WO2008011985A1 - R- e- und ecr- glasfasern mit wässriger schlichte - Google Patents

R- e- und ecr- glasfasern mit wässriger schlichte Download PDF

Info

Publication number
WO2008011985A1
WO2008011985A1 PCT/EP2007/006129 EP2007006129W WO2008011985A1 WO 2008011985 A1 WO2008011985 A1 WO 2008011985A1 EP 2007006129 W EP2007006129 W EP 2007006129W WO 2008011985 A1 WO2008011985 A1 WO 2008011985A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
fiber according
weight
fibers
polyamidoamide
Prior art date
Application number
PCT/EP2007/006129
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Richter
Roman Teschner
Original Assignee
S.D.R. Biotec Verfahrenstechnick Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102006035565A priority Critical patent/DE102006035565B4/de
Priority claimed from DE102006035565A external-priority patent/DE102006035565B4/de
Application filed by S.D.R. Biotec Verfahrenstechnick Gmbh filed Critical S.D.R. Biotec Verfahrenstechnick Gmbh
Priority to EP07785988A priority patent/EP2046692A1/de
Priority to CA002657810A priority patent/CA2657810A1/en
Priority to US12/375,336 priority patent/US20090186222A1/en
Publication of WO2008011985A1 publication Critical patent/WO2008011985A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/30Polyolefins
    • C03C25/305Polyfluoroolefins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/328Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0853Vinylacetate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Definitions

  • the present invention relates to R-E and / or ECR glass fibers containing or containing a size with at least one multi-component film former, a lubricant and a coupling agent.
  • the glass fibers regardless of their chemical composition, are kink and scrub sensitive. Care must therefore be taken during the fiber-drawing process (sizing order) in order to effectively protect the glass fibers against the scouring effect of glass on glass or of glass on drawing drum and thus against the risk of mechanical damage. This is achieved by applying a size.
  • composition of the size not only affects the degree of closure, the stiffness, the hardness and / or the surface properties of the
  • Fiberglass products but also the related technological processes, e.g. the fiber drawing process, the winding (coil assembly), the drying process and in particular the further processability (weaving, cutting) of the textile glass fibers.
  • the related technological processes e.g. the fiber drawing process, the winding (coil assembly), the drying process and in particular the further processability (weaving, cutting) of the textile glass fibers.
  • the ability to be cut, the slippage of the warp and weft threads as well as the friction and damage to the glass filaments (fluff, breaks) depend on the size of the sizing composition.
  • Such sizes are known as starch-containing, so-called textile sizes, and as adhesive-containing, so-called plastic sizes.
  • the starchy sizing usually contain no adhesion promoter in contrast to the plastic sizes.
  • the aqueous sizes for textile glass fibers consist predominantly of one or several film formers, a lubricant, a wetting agent and one or more adhesion promoters (coupling agents, primers).
  • a film former provides the textile glass products with the required integrity, protects the glass substrates from rubbing against each other, and thus contributes to the affinity for the binder or plastic matrix for the strength of the final product (e.g., composite).
  • Starch derivatives, polymers and copolymers of vinyl acetate [EP-A-0027942] of acrylic esters, epoxy resin emulsions, epoxy polyester resins, polyurethane resins [EP-A-0137427], polyolefin resins or mixed emulsions of polyvinyl acetate and polystyrene [Jap. Pat. SHO-48 (1973) -28997] in a proportion of 0.1 to 12% by mass (% by weight % by weight) applied.
  • a lubricant in the aqueous sizing gives the fiberglass product (such as roving) the necessary suppleness and relieves the mutual friction of the glass fibers both during manufacture and during further processing, e.g. Weaving, down. Most lubricants affect the adhesion between glass and binder.
  • a lubricant e.g. Fats, oils, waxes or polyalkyleneamines used in an amount of 0.01 to 1.0% by mass.
  • a wetting agent as a component of an aqueous sizing sets the
  • the aqueous sizing e.g. Polyfettklareamide introduced in an amount of 0.1 to 1.5 Ma.%.
  • the hydrolyzate solution has only limited stability and tends to condense.
  • the silanols react with the reactive glass surface and form a
  • Adhesive layer with a layer thickness of about 5 nm, which extends like a protective veil over the fiber surface.
  • the protective veil as an oligomer is initially soluble, condenses later to cross-linked structures and is ultimately as a siloxane
  • the adhesive-containing sizes may contain, in addition to a primer, other additives, e.g. Antistatics and / or emulsifiers, which should be achieved by the special effects include.
  • the physicochemical properties of the glass fiber products are not only from the sizing, but also from the
  • the chemical glass composition affects the mechanical properties and the adhesion properties of the glass fibers.
  • the glass fibers regardless of their oxidic composition, subject
  • the textile glass products e.g. Rovings, often made of the more water-resistant R- or ECR-glass (aluminum-lime silicate glass).
  • the corrosion resistance of glass fibers is particularly important in their use as a structurally active component in fiber concrete.
  • the alkali and long-term stability (measured in the so-called SIC test) is of crucial importance.
  • the glass fibers are also used for shrinkage crack reduction in cement screed. These screed fibers serve to prevent Appelschwindrissen in the "fresh” and boys "cement screed until its hardening. For the screed area in Germany no construction supervisory approval or other such approval is required.
  • the glass fibers used may be the Frisch230. Do not interfere with solid concrete properties.
  • the fibers must have the required flowability when incorporated into a cement screed so that they can be evenly distributed. For this purpose, C and E glass fibers coated with an alkali-resistant size and the expensive R and ECR glass fibers are used.
  • the object of the present invention is to show R-, E- and ECR-glass fibers of high chemical resistance, which contains a suitable size, which significantly improves the treatment of the aforementioned glass fibers and their physicochemical properties.
  • the chemically resistant sizing of the present invention is expected to impart very good processing properties to the web roving, such as integrity, cuttability, lubricity, and slip resistance.
  • the size should have a very good alkali resistance. The flowability of the glass fibers for the screed area and concrete reinforcement must be ensured.
  • the fiber according to the invention comprises a size for the production of roving fibers:
  • the R, E and ECR glass fibers with the size according to the invention has the success that the susceptibility to corrosion, in particular the alkaline attack is drastically reduced.
  • the glass fiber corrosion processes and all associated disadvantages for the physico-chemical stability of the glass fibers, especially in the alkaline environment of a cement screed or concrete, are therefore avoided. It has surprisingly been found that the size according to the invention ensures excellent lubricity and at the same time sliding resistance of the warp and weft threads in the weaving process.
  • the aqueous size according to the invention requires only film formers, only a lubricant and only a coupling agent as its constituents. It has also surprisingly been found that the use of other known sizing components, e.g. Wetting agents, antistatic agents, emulsifiers, stabilizers and the like ⁇ ., Is superfluous. This contributes to the simplification and rational operation in the preparation of the size according to the invention. In the context of industrial mass production, such simplification regularly results in significant cost advantages.
  • the multicomponent film former consists of a polyvinyl acetate-ethylene dispersion, of a polyamidoamide and / or of one of a polyvinyl alcohol-polyether.
  • the size according to the invention contains a polypropylene, a polyethylene polytetrafluoroethylene or a polytetrafluoroethylene wax as a lubricant and a silane coupling agent, which acts as a silanol after hydrolysis.
  • the inventive aqueous size with these components excellent bundling ability, which facilitates in particular the production of roving fibers.
  • Numerous studies and tests have confirmed that the dried and cut roving fibers produced according to the invention are characterized by excellent flowability. There was also no negative influence on the concrete and screed concrete properties.
  • the roving samples exposed in hot water (at about 80 ° C) for 96 hours showed no significant changes in the glass fiber surface with respect to corrosion effects.
  • the so-called SIC strength determined for the fibers for concrete and screed reinforcement was about 550 MPa.
  • the size of the invention ensures excellent kink or scuff protection and gives the roving a good suppleness.
  • silane coupling agent is introduced into the sizing either as ⁇ -aminopropyltriethoxysilane or as ⁇ -methacryloxypropyltrimethoxysilane. These coupling agents are well known as primers.
  • acetic acid is added to the aqueous sizing.
  • the size it has proved to be particularly advantageous for the size to be converted to a solids concentration of about 2.0 to 3.0% by weight of the multicomponent film former; contains about 0.1 to 0.2 wt.% Of the lubricant and about 0.4 to 0.6 wt.% Of the adhesive.
  • these component amounts and with this quantitative ratio all the above-mentioned positive properties of the size according to the invention and fibers produced therewith are particularly pronounced. Above all, hardly any corrosion could be observed on the roving fibers made of R and ECR glass used for concrete reinforcement, so that their original physicochemical properties remained almost unchanged.
  • the web roving made with the size according to the invention has Surprisingly, very good integrity as well as excellent smoothness and Verschneidijn of the total thread.
  • the process for treating the fibers with the size according to the invention is carried out by applying them to the glass fiber surface, removing the excess
  • the glass fibers (strands) can be cut.
  • inventive aqueous sizing is carried out by means of a conventional spray nozzle or a galette (applicator).
  • the excess size is removed and the sized fibers are dried in a thermal treatment.
  • Temperature range of 110 ° C to 170 ° C is performed. This drying takes place in a high-frequency dryer, in an electrically heated, conventional chamber dryer or in a microwave dryer.
  • the sizing content based on the fibers is particularly preferably about 0.4 to 1.0% by weight. This sizing content is suitable to ensure a very good corrosion, kink and abrasion protection of the glass fibers. This also ensures that excellent bundling properties of the drawn glass fibers (filaments) and excellent flowability of the dried and cut roving fibers are guaranteed.
  • the duration of hydrolysis is about 20 minutes.
  • polyolefin wax 35%) (8) - 0.3% by mass 6.
  • the duration of hydrolysis is about 20 minutes. 3. Addition of hydrolyzate solution A 1100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Lubricants (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Die Erfindung betrifft R- E- und/oder ECR- Glasfasern, die eine Schlichte mit zumindest einem Mehrkomponenten-Filmbildner, einem Gleitmittel und einem Haftvermittler enthält.

Description

BESCHREIBUNG
R- E- und ECR- Glasfasern mit wässriger Schlichte
Die vorliegende Erfindung betrifft R- E- und/oder ECR- Glasfasern, die eine Schlichte mit zumindest einem Mehrkomponenten-Filmbildner, einem Gleitmittel und einem Haftvermittler enthält oder enthalten.
Die Glasfasern, unabhängig von ihrer chemischen Zusammensetzung, sind knick- und scheuerempfindlich. Schon während des Faserziehprozesses muss deswegen Vorsorge getroffen werden (Schlichteauftrag), um die Glasfasern gegen die Scheuerwirkung von Glas auf Glas bzw. von Glas auf Ziehtrommel und somit vor der Gefahr einer mechanischen Beschädigung wirksam zu schützen. Dies wird durch das Auftragen einer Schlichte erreicht.
Die Zusammensetzung der Schlichte beeinflusst nicht nur den Geschlossenheitsgrad, die Steifigkeit, die Härte und/oder die Oberflächenbeschaffenheiten der
Glasfaserprodukte sondern auch die diesbezüglichen technologischen Prozesse, wie z.B. den Faserziehprozess, das Wickeln (Spulenaufbau), den Trocknungsprozess und insbesondere die Weiterverarbeitbarkeit (Weben, Schneiden) der Textilglasfasern.
Im Webprozess ist die Verschneidbarkeit, die Schiebefestigkeit der Kett- und Schussfäden als auch die Reibung und Schädigung der Glasfilamente (Faserflug, Abrisse) von der Schlichtenzusammensetzung abhängig.
Derartige Schlichten sind als stärkehaltige, so genannte Textilschlichten, und als haft- mittelhaltige, so genannte Kunststoffschlichten bekannt.
Die stärkehaltigen Schlichten enthalten im Gegensatz zu den Kunststoffschlichten meistens keinen Haftvermittler.
Die wässrigen Schlichten für Textilglasfasern bestehen vorwiegend aus einem oder mehreren Filmbildner, einem Gleitmittel, einem Netzmittel und einem oder mehreren Haftvermittlern (Kupplungsmitteln, Primer).
Ein Filmbildner verleiht den Textilglasprodukten die erforderliche Integrität, schützt die Glasfϊlamente vor gegenseitiger Reibung und trägt zur Affinität zum Bindemittel bzw. Kunststoffmatrix damit zur Festigkeit des Endproduktes (z.B. Verbundwerkstoff) bei. Als Filmbildner werden Stärkederivate, Polymere und Copolymere von Vinylacetat [EP-A-0027942] von Acrylestern, Epoxidharzemulsionen, Epoxypolyesterharze, Polyurethanharze [EP-A-0137427], Polyolefinharze bzw. Mischemulsionen von Polyvinylacetat und Polystyrol [Jap. Pat. SHO-48(1973)-28997] in einem Anteil von 0,1 bis 12 Massenprozent (Ma.- % = Gew.- %) angewendet.
Ein Gleitmittel in den wässrigen Schlichten verleiht dem Glasfaserprodukt (wie z.B. Roving) die notwendige Geschmeidigkeit und setzt die gegenseitige Reibung der Glasfasern sowohl während der Herstellung als auch während der Weiterverarbeitung, z.B. Weben, herab. Die meisten Gleitmittel beeinträchtigen die Haftung zwischen Glas und Bindemittel. Als Gleitmittel werden z.B. Fette, Öle, Wachse oder Polyalkylenamine in einer Menge von 0,01 bis 1,0 Ma.- % eingesetzt.
Ein Netzmittel als Komponente einer wässrigen Schlichte setzt die
Oberflächenspannung vom Wasser herab und verbessert damit die Benetzung der Filamente mit der Schlichte. Als Netzmittel werden in die wässrige Schlichte z.B. Polyfettsäureamide in einer Menge von 0,1 bis 1,5 Ma.- % eingeführt.
Die meisten Harze (Polymere) weisen keine Affinität zum Glas auf. Durch Haftmittel (Primer) wird zwischen Glas und Harz eine „Brücke" geschaffen, die eine vollständige Kraftübertragung im Verbund ermöglicht. Die Haftvermittler erhöhen die Adhäsion von Polymeren an der Glasoberfläche. Als Haftmittel dienen meistens organofunktionelle Silane, wie z.B. γ-Aminopropyltiethoxysilan, γ-Methacryloxypropyltimethoxysilan oder γ-Glycidyloxypropyltrimethoxysilan, deren Menge in der Schlichte von 0,2 bis 1,0 Ma.- % beträgt. Bevor die Silane der wässrigen Schlichte zugesetzt werden, werden diese meistens zu
Silanolen hydrolysiert.
Die Hydrolysatlösung ist nur begrenzt stabil und neigt zur Kondensation. Die Silanole reagieren mit der reaktiven Glasoberfläche und bilden eine
Haftmittelschicht mit einer Schichtdicke von ca. 5 nm, die sich wie ein Schutzschleier über die Faseroberfläche zieht. Der Schutzschleier als Oligomer ist anfangs noch löslich, kondensiert später zu vernetzten Strukturen und liegt am Ende als ein Siloxan
≡ Si - O - Si ≡ vor.
Die haftmittelhaltigen Schlichten können außer einem Primer noch andere Zusätze, wie z.B. Antistatika und/oder Emulgatoren, durch die spezielle Wirkungen erreicht werden sollen, enthalten.
Diese weiteren Hilfskomponenten sind aus dem Stand der Technik bekannt und beispielsweise in K. L. Löwenstein - The Manufacturing Technology of Continuous
Glass Fibres, Elsevier Scientific Publishing Corp. Amsterdam - Oxford New York,
1983 beschrieben.
Die physikalisch-chemische Eigenschaften der Glasfaserprodukte, wie z.B. Glasstapelfasern, sind nicht nur von der Schlichte, sondern auch von der
Glaszusammensetzung abhängig. Die chemische Glaszusammensetzung wirkt sich auf die mechanischen Eigenschaften und auf die Adhäsionseigenschaften der Glasfasern aus.
Die Glasfasern, unabhängig von ihrer oxidischen Zusammensetzung, unterliegen
Korrosionsprozessen, die ihre physikalisch-chemische Eigenschaften sowie die Haftung an der Grenze zwischen der Glasfaser und dem Bindemittel stark beeinträchtigen. Kommen die Glasfasern mit Wasser in Berührung, beginnt ein Korrosionsprozess, der grundsätzlich mit folgenden chemischen Reaktionen beschrieben werden kann:
≡Si - O - Na + H2O → ≡Si - O - H + Na+ + OH- ≡Si - 0 \ Ca + 2H2O → 2 ≡Si - O - H + Ca(OH)2
/ ≡Si - 0
Die dabei frei werdende Lauge, wie z.B. NaOH und Ca(OH)2, greift das Kieselsäuregerüst der Glasfasern an, wobei folgender chemischer Prozess der Netzwerkauflösung abläuft, der mit nachfolgender Formel beschrieben werden kann:
≡Si - O - Si≡ + OH' → =Si - O" + ≡Si - OH
Die dabei entstandenen Reaktionsprodukte führen zu einer Beschädigung der Oberfläche der Glasfasern und beeinträchtigen damit insbesondere die Faserfestigkeit und die Haftung an der Glasoberfläche. Daher werden die Textilglasprodukte, wie z.B. Rovings, oft aus dem wasserbeständigerem R- bzw. ECR- Glas (Aluminium-Kalksilikatglas) hergestellt.
Die Korrosionsbeständigkeit der Glasfasern ist besonders wichtig bei ihrem Einsatz als statisch wirksame Komponente im Faserbeton. Dabei ist die Alkali- und Langzeitbeständigkeit (im so genannten SIC-Test gemessen) von entscheidender Bedeutung.
Für statisch wirksame Fasern als Betonzusatz, beispielsweise nach DIN 1045, die zumindest in Deutschland einer bauaufsichtlichen Zulassung bedürfen, wird eine SIC- Festigkeit von 500 MPa gefordert. Für diese Anwendung werden meistens alkalibeständige Glasfasern aus dem ECR- Glas (E-Glass: Corrosion Resistance) oder aus einem R-Glas (Resistance Glass) eingesetzt.
Die Glasfasern werden auch zur Schwindrissreduzierung im Zementestrich eingesetzt. Diese Estrichfasern dienen der Vermeidung von Frühschwindrissen im „frischen" und Jungen" Zementestrich bis zu seiner Erhärtung. Für den Estrichbereich ist in Deutschland keine bauaufsichtliche Zulassung oder andere derartige Zustimmung erforderlich. Dabei dürfen die eingesetzten Glasfasern die Frischbzw. Festbetoneigenschaften nicht beeinträchtigen. Außerdem müssen die Fasern bei der Einarbeitung in einen Zementestrich die erforderliche Rieselfähigkeit aufweisen, damit sie gleichmäßig verteilt werden können. Für diese Zwecke kommen C-und E- Glasfasern, die mit einer laugenbeständigen Schlichte beschichtet wurden als auch die teueren R- und ECR- Glasfasern zum Einsatz.
Aufgabe der vorliegenden Erfindung ist es, R-, E- und ECR- Glasfasern einer hohen chemischen Beständigkeit aufzuzeigen, die eine geeignete Schlichte enthält, die die Behandlung von den vorgenannten Glasfasern und deren physikalisch-chemische Eigenschaften deutlich verbessert. Die erfindungsgemäße, chemischbeständige Schlichte soll außerdem dem Web-Roving sehr gute Verarbeitungseigenschaften, wie insbesondere Integrität, Verschneidbarkeit, Gleitfähigkeit und Schiebefestigkeit, verleihen. Für den Einsatz als geschnittene, statisch wirksame Glasfasern im Faserbeton bzw. als Schwindriss reduzierende Komponente im Zementestrich soll die Schlichte eine sehr gute Laugenbeständigkeit aufweisen. Dabei muss die Rieselfähigkeit der Glasfasern für den Estrichbereich und für Betonverstärkung gewährleistet sein.
Diese Aufgabe der Erfindung wird durch R-, E- und ECR- Glasfasern gemäß den Merkmalen des Anspruchs 1 gelöst.
Erfindungswesentlich ist, dass die erfindungsgemäße Faser eine Schlichte zur Herstellung von Rovingfasern besteht aus:
a) 2,0 - 4,0 Gew. % Polyvinylacetat-Ethylencopolymer b) 0,3 - 0,7 Gew. % Polyamidoamid c) 0,1 - 0,3 Gew. % Polyvinylalkohol-Polyether-Mischung d) 0,1 - 0,3 Gew. % Polypropylen- oder Polyethylen-Polytrafluorethylenwachs e) 0,4 - 0,7 Gew. % Haftvermittler und f) Wasser (als Rest auf 100 Gew. %) enthält.
Die R-, E-und ECR- Glasfasern mit der erfindungsgemäßen Schlichte hat den Erfolg, dass die Korrosionsanfälligkeit, insbesondere der alkalische Angriff drastisch reduziert wird. Die Glasfaserkorrosionsprozesse und alle damit einhergehenden Nachteile für die physikalisch-chemische Stabilität der Glasfasern, insbesondere in der alkalischen Umgebung eines Zementestrichs bzw. Betons, werden daher vermieden. Es hat sich überraschenderweise herausgestellt, dass die erfindungsgemäße Schlichte eine hervorragende Gleitfähigkeit und zugleich Schiebefestigkeit der Kett- und Schussfäden im Webprozess gewährleistet.
Des Weiteren ist festzustellen, dass die erfindungsgemäße wässrige Schlichte nur mit Filmbildnern, nur mit einem Gleitmittel und nur mit einem Haftvermittler als deren Bestandteile auskommt. Es hat sich außerdem überraschenderweise gezeigt, dass der Einsatz von anderen bekannten Schlichtenkomponenten, wie z.B. Netzmittel, Antistatika, Emulgatoren, Stabilisatoren u. ä., überflüssig ist. Dies trägt zur Vereinfachung und rationellen Arbeitsweise bei der Herstellung der erfindungsgemäßen Schlichte bei. Im Rahmen der industriellen Massenproduktion bewirkt eine solche Vereinfachung regelmäßig signifikante Kostenvorteile.
Die Unteransprüche geben weiter Merkmale der Lösung an; ohne diese abschließend zu benennen.
Die Erfindung sieht bevorzugt weiter vor, dass der Mehrkomponenten-Filmbildner aus einer Polyvinylacetatethylen-Dispersion, aus einem Polyamidoamid und/oder aus einem aus einem Polyvinylalkohol-Polyether besteht. Außerdem enthält die erfindungsgemäße Schlichte ein Polypropylen-, ein Polyethylen-Polytetrafluorethylen- oder ein Polytetra- fluorethylenwachs als Gleitmittel und einen Silan-Haftvermittler, der nach Hydrolyse als Silanol wirkt.
Neben der oben bereits erwähnten Reduzierung der Korrosionsanfälligkeit der Glasfasern weist die erfindungsgemäße, wässrige Schlichte mit diesen Bestandteilen ausgezeichnete Fähigkeit zum Bündeln auf, was besonders die Produktion von Rovingfasern erleichtert. In zahlreichen Untersuchungen und Tests wurde bestätigt, dass die erfindungsgemäß hergestellten, getrockneten und geschnittenen Rovingfasern eine hervorragende Rieselfähigkeit kennzeichnet. Es wurde auch keine negative Beeinflussung der Beton- und der Estrichbetoneigenschaften festgestellt. Die im Heißwasser (bei ca. 80° C) über 96 Stunden exponierten Roving- Proben zeigten keine signifikanten Veränderungen der Glasfaseroberfläche bezüglich Korrosionseffekten. Die für die Fasern für Beton- und Estrichverstärkung ermittelte so genannte SIC- Festigkeit betrug ca. 550 MPa. Außer der gravierenden Verbesserung der Korrosionsbeständigkeit, insbesondere der Alkalibeständigkeit, gewährleistet die erfindungsgemäße Schlichte einen hervorragenden Knick- bzw. Scheuerschutz und verleiht den Rovingfasern eine gute Geschmeidigkeit.
Es hat sich als besonders vorteilhaft erwiesen, dass der Silan- Haftvermittler entweder als γ-Aminopropyltriethoxysilan oder als γ-Methacryloxypropyltrimethoxysilan in die Schlichte eingeführt wird. Diese Kupplungsmittel sind als Primer allgemein bekannt.
Zum Einstellen des pH- Wertes wird der wässrigen Schlichte Essigsäure zugesetzt.
Es hat sich als besonders vorteilhaft erwiesen, dass die Schlichte auf Festkörperkonzentration umgerechnet ca. 2,0 bis 3,0 Gew. % des Mehrkomponenten- Filmbildners; ca. 0,1 bis 0,2 Gew. % des Gleitmittels und ca. 0,4 bis 0,6 Gew. % des Haftmittels enthält. Bei diesen Komponentenmengen und bei diesem Mengenverhältnis sind alle oben erwähnten positiven Eigenschaften der erfindungsgemäßen Schlichte und damit hergestellten Fasern besonders gut ausgeprägt. Vor allem konnte an den Rovingfasern aus R- und ECR- Glas einsetzbar für Betonverstärkung kaum Korrosion beobachtet werden, so dass ihre ursprünglichen physikalisch-chemischen Eigenschaften fast unverändert blieben.
Auch der mit der erfindungsgemäßen Schlichte hergestellter Web-Roving weist überraschenderweise sehr gute Integrität als auch hervorragende Glätte und Verschneidbarkeit des Gesamtfadens auf.
Das Verfahren zur Behandlung der Fasern mit der erfindungsgemäßen Schlichte erfolgt durch deren Auftragen auf die Glasfaseroberfläche, Entfernung der überschüssigen
Schlichte und thermische Behandlung der beschichteten Glasfasern. Anschließend können die Glasfasern (Stränge) geschnitten werden.
Die Auftragung der erfϊndungsgemäßen wässrigen Schlichte erfolgt mittels einer üblichen Sprühdüse bzw. einer Galette (Applikator). Die überschüssige Schlichte wird entfernt und die beschlichteten Fasern im Rahmen einer thermischen Behandlung getrocknet.
Dabei hat es sich als besonders vorteilhaft erwiesen, dass die thermische Behandlung im
Temperaturbereich von 110° C bis 170° C durchgeführt wird. Diese Trocknung erfolgt in einem Hochfrequenztrockner, in einem elektrisch beheizten, konventionellen Kammertrockner bzw. in einem Mikrowellentrockner.
Das eventuelle Schneiden des getrockneten Rovings erfolgt mittels eines Direct-
Chopers.
Es hat sich gezeigt, dass der Schlichtengehalt bezogen auf die Fasern besonders bevorzugt ca. 0,4 bis 1,0 Gew.- % beträgt. Dieser Schlichtengehalt ist geeignet, um einen sehr guten Korrosions-, Knick- und Scheuerschutz der Glasfasern zu gewährleisten. Damit ist außerdem ermöglicht, dass auch hervorragende Bündelungseigenschaften der gezogenen Glasfasern (Filamente) und eine ausgezeichnete Rieselfähigkeit der getrockneten und geschnittenen Rovingfasern garantiert sind.
Die vorliegende Erfindung soll anhand der nachfolgenden Beispiele näher erläutert wer- Den; ohne diese damit zu beschränken. Die Herkunft bzw. ein jeweiliger Hersteller (Referenzen) der verwendeten Komponenten ist jeweils in Klammern angegeben. Beispiel 1 : Herstellung einer erfindungsgemäßen wässrigen Schlichte
Schlichte PFl (Festkörperkonzentration Fk = 2,7 Ma.- %) 1. CH3COOH (60%) (1) - 0,2 Ma.- %
2. Polyvinylacetat-Ethylen-Dispersion (55%) (2) - 3,0 Ma.- %
3. Polyamidoamid (12,5%) (3) - 1,6 Ma.- %
4. Polyvinylalkohol-Polyether (20%) (2) - 1,0 Ma.- %
5. Polypropylenwachs (30%) (5) - 0,5 Ma.- % 6. γ-Methacryloxypropyltrimethoxysilan (6) - 0,5 Ma.- % und
7. Wasser - 93,2 Ma.- %
100 kg Schlichte enthält ca.:
L CH3COOH (60%) - 0,2 kg 2. Polyvinylacetat-Ethylen-Dispersion (55%) - 3,0 kg
3. Polyamidoamid (12,5%) - 1 ,6 kg
4. Polyvinylalkohol-Polyether (20%) - 1,0 kg
5. Polypropylenwachs (30%) - 0,5 kg
6. γ-Methacryloxypropyltrimethoxysilan - 0,5 kg und 7. Wasser - 93,2 kg
Ansatzvorschriften:
1. 60 kg Wasser + 180 g CH3COOH (60%) werden vorgelegt.
2. 0,5 kg γ-Methacryloxypropyltrimethoxysilan (A 174) + 2O g CH3COOH (60%) werden mit 3,5 kg heißem entionisierten Wasser hydrolysiert.
Die Hydrolysedauer beträgt ca. 20 min.
3. Zugabe der Hydrolysatlösung A 174.
4. 3,0 kg Polyvinylacetat-Ethylen-Dispersion (Mowilith DM105-55%) aufgerührt mit 10 kg Wasser wird der Lösung zugegeben. 5. 1 ,0 kg Polyvinylalkohol-Polyether (Arkofil CS20-20%) wird dem Ansatz zugesetzt. 6. 1 ,6 kg Polyamidoamid (Albonamid) wird der Mischung zugesetzt. 7. 0,5 kg Polypropylenemulsion (30%) wird dem Ansatz zugegeben.
8. Zugabe der restlichen Wassermenge (19,7 kg) + ca. Ig Entschäumer [Surfynol 440 (7)].
9. Rühren der Schlichte und pH- Wertbestimmung.
Beispiel 2:
Schlichte PF2 (Festkörperkonzentration Fk = 2,81 Ma.- %)
1. CH3COOH (60%) - 0,25 Ma.- %
2. Polyvinylacetat-Ethylen-Dispersion (55%) - 3,4 Ma.- %
3. Polyamidoamid (12,5%) - 1,4 Ma.- %
4. Polyvinylalkohol-Polyether(2) (20%) - 0,8 Ma.- %
5. Polyolefinwachs (35%) (8) - 0,3 Ma.- % 6. γ-Aminopropyltriethoxysilan (9) - 0,5 Ma.- % und
7. Wasser - 93,35 Ma.- %
100 kg Schlichte enthält ca.:
1. CH3COOH (60%) - 0,25 kg 2. Polyvinylacetat-Dispersion (60%) - 3,4 kg
3. Polyamidoamid (12,5%) - 1,4 kg
4. Polyvinylalkohol-Polyether (20%) - 0,8 kg
5. Polyolefinwachs (35%) - 0,3 kg
6. γ-Aminopropyltriethoxysilan - 0,5 kg und 7. Wasser - 93,15 kg
Ansatzvorschriften :
1. 55 kg Wasser + 240 g CH3COOH (60%) werden vorgelegt.
2. 0,5 kg γ-Aminopropyltriethoxysilan (A 1100) wird mit 4,0 kg entionisiertem Kaltwasser + 10 g CH3COOH (60%) hydrolysiert.
Die Hydrolysedauer beträgt ca. 20 min. 3. Zugabe der Hydrolysatlösung A 1100.
4. 3,4 kg Polyvinylacetat-Ethylen-Dispersion (Mowilith DMl 05-55%) aufgerührt mit 10 kg Wasser wird dem Ansatz zugegeben.
5. 0,8 kg Polyvinylalkohol-Polyether (Arkofil CS20-20%) wird dem Ansatz zugesetzt. 6. 1 ,4 kg Polyamidoamid (Albonamid) wird dem Ansatz zugesetzt.
7. 0,3 kg Polyolefinwachsemulsion (Michem 42035 -35%) wird dem Ansatz zugegeben.
8. Zugabe der restlichen Wassermenge (24,35 kg) + ca. Ig Entschäumers [Surfynol 440 (7)]. 10. Rühren der Schlichte und pH- Wertbestimmung.
Beispiel 3: Herstellung einer erfindungsgemäßen wässrigen Schlichte
Schlichte PF3 (Festkörperkonzentration Fk = 2,84 Ma.- %) 1. CH3COOH (60%) (1) - 0,2 Ma.- %
2. Polyvinylacetat-Ethylen-Dispersion (55%) (2) - 2,8 Ma.- %
3. Polyamidoamid (12,5%) (3) - 2,0 Ma.- %
4. Polyvinylalkohol-Polyether(2) (20%) - 2,0 Ma.- %
5. Polytetrafluorethylenwachs (30%) (9) - 0,5 Ma.- % 6. γ-Methacryloxypropyltrimethoxysilan ^ - 0,5 Ma.- % und
7. Wasser - 92,0 Ma.- %
100 kg Schlichte enthält ca.:
1. CH3COOH (60%) - 0,25 kg 2. Polyvinylacetat-Ethylen-Dispersion (55%) - 2,8 kg
3. Polyamidoamid (12,5%) - 2,0 kg
4. Polyvinylalkohol-Polyether-Mischung (20%) - 2,0 kg
5. Polytetrafluorethylenwachs (30%) - 0,5 kg
6. γ-Methacryloxypropyltrimethoxysilan - 0,5 kg und 7. Wasser - 92,0 kg Ansatzvorschriften:
1. 55 kg Wasser + 180 g CH3COOH (60%) werden vorgelegt.
2. 0,5 kg γ-Methacryloxypropyltrimethoxysilan (A 174) + 2O g CH3COOH (60%) wird mit 3,5 kg heißem entionisierten Wasser hydrolysiert. Die Hydrolysedauer beträgt ca. 20 min.
3. Zugabe der Hydrolysatlösung A 174.
4. 2,8 kg Polyvinylacetat-Ethylen-Dispersion (Mowilith DMl 05-55%) aufgerührt mit 10 kg Wasser wird dem Ansatz zugegeben.
5. 2,0 kg Polyvinylalkohol-Polyether (Arkofil CS20-20%) wird dem Ansatz zugesetzt.
6. 2,0 kg Polyamidoamid (Albonamid) wird dem Ansatz zugesetzt.
7 0,5 kg PTFE-Wachsemulsion (Lanco Glidd 9530-30%) wird dem Ansatz zugegeben.
8. Zugabe der restlichen Wassermenge (23,50 kg) + ca. Ig Entschäumers [Surfynol 440 {7)].
9. Rühren der Schlichte und pH- Wertbestimmung.
Referenzen:
(1) Brenntag-Chemiepartner (5) Lubrizol-Coating Additives
(2) Clariant (6, 9) Crompton Specialty
(3) Albon-Chemie (7) Wilhelm E.H. Biesterfeld
(4) Interorgana (8) Michelman
(9) Georg M. Langer & Co.

Claims

PATENTANSPRÜCHE
1. R- E- und/oder ECR- Glasfasern, die eine Schlichte mit zumindest einem Mehrkomponenten-Filmbildner, einem Gleitmittel und einem Haftvermittler enthält, dadurch gekennzeichnet, dass die Schlichte zur Herstellung von Rovingfasern besteht aus:
a) 2,0 — 4,0 Gew.% Polyvinylacetat-Ethylencopolymer b) 0,3 - 0,7 Gew.% Polyamidoamid c) 0,1 - 0,3 Gew.% Polyvinylalkohol-Polyether-Mischung d) 0,1 - 0,3 Gew.% Polypropylen- oder Polyethylen-Polytrafluorethylenwachs e) 0,4 - 0,7 Gew.% Haftvermittler und f) Wasser als Rest auf 100 Gew. %.
2. Faser nach Anspruch 1, dadurch gekennzeichnet, dass der Mehrkomponenten- Filmbildner aus einer Polyvinylacetat-Dispersion, einem Polyamidoamid und/oder einem Polyvinylalkohol-Polyether besteht.
3. Faser nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Mehrkomponenten-Filmbildner
70 - 85 Gew. % Polyvinylacetat, 7 - 20 Gew. % Polyvinylalkohol-Polyether und
7 - 12 Gew. % Polyamidoamid enthält.
4. Faser nach Anspruch 1, dadurch gekennzeichnet, dass das Gleitmittel ein Polyolefinwachs ist.
5. Faser nach Anspruch 4, dadurch gekennzeichnet, dass das Polyolefinwachs ein Polypropylen-, ein Polyethylen-Polytrafluorethylenwachs oder ein
Polytrafluorethylenwachs enthält.
6. Faser nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Haftmittel ein Silan-Haftvermittler ist.
7. Faser nach Anspruch 6, dadurch gekennzeichnet, dass der Silan-Haftvermittler entweder ein γ-Methacryloxypropyltrimethoxysilan oder ein γ-Aminopropyltri- ethoxysilan, die zu Silanolen hydrolysiert werden, ist.
8. Faser nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass sie bezogen auf Festkörperkonzentration 2,0 bis 3,0 Gew. % des Mehrkomponenten- Filmbildners, 0,1 bis 0,15 Gew. % des Gleitmittels und 0,4 bis 0,6 Gew. % des Haftmittels enthält.
9. Faser nach Anspruch 1, dadurch gekennzeichnet, dass der Schlichtengehalt bezogen auf die Glasfaser 0,5 bis 1,5 Gew. % beträgt.
10. Verwendung einer Faser gemäß einem der Ansprüche 1 bis 9 für Textilglasprodukte, insbesondere Rovings, die zumindest eine Faser gemäß den Ansprüchen 1 bis 9 enthält oder enthalten.
11. Verwendung einer Faser gemäß einem der Ansprüche 1 bis 9 für Zementestrich oder Betonzusatz mit statisch wirksamen Fasern, der zumindest eine Faser gemäß den Ansprüchen 1 bis 9 enthält oder enthalten.
PCT/EP2007/006129 2006-07-27 2007-07-11 R- e- und ecr- glasfasern mit wässriger schlichte WO2008011985A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102006035565A DE102006035565B4 (de) 2006-07-27 2006-07-27 Wässrige Schlichte zur Behandlung von R-,E- und ECR-Glasfasern und deren Verwendung
EP07785988A EP2046692A1 (de) 2006-07-27 2007-07-11 R- e- und ecr- glasfasern mit wässrigter schlichte
CA002657810A CA2657810A1 (en) 2006-07-27 2007-07-11 R-glass, e-glass, and ecr-glass fibers with aqueous size
US12/375,336 US20090186222A1 (en) 2006-07-27 2007-07-11 Glass fiber formed as an r-glass fiber, an e-glass fiber, and/or an ecr-glass fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035565.2 2006-07-27
DE102006035565A DE102006035565B4 (de) 2006-07-27 2006-07-27 Wässrige Schlichte zur Behandlung von R-,E- und ECR-Glasfasern und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2008011985A1 true WO2008011985A1 (de) 2008-01-31

Family

ID=38562938

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2007/006130 WO2008011986A1 (de) 2006-07-27 2007-07-11 Wässrige schlichte zur behandlung von r- e- und ecr- glasfasern
PCT/EP2007/006129 WO2008011985A1 (de) 2006-07-27 2007-07-11 R- e- und ecr- glasfasern mit wässriger schlichte

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/006130 WO2008011986A1 (de) 2006-07-27 2007-07-11 Wässrige schlichte zur behandlung von r- e- und ecr- glasfasern

Country Status (6)

Country Link
US (2) US20090305864A1 (de)
EP (2) EP2046693A1 (de)
CA (2) CA2657810A1 (de)
DE (1) DE102006062733B4 (de)
RU (2) RU2413687C2 (de)
WO (2) WO2008011986A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007036774B4 (de) * 2007-08-03 2012-08-16 S.D.R. Biotec Verwaltungs GmbH Thermischbeständige Glasfasern, Verfahren zu deren Beschlichtung und Verwendung
BRPI0802008A8 (pt) * 2008-05-09 2017-12-26 O Nascimento Engenharia E Consultoria Ltda Processo de fabricação de compósitos de fibrocimento utilizando materiais cimentícios reforçados com fibras inorgânicas quimicamente modificadas por organosilanos
US7803723B2 (en) 2008-12-16 2010-09-28 Saint-Gobain Technical Fabrics America, Inc. Polyolefin coated fabric reinforcement and cementitious boards reinforced with same
EP2559673B1 (de) * 2011-08-19 2018-10-03 Johns Manville Schlichtungszusammensetzung für Fasern und geschlichtete Fasern
CN105731829B (zh) * 2016-02-23 2019-03-08 内江华原电子材料有限公司 涂覆于玻璃纤维表面的浸润剂及其制备方法
MX2020002280A (es) 2018-03-28 2020-10-07 Senko Advanced Components Inc Conector de fibra óptica de diseño compacto con un capuchón de múltiples usos.
CN109824305A (zh) * 2019-03-22 2019-05-31 石家庄铁道大学 一种纤维增强高延性混凝土材料界面优化方法
MX2022003445A (es) 2019-09-27 2022-07-12 Owens Corning Intellectual Capital Llc Proceso para secar paquetes formadores de fibras de vidrio mojados.
CN111155329A (zh) * 2020-01-07 2020-05-15 四川天泉电子材料有限公司 一种pva涂覆电子级玻璃纤维布及其生产方法
CN116162318A (zh) * 2023-03-29 2023-05-26 东南大学 一种聚乙烯醇/改性玻璃纤维复合材料及其制法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2077311A (en) * 1980-06-04 1981-12-16 Ppg Industries Inc Sizing composition and sized glass fibres and process
US4347278A (en) * 1977-03-02 1982-08-31 Owens-Corning Fiberglas Corporation Polytetrafluoroethylene fluorocarbon resin dispersion-containing coating composition for glass fibers, glass fibers, and glass fiber fabric coated therewith
DE19818046A1 (de) * 1998-04-22 1999-10-28 Schuller Gmbh Schlichte, Vorgarn und Roving sowie daraus hergestellte Verbundwerkstoffe
FR2864072A1 (fr) * 2003-12-17 2005-06-24 Saint Gobain Vetrotex Fils de verre ensimes destines au renforcement de matieres polymeres, notamment par moulage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289536A (en) * 1978-10-25 1981-09-15 Owens-Corning Fiberglas Corporation Glass fiber reinforced cements and process for manufacture of same
US4810576A (en) * 1985-09-30 1989-03-07 Ppg Industries, Inc. Treated glass fibers and aqueous dispersion and nonwoven mat of the glass fibers
US5961783A (en) * 1997-06-06 1999-10-05 Vinings Industries, Inc. Process for enhancing the strength and sizing properties of cellulosic fiber using a self-emulsifiable isocyanate and a coupling agent
DE10039750C1 (de) * 2000-08-16 2002-05-08 Bayer Ag Schlichtezusammensetzung für Glasfasern sowie deren Verwendung
DE10207427A1 (de) * 2002-02-21 2003-09-04 Basf Ag Schnelllöslicher Filmüberzug basierend auf Polyvinylalkohol-Polyether-Pfropfcopolymeren in Kombination mit Hydroxy-, Amid-, oder Esterfunktionen enthaltenden Komponenten
US7892641B2 (en) * 2004-05-17 2011-02-22 Ppg Industries Ohio, Inc. Sizing compositions for glass fibers and sized fiber glass products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347278A (en) * 1977-03-02 1982-08-31 Owens-Corning Fiberglas Corporation Polytetrafluoroethylene fluorocarbon resin dispersion-containing coating composition for glass fibers, glass fibers, and glass fiber fabric coated therewith
GB2077311A (en) * 1980-06-04 1981-12-16 Ppg Industries Inc Sizing composition and sized glass fibres and process
DE19818046A1 (de) * 1998-04-22 1999-10-28 Schuller Gmbh Schlichte, Vorgarn und Roving sowie daraus hergestellte Verbundwerkstoffe
FR2864072A1 (fr) * 2003-12-17 2005-06-24 Saint Gobain Vetrotex Fils de verre ensimes destines au renforcement de matieres polymeres, notamment par moulage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS + INDEXES, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, 2 October 1978 (1978-10-02), XP000185212, ISSN: 0009-2258 *

Also Published As

Publication number Publication date
WO2008011986A1 (de) 2008-01-31
RU2406705C2 (ru) 2010-12-20
DE102006062733A1 (de) 2008-01-31
CA2657810A1 (en) 2008-01-31
RU2413687C2 (ru) 2011-03-10
EP2046693A1 (de) 2009-04-15
RU2009106875A (ru) 2010-09-10
EP2046692A1 (de) 2009-04-15
CA2657812A1 (en) 2008-01-31
US20090305864A1 (en) 2009-12-10
DE102006062733B4 (de) 2010-08-05
RU2009106872A (ru) 2010-09-10
US20090186222A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
DE102006062733B4 (de) R- E- und ECR-Glasfasern mit wässriger Schlichte und deren Verwendung
DE2659370A1 (de) Beschichtete glasfasern
EP1917223A1 (de) Nassgeformte matte mit verbesserter bruchfestigkeit bei hitze oder nässe
EP2589579B1 (de) Zusammensetzung zur Behandlung gipsverpachtelter, gipsabgezogener oder gipsverputzler Areale und deren Verwendung zur Behandlung gipsverpachtelter, gipsabgezogener oder gipsverputzler Areale
DE102005048190A1 (de) Beschichtung in verstärkten Verbundwerkstoffen
DE102017113205A1 (de) Oberflächenmodifizierte Glasfasern zur Betonverstärkung und Verfahren zu ihrer Herstellung
WO2009049789A1 (de) Wässriges sizing zur herstellung von glasfaserprodukten
DE202006011686U1 (de) Wässrige Schlichte zur Behandlung von R-E- und ECR-Glasfasern
DE102006035565B4 (de) Wässrige Schlichte zur Behandlung von R-,E- und ECR-Glasfasern und deren Verwendung
DE102004052170A1 (de) Zubereitungen für den Einsatz in Beton
DE2517601A1 (de) Silanverbindungen, damit ueberzogene glasfasern und die verwendung dieser fasern als verstaerkungsmittel fuer zemente
DE102008064662B4 (de) Fasern aus R-, E-, ECR- oder S-Glas und Verwendung der Fasern
DE10333941A1 (de) Schlichte zur Behandlung von Glasfasern sowie mit diesen Schlichten ausgerüstete Glasfasern
DE202007014370U1 (de) Wässrige finishähnliche Präparation zur Herstellung von Glasfaserprodukten
DE102005017376A1 (de) Textiles Flächengebilde aus Glasfasergewebe
JPS63265839A (ja) ガラス繊維用サイズ剤
DE202008015660U1 (de) Wässrige Textilschlichte zur Behandlung von R-, E-, ECR- und S-Glasfasern
EP0060424B1 (de) Schlichtemittel für Glasfasern
DE10012814C2 (de) Nichtwäßrige Schlichte und ihre Verwendung zur Behandlung von Glasfasern für die Herstellung eines Hybridgarnes
EP1586545A2 (de) Textiles Flächengebilde aus Glasfasergewebe
DE10214482B4 (de) Verfahren zum Behandeln von Hybridgarnen aus Glas- und Polyolefinfasern
JPH0565454B2 (de)
WO2014150732A1 (en) Sizing compositions for glass fibers and sized fiber glass products
DE1519076B2 (de) Mittel zur verbesserung der haftung von polymerisaten auf unterlagen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007785988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2657810

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 191/KOLNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009106872

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12375336

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785988

Country of ref document: EP

Kind code of ref document: A1