WO2008010457A1 - appareil de découpe - Google Patents

appareil de découpe Download PDF

Info

Publication number
WO2008010457A1
WO2008010457A1 PCT/JP2007/063969 JP2007063969W WO2008010457A1 WO 2008010457 A1 WO2008010457 A1 WO 2008010457A1 JP 2007063969 W JP2007063969 W JP 2007063969W WO 2008010457 A1 WO2008010457 A1 WO 2008010457A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
cut
workpiece
cutting tool
temperature
Prior art date
Application number
PCT/JP2007/063969
Other languages
English (en)
French (fr)
Inventor
Masaaki Takita
Original Assignee
Takita Research & Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2006/316192 external-priority patent/WO2008010303A1/ja
Application filed by Takita Research & Development Co., Ltd. filed Critical Takita Research & Development Co., Ltd.
Priority to JP2008525846A priority Critical patent/JP4414473B2/ja
Priority to CN2007800274974A priority patent/CN101489746B/zh
Priority to TW096126441A priority patent/TW200812924A/zh
Publication of WO2008010457A1 publication Critical patent/WO2008010457A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a cutting apparatus, and is applied to a cutting object made of a brittle material such as glass or ceramic, preferably a cutting object of a thin plate, and particularly, for example, a display of a liquid crystal or a plasma display.
  • the present invention relates to a cutting apparatus suitable for cutting a glass substrate in a panel manufacturing process.
  • an oblique cut line (cut line) [corresponding to “Niyu”] is formed on one main surface side of a glass plate with a diamond disc.
  • the glass plate is deformed by heating the surface with the cut line and the outside of the area surrounded by the cut line, and by this deformation, the oblique cut line instantaneously reaches the side opposite to the heating surface.
  • a glass cutting method characterized in that a portion surrounded by a cut line is separated (see, for example, Patent Document 2).
  • the surface of the glass sheet is irradiated with laser light such as a carbon dioxide laser, HF laser, and YAG laser to locally heat, and then rapidly cooled.
  • laser light such as a carbon dioxide laser, HF laser, and YAG laser
  • the prior art as the background of the present invention includes at least two points near the edge of the workpiece W made of a brittle material such as glass or alumina ceramic.
  • a laser beam such as a carbon dioxide laser or a YAG laser is simultaneously irradiated to two points in the vicinity of the Eve groove planned line) to generate an initial crack, and a unique thermal stress distribution is generated between the laser beam irradiation positions.
  • a brittle material cleaving method has also been proposed, characterized by increasing the tensile stress compared to the case of single-point laser beam irradiation and controlling the stress generation state to enhance cleaving control. (For example, see Patent Document 4).
  • the energy density in each part is uniform, and the cut portion of the glass substrate is heated by irradiating a laser beam in which the laser beam spot forms a vertically long shape in the cutting direction
  • a glass substrate that has a heating process and a cooling process that forms a microcrack by rapidly cooling a cut portion that is heated by laser beam irradiation, thereby enabling the generation of microcracks and improving productivity.
  • the prior art as the background of the present invention includes cracking means for making fine cracks at the cutting start point of the glass plate, irradiation heating means by at least one laser beam absorbed by the glass plate, and at least After irradiation heating with one laser beam, in a glass plate cutting device including a cooling means for cooling a glass plate with a cooling fluid and a braking means, an irradiation means in which the laser beam is a first carbon dioxide laser beam, and an irradiation means After the first control means for controlling the temperature within a predetermined range and the first cooling means by the cooling fluid provided at the rear of the first carbon dioxide laser beam irradiation means are arranged to generate the scribe line, the glass plate There has been proposed a glass plate cutting device or the like characterized by performing the braking process (see, for example, Patent Document 7).
  • Patent Document 1 JP-A-6-48755
  • Patent Document 2 Japanese Patent Laid-Open No. 7-223828
  • Patent Document 3 Japanese Patent Laid-Open No. 9-12327
  • Patent Document 4 JP-A-7-328781
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-247603
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-219528
  • Patent Document 7 Special Publication 2006—513121
  • Patent Document 2 it is difficult to control the direction in which the cut lines are generated, and there is a problem that a crack is generated inside the glass plate, resulting in poor product quality.
  • Patent Document 3 it is necessary to increase the irradiation output of the laser beam, so the distortion in the scribe groove may affect the crack in the in-plane direction of the glass plate.
  • the performance of the glass plate as a product is deteriorated, such as peeling of a glass piece along the scribe groove.
  • a laser beam is irradiated and generated by a localized concentrated stress generated by a steep temperature gradient generated between the center and the periphery of the beam.
  • the thermal stress (tensile stress) generated varies depending on various conditions such as temperature, the scattering state on the material surface and the light absorption rate in the material, and the local concentrated stress does not exceed the allowable stress of the material. Therefore, there is a problem that the certainty of the occurrence of the initial crack is low.
  • the path force of the movement of the laser beam irradiation position when inducing cracks may cause the cracks to shift and follow, so if the processing accuracy deteriorates, the problem remains.
  • the technique of Patent Document 5 requires a process of forming a processed part thinner than other parts in advance before drilling or cutting a processed part by irradiating a laser. In addition, it requires a press machine to form thinly, resulting in high manufacturing costs.
  • a main object of the present invention is to provide a cutting device that can prevent the occurrence of cracks and accurately and stably cut a workpiece without damaging the quality of the workpiece. That is.
  • the present invention is a cutting device that cuts a workpiece formed of a brittle material such as glass, ceramic, or semiconductor material, and abuts on a desired cutting site of the workpiece.
  • a cutting tool that can be arranged and a displacement means for generating a relative movement between the cutting tool and the workpiece along the cutting site, the cutting tool cutting the workpiece.
  • a heating element that heats the cutting edge at a temperature higher than the softening point of the workpiece and is heated by the temperature, and is heated by the workpiece and the heating element by the displacing means.
  • the cutting device is characterized in that a relative movement is generated between the cutting blade portion and the cutting portion of the workpiece is cut and cut.
  • heating is performed by the cutting tool force heating element disposed so as to be able to come into contact with a desired cutting site of the workpiece.
  • the edge part of the cutting edge part is heated to a temperature higher than the soft saddle point of the workpiece.
  • the cutting tool is moved relative to the workpiece by the displacement means. That is, the cutting edge portion of the cutting tool and Z or the object to be cut are relatively displaced along the desired cutting site. Therefore, a groove corresponding to the shape of the edge portion is formed by the edge portion of the cutting edge portion at a desired cutting site of the object to be cut.
  • the cutting portion is heated by the heated edge portion locally and rapidly at a temperature higher than the softening point of the object to be cut.
  • the cutting tool and the object to be cut are brought into contact with the desired cutting site of the object to be cut by bringing the edge part of the cutting edge heated to the soft saddle point or more of the object to be cut.
  • the present invention according to claim 2 is an invention dependent on the invention according to claim 1, wherein the cutting edge is maintained at a predetermined temperature while the workpiece is being cut by the cutting tool.
  • the cutting device further includes temperature control means for controlling the temperature of the heating element.
  • the temperature of the cutting edge is maintained at a predetermined temperature while the workpiece is being cut by the cutting tool by the temperature control means. Therefore, it is possible to stably apply the desired thermal tension to the groove portion and the vicinity of the groove portion, and it is possible to further cut the object to be cut accurately and stably without cutting failure.
  • the present invention according to claim 3 is an invention dependent on the invention according to claim 2, wherein the temperature control means is disposed in the vicinity of the heating element and detects the temperature of the edge portion of the cutting edge portion. While the workpiece is being cut by the cutting tool, based on the detection signal of the temperature detection sensor force, the relative speed generated between the cutting tool and the workpiece and the Z or workpiece
  • the cutting apparatus further includes a control unit that controls a cutting depth of the cutting blade portion with respect to the cut object.
  • the detection signal from the temperature sensor is detected by the control unit.
  • the speed relating to the relative movement generated between the cutting tool and the workpiece and z or the cutting depth of the cutting edge portion relative to the workpiece can be appropriately controlled. Therefore, while cutting the workpiece with a cutting tool, the cutting of the workpiece due to the temperature conditions of the cutting blade portion of the cutting tool and the relative movement between the cutting tool and the workpiece. The conditions are always optimal, and the workpiece can be cut more accurately and stably without cutting defects.
  • the present invention according to claim 4 is an invention according to the invention according to any one of claims 1 to 3, wherein heating means for preliminarily heating a portion to be cut with a cutting tool is provided. Furthermore, it is a cutting device.
  • the part to be cut with the cutting tool is preliminarily heated by the heating means. Therefore, the workpiece can be heated to a temperature above the soft saddle point with a cutting tool even more easily. Accordingly, the cutting speed can be further improved and the machinability can be stabilized, so that more stable workability can be secured.
  • the present invention according to claim 5 is an invention dependent on the invention as claimed in claim 4, further comprising a cooling means for cooling the heated portion heated by the heating means, and the cutting tool is used for cutting.
  • the cutting device is characterized in that a part to be cut is cut while being heated by a heating means and cooled by a cooling means.
  • the part to be cut with the cutting tool is heated by the heating means and simultaneously cooled by the cooling means. Therefore, the spread of heat in the object to be cut at the part (cutting part) to be cut by the cutting tool prevents the diffusion of the object to be cut in the surface direction. Therefore, when the object to be cut is, for example, a liquid crystal panel, it is possible to prevent diffusion of heat in the surface direction that adversely affects various electrode patterns such as drive electrodes, liquid crystal, sealing material, adhesive, etc. It is possible to prevent the problem of lowering the performance.
  • FIG. 1 is a perspective view of a principal part showing an example of an embodiment of a cutting device according to the present invention.
  • FIG. 2 is a schematic plan view schematically showing an example of a cutting tool applied to the embodiment of FIG.
  • FIG. 3 shows an example of a manufacturing method of a cutting tool applied to the embodiment of FIG. 1.
  • (A) is a perspective view showing a state in which a temperature detection sensor is formed on a ceramic substrate.
  • (B) is an illustration of a side view.
  • FIG. 4 shows an example of a manufacturing method of a cutting tool applied to the embodiment of FIG. 1.
  • (A) is a perspective view showing a state in which an insulating layer is formed on a temperature detection sensor.
  • (B) is an illustration of a side view.
  • FIG. 5 shows an example of a manufacturing method of a cutting tool applied to the embodiment of FIG. 1.
  • (A) is a perspective schematic view showing a state where a heating element is formed
  • (B ) Is an illustration of the side.
  • FIG. 6 shows an example of a manufacturing method of a cutting tool applied to the embodiment of FIG. 1.
  • (A) is a perspective view showing a state in which a wear-resistant layer is formed on a heating element.
  • (B) is a schematic side view.
  • FIG. 7 shows an example of a manufacturing method of a cutting tool applied to the embodiment of FIG. 1.
  • (A) is a perspective schematic view showing a state in which an electrode is formed at the end of a heating element.
  • (B) is a schematic illustration of its side.
  • FIG. 8 shows an example of a manufacturing method of a cutting tool applied to the embodiment of FIG. 1.
  • (A) is a perspective view showing a state in which a cutting edge portion is formed by blade grinding or the like.
  • FIG. 4B is an illustration of a side view thereof.
  • FIG. 9 is a fragmentary perspective view showing an example of another embodiment of the cutting device according to the present invention.
  • FIG. 10 is a perspective view of relevant parts showing an example of still another embodiment of the cutting device according to the present invention.
  • FIG. 11 An enlarged schematic view of the main part showing the operation and effect of the embodiment shown in Fig. 10, wherein (A) is a glass plate at the cutting site when the cutting site is not cooled by the cooling means (to be cut) (B) is a main part enlarged schematic view showing the state of heat spread in the object (B), and (B) shows the state of heat spread in the glass plate (object to be cut) at the cut part when the cut part is cooled by the cooling means.
  • FIG. 11 An enlarged schematic view of the main part showing the operation and effect of the embodiment shown in Fig. 10, wherein (A) is a glass plate at the cutting site when the cutting site is not cooled by the cooling means (to be cut) (B) is a main part enlarged schematic view showing the state of heat spread in the object (B), and (B) shows the state of heat spread in the glass plate (object to be cut) at the cut part
  • FIG. 12 (A) is an enlarged sectional schematic view showing an example of an effective liquid crystal panel to which the cutting device shown in the embodiment of FIG. 10 is applied, and (B) is a drawing using the cutting device. (A) is an enlarged cross-sectional view of the main part showing the midway of cutting the liquid crystal panel to a desired size, (C) is an enlarged cross-sectional view of the main part of the liquid crystal panel in a state of being cut using the cutting device. It is an illustration
  • FIG. 1 is an essential part perspective view showing an example of an embodiment of a cutting device according to the present invention
  • FIG. 2 is a schematic view of an example of a cutting tool applied to the embodiment of FIG. FIG.
  • the cutting device according to the present invention can be applied to cut brittle materials such as optical glass, quartz glass, other glasses, ceramics, silicon, and semiconductor materials.
  • a cutting apparatus 10 suitable for cutting a glass plate in a liquid crystal and plasma display panel manufacturing process will be described.
  • the cutting device 10 includes a cutting tool 12.
  • the cutting tool 12 abuts a desired cutting site ⁇ (“cutting site ⁇ ” in a narrow sense) of a rectangular glass plate W as a workpiece (workpiece). It can be arranged.
  • the cutting tool 10 has a local portion (corresponding to a cutting edge portion of a cutting blade portion described later) that cuts the glass plate W at a temperature higher than the soft saddle point of the glass plate W.
  • the temperature can be accurately and rapidly controlled at a high temperature in the range of about 600 ° C to 1000 ° C.
  • a temperature detection sensor and a heating element are formed on a ceramic substrate, and a predetermined cutting site ⁇ of the glass plate W is cut by a cutting edge portion of the cutting blade heated to a predetermined temperature. It is configured.
  • the cutting tool 12 includes a cutting tool body 14 having, for example, a pentagonal shape in plan view as shown in FIG.
  • the cutting tool body 14 includes, for example, a ceramic substrate 16 that also has a ceramic force.
  • the ceramic substrate 16 includes, for example, a V-shaped cutting edge 18 on one end side in the longitudinal direction.
  • the cutting edge portion 18 has a portion for cutting the glass plate W as an object to be cut, that is, a cutting edge portion 20 as an edge portion.
  • the blade edge portion 20 is located at the top end portion of the cutting blade portion 18 on one main surface side of the ceramic substrate 16.
  • an insulating material such as silicon oxide, silicon oxide aluminum, zirconium oxide, titanium oxide, or mullite can be used as appropriate.
  • a temperature detection sensor 22 having a U-shape in plan view is formed.
  • An electrode 22a and an electrode 22b are connected to one end and the other end of the temperature detection sensor 22, respectively.
  • the electrode 22a and the electrode 22b are each made of gold, gold, copper alloy, or the like.
  • a thermocouple made of chromel'alumel, platinum'rhodium, or the like, or an electric resistor made of platinum, gold tantalum, or the like can be used as appropriate.
  • an insulating layer 24 made of, for example, silicon dioxide or silicon dioxide is formed on one main surface side of the ceramic substrate 16 so as to cover the temperature detection sensor 22.
  • an insulating material such as silicon oxide, acid aluminum, zirconium oxide, titanium oxide, and mullite can be appropriately used.
  • a “U” -shaped heating element 26 is disposed on the upper surface of the insulating layer 24.
  • the heating element 26 is formed of a resistance heating element such as silicon carbide.
  • the temperature detection sensor 22 is disposed in the vicinity of the heating element 26.
  • zirconia can be used as a material for forming the heating element 26.
  • a wear-resistant layer 28 is formed on the upper surface of the heating element 26 excluding the one end portion 26 a and the other end portion 26 b of the heating element 26.
  • Wear resistant layer 28 Titanium oxide, titanium nitride or the like.
  • tungsten carbide, titanium carbide, boron carbide, or the like can be used as a material for forming the wear-resistant layer 28 as appropriate.
  • electrodes 30a and 30b made of an alloy of gold, gold, copper, etc. are connected to the upper surfaces of one end portion 26a and the other end portion 26b of the heating element 26, respectively. .
  • FIG. 3 An example of the manufacturing method of the cutting tool 12 is demonstrated below, referring FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG.
  • a rectangular parallelepiped-shaped ceramic substrate 16 having a zirco-equal force is prepared.
  • an electrode 22a and an electrode 22b having an alloying force of gold and copper are connected to one end and the other end of the sensor 22, respectively.
  • the temperature detection sensor 22 and the electrodes 22a and 22b are integrally formed on the upper surface of the ceramic substrate 16 by a thin film formation method such as sputtering.
  • a thin film is formed by such a method.
  • a thin film is formed on the upper surface of the insulating layer 24 as a heating element 26, for example, a resistance heating element having silicon carbide power by sputtering or the like.
  • the upper surface of the heating element 26 excluding one end portion 26 a and the other end portion 26 b of the heating element 26 is provided with a resistance against, for example, titanium nitride.
  • the wear layer 28 is formed into a thin film by a method such as sputtering.
  • electrodes made of an alloy of gold, gold, copper, etc. are respectively formed on the upper surfaces of the one end portion 26a and the other end portion 26b of the heating element 26.
  • 30a and 30b are formed into a thin film by a method such as sputtering.
  • one end side in the longitudinal direction of the cutting tool main body 14 is subjected to blade polishing so that, for example, as shown in FIG. 8, a V-shaped cutting blade portion 18 is formed in a plan view.
  • Sera At the top end portion of the cutting blade portion 18 on the one main surface side of the Mick substrate 16, a blade edge portion 20 that is a portion for cutting the glass plate W that is a workpiece is formed.
  • the resistance heating element as the heating element 26 when a direct current voltage is applied to the electrodes 30a and 30b of the cutting tool 12, for example, the resistance heating element as the heating element 26 generates heat and the surface temperature is increased.
  • the force can be raised to a predetermined temperature, in this case a high temperature, for example in the range of about 600 ° C to 1000 ° C.
  • the temperature rise of the heating element 26 can be further increased by changing the DC voltage application to, for example, a pulse voltage application to increase the applied voltage.
  • the displacing means is constituted by a drive mechanism (not shown) including, for example, a motor (not shown) and an actuator (not shown), and the cutting blade portion 18 of the cutting tool 12 and Z or glass plate W (object to be cut) is relatively displaced along the desired cutting site.
  • a glass plate W (object to be cut) is fixed to a mounting table (not shown) or the like, and the cutting tool 12 is moved along a desired cutting site ⁇ .
  • the desired cutting site ⁇ of the glass plate W (object to be cut) is provided at the cutting edge portion 20 by the cutting edge portion 20 of the cutting blade portion 18 heated to a predetermined temperature, for example, as shown in FIG.
  • a V-shaped groove portion 40 corresponding to the shape of 20 is formed, and at the same time, the cutting site ⁇ is locally and rapidly heated by the heated blade edge portion 20 with the glass plate W (object to be cut). ) Is heated above the soft saddle point. Therefore, the glass plate W (object to be cut) at the part where the cutting edge portion 20 contacts (contacts) is plastically deformed, and the plastically deformed portion becomes chip c and becomes the glass plate W (cut object). The glass plate W (object to be cut) is finally cut (in the narrow sense, “cut”) along the desired cutting site ⁇ .
  • the contact (contact) portion where the blade edge portion 20 is pressed is subjected to thermal expansion, and compressive stress is generated toward the periphery around the portion where the blade edge portion 20 is in contact.
  • the part where 20 is in contact is heated to a temperature higher than the softening point of the glass plate W (object to be cut), so that the glass plate W (object to be cut) in the contact part is plastically deformed. , The compressive stress is released.
  • the glass plate W (the object to be cut) itself has a strong compressive force. Therefore, cracks such as cracks may occur in the glass sheet w (object to be cut) due to the compressive stress generated around the contact area.
  • the generation of cracks is prevented and the glass plate W (cut object) is accurately and stably prevented from deteriorating the quality of the glass plate W (cut object). Can be cut off.
  • the temperature detection sensor 22 is controlled by a temperature control means (not shown), and the glass plate W is cut by the cutting tool 12 by this temperature control means.
  • the temperature of the cutting edge portion 20 of the cutting edge portion 18 is maintained at a predetermined temperature.
  • the glass plate W object to be cut
  • the blade edge portion is appropriately selected according to the softening point of the object to be cut. 20 temperature settings are made.
  • the cutting tool 12 and the galley are separated based on the detection signal from the temperature detection sensor 22 while the cutting tool 12 is cutting the glass plate W (cut object).
  • a control unit (not shown) is configured to control the speed related to the relative movement generated between the steel plate W (the workpiece) and Z or the cutting depth of the cutting blade relative to the workpiece. .
  • the control unit can appropriately control the moving speed of the cutting tool 12 and the depth of the groove 40.
  • the cutting edge portion 20 heated to a soft spot or higher of the glass plate W (object to be cut) is desired for the glass plate W (object to be cut).
  • the desired cutting site ⁇ of the glass plate W (cut object) is brought into contact with the cutting site ⁇ and a relative movement is applied between the cutting tool 12 and the glass plate W (cut object). Accordingly, the glass plate W (object to be cut) can be cut accurately and stably without being subjected to an impact.
  • the temperature of the cutting edge portion 18 of the cutting edge portion 18 is maintained at a predetermined temperature while the cutting tool 12 is cutting the glass plate W (object to be cut) by the temperature control means.
  • plastic deformation can be caused stably, and the glass plate W (object to be cut) can be cut and cut so as to be accurate and stable with no cutting failure.
  • the cutting tool 12 and The speed related to the relative movement that occurs between the glass plate w (the workpiece) and the depth of the cutting edge 18 of the cutting edge 18 relative to the Z or glass plate W (the workpiece) are appropriately controlled. Therefore, while cutting the glass plate W (cutting object) with the cutting tool 12, the temperature condition of the cutting edge 18 and the cutting edge 18 and the cutting tool 12 and the glass plate W (cutting object) The cutting conditions of the glass plate W (workpiece) are always optimal due to the relative movements of the glass plate, so that the glass plate W (workpiece) is more accurate and stable without cutting defects. It can be cut by cutting.
  • the wear-resistant layer 28 of the cutting tool 12 is formed of titanium oxide, titanium nitride, or the like, so that the glass plate W (object to be cut) is cut with the cutting tool 12.
  • a release oil may be applied to the portion of the blade edge portion 20 to form a release layer.
  • a force that is formed so as to partially form an edge portion as a portion for cutting the workpiece on the top end portion of the cutting blade portion 18 is a portion (edge portion) for cutting the workpiece.
  • the edge portion may be formed on the entire V-shaped ridge line portion of the cutting edge portion 18.
  • FIG. 9 is a perspective view of relevant parts showing an example of another embodiment of the cutting device according to the present invention.
  • the cutting tool is used when cutting the glass plate W (to-be-cut object) with the cutting tool 12 and cutting it, as compared with the above-described embodiment shown in FIGS.
  • the portion to be cut with the cutting tool 12 is preliminarily heated in advance by a heating means such as a laser.
  • the cutting tool 12 used in the cutting device 10 that works on the embodiment shown in FIG. 9 has the same structure as the cutting tool 12 shown in the above-described embodiment, and has the same effect. It is.
  • the cutting device 10 according to this embodiment shown in FIG. 9 is based on the configuration of the cutting device 10 according to the above-described embodiment, and a laser such as a carbon dioxide laser is used as a heating means. Further includes vessel 50.
  • the laser device 50 outputs laser light on a glass plate W (object to be cut) by a cylindrical lens (not shown) or a cylindrical mirror (not shown).
  • a laser light source 52 in which a one-on-one irradiation image (beam spot) has an elliptical shape, for example, is provided.
  • the laser light 54 emitted from the laser light source 52 forms an oblong beam spot 56 in front of the cutting tool 12 as shown in FIG. 9, and the beam spot 56 is preliminarily heated. It becomes an area.
  • the portion to be cut by the cutting tool 12 is preliminarily heated by the beam spot 56, which is much easier than in the above-described embodiment example.
  • the cutting tool 12 can heat the glass plate W (the object to be cut) to a temperature above the soft saddle point. Therefore, in the cutting device 10 that works on the present embodiment shown in FIG. 9, the cutting speed can be further improved and the cutting performance can be stabilized as compared with the embodiment shown in FIGS. A more stable strength can be secured.
  • FIG. 10 is a perspective view of relevant parts showing an example of another embodiment of the cutting device according to the present invention.
  • the cutting part to be cut with the cutting tool 12 is heated by a heating means such as a laser and simultaneously cooled. It is different in that it is configured to be cooled by means.
  • the cutting tool 12 used in the cutting apparatus 10 that works on the embodiment shown in FIG. 10 has the same structure as the cutting tool 12 shown in each of the above-described embodiments, and has the same effect. Is.
  • the cooling means 60 includes, for example, a cooling gas blowing duct 62 having a blowing port 62a.
  • the cooling gas blowing duct 62 is, for example, compressed air that becomes a cooling gas through a pipe line (not shown) having a transfer pipe (not shown) such as a pipe or a tube for transferring the cooling gas.
  • the compressor is connected to a compressed air supply source (not shown) such as a compressor or a blower.
  • the outlet 62a of the cooling gas outlet duct 62 is a portion of the cutting portion of the glass plate W (cut object) to be cut by the cutting tool 12. It is formed as a series of outlets extending in the longitudinal direction so as to correspond to the length.
  • cooling gas for example, nitrogen gas can be used as appropriate in addition to the compressed air described above.
  • the outlet 62a of the cooling gas outlet duct 62 is not limited to the series of outlets shown in FIG. 10, for example, a number of outlet nozzles arranged in a line in the longitudinal direction of the outlets ( (Not shown) may be used.
  • the part (cutting part ⁇ ) to be cut by the cutting tool 12 is preliminarily heated by the beam spot 56, so that the heated part (cutting part ⁇ ) Can be more efficiently removed as chips c while being cut by the cutting tool 12, and in addition to this, in the present embodiment, the cooling means 60 is operated to provide a cooling gas blowing duct. Compressed air force 62 for cooling is blown from the 62 outlet 62a to the part heated by the laser beam 54 (cutting part ⁇ ). Therefore, in the embodiment shown in FIG. 10, when a predetermined cutting site ⁇ of the glass plate W (object to be cut) is cut with the cutting tool 12, the cutting site ⁇ and the glass plate W (work to be cut) are cut. The diffusion of heat in the surface direction of the object can be prevented.
  • the heat spread in the glass plate W (the object to be cut) at the site heated by the laser beam 54 (cutting site ⁇ ) is For example, as shown in ( ⁇ ) of FIG. 11, it is in a distributed state in which it is diffused in the surface direction of the glass plate W (object to be cut).
  • the cutting device 10 of FIG. 10 when the part to be cut with the cutting tool 12 (cutting part ⁇ ) is heated by the heating means and simultaneously cooled by the cooling means 60, The spread of heat in the object to be cut at the cutting site ⁇ prevents diffusion of the object to be cut in the surface direction.
  • the cutting site ⁇ is cooled by the cooling means 60, for example, as shown in ( ⁇ ) of FIG. 11, the spread of the heat is distributed in the thickness direction of the glass plate W (cut object). It becomes.
  • Plasma display PDP
  • organic EL field emission display
  • DMD digital micromirror device
  • electro-optic display devices etc.
  • the diffusion of heat in the surface direction of the substrate that adversely affects various electrodes such as drive electrodes and common electrodes formed on the mother substrate such as glass substrate and ceramic substrate, liquid crystal, sealing material, adhesive, etc. Can be prevented.
  • FIG. 12A is an enlarged sectional schematic view showing an example of a liquid crystal panel effective by applying the cutting device shown in the embodiment of FIG. 10, and FIG. FIG. 13C is an enlarged schematic sectional view showing a main part of the liquid crystal panel shown in FIG. 12A using the apparatus.
  • FIG. 12C is an enlarged main part of the liquid crystal panel in a state of being cut using the cutting apparatus.
  • the liquid crystal panel 70 includes a liquid crystal 76 sealed with a sealing material 78 such as grease between an upper glass substrate 72 having a common electrode 72a and a lower glass substrate 74 having a drive electrode 74a.
  • a sealing material 78 such as grease between an upper glass substrate 72 having a common electrode 72a and a lower glass substrate 74 having a drive electrode 74a.
  • a single liquid crystal panel 70 of a single product size has a common electrode 72 a, a drive electrode 74 a, and other electrodes (not shown) on a large substrate on which each single-size liquid crystal panel 70 can be “manufactured”. 1), a plurality of large substrates on which electrode patterns are formed are bonded together, and then cut into a desired size by a cutting device 10 shown in FIG. Many panels 70 are manufactured.
  • desired cutting sites ⁇ of the upper glass substrate 72 and the lower glass substrate 74 are cut by the cutting device 10 shown in FIG. As shown in ( ⁇ ) of FIG. 12, first, after the cutting portion ⁇ of the lower glass substrate 74 is placed and fixed on the mounting table 80 so as to face the cutting edge portion 20 of the cutting tool 12, for example, Cutting with the cutting tool 12. Then, when the cutting of the lower glass substrate 74 is completed, the cutting portion ⁇ of the upper glass substrate 72 is placed and fixed on the mounting table 80 so as to face the cutting edge portion 20 of the cutting tool 12, and then cut. It is cut in the same way along the part ⁇ .
  • the part cut by the cutting tool 12 and the part force cooling means 60 to cut by the cutting tool 12 are used by the cooling means 60. Therefore, heat that adversely affects the common electrode 72a, the drive electrode 74a, the liquid crystal 76, the sealing material 78, the adhesive (not shown), etc., in the surface direction of the upper glass substrate 72 and the lower glass substrate 74 Diffusion can be prevented.
  • the adverse effect of the heat diffusing in the surface direction of the upper glass substrate 72 and the lower glass substrate 74 may cause cracks in the in-plane direction of the glass plate W (object to be cut), or the glass plate along the groove 40. It is possible to prevent problems such as W (parts to be cut) being partially peeled off, so-called glass pieces being peeled off, and the like degrading the performance of the liquid crystal panel as a product. Therefore, in the manufacturing process of the liquid crystal panel to which the cutting device 10 shown in FIG. 10 is applied, the performance of the glass substrate of the liquid crystal panel as a product is not deteriorated! It will be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

切断装置
技術分野
[0001] 本願発明は、切断装置に関し、ガラス,セラミック等の脆弱材料カゝらなる被切断物、 好ましくは薄板の被切断物の切断などに適用され、特にたとえば、液晶やプラズマ · ディスプレイの表示パネルの製造工程におけるガラス基板の切断に好適な切断装置 に関する。
背景技術
[0002] 本願発明の背景となる従来技術には、 2枚のガラス基板を貼り合わせて形成された 貼り合せガラス板に、超硬合金カッターホイール等のガラスカッターで形成されたスク ライブ溝の反対側からゴム板などを押し当てて、スクライブラインに沿って押圧力を負 荷させることによって、スクライブ溝の垂直クラックを進行させてガラス基板の分断を 行うことを特徴とする、貼り合せガラス基板の裁断方法があった (例えば、特許文献 1 参照)。
また、本願発明の背景となる従来技術には、ガラス板の一方主面側にダイヤモンド ディスクソ一で斜めの切り筋 (切り線) [俗称:「にゅう」に相当]を形成し、次に、切り筋 を付けた面で且つ切り筋によって囲まれた領域の外側を加熱することによりガラス板 を変形させ、この変形によって斜めの切り筋を加熱面と反対側面まで瞬間的に到達 させることにより、切り筋で囲まれた部分を分離するようにしたことを特徴とする、ガラ スの切断方法があった (例えば、特許文献 2参照)。
さらに、本願発明の背景となる従来技術には、ガラスシート表面に、炭酸ガスレーザ 、 HFレーザおよび YAGレーザ等のレーザ光を照射して、局部的に熱を与え、その 後急冷を行うことにより、ガラスシートに曲げ変形及び衝撃を与えることなぐガラスシ ートを分割することを特徴とする、ガラス切断方法および装置が提案されている (例え ば、特許文献 3参照)。
また、本願発明の背景となる従来技術には、ガラス、アルミナセラミック等の脆性材 料からなる被加工材料 Wの端縁近傍の少なくとも 2点、この場合、割断予定線 (スクラ イブ溝予定線)の近傍の 2点に、炭酸ガスレーザもしくは YAGレーザ等のレーザビー ムを同時に照射して初期亀裂の発生を行い、レーザビーム照射位置の間に特異な 熱応力分布を発生させ、その引張応力を、 1点のレーザビームの照射の場合に比し て大きくするとともに、応力の発生状態を制御して割断制御を高めることを特徴とする 、脆性材料の割断方法等も提案されている (例えば、特許文献 4参照)。
さらに、本願発明の背景となる従来技術には、各部位におけるエネルギ密度が均 一であり、切断方向にレーザビームのスポットが縦長形をなすレーザビームを照射し てガラス基板の切断部を加熱する加熱工程と、レーザビームの照射により加熱された 切断部を急冷させてマイクロクラックを形成する冷却工程とを有することで、マイクロク ラックの生成が活性ィ匕でき、生産性の向上が図れるガラス基板の切断方法及びその 装置が見受けられる (例えば、特許文献 5参照)。
また、本願発明の背景となる従来技術には、ガラス製品あるいは結晶化ガラス製品 の加工方法において、予め加工部位を他の部位に比べ肉薄に成形する工程と、前 記カ卩ェ部位に対してレーザーを照射することによって孔開け又は切断加工を行うェ 程とを含むことを特徴とする、ガラス製品あるいは結晶化ガラス製品の加工方法およ び製造方法も見受けられる (例えば、特許文献 6参照)。
その他にも、本願発明の背景となる従来技術には、ガラス板の切断開始点に微細 なクラックを入れるクラッキング手段と、ガラス板に吸収される少なくとも一つのレーザ 一ビームによる照射加熱手段と、少なくとも一つのレーザービームによる照射加熱の 後、冷却流体によるガラス板の冷却手段と、ブレーキング手段を含むガラス板の切断 装置において、レーザービームが第 1炭酸ガスレーザービームである照射手段と、照 射手段を所定の範囲で制御する第 1制御手段と、第 1炭酸ガスレーザービーム照射 手段の後部に配設される冷却流体による第 1冷却手段を配設してスクライブラインを 生成させた後、ガラス板のブレーキング工程を行うことを特徴とするガラス板切断装 置等が提案されている (例えば、特許文献 7参照)。
特許文献 1 :特開平 6— 48755号公報
特許文献 2:特開平 7— 223828号公報
特許文献 3:特開平 9 - 12327号公報 特許文献 4:特開平 7— 328781号公報
特許文献 5:特開 2005 - 247603号公報
特許文献 6:特開 2000 - 219528号公報
特許文献 7:特表 2006— 513121号公報
発明の開示
発明が解決しょうとする課題
し力しながら、上述した本願発明の背景となる従来技術では、以下のような不具合 がある。すなわち、特許文献 1の技術では、スクライブ溝の反対側からゴムを押し付け るときに、ガラス基板に衝撃を与えることになるので、衝撃の影響力もガラス板に欠け やクラックが生じやすぐまた、配線が切断されるなど、製品となるガラス板の品質を 低下させると!ヽぅ不具合がある。
特許文献 2の技術では、切り筋の発生する方向の制御が困難となり、ガラス板内部 にクラックが発生し、製品として品質不良となる不具合がある。
特許文献 3および特許文献 4の技術では、レーザ光の照射出力を大きくする必要 があるので、スクライブ溝にある歪みが影響して、ガラス板の面内方向にクラックが発 生する場合があり、また、スクライブ溝に沿ってガラス片の剥がれが発生するなど、製 品となるガラス板の性能を低下させるという不具合がある。
また、特許文献 3の技術では、レーザビームの行路に沿ってクラックを誘導する際に レーザビーム照射位置の移動の経路力 クラックがずれて追随することがあり、このた め加工精度が悪くなる恐れがある。
さらに、特許文献 4の技術では、レーザビームを照射して、そのビーム中心と周辺と の間に発生する急峻な温度勾配により生じる局部的な集中応力で発生させるわけで あるが、加工周辺の雰囲気温度、材料表面での散乱状態及び材料中での光の吸収 率などの諸条件によって発生する熱応力(引張応力)にばらつきが生じ、局部的な集 中応力が材料の許容応力を超えない場合もあり、それゆえ、初期亀裂の発生の確実 性が低いという問題もある。しかも、特許文献 3の技術と同様、亀裂を誘導する際にレ 一ザビーム照射位置の移動の経路力 亀裂がずれて追随することがあるので、加工 精度が悪くなると 、う問題も残されて 、る。 特許文献 5の技術では、レーザーを照射することによって加工部品に孔開けまたは 切断加工を行う前に、予め、加工部位を他の部位に比べて肉薄に成形する工程が 必要になるため、手間が掛カる上、肉薄に成形するためのプレス機等も必要となり、 製造コストが高く付く等の不具合がある。
特許文献 6および特許文献 7等の技術では、レーザー装置およびそれに必要な光 学的周辺装置の構成が複雑となっているため、当該装置の費用が力なり高く付き、 極めてコストが高くなると 、う不具合がある。
[0005] それゆえに、本願発明の主たる目的は、クラックの発生を防止し、被切断物の品質 を損なうことなぐ正確に且つ安定して被切断物を切断することができる、切断装置を 提供することである。
課題を解決するための手段
[0006] 請求項 1にかかる本願発明は、ガラス、セラミック、半導体材料等の脆性材料で形 成された被切断物を切断する切断装置であって、被切断物の所望する切断部位に 当接可能に配置される切削工具と、切断部位に沿って、切削工具と被切断物との間 に相対的な動きを発生させるための変位手段とを含み、切削工具は、被切断物を切 断するエッジ部を備えた切刃部と、切刃部を被切断物の軟化点以上の高!、温度で 加熱させる発熱体とを含み、変位手段によって、被切断物と、発熱体により加熱され た切刃部との間に、相対的な動きを発生させることで、被切断物の切断部位が切削 されて切断されることを特徴とする、切断装置である。
請求項 1にかかる本願発明では、被切断物の所望する切断部位に当接可能に配 置された切削工具力 発熱体によって加熱される。この場合、切刃部のエッジ部は、 被切断物の軟ィ匕点以上の高い温度に加熱される。切削工具は、変位手段によって、 被切断物との間に相対的な動きが発生される。つまり、切削工具の切刃部および Z または被切断物は、所望する切断部位に沿って相対的に変位する。そのため、被切 断物の所望する切断部位には、切刃部のエッジ部によって、当該エッジ部の形状に 対応した溝部が形成される。しかも、それと同時に、当該切断部位は、加熱されたェ ッジ部によって、局所的に、且つ、温度が急激に被切断物の軟化点以上に加熱され るため、当該エッジ部が接触(当接)する部位の被切断物が塑性変形する。そして、 塑性変形を起した部分は、切粉となって、被切断物から削り取られていき、遂には、 所望する切断部位に沿って、被切断物が切断 (狭義には、「切削」)されるものとなる このように、被切断物が軟ィ匕点以上の温度となるように、所望の切断部位に沿って 、局所的に高温の切削工具を押し当てた場合、熱膨張により、当該切削工具が接触 (当接)した部位を中心にその周辺に向力 て圧縮応力が発生する。この場合、切削 工具の接触'当接部位は、温度が急激に被切断物の軟ィ匕点以上に加熱されるため、 当該接触部位の被切断物が塑性変形し、それによつて、圧縮応力が開放される。し たがって、当該接触部位の周辺に発生する圧縮応力によって被切断物にクラック等 の割れが生じることもない。
そのため、請求項 1にかかる本願発明では、被切断物の軟ィ匕点以上に加熱された 切刃部のエッジ部を当該被切断物の所望する切断部位に接触させ、切削工具と被 切断物との間に相対的な動きを作用させることによって、被切断物を正確で、かつ安 定して切断不良がな 、ように切断することが可能となる。
請求項 2にかかる本願発明は、請求項 1にかかる発明に従属する発明であって、切 削工具で被切断物を切削中、切刃部の温度が所定の温度に保たれるように、発熱体 の温度を制御する温度制御手段をさらに含むことを特徴とする、切断装置である。 請求項 2にかかる本願発明では、温度制御手段によって、切削工具で被切断物を 切削中、切刃部の温度が所定の温度に保持される。そのため、溝部および溝部近傍 には安定して熱望張力を作用させることが可能となり、より一層、被切断物を正確で 且つ安定して切断不良のな 、ように切断することが可能となる。
請求項 3にかかる本願発明は、請求項 2にかかる発明に従属する発明であって、温 度制御手段は、発熱体の近傍に配設され、切刃部のエッジ部の温度を検出する温 度検出センサを含み、切削工具で被切断物を切削中、温度検出センサ力 の検出 信号に基づいて、切削工具と被切断物との間に発生する相対的な動きに係る速度 および Zまたは被切断物に対する切刃部の切り込み深さを制御する制御部をさらに 含むことを特徴とする、切断装置である。
請求項 3にかかる本願発明では、制御部によって、温度検出センサからの検出信 号に応じ、切削工具と被切断物との間に発生する相対的な動きに係る速度および z または被切断物に対する切刃部の切り込み深さを適宜制御することができる。そのた め、切削工具で被切断物を切削している間において、切削工具の切刃部の温度条 件と、切削工具および被切断物間の相対的な動きとによる、被切断物の切削条件が 常に最適なものとなり、より一層、被切断物を正確で且つ安定して切断不良のないよ うに切断することが可能となる。
請求項 4に力かる本願発明は、請求項 1〜請求項 3のいずれかにかかる発明に従 属する発明であって、切削工具で切削しょうとする部位を予め予備的に加熱する加 熱手段をさらに含む、切断装置である。
請求項 4に力かる本願発明では、加熱手段によって、切削工具で切削しょうとする 部位が予め予備的に加熱される。そのため、より一層、簡単に切削工具により被切断 物を軟ィ匕点以上の温度に加熱することが可能となる。したがって、切削速度のさらな る向上と、切削性の安定ィ匕が図れるものとなり、より一層安定した加工性を確保するこ とが可能となる。
請求項 5にかかる本願発明は、請求項 4に力かる発明に従属する発明であって、加 熱手段により加熱される加熱部位を冷却する冷却手段をさらに含み、切削工具で切 肖 IJしょうとする部位を、加熱手段で加熱しながら、且つ、冷却手段で冷却しながら、切 削することを特徴とする、切断装置である。
請求項 5にかかる本願発明では、切削工具で切削しょうとする部位が加熱手段によ り加熱されると同時に冷却手段によって冷却される。そのため、切削工具で切削しよ うとする部位 (切断部位)における被切断物内の熱の拡がりは、当該被切断物の面方 向への拡散が防止されるものとなる。したがって、被切断物がたとえば液晶パネルの 場合、駆動電極等の各種電極パターン、液晶、シール材、接着剤などに悪影響を与 える熱の面方向への拡散を防止することができ、液晶パネルの性能を低下させるとい う不具合を防止することができる。
発明の効果
本願発明にかかる切断装置によれば、クラックの発生を防止し、被切断物の品質を 損なうことなぐ正確に且つ安定して被切断物を切断することができる。 [0008] 本願発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う 以下の発明を実施するための最良の形態の説明から一層明ら力となろう。
図面の簡単な説明
[0009] [図 1]本願発明にかかる切断装置の実施形態の一例を示す要部斜視図解図である。
[図 2]図 1の実施形態例に適用された切削工具の一例を模式的に示した平面図解図 である。
[図 3]図 1の実施形態例に適用された切削工具の製造方法の一例を示すもので、特 に、(A)は、セラミック基板の上に温度検出センサを形成した状態を示す斜視図解図 であり、(B)は、その側面図解図である。
[図 4]図 1の実施形態例に適用された切削工具の製造方法の一例を示すもので、特 に、(A)は、温度検出センサの上に絶縁層を形成した状態を示す斜視図解図で あり、(B)は、その側面図解図である。
[図 5]図 1の実施形態例に適用された切削工具の製造方法の一例を示すもので、特 に、(A)は、発熱体を形成した状態を示す斜視図解図であり、(B)は、その側面 図解図である。
[図 6]図 1の実施形態例に適用された切削工具の製造方法の一例を示すもので、特 に、(A)は、発熱体の上に耐磨耗層を形成した状態を示す斜視図解図であり、 ( B)は、その側面図解図である。
[図 7]図 1の実施形態例に適用された切削工具の製造方法の一例を示すもので、特 に、(A)は、発熱体の端部に電極を形成した状態を示す斜視図解図であり、 (B) は、その側面図解図である。
[図 8]図 1の実施形態例に適用された切削工具の製造方法の一例を示すもので、特 に、(A)は、刃付け研磨等により切刃部を形成した状態を示す斜視図解図であり 、 (B)は、その側面図解図である。
[図 9]本願発明にかかる切断装置の他の実施形態の一例を示す要部斜視図解図で ある。
[図 10]本願発明にかかる切断装置のさらに他の実施形態の一例を示す要部斜視図 解図である。 [図 11]図 10に示す実施形態例の作用,効果を示す要部拡大図解図であって、 (A) は切断部位が冷却手段で冷却されな 、ときの切断部位におけるガラス板 (被切断物 )内の熱の拡がり状態を示す要部拡大図解図であり、 (B)は切断部位が冷却手段で 冷却されたときの切断部位におけるガラス板 (被切断物)内の熱の拡がり状態を示す 要部拡大図解図である。
[図 12] (A)は図 10の実施形態例に示す切断装置を適用して有効な液晶パネルの一 例を示す要部拡大断面図解図であり、 (B)は当該切断装置を用いて (A)に示す液 晶パネルを所望の大きさに切断する途中を示す要部拡大断面図解図であり、 (C)は 当該切断装置を用いて切断された状態の液晶パネルの要部拡大断面図解図である 符号の説明
10 切断装置
12 切削工具
14 切削工具本体
16 セラミック基板
18 切刃部
20 刃先部
22 温度検出センサ
22a, 22b 電極
24 絶縁層
26 発熱体
28 耐磨耗層
30a, 30b 電極
40 溝部
50 レーザー器
52 レーザー光源
54 レーザー光
56 ビームスポット(レーザー照射像) 60 冷却手段
62 冷却用気体吹き出しダクト
62a 吹き出し口
70 液晶パネル
72 上側ガラス基板
72a 共通電極
74 下側ガラス基板
74a 駆動電極
76 液晶
78 シール材
80 載置台
ω 切断部位
W ガラス板 (被切断物)
c 切粉
発明を実施するための最良の形態
[0011] 図 1は、本願発明にかかる切断装置の実施形態の一例を示す要部斜視図解図で あり、図 2は、図 1の実施形態例に適用された切削工具の一例を模式的に示した平 面図解図である。本願発明にかかる切断装置は、光学ガラス,石英ガラス,その他の ガラス、セラミック、シリコン、半導体材料等の脆性材料を切断するのに適用され得る ものであるが、本実施形態例では、特に、たとえば液晶およびプラズマ 'ディスプレイ のパネル製造工程におけるガラス板の切断などに用いられて好適な切断装置 10に ついて説明する。
[0012] 切断装置 10は、切削工具 12を含む。切削工具 12は、たとえば図 1に示すように、 被切断物 (被加工物)としてのたとえば矩形状のガラス板 Wの所望する切断部位 ω ( 狭義には、「切削部位 ω」)に当接可能に配置されるものである。この切削工具 10は 、概略的に言えば、ガラス板 Wを切断する局所部位 (後述する切刃部の刃先部に相 当)を当該ガラス板 Wの軟ィ匕点以上の高い温度、本実施形態例では、たとえば約 60 0°C〜1000°Cの範囲の高温度に、正確に且つ高速で温度制御が可能となるように、 セラミック基板上に温度検出センサと発熱体が形成されたものであって、所定の温度 に加熱された切刃部の刃先部でガラス板 Wの所定の切断部位 ωを切削して切断す るように構成されている。
[0013] すなわち、切削工具 12は、たとえば図 2に示すように、たとえば平面視 5角形状の 切削工具本体 14を含む。切削工具本体 14は、たとえばセラミック力もなるセラミック 基板 16を含む。セラミック基板 16は、その長手方向の一端側に、たとえば V字形の 切刃部 18を含む。切刃部 18は、被切断物であるガラス板 Wを切削する部位、すなわ ち、エッジ部としての刃先部 20を有する。刃先部 20は、セラミック基板 16の一方主面 側で切刃部 18の頂端部に位置するものである。
なお、切削工具本体 14としては、たとえば酸ィ匕珪素、酸ィ匕アルミニウム、ジルコユア 、酸化チタン、ムライト等の絶縁材料が適宜用いられ得る。
[0014] セラミック基板 16の一方主面には、平面視 U字状の温度検出センサ 22が形成され る。温度検出センサ 22の一端および他端には、それぞれ、電極 22aおよび電極 22b が接続されている。電極 22aおよび電極 22bは、それぞれ、金、金および銅の合金等 で形成されている。この場合、温度検出センサ 22としては、たとえばクロメル'アルメ ル、白金'ロジウム等で構成された熱電対、または、白金、金 タンタル等で構成され た電気抵抗体などが適宜用いられ得る。
また、セラミック基板 16の一方主面側には、温度検出センサ 22を覆うようにして、た とえば二酸ィ匕珪素カゝらなる絶縁層 24が形成されている。絶縁層 24の形成材料として は、二酸化珪素以外にも、たとえば酸ィ匕珪素、酸ィ匕アルミニウム、ジルコユア、酸ィ匕 チタン、ムライト等の絶縁材料が適宜用いられ得る。
さらに、セラミック基板 16の一方主面側には、絶縁層 24の上面に、たとえば「コ」字 状の発熱体 26が配設される。発熱体 26は、炭化珪素等の抵抗発熱体で形成されて いる。この場合、温度検出センサ 22は、発熱体 26の近傍に配設されている。なお、 発熱体 26の形成材料としては、炭化珪素以外にも、たとえばジルコニァ等が用いら れ得る。
さらに、セラミック基板 16の一方主面側には、発熱体 26の一端部 26aおよび他端 部 26bを除いた発熱体 26の上面に、耐磨耗層 28が形成されている。耐磨耗層 28は 、酸化チタン、窒化チタン等で形成されている。なお、耐磨耗層 28の形成材料として は、酸ィ匕チタンおよび窒化チタン以外にも、たとえば炭化タングステン、炭化チタン、 炭化ボロン等が適宜用いられ得る。
さらに、セラミック基板 16の一方主面側には、発熱体 26の一端部 26aおよび他端 部 26bの上面に、それぞれ、金、金および銅の合金等からなる電極 30aおよび 30b が接続されている。
そこで、次に、切削工具 12の製造方法の一例について、たとえば図 3,図 4,図 5, 図 6,図 7および図 8を参照しながら、以下に説明する。
先ず、たとえば直方体形のジルコユア等力もなるセラミック基板 16が準備され、たと えば図 3に示すように、セラミック基板 16の上面に、金 タンタル等からなる温度検出 センサ 22が形成され、さらに、温度検出センサ 22の一端および他端には、それぞれ 、たとえば金および銅の合金力もなる電極 22aおよび電極 22bが接続される。温度検 出センサ 22および電極 22a, 22bは、スパッタリング等の薄膜形成方法により一体的 にセラミック基板 16の上面に形成される。
次に、セラミック基板 16の上面には、たとえば図 4に示すように、温度検出センサ 22 および電極 22a, 22bを蓋うようにして、たとえば二酸ィ匕珪素力もなる絶縁層 24がス パッタリング等の方法により薄膜形成される。
また、セラミック基板 16の上面側には、たとえば図 5に示すように、絶縁層 24の上面 に発熱体 26として、たとえば炭化珪素力もなる抵抗発熱体がスパッタリング等の方法 により薄膜形成される。
さらに、セラミック基板 16の一方主面側には、たとえば図 6に示すように、発熱体 26 の一端部 26aおよび他端部 26bを除いた発熱体 26の上面に、たとえば窒化チタンか らなる耐磨耗層 28がスパッタリング等の方法により薄膜形成される。
さらに、セラミック基板 16の一方主面側には、たとえば図 7に示すように、発熱体 26 の一端部 26aおよび他端部 26bの上面に、それぞれ、金、金および銅の合金等から なる電極 30aおよび 30bがスパッタリング等の方法により薄膜形成される。
その後、切削工具本体 14の長手方向の一端側が、刃付け研磨されることによって 、たとえば図 8に示すように、平面視 V字形の切刃部 18が形成される。この場合、セラ ミック基板 16の一方主面側で切刃部 18の頂端部には、被切断物であるガラス板 Wを 切削する部位となる刃先部 20が形成される。
[0016] 本実施形態例にかかる切断装置 10では、切削工具 12の電極 30a, 30bに、たとえ ば直流電圧を印加して通電すると、発熱体 26としての抵抗発熱体が発熱して表面温 度力 所定の温度、この場合、たとえば約 600°C〜1000°Cの範囲の高温度に上昇 させることができる。なお、直流電圧印加をたとえばパルス電圧印加に変更し印加電 圧を高くすることによって、発熱体 26の上昇温度をさらに高くすることも可能である。
[0017] 本実施形態例にかかる切断装置 10では、適宜な変位手段(図示せず)によって、 切削工具 12と、ガラス板 W (被切断物)との間に、相対的な動きが発生される。すな わち、変位手段(図示せず)は、たとえばモータ(図示せず)およびァクチユエータ(図 示せず)を含む駆動機構(図示せず)で構成され、切削工具 12の切刃部 18および Z またはガラス板 W (被切断物)を、所望する切断部位に沿って相対的に変位させるも のである。この実施形態例では、たとえばガラス板 W (被切断物)を載置テーブル(図 示せず)等に固定し、切削工具 12を所望する切断部位 ωに沿って移動させるように 構成されている。
[0018] そのため、ガラス板 W (被切断物)の所望する切断部位 ωには、たとえば図 1に示す ように、所定の温度に加熱された切刃部 18の刃先部 20によって、当該刃先部 20の 形状に対応したたとえば V字形の溝部 40が形成されると同時に、当該切断部位 ωは 、加熱された刃先部 20によって、局所的に、且つ、温度が急激にガラス板 W (被切断 物)の軟ィ匕点以上に加熱される。そのため、当該刃先部 20が接触(当接)する部位の ガラス板 W (被切断物)が塑性変形し、塑性変形を起した部分は、切粉 cとなって、ガ ラス板 W (被切断物)から削り取られていき、遂には、所望する切断部位 ωに沿って、 ガラス板 W (被切断物)が切断 (狭義には、「切削」)される。
この場合、刃先部 20が押し当てられた接触(当接)部位は、熱膨張により、当該刃 先部 20が接触した部位を中心にその周辺に向かって圧縮応力が発生するが、当該 刃先部 20が接触した部位は、温度が急激にガラス板 W (被切断物)の軟化点以上に 加熱されるので、当該接触部位のガラス板 W (被切断物)が塑性変形し、それによつ て、圧縮応力が開放される。また、ガラス板 W (被切断物)自体が圧縮力に強い性質 を有しているので、当該接触部位の周辺に発生する圧縮応力によってガラス板 w( 被切断物)にクラック等の割れが生じることもな 、。
したがって、本実施形態例にかかる切断装置 10によれば、クラックの発生を防止し 、ガラス板 W (被切断物)の品質を損なうことなぐ正確に且つ安定してガラス板 W (被 切断物)を切断することができる。
[0019] また、本実施形態例にかかる切断装置 10では、温度検出センサ 22が温度制御手 段(図示せず)により制御されていて、この温度制御手段によって、切削工具 12でガ ラス板 W (被切断物)を切削中、切刃部 18の刃先部 20の温度が所定の温度に保持 されるように構成されている。この場合、ガラス板 W (被切断物)は、そのガラス材料の 種類によって物性が相違し、軟ィ匕点も違うため、切断対象となる被切断物の軟化点 に応じて、適宜、刃先部 20の温度設定が行われる。
[0020] さらに、本実施形態例にかかる切断装置 10では、切削工具 12でガラス板 W (被切 断物)を切削中、温度検出センサ 22からの検出信号に基づいて、切削工具 12とガラ ス板 W (被切断物)との間に発生する相対的な動きに係る速度および Zまたは被切 断物に対する切断刃の切り込み深さを制御する制御部(図示せず)が構成されてい る。この実施形態例では、制御部によって、切削工具 12の移動速度および溝部 40 の深さが適宜、制御され得るものとなっている。
[0021] そのため、本実施形態例にかかる切断装置 10では、ガラス板 W (被切断物)の軟ィ匕 点以上に加熱された刃先部 20を当該ガラス板 W (被切断物)の所望する切断部位 ω に接触させ、切削工具 12とガラス板 W (被切断物)との間に相対的な動きを作用させ ること〖こよって、所望するガラス板 W (被切断物)の切断部位 ωに沿って、衝撃を加え ることなく、ガラス板 W (被切断物)を正確に、且つ、安定して切削して切断することが できる。
[0022] また、温度制御手段によって、切断具 12でガラス板 W (被切断物)を切削中、切刃 部 18の刃先部 20の温度が所定の温度に保持されるので、溝部 40に沿って安定して 塑性変形を起させることができ、より一層、ガラス板 W (被切断物)を正確で且つ安定 して切断不良のな 、ように切削して切断することができる。
[0023] さらに、制御部によって、温度検出センサ 22からの検出信号に応じ、切削工具 12と ガラス板 w (被切断物)との間に発生する相対的な動きに係る速度および Zまたはガ ラス板 W (被切断物)に対する切刃部 18の刃先部 20の切り込み深さを適宜制御する ことができるので、切削工具 12でガラス板 W (被切断物)を切削している間じゅう、切 刃部 18の刃先部 20の温度条件と、切削工具 12およびガラス板 W (被切断物)の相 対的な動きとによる、ガラス板 W (被切断物)の切削条件が常に最適なものとなり、より 一層、ガラス板 W (被切断物)を正確で且つ安定して切断不良のないように切削して 切断することができる。
[0024] なお、上述した実施形態例では、切削工具 12の耐磨耗層 28が酸ィ匕チタン,窒化 チタン等で形成されているため、この切削工具 12でガラス板 W (被切断物)を切断し た場合、切断部位のガラス材料が刃先部 20に付着することを防止することが可能と なる。なお、ガラス材料の刃先部 20への付着を防止する方法としては、たとえば離形 オイルを刃先部 20の部位に塗布して、離形層を形成するようにしてもょ 、。
また、この切削工具 12では、被切断物を切削する部位としてのエッジ部を切刃部 1 8の頂端部に部分的に形成するようにした力 被切断物を切削する部位 (エッジ部)と しては、切刃部 18の V字形の稜線部全体にエッジ部を形成するようにしてもよい。
[0025] 図 9は、本願発明にかかる切断装置の他の実施形態の一例を示す要部斜視図解 図である。
図 9に示す実施形態例では、図 1〜図 8に示す上述の実施形態例と比べて、特に、 切削工具 12でガラス板 W (被切断物)を切削して切断するときに、切削工具 12の切 削経路に先立って、切削工具 12で切削しょうとする部位をレーザー等の加熱手段に よって予め予備的に加熱するように構成されている点で、相違するものである。なお、 図 9に示す実施形態例に力かる切断装置 10に用いられる切削工具 12は、上述した 実施形態例で示した切削工具 12と同様の構造を有し、同様の作用'効果を奏するも のである。
[0026] すなわち、図 9に示す本実施形態例に力かる切断装置 10は、上述した実施形態例 にかかる切断装置 10の構成にカ卩えて、加熱手段として、炭酸ガスレーザー等のレー ザ一器 50をさらに含む。このレーザー器 50は、レーザー光の出力をたとえば円筒レ ンズ (図示せず)ないし円筒鏡(図示せず)によって、ガラス板 W (被切断物)上でのレ 一ザ一照射像 (ビームスポット)がたとえば長楕円形となるレーザー光源 52を有する。 この場合、レーザー光源 52から照射されたレーザー光 54は、図 9に示すように、切 削工具 12の前方に長楕円形のビームスポット 56を形成し、当該ビームスポット 56が 予備的に加熱される領域となる。
[0027] したがって、図 9に示す実施形態例では、切削工具 12が切削しょうとする部位がビ 一ムスポット 56により予備的に加熱され、上述した実施形態例に比べて、より一層、 簡単に切削工具 12によってガラス板 W (被切断物)を軟ィ匕点以上の温度に加熱する ことが可能となる。そのため、図 9に示す本実施形態例に力かる切断装置 10では、図 1〜図 8に示した実施形態例に比べてさらに切削速度の向上と、切削性の安定化が 図れるものとなり、より一層安定した力卩ェ性を確保することができる。
[0028] 図 10は、本願発明にかかる切断装置の他の実施形態の一例を示す要部斜視図解 図である。
図 10に示す実施形態例では、図 1〜図 8および図 9に示す上述の各実施形態例と 比べて、特に、切削工具 12でガラス板 W (被切断物)を切削して切断するときに、切 削工具 12の切削経路に先立って、切削工具 12で切削しょうとする切断部位 (狭義に は、「切削部位」)を、レーザー等の加熱手段により加熱しながら、それと同時に、冷 却手段によって冷却するように構成されて 、る点で、相違するものである。
なお、図 10に示す実施形態例に力かる切断装置 10に用いられる切削工具 12は、 上述した各実施形態例で示した切削工具 12と同様の構造を有し、同様の作用'効果 を奏するものである。
[0029] すなわち、図 10に示す本実施形態例に力かる切断装置 10は、上述した図 9に示 す実施形態例に力かる切断装置 10の構成に加えて、さらに、冷却手段 60が構成さ れている。冷却手段 60は、たとえば吹き出し口 62aを有する冷却用気体吹き出しダク ト 62を含む。この冷却用気体吹き出しダクト 62は、冷却用の気体を移送するパイプ, チューブ等の移送管(図示せず)を有する管路(図示せず)を介して、冷却用の気体 となるたとえば圧縮空気を供給するコンプレッサやブロア等の圧縮空気供給源(図示 せず)に接続されている。図 10の実施形態例では、冷却用気体吹き出しダクト 62の 吹き出し口 62aが、切削工具 12で切削されるガラス板 W (被切断物)の切削部位の 長さに対応するように、その長手方向に延び設けられた一連の吹き出し口として形成 されている。
[0030] なお、冷却用気体としては、上述の圧縮空気以外にも、たとえば窒素ガスも適宜、 用いられ得るものである。また、冷却用気体吹き出しダクト 62の吹き出し口 62aとして は、図 10に示した一連の吹き出し口に限定されるものではなぐたとえばその吹き出 し口の長手方向に一列に配列された多数の吹き出しノズル(図示せず)で形成された ものであってもよい。
[0031] 図 10に示す実施形態例では、切削工具 12が切削しょうとする部位 (切断部位 ω ) がビームスポット 56により予備的に加熱されることによって、その加熱された部位 (切 断部位 ω )を切削工具 12により切削しながらより一層効率的に切り粉 cとして除去す ることができると共に、それに加えて、本実施形態例では、冷却手段 60を作動させる ことによって、冷却用気体吹き出しダクト 62の吹き出し口 62aから冷却用の圧縮空気 力 レーザー光 54によって加熱された部位 (切断部位 ω )に吹き付けられる。そのた め、図 10に示す実施形態例では、切削工具 12でガラス板 W (被切断物)の所定の切 削部位 ωを切削した場合、当該切削部位 ωカゝらガラス板 W (被切断物)の面方向へ の熱の拡散を防止することができる。
[0032] 一方、切断部位 ωが冷却手段 60で冷却されない場合には、レーザー光 54によつ て加熱された部位 (切断部位 ω )におけるガラス板 W (被切断物)内の熱の拡がりは、 たとえば図 11の (Α)に示すように、ガラス板 W (被切断物)の面方向へ拡散されてい く分布状態となる。
それに対して、図 10の切断装置 10に示すように、切削工具 12で切削しょうとする 部位 (切断部位 ω )が加熱手段により加熱されると同時に、冷却手段 60で冷却される 場合には、当該切断部位 ωにおける被切断物内の熱の拡がりは、当該被切断物の 面方向への拡散が防止されるものとなる。この場合、切断部位 ωが冷却手段 60で冷 却されるので、たとえば図 11の(Β)に示すように、当該熱の拡がりは、ガラス板 W (被 切断物)の厚み方向に延びる分布状態となる。
[0033] そのため、図 10に示す実施形態例にかかる切断装置 10では、図 1〜図 8および図 9に示した実施形態例で達成される効果に加えて、当該切断装置 10を、液晶(LCD )、プラズマディスプレイ(PDP)、有機 EL、フィールドェミッションディスプレイ(FED) 等のフラットパネルディスプレイ装置、デジタルマイクロミラーデバイス(DMD)、電気 泳動表示装置等の電気光学表示装置の大型基板の切断に適用した場合、ガラス基 板,セラミックス基板等のマザ一基板に形成された駆動電極,共通電極等の各種電 極、液晶、シール材、接着剤などに悪影響を与える熱の基板の面方向への拡散を防 止することができる。
[0034] 図 12の (A)は図 10の実施形態例に示す切断装置を適用して有効な液晶パネル の一例を示す要部拡大断面図解図であり、図 12の(B)は当該切断装置を用いて (A )に示す液晶パネルを切断する途中を示す要部拡大断面図解図であり、図 12の(C) は当該切断装置を用いて切断された状態の液晶パネルの要部拡大断面図解図であ る。
この液晶パネル 70は、概略的に言えば、共通電極 72aを有する上側ガラス基板 72 と、駆動電極 74aを有する下側ガラス基板 74との間に、液晶 76が榭脂等のシール材 78で封入されて構成されている。単品サイズの 1枚の液晶パネル 70は、当該単品サ ィズの液晶パネル 70を各々「多数枚取り」することができる大型基板に、共通電極 72 a,駆動電極 74a,その他の電極(図示せず)を含む各種電極パターンの形成工程を 行い、電極パターンが形成された複数の大型基板を貼り合せた後、図 10に示す切 断装置 10によって、所望する大きさに切断して単品の液晶パネル 70が多数枚製造 されるちのである。
[0035] この液晶パネル 70では、上側ガラス基板 72および下側ガラス基板 74の所望する 切断部位 ωが、図 10に示す切断装置 10で切断される。図 12の(Β)に示すように、 先ず、下側ガラス基板 74の切断部位 ωが、切削工具 12の刃先部 20に対向して臨 むようにたとえば載置台 80に載置 ·固定された後、切削工具 12により切断される。そ して、下側ガラス基板 74の切断が終了すると、上側ガラス基板 72の切断部位 ωが、 切削工具 12の刃先部 20に対向して臨むように載置台 80に載置 ·固定され、切断部 位 ωに沿って同様の方法で切断されるものである。
この場合、図 10に示す切断装置 10では、既に述べたように、当該切削工具 12で 切削した部位および当該切削工具 12で切削しょうとする部位力 冷却手段 60によつ て冷却されるため、共通電極 72a、駆動電極 74a、液晶 76、シール材 78および接着 剤(図示せず)等に悪影響を与える熱の上側ガラス基板 72および下側ガラス基板 74 の面方向への拡散を防止することができる。
そのため、上側ガラス基板 72および下側ガラス基板 74の面方向に拡散する熱の 悪影響によって当該ガラス板 W (被切断物)の面内方向にクラックが生じたり、溝部 4 0に沿って当該ガラス板 W (被切断物)が部分的に剥がれる、所謂、ガラス片の剥が れが生じるなど、製品となる液晶パネルの性能を低下させるという不具合を防止する ことができる。したがって、図 10に示す切断装置 10が適用された液晶パネルの製造 工程にお ヽては、製品となる液晶パネルのガラス基板の性能を低下させることのな!/ヽ 、効率のよい切断方法が得られるものとなる。

Claims

請求の範囲
[1] ガラス、セラミック、半導体材料等の脆性材料で形成された被切断物を切断する切 断装置であって、
前記被切断物の所望する切断部位に当接可能に配置される切削工具、 前記切断部位に沿って、前記切削工具と前記被切断物との間に相対的な動きを発 生させるための変位手段を含み、
前記切削工具は、
前記被切断物を切削するエッジ部を備えた切刃部、および
前記切刃部を前記被切断物の軟化点以上の高い温度で加熱させる発熱体を含 み、
前記変位手段によって、前記被切断物と、前記発熱体により加熱された前記切刃 部との間に、相対的な動きを発生させることで、前記被切断物の前記切断部位が切 肖 IJされて切断されることを特徴とする、切断装置。
[2] 前記切削工具で前記被切断物を切削中、前記切刃部の温度が所定の温度に保た れるように、前記発熱体の温度を制御する温度制御手段をさらに含むことを特徴とす る、請求項 1に記載の切断装置。
[3] 前記温度制御手段は、前記発熱体の近傍に配設され、前記切刃部の前記エッジ 部の温度を検出する温度検出センサを含み、
前記切削工具で前記被切断物を切削中、前記温度検出センサからの検出信号に 基づいて、
前記切削工具と前記被切断物との間に発生する相対的な動きに係る速度および Zまたは前記被切断物に対する前記切刃部の切り込み深さを制御する制御部をさら に含むことを特徴とする、請求項 2に記載の切断装置。
[4] 前記切削工具で切削しょうとする部位を予め予備的に加熱する加熱手段をさらに 含む、請求項 1〜請求項 3のいずれかに記載の切断装置。
[5] 前記加熱手段により加熱される加熱部位を冷却する冷却手段をさらに含み、前記 切削工具で切削しょうとする部位を、前記加熱手段で加熱しながら、且つ、前記冷却 手段で冷却しながら、切削することを特徴とする、請求項 4に記載の切断装置。
PCT/JP2007/063969 2006-07-20 2007-07-13 appareil de découpe WO2008010457A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008525846A JP4414473B2 (ja) 2006-07-20 2007-07-13 切断方法
CN2007800274974A CN101489746B (zh) 2006-07-20 2007-07-13 切割装置
TW096126441A TW200812924A (en) 2006-07-20 2007-07-19 Cutting apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-198666 2006-07-20
JP2006198666 2006-07-20
PCT/JP2006/316192 WO2008010303A1 (fr) 2006-07-20 2006-08-17 Dispositif de coupe
JPPCT/JP2006/316192 2006-08-17

Publications (1)

Publication Number Publication Date
WO2008010457A1 true WO2008010457A1 (fr) 2008-01-24

Family

ID=38956790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063969 WO2008010457A1 (fr) 2006-07-20 2007-07-13 appareil de découpe

Country Status (1)

Country Link
WO (1) WO2008010457A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126229A (zh) * 2010-10-27 2011-07-20 意力(广州)电子科技有限公司 用于触摸屏半成品一次切割成型的切割机
EP2873481A1 (en) * 2013-11-13 2015-05-20 Asahi Glass Co., Ltd. A method and an apparatus for forming a groove in a substrate using laser or arc heating spot
JP2021080134A (ja) * 2019-11-20 2021-05-27 有限会社アリューズ 加工装置および加工方法
CN114566462A (zh) * 2022-02-24 2022-05-31 Tcl华星光电技术有限公司 显示面板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388690U (ja) * 1989-12-25 1991-09-10
JPH08276398A (ja) * 1995-04-10 1996-10-22 Ricoh Co Ltd 基板分割方法及び基板分割装置
JP2001079794A (ja) * 1999-09-07 2001-03-27 Ricoh Co Ltd 液晶基板シート切断機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388690U (ja) * 1989-12-25 1991-09-10
JPH08276398A (ja) * 1995-04-10 1996-10-22 Ricoh Co Ltd 基板分割方法及び基板分割装置
JP2001079794A (ja) * 1999-09-07 2001-03-27 Ricoh Co Ltd 液晶基板シート切断機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126229A (zh) * 2010-10-27 2011-07-20 意力(广州)电子科技有限公司 用于触摸屏半成品一次切割成型的切割机
EP2873481A1 (en) * 2013-11-13 2015-05-20 Asahi Glass Co., Ltd. A method and an apparatus for forming a groove in a substrate using laser or arc heating spot
JP2021080134A (ja) * 2019-11-20 2021-05-27 有限会社アリューズ 加工装置および加工方法
CN114566462A (zh) * 2022-02-24 2022-05-31 Tcl华星光电技术有限公司 显示面板及其制备方法

Similar Documents

Publication Publication Date Title
JP4414473B2 (ja) 切断方法
TWI385047B (zh) Method for cutting brittle material substrates
US6713720B2 (en) Method for cutting a non-metallic substrate
TWI629249B (zh) Method for cutting tempered glass sheets
TWI426057B (zh) The method of stripping angle of brittle material substrate
US6252197B1 (en) Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
JP5609870B2 (ja) 脆性材料基板の割断方法及び割断装置並びにその割断方法により得られる車両用窓ガラス
JP6526396B2 (ja) 透明材料の内部でレーザーフィラメンテーションを実行する方法および装置
US6259058B1 (en) Apparatus for separating non-metallic substrates
JP3895179B2 (ja) 非金属基板を分離する方法及び装置
TWI658015B (zh) 在撓性薄玻璃中切割多個半徑的方法和設備與以其製造之玻璃基板
JP2008127223A (ja) フラットパネルディスプレィ薄板の割断方法
JP2008115067A (ja) フラットパネルディスプレィ薄板の割断方法
WO2004014625A1 (ja) 脆性材料基板のスクライブ方法およびスクライブ装置
WO2007020835A1 (ja) 脆性材料の割断加工システム及びその方法
JP2000281375A (ja) ガラス基板の割断方法及び割断装置
US20080053973A1 (en) Method and apparatus for laser machining
JP2010264471A (ja) 広領域非均一温度分布による脆性材料の熱応力割断
WO2008010457A1 (fr) appareil de découpe
JP2015030661A (ja) ガラス基板のブレーク方法
JP2004035315A (ja) 脆性材料基板の分断方法および脆性材料基板分断装置
JP2009262408A (ja) 脆性材料基板のスクライブ方法および装置
JP2006147818A (ja) 基板割断方法
JP2008062547A (ja) レーザ照射による脆性材板割断の方法および装置。
JP2006150642A (ja) セル及びセルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027497.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097000370

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008525846

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790750

Country of ref document: EP

Kind code of ref document: A1