006665 W EP2007006665 W EP 2007006665W WO 2008012098 A2 WO2008012098 A2 WO 2008012098A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- starting material
- gaseous
- hydrogen
- silicon
- photocells
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000010703 silicon Substances 0.000 title claims abstract description 46
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 46
- 239000001257 hydrogen Substances 0.000 title claims abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 14
- 230000003667 anti-reflective effect Effects 0.000 title claims abstract description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 235000012431 wafers Nutrition 0.000 title abstract description 29
- 238000000151 deposition Methods 0.000 title description 10
- 230000008021 deposition Effects 0.000 title description 9
- 238000002161 passivation Methods 0.000 title description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 title description 5
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000007858 starting material Substances 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 18
- 239000007789 gas Substances 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 150000002431 hydrogen Chemical class 0.000 claims abstract 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000005137 deposition process Methods 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 15
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
- H01L31/1868—Passivation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
- H01L21/02222—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to systems and methods for CVD deposition.
- the cross section of a typical photocell mounted on a silicon wafer is shown in FIG.
- the silicon wafer (the light absorber of the photocell) 3 is doped so that a p-n junction can form. Incident light is absorbed by the wafer and electron-hole pairs are formed by converting the photon energy.
- the electric field established by the p-n junction forces electrons and holes to propagate in opposite directions to the wafer surfaces.
- the electrons are collected by the backside electrode 4 while the front electrode 1 neutralizes the holes by injecting electrons into the surface of the doped silicon wafer 3. While the back metallic electrode generally covers the entire wafer surface, the front metallic electrode generally has a grid structure to allow light to penetrate into the wafer surface.
- the front and rear electrodes may be connected by an electrical load to form an electric circuit, and an electric current will flow when the photocell is exposed to light.
- the purpose of the anti-reflective layer 2 between the silicon wafer surface 3 and the front electrode 1 is to reduce light reflection on the silicon wafer surface. This layer changes the look of a shiny metal-like surface to a dark blue color.
- the anti-reflective layer must be formed of an optically transparent material, such as oxides and nitrides, and the thickness of this layer is chosen in terms of its refractive index so that the optical thickness corresponds to a quarter of a specific wavelength of the incident light spectrum.
- the front electrode grid 1 is applied to the anti-reflective layer 2. Electrical conductivity between the front electrode grid and silicon wafer is achieved by subsequently introducing the entire photocell into a high temperature environment, a so-called burn-in step.
- Plasma assisted chemical vapor deposition which most commonly uses silane gas (chemical formula SiH 4 ) as a source of silicon (and hydrogen) and ammonia as a source of atomic nitrogen and hydrogen.
- silane gas chemical formula SiH 4
- ammonia as a source of atomic nitrogen and hydrogen.
- the power required to split the starting material in the plasma is supplied as high frequency, very high frequency or microwave power. Usually, the deposition rates grow with increasing frequency.
- Chemical vapor deposition is a process in which a thin film is deposited on a substrate surface by exposing chemicals to gaseous or chemical vapor Vapor phase react together to form a film.
- the gases or vapors used for CVD are gases or compounds that contain the element or functional group of the elements that are to be deposited and that may be caused to react with the substrate or other gas to deposit a film.
- the CVD reaction can be thermally activated, plasma induced, plasma assisted or activated by light in photon induced systems.
- Silangas the source of silicon and hydrogen and no other unwanted atomic species, is an unstable and highly reactive compound, (and) ideal for high deposition rates.
- silane its responsiveness, is also a big drawback.
- silane gas ignites spontaneously without any additional energy input. This makes silane extremely dangerous and difficult to handle in a manufacturing environment.
- Extensive and expensive safety equipment is required for storage, silane gas supply to the CVD reactor and removal of exhaust gases from the CVD reactor.
- the added cost of security measures is a distinct disadvantage of CVD-based silicon nitride forming processes as compared to other methods such as cathode-erosion-based processes using solid silicon. Therefore, this invention, a silane-free CVD process for depositing anti-reflective silicon nitride coating and simultaneous hydrogen passivation, is a major step forward in reducing the cost of production of crystalline photocells.
- gaseous or vaporous starting materials containing silicon, nitrogen and hydrogen are introduced into a vacuum vessel 10 by means of manifold systems 11 and 12.
- a plasma source 5 operated with electromagnetic high-frequency energy, preferably with pulsed microwave energy, ignites a plasma discharge 6 under suitable vacuum conditions.
- a silicon nitride film 2 is formed Form on the hot, prefabricated, based on silicon wafer 3 photocells 7, which are attached to a support and heater 8, while hydrogen atoms diffuse into the silicon wafer to passivate free compounds.
- the silicon-containing starting material is not silane but an organosilicon compound such as hexamethyldisilazane.
- FIG. 1 shows a cross section of a photocell mounted on silicon wafers. It mainly consists of a doped silicon wafer 3 as a light absorber, the rear electrode 4, the front electrode grid 1, and the anti-reflection film 2.
- FIG. 2 illustrates an example of a reactor for applying an anti-reflective film to a photocell constructed on a silicon wafer by plasma enhanced chemical vapor deposition.
- the reactor consists of a vacuum vessel 10, the photocells 7 attached to a support and heater 8, the plasma source 5 with a plasma 6, the pump nozzles 9, 9 'and the distribution systems 11 and 12 for the starting material.
- Pre-machined silicon wafer based photocells 7 are placed in a vacuum container 10 and attached to a carrier and heating platform 8.
- the residual gas pressure in the vacuum container must be low enough to avoid contamination of the applied film, especially by oxygen. Frequent venting of the container between operating cycles should therefore be avoided.
- the operating cycle begins by the introduction of the feedstock gases or vapors into the vessel through gas distribution systems 11 and 12.
- the silicon-containing feedstock system 11 is between the photocells 7 and the plasma source 5, and all other gaseous feedstock is replaced by another feedstock distribution system 12 on the opposite Side of the plasma source 5 admitted.
- all the necessary starting materials could be supplied through a single manifold system, but then the plasma source 5 would undergo self-coating, which is generally undesirable.
- the plasma discharge 6 is ignited at the plasma source 5 by electrical or electromagnetic energy supplied by suitable energy sources. It is also possible to continuously bring the photocells 7 into and out of the film forming process zone during the film forming process.
- a power source for a very high electromagnetic frequency such as 2450 MHz, is chosen since high plasma densities resulting in high film deposition rates are desirable.
- the gaseous or vaporous, non-silicon-containing feedstock flow which is introduced through the distribution system 12, moves through the plasma region 6 on its way to the vacuum pump nozzles 9, 9 '.
- the molecules supplied may be dissociated, radicalized, excited, or ionized, depending on the nature of the interaction with plasma particles or plasma radiation.
- Some of the starting material molecules will be in energized states as it propagates to the photocells 7 and pump nozzles 9, 9 ', which may be arranged as in FIG. 2, but may also be behind the carrier and heater 8.
- the silicon-containing feedstock introduced through the manifold system 11 will also spread to the vacuum pump stubs 9, 9 '. Because the silicon-containing molecules do not traverse the plasma region, they are excited and disassembled by plasma radiation and by interaction with energetically-excited nitrogen-containing source material molecules. The variety of energetically excited species arriving at the surface of the silicon wafer forms the silicon nitride film and brings hydrogen atoms to the silicon wafer to passivate free bonds. However, the exact location of incorporation of the silicon-containing starting material may depend on general process conditions, desired deposition rates, and the permissible number of other atoms, such as carbon, in the anti-reflective film. It may therefore be necessary to directly expose the silicon-containing starting material molecules to the plasma.
- the inventive step of this patent application is to replace silane gas with an organic silicon compound such as hexamethyldisilazane (chemical formula (CH 3 ) 3 -Si-NH-Si- (CH 3 ) 3 ), the efficient decomposition of the corresponding molecules and the concomitant ones Suppression of carbon atom inclusion in the anti-reflective film crucial.
- the degree of molecular disassembly by the plasma discharge depends mainly on the plasma electron temperature, plasma density and intensity of the vacuum UV radiation of the plasma.
- the decomposition should be such that carbon should remain as or form volatile hydrocarbon compounds which may eventually be removed from the process area by the vacuum pump stubs 9, 9 1 .
- the flow rate ratio between the silicon-containing gaseous starting material and the remaining starting material should usually be selected so that stoichiometric silicon nitride (chemical formula Si 3 N 4 ) can be formed.
- various types of silicon based photocells may require adjustments to the silicon nitride composition. All adjustments seek maximum values of the efficiency of the photocell. Should the hydrogen content of the silicon and nitrogen containing starting materials be insufficient for the passivation of the silicon wafer, molecular hydrogen can be added to the plasma process.
- the plasma source 5 can be supplied with microwave energy (preferably 2450 MHz) and operated in a pulsed mode.
- microwave energy preferably 2450 MHz
- the peak heights of the pulses of preferred rectangular shape should be several times (for example: 5 times) higher than the comparable continuous wave level, which leads to acceptable results of the deposited films.
- the pulse-to-pulse ratio should be set reciprocally to the peak power ratios.
- Plasma source 5 and source material distribution systems 11, 12 as shown in Fig. 2 can be installed above or below the photocells 7.
- the carrier and heater 8 must be aligned accordingly.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
L'invention concerne un procédé permettant d'obtenir un film de nitrure de silicium antiréflecteur, sur des cellules à base de plaquettes de silicium, une diffusion d'atomes d'hydrogène ayant lieu simultanément dans ces cellules, pendant un procédé de dépôt chimique en phase gazeuse chimique. Selon l'invention, le procédé comprend un contenant sous vide approprié pour des procédés de dépôt chimique en phase vapeur qui contiennent des photocellules à base de plaquettes de silicium à une température élevée appropriée, au moins une source d'énergie électromagnétique afin de former au moins une décharge plasma, afin d'obtenir des espèces radicalaires ou excitées énergiquement à partir d'un matériau de départ sous forme de gaz, un premier matériau de départ sous forme de gaz ou de vapeur ne contenant que du silicium, de l'hydrogène, de l'azote et du carbone, un deuxième matériau de départ sous forme de gaz ou de vapeur ne contenant que de l'azote et de l'hydrogène et un troisième matériau de départ sous forme de gaz ou de vapeur ne contenant que de l'hydrogène.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006035563A DE102006035563A1 (de) | 2006-07-27 | 2006-07-27 | Silan freie plasmagestützte CVD-Abscheidung von Siliziumnitrid als anti-reflektierendem Film und zur Wasserstoffpassivierung von auf Siliziumwafern aufgebauten Photozellen |
DE102006035563.6 | 2006-07-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008012098A2 true WO2008012098A2 (fr) | 2008-01-31 |
WO2008012098A3 WO2008012098A3 (fr) | 2008-06-05 |
Family
ID=38859474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/006665 WO2008012098A2 (fr) | 2006-07-27 | 2007-07-27 | Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE102006035563A1 (fr) |
TW (1) | TW200910426A (fr) |
WO (1) | WO2008012098A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109360866A (zh) * | 2018-09-25 | 2019-02-19 | 韩华新能源(启东)有限公司 | 一种三层氮化硅薄膜的制备方法 |
PL423097A1 (pl) * | 2017-10-09 | 2019-04-23 | Politechnika Lodzka | Sposób wytwarzania jednowarstwowych filtrów optycznych z gradientem współczynnika złamania światła |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2139025A1 (fr) | 2008-06-25 | 2009-12-30 | Applied Materials, Inc. | Agencement de revêtement d'une cellule solaire en silicone cristalline avec une couche anti-réfléchissante/de passivation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050255713A1 (en) * | 2002-07-08 | 2005-11-17 | Kohshi Taguchi | Method and apparatus for forming nitrided silicon film |
DE102004015217A1 (de) * | 2004-03-23 | 2006-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Ausbildung dünner Schichten aus Siliziumnitrid auf Substratoberflächen |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863755A (en) * | 1987-10-16 | 1989-09-05 | The Regents Of The University Of California | Plasma enhanced chemical vapor deposition of thin films of silicon nitride from cyclic organosilicon nitrogen precursors |
JP4119791B2 (ja) * | 2003-05-30 | 2008-07-16 | サムコ株式会社 | カソードカップリング型プラズマcvd装置を用いた炭素含有シリコン系膜の製造方法 |
US7129187B2 (en) * | 2004-07-14 | 2006-10-31 | Tokyo Electron Limited | Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films |
-
2006
- 2006-07-27 DE DE102006035563A patent/DE102006035563A1/de not_active Withdrawn
-
2007
- 2007-07-27 WO PCT/EP2007/006665 patent/WO2008012098A2/fr active Application Filing
- 2007-08-23 TW TW096131319A patent/TW200910426A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050255713A1 (en) * | 2002-07-08 | 2005-11-17 | Kohshi Taguchi | Method and apparatus for forming nitrided silicon film |
DE102004015217A1 (de) * | 2004-03-23 | 2006-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Ausbildung dünner Schichten aus Siliziumnitrid auf Substratoberflächen |
Non-Patent Citations (4)
Title |
---|
ABERLE A G: "Overview on SiN surface passivation of crystalline silicon solar cells" SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 65, Nr. 1-4, Januar 2001 (2001-01), Seiten 239-248, XP004217124 ISSN: 0927-0248 * |
KRUGER ET AL: "Investigations of silicon nitride layers deposited in pulsed microwave generated ammonia-silane plasmas" SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, Bd. 200, Nr. 1-4, 1. Oktober 2005 (2005-10-01), Seiten 639-643, XP005063592 ISSN: 0257-8972 * |
MCCURDY PATRICK R ET AL: "Pulsed and continuous wave plasma deposition of amorphous, hydrogenated silicon carbide from SiH4/CH4 plasmas" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A. VACUUM, SURFACES AND FILMS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, NY, US, Bd. 17, Nr. 5, September 1999 (1999-09), Seiten 2475-2484, XP012004735 ISSN: 0734-2101 * |
SCHMIDT J ET AL: "SURFACE PASSIVATION OF SILICON SOLAR CELLS USING PLASMA-ENHANCED CHEMICAL-VAPOUR-DEPOSITED SIN FILMS AND THIN THERMAL SIO2/PLASMA SIN STACKS" SEMICONDUCTOR SCIENCE AND TECHNOLOGY, IOP, BRISTOL, GB, Bd. 16, Nr. 3, März 2001 (2001-03), Seiten 164-170, XP001030218 ISSN: 0268-1242 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL423097A1 (pl) * | 2017-10-09 | 2019-04-23 | Politechnika Lodzka | Sposób wytwarzania jednowarstwowych filtrów optycznych z gradientem współczynnika złamania światła |
CN109360866A (zh) * | 2018-09-25 | 2019-02-19 | 韩华新能源(启东)有限公司 | 一种三层氮化硅薄膜的制备方法 |
CN109360866B (zh) * | 2018-09-25 | 2021-07-20 | 韩华新能源(启东)有限公司 | 一种三层氮化硅薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
TW200910426A (en) | 2009-03-01 |
DE102006035563A1 (de) | 2008-01-31 |
WO2008012098A3 (fr) | 2008-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010000002B4 (de) | Verfahren zur Abscheidung von Mehrlagenschichten und/oder Gradientenschichten | |
EP2220689B1 (fr) | Procédé de fabrication d'une cellule solaire comportant une double couche de diélectrique à passivation de surface, et cellule solaire correspondante | |
DE112013005519B4 (de) | Verfahren zur Herstellung einer Schicht auf einem Oberflächenbereich eines elektronischen Bauelements | |
KR101056300B1 (ko) | 반도체 기질을 부동태화하는 방법 | |
DE112010001613T5 (de) | Gepulste Plasmaabscheidung zum Ausbilden einer Mikrokristallinen Siliziumschicht fürSolaranwendungen | |
DE112011101329T5 (de) | Multi-layer SiN für funktional und optische abgestufte Arc-Schichten auf kristallinen Solarzellen | |
DE102010040231A1 (de) | p-Dotierte Siliciumschichten | |
DE102008045522A1 (de) | Heterosolarzelle und Verfahren zur Herstellung von Heterosolarzellen | |
EP2210267A2 (fr) | Matière de semi-conducteur amorphe d'éléments des groupes iii-v et sa préparation | |
DE3742110A1 (de) | Verfahren zur bildung funktioneller aufgedampfter filme durch ein chemisches mikrowellen-plasma-aufdampfverfahren | |
WO2018193055A1 (fr) | Procédé et dispositif pour la formation d'une couche sur un substrat semi-conducteur ainsi que substrat semi-conducteur | |
DE102010062386A1 (de) | Verfahren zum Konvertieren von Halbleiterschichten | |
DE69409480T2 (de) | Einrichtung zur PCVD-Beschichtung geeignet zur Unterdrückung von Polysilanpulver | |
WO2008012098A2 (fr) | Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium | |
DE102011086351A1 (de) | Verfahren zur Herstellung einer Solarzelle mit PECVD-Kombinationsschicht und Solarzelle mit PECVD-Kombinationsschicht | |
WO2008043827A2 (fr) | Procédé de passivation de cellules solaires | |
WO2020069700A1 (fr) | Installation de revêtement de cellules solaires | |
EP2812461A1 (fr) | Procédé et dispositif de passivation de cellules solaires au moyen d'une couche d'oxyde d'aluminium | |
DE102010030696A1 (de) | Modifizierung von Siliciumschichten aus Silan-haltigen Formulierungen | |
DE102012216416A1 (de) | Verfahren zur Herstellung optimierter Solarzellen | |
EP1706908B1 (fr) | Procede de fabrication de cellules solaires en tandem contenant des couches de silicium microcristalline | |
DE102009026249A1 (de) | Plasma unterstütztes Abscheideverfahren, Halbleitervorrichtung und Abscheidevorrichtung | |
TWI790943B (zh) | 化學氣相沉積系統與方法 | |
DE60125649T2 (de) | Verfahren zur Bildung dünner Schichten | |
DE19919742A1 (de) | Verfahren zum Beschichten von Substraten aus dotiertem Silizium mit einer Antireflexschicht für Solarzellen mittels einer in einer Vakuumkammer betriebenen Zerstäubungskathode mit einem Magnetsystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07786379 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07786379 Country of ref document: EP Kind code of ref document: A2 |