WO2008012098A2 - Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium - Google Patents

Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium Download PDF

Info

Publication number
WO2008012098A2
WO2008012098A2 PCT/EP2007/006665 EP2007006665W WO2008012098A2 WO 2008012098 A2 WO2008012098 A2 WO 2008012098A2 EP 2007006665 W EP2007006665 W EP 2007006665W WO 2008012098 A2 WO2008012098 A2 WO 2008012098A2
Authority
WO
WIPO (PCT)
Prior art keywords
starting material
gaseous
hydrogen
silicon
photocells
Prior art date
Application number
PCT/EP2007/006665
Other languages
German (de)
English (en)
Other versions
WO2008012098A3 (fr
Inventor
Hans-Peter Reiser
Original Assignee
Hans-Peter Reiser
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans-Peter Reiser filed Critical Hans-Peter Reiser
Publication of WO2008012098A2 publication Critical patent/WO2008012098A2/fr
Publication of WO2008012098A3 publication Critical patent/WO2008012098A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to systems and methods for CVD deposition.
  • the cross section of a typical photocell mounted on a silicon wafer is shown in FIG.
  • the silicon wafer (the light absorber of the photocell) 3 is doped so that a p-n junction can form. Incident light is absorbed by the wafer and electron-hole pairs are formed by converting the photon energy.
  • the electric field established by the p-n junction forces electrons and holes to propagate in opposite directions to the wafer surfaces.
  • the electrons are collected by the backside electrode 4 while the front electrode 1 neutralizes the holes by injecting electrons into the surface of the doped silicon wafer 3. While the back metallic electrode generally covers the entire wafer surface, the front metallic electrode generally has a grid structure to allow light to penetrate into the wafer surface.
  • the front and rear electrodes may be connected by an electrical load to form an electric circuit, and an electric current will flow when the photocell is exposed to light.
  • the purpose of the anti-reflective layer 2 between the silicon wafer surface 3 and the front electrode 1 is to reduce light reflection on the silicon wafer surface. This layer changes the look of a shiny metal-like surface to a dark blue color.
  • the anti-reflective layer must be formed of an optically transparent material, such as oxides and nitrides, and the thickness of this layer is chosen in terms of its refractive index so that the optical thickness corresponds to a quarter of a specific wavelength of the incident light spectrum.
  • the front electrode grid 1 is applied to the anti-reflective layer 2. Electrical conductivity between the front electrode grid and silicon wafer is achieved by subsequently introducing the entire photocell into a high temperature environment, a so-called burn-in step.
  • Plasma assisted chemical vapor deposition which most commonly uses silane gas (chemical formula SiH 4 ) as a source of silicon (and hydrogen) and ammonia as a source of atomic nitrogen and hydrogen.
  • silane gas chemical formula SiH 4
  • ammonia as a source of atomic nitrogen and hydrogen.
  • the power required to split the starting material in the plasma is supplied as high frequency, very high frequency or microwave power. Usually, the deposition rates grow with increasing frequency.
  • Chemical vapor deposition is a process in which a thin film is deposited on a substrate surface by exposing chemicals to gaseous or chemical vapor Vapor phase react together to form a film.
  • the gases or vapors used for CVD are gases or compounds that contain the element or functional group of the elements that are to be deposited and that may be caused to react with the substrate or other gas to deposit a film.
  • the CVD reaction can be thermally activated, plasma induced, plasma assisted or activated by light in photon induced systems.
  • Silangas the source of silicon and hydrogen and no other unwanted atomic species, is an unstable and highly reactive compound, (and) ideal for high deposition rates.
  • silane its responsiveness, is also a big drawback.
  • silane gas ignites spontaneously without any additional energy input. This makes silane extremely dangerous and difficult to handle in a manufacturing environment.
  • Extensive and expensive safety equipment is required for storage, silane gas supply to the CVD reactor and removal of exhaust gases from the CVD reactor.
  • the added cost of security measures is a distinct disadvantage of CVD-based silicon nitride forming processes as compared to other methods such as cathode-erosion-based processes using solid silicon. Therefore, this invention, a silane-free CVD process for depositing anti-reflective silicon nitride coating and simultaneous hydrogen passivation, is a major step forward in reducing the cost of production of crystalline photocells.
  • gaseous or vaporous starting materials containing silicon, nitrogen and hydrogen are introduced into a vacuum vessel 10 by means of manifold systems 11 and 12.
  • a plasma source 5 operated with electromagnetic high-frequency energy, preferably with pulsed microwave energy, ignites a plasma discharge 6 under suitable vacuum conditions.
  • a silicon nitride film 2 is formed Form on the hot, prefabricated, based on silicon wafer 3 photocells 7, which are attached to a support and heater 8, while hydrogen atoms diffuse into the silicon wafer to passivate free compounds.
  • the silicon-containing starting material is not silane but an organosilicon compound such as hexamethyldisilazane.
  • FIG. 1 shows a cross section of a photocell mounted on silicon wafers. It mainly consists of a doped silicon wafer 3 as a light absorber, the rear electrode 4, the front electrode grid 1, and the anti-reflection film 2.
  • FIG. 2 illustrates an example of a reactor for applying an anti-reflective film to a photocell constructed on a silicon wafer by plasma enhanced chemical vapor deposition.
  • the reactor consists of a vacuum vessel 10, the photocells 7 attached to a support and heater 8, the plasma source 5 with a plasma 6, the pump nozzles 9, 9 'and the distribution systems 11 and 12 for the starting material.
  • Pre-machined silicon wafer based photocells 7 are placed in a vacuum container 10 and attached to a carrier and heating platform 8.
  • the residual gas pressure in the vacuum container must be low enough to avoid contamination of the applied film, especially by oxygen. Frequent venting of the container between operating cycles should therefore be avoided.
  • the operating cycle begins by the introduction of the feedstock gases or vapors into the vessel through gas distribution systems 11 and 12.
  • the silicon-containing feedstock system 11 is between the photocells 7 and the plasma source 5, and all other gaseous feedstock is replaced by another feedstock distribution system 12 on the opposite Side of the plasma source 5 admitted.
  • all the necessary starting materials could be supplied through a single manifold system, but then the plasma source 5 would undergo self-coating, which is generally undesirable.
  • the plasma discharge 6 is ignited at the plasma source 5 by electrical or electromagnetic energy supplied by suitable energy sources. It is also possible to continuously bring the photocells 7 into and out of the film forming process zone during the film forming process.
  • a power source for a very high electromagnetic frequency such as 2450 MHz, is chosen since high plasma densities resulting in high film deposition rates are desirable.
  • the gaseous or vaporous, non-silicon-containing feedstock flow which is introduced through the distribution system 12, moves through the plasma region 6 on its way to the vacuum pump nozzles 9, 9 '.
  • the molecules supplied may be dissociated, radicalized, excited, or ionized, depending on the nature of the interaction with plasma particles or plasma radiation.
  • Some of the starting material molecules will be in energized states as it propagates to the photocells 7 and pump nozzles 9, 9 ', which may be arranged as in FIG. 2, but may also be behind the carrier and heater 8.
  • the silicon-containing feedstock introduced through the manifold system 11 will also spread to the vacuum pump stubs 9, 9 '. Because the silicon-containing molecules do not traverse the plasma region, they are excited and disassembled by plasma radiation and by interaction with energetically-excited nitrogen-containing source material molecules. The variety of energetically excited species arriving at the surface of the silicon wafer forms the silicon nitride film and brings hydrogen atoms to the silicon wafer to passivate free bonds. However, the exact location of incorporation of the silicon-containing starting material may depend on general process conditions, desired deposition rates, and the permissible number of other atoms, such as carbon, in the anti-reflective film. It may therefore be necessary to directly expose the silicon-containing starting material molecules to the plasma.
  • the inventive step of this patent application is to replace silane gas with an organic silicon compound such as hexamethyldisilazane (chemical formula (CH 3 ) 3 -Si-NH-Si- (CH 3 ) 3 ), the efficient decomposition of the corresponding molecules and the concomitant ones Suppression of carbon atom inclusion in the anti-reflective film crucial.
  • the degree of molecular disassembly by the plasma discharge depends mainly on the plasma electron temperature, plasma density and intensity of the vacuum UV radiation of the plasma.
  • the decomposition should be such that carbon should remain as or form volatile hydrocarbon compounds which may eventually be removed from the process area by the vacuum pump stubs 9, 9 1 .
  • the flow rate ratio between the silicon-containing gaseous starting material and the remaining starting material should usually be selected so that stoichiometric silicon nitride (chemical formula Si 3 N 4 ) can be formed.
  • various types of silicon based photocells may require adjustments to the silicon nitride composition. All adjustments seek maximum values of the efficiency of the photocell. Should the hydrogen content of the silicon and nitrogen containing starting materials be insufficient for the passivation of the silicon wafer, molecular hydrogen can be added to the plasma process.
  • the plasma source 5 can be supplied with microwave energy (preferably 2450 MHz) and operated in a pulsed mode.
  • microwave energy preferably 2450 MHz
  • the peak heights of the pulses of preferred rectangular shape should be several times (for example: 5 times) higher than the comparable continuous wave level, which leads to acceptable results of the deposited films.
  • the pulse-to-pulse ratio should be set reciprocally to the peak power ratios.
  • Plasma source 5 and source material distribution systems 11, 12 as shown in Fig. 2 can be installed above or below the photocells 7.
  • the carrier and heater 8 must be aligned accordingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

L'invention concerne un procédé permettant d'obtenir un film de nitrure de silicium antiréflecteur, sur des cellules à base de plaquettes de silicium, une diffusion d'atomes d'hydrogène ayant lieu simultanément dans ces cellules, pendant un procédé de dépôt chimique en phase gazeuse chimique. Selon l'invention, le procédé comprend un contenant sous vide approprié pour des procédés de dépôt chimique en phase vapeur qui contiennent des photocellules à base de plaquettes de silicium à une température élevée appropriée, au moins une source d'énergie électromagnétique afin de former au moins une décharge plasma, afin d'obtenir des espèces radicalaires ou excitées énergiquement à partir d'un matériau de départ sous forme de gaz, un premier matériau de départ sous forme de gaz ou de vapeur ne contenant que du silicium, de l'hydrogène, de l'azote et du carbone, un deuxième matériau de départ sous forme de gaz ou de vapeur ne contenant que de l'azote et de l'hydrogène et un troisième matériau de départ sous forme de gaz ou de vapeur ne contenant que de l'hydrogène.
PCT/EP2007/006665 2006-07-27 2007-07-27 Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium WO2008012098A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035563A DE102006035563A1 (de) 2006-07-27 2006-07-27 Silan freie plasmagestützte CVD-Abscheidung von Siliziumnitrid als anti-reflektierendem Film und zur Wasserstoffpassivierung von auf Siliziumwafern aufgebauten Photozellen
DE102006035563.6 2006-07-27

Publications (2)

Publication Number Publication Date
WO2008012098A2 true WO2008012098A2 (fr) 2008-01-31
WO2008012098A3 WO2008012098A3 (fr) 2008-06-05

Family

ID=38859474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/006665 WO2008012098A2 (fr) 2006-07-27 2007-07-27 Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium

Country Status (3)

Country Link
DE (1) DE102006035563A1 (fr)
TW (1) TW200910426A (fr)
WO (1) WO2008012098A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360866A (zh) * 2018-09-25 2019-02-19 韩华新能源(启东)有限公司 一种三层氮化硅薄膜的制备方法
PL423097A1 (pl) * 2017-10-09 2019-04-23 Politechnika Lodzka Sposób wytwarzania jednowarstwowych filtrów optycznych z gradientem współczynnika złamania światła

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2139025A1 (fr) 2008-06-25 2009-12-30 Applied Materials, Inc. Agencement de revêtement d'une cellule solaire en silicone cristalline avec une couche anti-réfléchissante/de passivation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255713A1 (en) * 2002-07-08 2005-11-17 Kohshi Taguchi Method and apparatus for forming nitrided silicon film
DE102004015217A1 (de) * 2004-03-23 2006-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Ausbildung dünner Schichten aus Siliziumnitrid auf Substratoberflächen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863755A (en) * 1987-10-16 1989-09-05 The Regents Of The University Of California Plasma enhanced chemical vapor deposition of thin films of silicon nitride from cyclic organosilicon nitrogen precursors
JP4119791B2 (ja) * 2003-05-30 2008-07-16 サムコ株式会社 カソードカップリング型プラズマcvd装置を用いた炭素含有シリコン系膜の製造方法
US7129187B2 (en) * 2004-07-14 2006-10-31 Tokyo Electron Limited Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255713A1 (en) * 2002-07-08 2005-11-17 Kohshi Taguchi Method and apparatus for forming nitrided silicon film
DE102004015217A1 (de) * 2004-03-23 2006-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Ausbildung dünner Schichten aus Siliziumnitrid auf Substratoberflächen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABERLE A G: "Overview on SiN surface passivation of crystalline silicon solar cells" SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 65, Nr. 1-4, Januar 2001 (2001-01), Seiten 239-248, XP004217124 ISSN: 0927-0248 *
KRUGER ET AL: "Investigations of silicon nitride layers deposited in pulsed microwave generated ammonia-silane plasmas" SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, Bd. 200, Nr. 1-4, 1. Oktober 2005 (2005-10-01), Seiten 639-643, XP005063592 ISSN: 0257-8972 *
MCCURDY PATRICK R ET AL: "Pulsed and continuous wave plasma deposition of amorphous, hydrogenated silicon carbide from SiH4/CH4 plasmas" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A. VACUUM, SURFACES AND FILMS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, NY, US, Bd. 17, Nr. 5, September 1999 (1999-09), Seiten 2475-2484, XP012004735 ISSN: 0734-2101 *
SCHMIDT J ET AL: "SURFACE PASSIVATION OF SILICON SOLAR CELLS USING PLASMA-ENHANCED CHEMICAL-VAPOUR-DEPOSITED SIN FILMS AND THIN THERMAL SIO2/PLASMA SIN STACKS" SEMICONDUCTOR SCIENCE AND TECHNOLOGY, IOP, BRISTOL, GB, Bd. 16, Nr. 3, März 2001 (2001-03), Seiten 164-170, XP001030218 ISSN: 0268-1242 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL423097A1 (pl) * 2017-10-09 2019-04-23 Politechnika Lodzka Sposób wytwarzania jednowarstwowych filtrów optycznych z gradientem współczynnika złamania światła
CN109360866A (zh) * 2018-09-25 2019-02-19 韩华新能源(启东)有限公司 一种三层氮化硅薄膜的制备方法
CN109360866B (zh) * 2018-09-25 2021-07-20 韩华新能源(启东)有限公司 一种三层氮化硅薄膜的制备方法

Also Published As

Publication number Publication date
TW200910426A (en) 2009-03-01
DE102006035563A1 (de) 2008-01-31
WO2008012098A3 (fr) 2008-06-05

Similar Documents

Publication Publication Date Title
DE102010000002B4 (de) Verfahren zur Abscheidung von Mehrlagenschichten und/oder Gradientenschichten
EP2220689B1 (fr) Procédé de fabrication d'une cellule solaire comportant une double couche de diélectrique à passivation de surface, et cellule solaire correspondante
DE112013005519B4 (de) Verfahren zur Herstellung einer Schicht auf einem Oberflächenbereich eines elektronischen Bauelements
KR101056300B1 (ko) 반도체 기질을 부동태화하는 방법
DE112010001613T5 (de) Gepulste Plasmaabscheidung zum Ausbilden einer Mikrokristallinen Siliziumschicht fürSolaranwendungen
DE112011101329T5 (de) Multi-layer SiN für funktional und optische abgestufte Arc-Schichten auf kristallinen Solarzellen
DE102010040231A1 (de) p-Dotierte Siliciumschichten
DE102008045522A1 (de) Heterosolarzelle und Verfahren zur Herstellung von Heterosolarzellen
EP2210267A2 (fr) Matière de semi-conducteur amorphe d'éléments des groupes iii-v et sa préparation
DE3742110A1 (de) Verfahren zur bildung funktioneller aufgedampfter filme durch ein chemisches mikrowellen-plasma-aufdampfverfahren
WO2018193055A1 (fr) Procédé et dispositif pour la formation d'une couche sur un substrat semi-conducteur ainsi que substrat semi-conducteur
DE102010062386A1 (de) Verfahren zum Konvertieren von Halbleiterschichten
DE69409480T2 (de) Einrichtung zur PCVD-Beschichtung geeignet zur Unterdrückung von Polysilanpulver
WO2008012098A2 (fr) Dépôt chimique en phase vapeur assisté par plasma sans silane de nitrure de silicium en tant que film antiréflecteur et pour la passivation hydrogène de photocellules en plaquettes de silicium
DE102011086351A1 (de) Verfahren zur Herstellung einer Solarzelle mit PECVD-Kombinationsschicht und Solarzelle mit PECVD-Kombinationsschicht
WO2008043827A2 (fr) Procédé de passivation de cellules solaires
WO2020069700A1 (fr) Installation de revêtement de cellules solaires
EP2812461A1 (fr) Procédé et dispositif de passivation de cellules solaires au moyen d'une couche d'oxyde d'aluminium
DE102010030696A1 (de) Modifizierung von Siliciumschichten aus Silan-haltigen Formulierungen
DE102012216416A1 (de) Verfahren zur Herstellung optimierter Solarzellen
EP1706908B1 (fr) Procede de fabrication de cellules solaires en tandem contenant des couches de silicium microcristalline
DE102009026249A1 (de) Plasma unterstütztes Abscheideverfahren, Halbleitervorrichtung und Abscheidevorrichtung
TWI790943B (zh) 化學氣相沉積系統與方法
DE60125649T2 (de) Verfahren zur Bildung dünner Schichten
DE19919742A1 (de) Verfahren zum Beschichten von Substraten aus dotiertem Silizium mit einer Antireflexschicht für Solarzellen mittels einer in einer Vakuumkammer betriebenen Zerstäubungskathode mit einem Magnetsystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07786379

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07786379

Country of ref document: EP

Kind code of ref document: A2