WO2008009597A2 - Isoindolinpigmente - Google Patents

Isoindolinpigmente Download PDF

Info

Publication number
WO2008009597A2
WO2008009597A2 PCT/EP2007/057078 EP2007057078W WO2008009597A2 WO 2008009597 A2 WO2008009597 A2 WO 2008009597A2 EP 2007057078 W EP2007057078 W EP 2007057078W WO 2008009597 A2 WO2008009597 A2 WO 2008009597A2
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
isoindoline pigments
plastics
pigments
formula
Prior art date
Application number
PCT/EP2007/057078
Other languages
English (en)
French (fr)
Other versions
WO2008009597A3 (de
Inventor
Johannes LÖBEL
Andreas Stohr
Peter BÖTTCHER
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2009519935A priority Critical patent/JP5447833B2/ja
Priority to CN200780027060.0A priority patent/CN101490178B/zh
Priority to EP07787352A priority patent/EP2044157B1/de
Priority to US12/373,639 priority patent/US8026361B2/en
Priority to AT07787352T priority patent/ATE481454T1/de
Priority to BRPI0714364-8A priority patent/BRPI0714364A2/pt
Priority to DE502007005064T priority patent/DE502007005064D1/de
Publication of WO2008009597A2 publication Critical patent/WO2008009597A2/de
Publication of WO2008009597A3 publication Critical patent/WO2008009597A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0014Influencing the physical properties by treatment with a liquid, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/04Isoindoline dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0096Purification; Precipitation; Filtration

Definitions

  • the present description relates to isoindoline pigments of general formula I.
  • R 1 is C 1 -C 4 -alkyl
  • R 2 is hydrogen or CC-alkyl
  • the invention relates to the preparation of the isoindoline pigments and their use for coloring high molecular weight organic materials of natural and synthetic origin and plastics which are colored with the isoindoline pigments.
  • inorganic pigments e.g. Cl. Pigment Yellow 34 or 184
  • organic pigments e.g. Quinophthalone pigments, such as Cl. Pigment Yellow 138
  • isoindoline pigments such as Cl. Pigment Yellow 139
  • azo pigments such as Cl. Pigment Yellow 74, 151 or 180
  • Pigment Yellow 185 Isoindoline pigments, in particular Cl, already known for about 30 years. Pigment Yellow 185, are therefore of increasing interest. The powder pigments available on the market for about 25 years based on Cl. However, Pigment Yellow 185 can only be used as printing inks and lacquer pigments. Due to their dispersing hardness they are not suitable for direct use in plastics, but must first be converted into preparations in a complex manner. Even in the manufacturing process described in the patent literature is no Cl. Pigment Yellow 185, which has the properties required for direct use in plastics.
  • DE-A-29 14 086 describes the preparation of the isoindoling pigments of the present formula I in an aqueous medium, in which, in a first step, di-iminoisoindoline (II)
  • the isoindoline pigment I is strong in color, but can not be used directly in plastics due to its dispersion hardness of about 50.
  • DE-A-27 57 982 produces isoindoline pigments having a carbonamido or (p-chloro) phenylcarbonamido group (radical R 1 : hydrogen or (p-chloro) phenyl) according to this one-pot process.
  • the isoindoline pigments thus obtained are described as being readily dispersible in plastics.
  • a thermal aftertreatment of the aqueous reaction mixture at 1 10 to 140 ° C is recommended.
  • the invention therefore an object of the invention to provide isoindoline pigments, which are characterized by overall advantageous application properties and in particular are easy to disperse in plastics.
  • R 1 is C 1 -C 4 -alkyl
  • R 2 is hydrogen or C 1 -C 4 -alkyl, which require a dispersion hardness ⁇ 10 in LDPE and a whitening ratio of> 5 to set the standard color depth 1/3.
  • isoindoline pigments I has been found for coloring high molecular weight organic materials of natural and synthetic origin.
  • the isoindoline pigments I according to the invention are distinguished by outstanding application properties. Of particular importance is Cl. Pigment Yellow 185 (R 1 : methyl, R 2 : hydrogen).
  • the isoindoline pigments I according to the invention are very readily dispersible in a wide variety of application media, in particular also in plastics, and have a dispersion hardness of ⁇ 10 (determined in accordance with DIN EN 13900) in LDPE.
  • the color intensity is defined according to the invention by the whitening ratio required for setting the standard color depth ST 1/3 (DIN 53235-1).
  • the lightening ratio in LDPE is> 5, preferably> 5.5 and in PVC> 9, preferably> 10.5.
  • the isoindoline pigments I according to the invention generally have an average primary particle size of from 50 to 180 nm.
  • the BET surface area of the isoindoline pigments I according to the invention is usually from 25 to 40 m 2 / g.
  • the isoindoline pigments I according to the invention may contain minor amounts of unreacted half-condensate IV and saponified half-condensate (saponification of the imine function to the carbonyl group).
  • the proportion of these secondary components is generally less than 20% by weight, in particular less than 15% by weight.
  • the isoindoline pigments I according to the invention are advantageously obtainable by the likewise inventive preparation process in which the crude pigment obtained in the pigment synthesis is subjected to a crystallization process in the presence of an agent which solubilizes the pigment particles.
  • the synthesis of the crude pigment can be carried out according to the known methods with intermediate isolation of the semicondensate IV (variant A) or as a one-pot synthesis (variant B), variant B being preferred.
  • organic solvents are used as the reaction medium.
  • Protic solvents in particular aliphatic alcohols, such as methanol, ethanol, isopropanol, isobutanol, amyl alcohol, ethylene glycol and ethylene glycol monoethyl ether, as well as aprotic solvents, such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetonitrile, dimethylsulfoxide, dioxane are suitable for the first condensation step , Sulfolane, dichlorobenzene and nitrobenzene, with the alcoholic solvents being preferred.
  • the second condensation step is preferably carried out in aliphatic carboxylic acids, such as formic acid, acetic acid, propionic acid and mono- and dichloroacetic acid.
  • the reaction temperature is usually 40 to 120 ° C in the first stage and 60 to 180 ° C in the second stage.
  • variant B is carried out in an aqueous medium, preferably in water or in mixtures of water and ethylene glycol. If desired, surfactants may also be added.
  • the first condensation step is usually carried out at 10 to 180 ° C, in particular at 10 to 90 ° C, and a pH> 7, in particular from 8 to 11, performed.
  • the further reaction of the half-condensate is usually carried out at 40 to 150 ° C, especially at 40 to 100 ° C, and a pH ⁇ 7, in particular from 1 to 3, made.
  • the adjustment of the pH is generally carried out by addition of ammonia, preferably concentrated aqueous ammonia solutions, or of inorganic acids, preferably in dilute form, with sulfuric acid, phosphoric acid and hydrochloric acid being preferred.
  • the preparation of the crude pigment according to variant B is particularly advantageous if the crystallization process according to the invention is carried out by thermal treatment of the crude pigment in aqueous suspension.
  • the crystallization can take place without intermediate isolation of the crude pigment directly in the suspension obtained in the synthesis.
  • the crude pigment can also be isolated and optionally purified, and then dried and comminuted.
  • the crude pigment is heated to a temperature T in the range from 90 to 180 ° C. for 1 to 60 hours.
  • the crystallization process according to the invention is generally carried out in an acidic medium or, in particular, if the reaction suspension obtained in the synthesis and already having a pH of less than 7 is used.
  • Acetic acid is not suitable for adjusting the pH.
  • organic acids are less suitable than inorganic acids, with sulfuric acid, phosphoric acid and hydrochloric acid being preferred as the inorganic acid.
  • the weight ratio of aqueous medium to crude pigment is from 5: 1 to 50: 1, in particular from 10: 1 to 40: 1.
  • Organic solvents may also be added to the aqueous suspension.
  • Suitable solvents are e.g. Alcohols, ether alcohols, ethers, ketones, carboxylic acid amides and carboxylic acid esters and mixtures thereof. Specific examples are:
  • aliphatic and araliphatic, monohydric or polyhydric alcohols having up to 10 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, amyl alcohol, isoamyl alcohol, hexanol, isohexanol, heptanol, octanol, 2-ethylhexanol, ethylene glycol, 1, 2 and 1, 3-propylene glycol, cyclohexanol, methylcyclohexanol, benzyl alcohol and 2-phenylethanol;
  • Mono- and di-C 2 -C 3 -alkylene glycol mono-C 1 -C 4 -alkyl ethers such as ethylene glycol monomethyl, -ethyl and -butyl ethers and diethylene glycol monomethyl and -ethyl ethers; acyclic and cyclic aliphatic ethers having up to 10 carbon atoms, such as dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl and diethyl ether;
  • acyclic and cyclic aliphatic and araliphatic ketones of up to 10 carbon atoms such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, diethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, acetophenone and propiophenone;
  • Amides and C 1 -C 4 -alkylamides of aliphatic carboxylic acids having up to 4 carbon atoms such as formamide, N, N-dimethyl and N, N-diethylformamide, N, N-dimethyl and N, N-diethylacetamide, N, N-dimethyl and N, N-diethylpropionamide and N-methylpyrrolidone;
  • Esters of aromatic carboxylic acids having a total of up to 12 carbon atoms such as dimethyl phthalate and diethyl phthalate.
  • Particularly preferred solvents are glycols and their mono- and dialkyl ethers.
  • the weight ratio of water to organic solvent is usually 99: 1 to 50:50, more preferably 95: 5 to 80:20.
  • the crystallization process can be carried out by dispersing the crude pigment in aqueous medium or else simply by letting it remain.
  • the mixture of crude pigment and aqueous medium is stirred.
  • the isoindoline pigments I according to the invention can, as usual, be isolated by filtration, washing and drying.
  • the dried product is expediently subjected to deagglomeration grinding, for example in rotor, ring gear or jet mills.
  • the aqueous filter cake can also be freeze-dried or spray-dried.
  • suitable grinding aids are water-soluble salts of weak inorganic acids, in particular alkali metal carbonates and bicarbonates, such as sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate.
  • the weight ratio of grinding aid to crude pigment is 10: 1 to 1: 1, preferably 4: 1 to 1: 1.
  • Suitable grinding machines are, for example, ball mills, vibrating mills, planetary mills and attritors.
  • Suitable media are e.g. Steel balls, silicon / aluminum / zirconium oxide beads, glass beads and agate beads, which usually have a diameter of 0.1 to 5 cm.
  • the milling is preferably carried out until the millbase has an average primary particle size of ⁇ 50 nm, which generally lasts 1 to 40 hours, in particular 4 to 20 hours.
  • the millbase is then stirred to remove the grinding aid in water, filtered off, washed and separated from the grinding media.
  • the ground material can be subjected to a post-treatment with hydrochloric acid to remove any existing iron abrasion.
  • the crystallization process may also be advantageous to carry out the crystallization process in the presence of pigment synergists, with usually about 0.01 to 0.1 g of synergist per g of crude pigment being used. If a pre-shredding step is carried out, the pigment synergist can also be added here.
  • Pigment synergists are compounds which contain all or part of the pigment chromophore in their molecular structure.
  • the structure of the pigment synergist does not have to agree with the structure of the pigment whose crystallization is to be influenced.
  • pigment synergists examples include the quinophthalone derivatives known from WO-A-02/00643, which differ from Cl.
  • Pigment Yellow 138, one or more sulfonic acid functions on the naphthalene rings having pigment synergists are preferred.
  • pigment synergists may additionally have a positive effect on the dispersibility of the isoindoline pigments I according to the invention in the application medium.
  • the dispersibility of the isoindoline pigments I according to the invention can also be improved by contacting them with conventional additives.
  • aromatic sulfonic acid derivatives such as naphthalenesulfonic acids and their salts, and additives based on rosin derivatives
  • additives based on natural and synthetic waxes are particularly suitable for plastic coloration.
  • waxes based on polyethylene and of polypropylene which may also be oxidized, of polyethylene oxide, of ethoxylated fatty alcohols, of polyethylene oxide / polypropylene oxide / block copolymers, of fatty acid esters (eg montan waxes), of fatty acid amides and of ethylene / vinyl acetate Called copolymers.
  • additives When such additives are used, their amount is usually from 2 to 30% by weight, based on the pigment.
  • the isolindoline pigments I according to the invention are outstandingly suitable for coloring high molecular weight organic materials of natural and synthetic origin.
  • Examples of such materials include plastics, powder coatings, inks, toners and color filters.
  • isoindoline pigments I according to the invention for the coloring of plastics.
  • Polyolefins such as polyethylene, polypropylene, polybutylene, polyisobutylene, and poly-4-methyl-1-pentene, polyolefin copolymers, such as Luflexen ® (Basell), Nordel ® (Dow) and Engage ® (Du Pont), cycloolefin copolymers such as Topas ® (Celanese ); Polytetrafluoroethylene (PTFE), ethylene / tetrafluoroethylene copolymers (ETFE); Polyvinylidene difluoride (PVDF), polyvinyl chloride (PVC), polyvinylidene chloride, polyvinyl alcohols, polyvinyl esters, such as polyvinyl acetate, vinyl ester copolymers, such as ethylene / vinyl acetate copolymers (EVA), Polyvinyl alkanals such as polyvinyl acetal and polyvinyl butyral (PVB), polyvinyl ket
  • the incorporation of the isoindoline pigments I according to the invention into the plastics can be carried out by any known method, e.g. by co-extruding (preferably with a single or twin screw extruder), rolling, kneading, pressing or grinding, which plastics can be processed into plastic moldings, continuous profiles, sheets, films, fibers, films and coatings.
  • polystyrene resin e.g. polystyrene resin
  • one or more polyolefin waxes or mixtures thereof to achieve homogeneous, high-color colorations in low-melting polymers (eg the most common polyolefins) or those with low melt viscosity (eg plasticized PVC and PVB as well as blowable PET).
  • carrier polymer (blend) used in the polymer-based pigment preparations (“masterbatch", "compound") is generally identical to the high molecular weight synthetic organic material to be colored
  • homopolymeric and copolymeric PE and PP waxes are used to prepare polyolefin wax-based pigment preparations as support material , as
  • Luwax ® A ethylene homopolymer; BASF
  • Luwax EVA ethylene-vinyl acetate copoly merisat; BASF
  • Licowax PP 230 ® propylene homopolymer; Clariant
  • the pigment was filtered off and washed with 5 I 60 ° C warm water (conductivity of the effluent water ⁇ 100 ⁇ S).
  • the moist presscake was dried in a circulating air drying cabinet at 70 ° C. and ground for deagglomeration in a toothed-wheel mill (Ultrazentrifugalmühle ZM 100, Retsch, 12er sprocket, 1, 0 mm sieve, 10,000 rev / min). The yield was 100%.
  • Pigment Yellow 185 (pigment content: 5.4% by weight) were heated to 100 ° C. (reflux temperature) with stirring after addition of 100 g of ethylene glycol monobutyl ether and stirred at this temperature for 12 h.
  • the granules formed after cooling for one hour at 70 ° C. were filtered off and washed with 5 l of 60 ° C. warm water (conductivity of the effluent water ⁇ 50 ⁇ S).
  • the moist presscake was dried in a convection oven at 120 ° C and ground for deagglomeration as in Example 1. The yield was 90%.
  • Pigment Yellow 185 (pigment content: 5.4% by weight) were heated in a 2.4 l pressure vessel (Juchheim) with an anchor stirrer (rotational speed 150 rpm) to 130 ° C. in the course of 2 hours and dried for 3 h stirred at this temperature.
  • the pigment was filtered off and washed with 5 I 60 ° C warm water (conductivity of the effluent water ⁇ 50 ⁇ S).
  • the moist presscake was dried in a convection oven at 70 ° C and ground for deagglomeration as in Example 1. The yield was 100%.
  • the pigment was filtered off and washed with 5 I 60 ° C warm water (conductivity of the effluent water ⁇ 50 ⁇ S).
  • the moist presscake was dried in a circulating air drying oven at 70 ° C. and ground for deagglomeration as in Example 1. The yield was 100%.
  • the resulting pigments were incorporated in polyethylene (LDPE) and flexible PVC.
  • the white colored LDPE granules were submitted at 150 ° C ( ⁇ 2 ° C) roller temperature. After fur formation, the pigment was added in portions and processed at a roll temperature of 150 ° C ( ⁇ 2 ° C) and 250 roll revolutions to a 0.4 mm ( ⁇ 10%) rolled skin. After cutting off about 10 g (rolled layer 1), the remaining rolled skin was cut in half and, after superimposing the two halves, a further 220 roll revolutions were rolled at 150 ° C. (2 ° C.) (rolled layer 2).
  • the resulting blend was processed on a Collin mill at 150 ° C ( ⁇ 2 ° C) roll temperature and 165 roll revolutions to produce a 0.4 mm ( ⁇ 10%) diameter rolled sheet. After cutting off about 10 g (rolled skin 1) was the remaining Rolled skin halved and after superimposing the two halves rolled another 225 roller revolutions at 150 0 C ( ⁇ 2 ° C) rolled (skin 2).
  • the whitening ratio AV was according to DIN 53235-1 by matching the color depth of the sample to be tested to the standard color depth 1/3 according to the FIFTE method.
  • the CIELAB color values Hue [°], Chroma C * , L * (lightness), a * (red and green) and b * (blue or yellow) were changed to match the color depth DIN 6174 (standard illuminant D65, 10 ° normal viewer) determined.
  • the dispersion hardness (DH) was calculated from the whitening ratios obtained in the measurement according to the following formula:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Indole Compounds (AREA)

Abstract

Isoindolinpigmente der allgemeinen Formel (I), in der die Variablen folgende Bedeutung haben: R1 C1-C4-Alkyl; R2 Wasserstoff oder C1-C4-Alkyl, die in LDPE eine Dispergierhärte ≤10 aufweisen und zur Einstellung der Standardfarbtiefe 1/3 ein Aufhellverhältnis von ≥ 5 erfordern.

Description

lsoindolinpigmente
Beschreibung
Die vorliegende Beschreibung betrifft lsoindolinpigmente der allgemeinen Formel I
Figure imgf000002_0001
in der die Variablen folgende Bedeutung haben
R1 Ci-C4-Alkyl;
R2 Wasserstoff oder C-C -Alkyl,
die in LDPE eine Dispergierhärte < 10 aufweisen und zur Einstellung der Standardfarb- tiefe 1/3 ein Aufhellverhältnis von > 5 erfordern.
Außerdem betrifft die Erfindung die Herstellung der lsoindolinpigmente und ihre Verwendung zur Einfärbung von hochmolekularen organischen Materialien natürlicher und synthetischer Herkunft sowie Kunststoffe, die mit den Isoindolinpigmenten eingefärbt sind.
Um Kunststoffe, Lacke und Druckfarben gelb einzufärben, werden üblicherweise anorganische Pigmente, z.B. Cl. Pigment Yellow 34 oder 184, oder organische Pigmente, z.B. Chinophthalonpigmente, wie Cl. Pigment Yellow 138, Isoindolinpigmente, wie Cl. Pigment Yellow 139, oder Azopigmente, wie Cl. Pigment Yellow 74, 151 oder 180, eingesetzt. Die Nachfrage nach schwermetall- und halogenfreien Farbmitteln, insbesondere Pigmenten, ist in letzter Zeit aus Umweltgesichtspunkten stark angestiegen.
Isoindolinpigmente, insbesondere das schon seit etwa 30 Jahren bekannte Cl. Pig- ment Yellow 185, sind daher von zunehmendem Interesse. Die seit etwa 25 Jahren auf dem Markt verfügbaren Pulverpigmente auf Basis von Cl. Pigment Yellow 185 können jedoch nur als Druckfarben- und Lackpigmente eingesetzt werden. Aufgrund ihrer Dispergierhärte sind sie nicht für die direkte Anwendung in Kunststoffen geeignet, sondern müssen zunächst in aufwendiger Weise in Präparationen überführt werden. Auch bei den in der Patentliteratur beschriebenen Herstellungsverfahren wird kein Cl. Pigment Yellow 185 erhalten, das die für den direkten Einsatz in Kunststoffen erforderlichen Eigenschaften aufweist.
So wird in der DE-A-29 14 086 die Herstellung der Isoindolingpigmente der vorliegenden Formel I in wäßrigem Medium beschrieben, bei der in einem ersten Schritt Di- iminoisoindolin (II)
Figure imgf000003_0001
durch Kondensation mit einem Cyanacetamid der Formel
NC— CH- CONHR1
in alkalisch-wäßrigem Medium bei 25 bis 90°C in ein Halbkondensat der Formel IV
Figure imgf000003_0002
überführt wird, das ohne Zwischenisolierung nach Sauerstellen des Reaktionsge- mischs bei Temperaturen von 70 bis 90°C mit einer Barbitursäure der Formel V
Figure imgf000003_0003
zum Isoindolinpigment I umgesetzt wird.
Nach 2 bis 3stündigem Nachrühren des Reaktionsgemischs bei 90 bis 95°C wird das Isoindolinpigment I dann isoliert. Das auf diese Weise erhaltene Isoindolinpigment I ist farbstark, kann jedoch aufgrund seiner Dispergierhärte von etwa 50 nicht direkt in Kunststoffen eingesetzt werden.
In der DE-A-27 57 982 erfolgt die Herstellung von Isoindolinpigmenten mit einer Car- bonamido- oder (p-Chlor)Phenylcarbonamidogruppe (Rest R1: Wasserstoff oder (p- Chlor)Phenyl) nach diesem Eintopfverfahren. Die so erhaltenen Isoindolinpigmente werden als in Kunststoffen leicht dispergierbar beschrieben. Um ihre Licht- und Wetterechtheit zu erhöhen, wird eine thermische Nachbehandlung des wäßrigen Reaktions- gemischs bei 1 10 bis 140°C empfohlen.
Gemäß der in der EP-A-29 007 beschriebenen Vorgehensweise erfolgt die Herstellung der Isoindolinpigmente der vorliegenden Formel I, wie auch aus der DE-A-16 70 748 bekannt, zweistufig durch erste Kondensation zum Halbkondensat IV in Methanol, Zwischenisolierung und weitere Umsetzung in verdünnter Essigsäure. Um gröbere, deckendere Pigmentformen herzustellen, wird auch eine anschließende thermische Behandlung des Reaktionsgemischs vorgeschlagen. Wenn man diese Formierung, wie in den Beispielen beschrieben, durch 3stündiges Erhitzen des Rohpigments in wäßriger Essigsäure auf 120°C vornimmt, wird jedoch ein sehr farbschwaches Cl. Pigment Yellow 185 erhalten.
Der Erfindung lag daher die Aufgabe zugrunde, Isoindolinpigmente bereitzustellen, die sich durch insgesamt vorteilhafte Anwendungseigenschaften auszeichnen und insbesondere auch leicht in Kunststoffen zu dispergieren sind.
Demgemäß wurden die Isoindolinpigmente der allgemeinen Formel I
Figure imgf000004_0001
gefunden, in der die Variablen folgende Bedeutung haben:
R1 Ci-C4-Alkyl;
R2 Wasserstoff oder Ci-C4-Alkyl, die in LDPE eine Dispergierhärte < 10 und zur Einstellung der Standardfarbtiefe 1/3 ein Aufhellverhältnis von > 5 erfordern.
Außerdem wurde ein Verfahren zur Herstellung der Isoindolinpigmente I gefunden, das dadurch gekennzeichnet ist, daß man das bei der Pigmentsynthese anfallende Rohpigment einem Kristallisationsprozeß in Gegenwart eines die Pigmentteilchen nur anlösenden Mittels unterzieht.
Schließlich wurde die Verwendung der Isoindolinpigmente I zur Einfärbung von hoch- molekularen organischen Materialien natürlicher und synthetischer Herkunft gefunden.
Die erfindungsgemäßen Isoindolinpigmente I zeichnen sich durch hervorragende Anwendungseigenschaften aus. Von besonderer Bedeutung ist dabei Cl. Pigment Yellow 185 (R1: Methyl, R2: Wasserstoff).
Die erfindungsgemäßen Isoindolinpigmente I sind in den verschiedensten Anwendungsmedien, insbesondere auch in Kunststoffen, sehr gut dispergierbar und haben in LDPE eine Dispergierhärte von < 10 (bestimmt in Anlehnung an DIN EN 13900).
Gleichzeitig weisen sie hervorragende koloristische Eigenschaften, vor allem auch hohe Farbstärke, auf. Die Farbstärke wird erfindungsgemäß durch das zur Einstellung der Standardfarbtiefe ST 1/3 (DIN 53235-1 ) erforderliche Aufhellverhältnis definiert. So liegt das Aufhellverhältnis in LDPE bei > 5, bevorzugt bei > 5,5 und in PVC bei > 9, bevorzugt bei > 10,5.
Die erfindungsgemäßen Isoindolinpigmente I weisen in der Regel eine mittlere Primärteilchengröße von 50 bis 180 nm auf.
Die BET-Oberfläche der erfindungsgemäßen Isoindolinpigmente I liegt üblicherweise bei 25 bis 40 m2/g.
Die erfindungsgemäßen Isoindolinpigmente I können untergeordnete Mengen an nicht umgesetztem Halbkondensat IV und verseiftem Halbkondensat (Verseifung der Imin- funktion zur Carbonylgruppe) enthalten. Der Anteil dieser Nebenkomponenten liegt in der Summe im allgemeinen unter 20 Gew.-%, insbesondere unter 15 Gew.-%.
Die erfindungsgemäßen Isoindolinpigmente I sind vorteilhaft nach dem ebenfalls erfindungsgemäßen Herstellungsverfahren erhältlich, bei dem das bei der Pigmentsynthese anfallende Rohpigment einem Kristallisationsprozeß in Gegenwart eines die Pigment- teilchen nur anlösenden Mittels unterzogen wird. Die Synthese des Rohpigments kann dabei nach den bekannten Verfahren unter Zwischenisolierung des Halbkondensats IV (Variante A) oder als Eintopfsynthese (Variante B) erfolgen, wobei die Variante B bevorzugt ist.
Bei Variante A werden organische Lösungsmittel als Reaktionsmedium eingesetzt. Für den ersten Kondensationsschritt eignen sich sowohl protische Lösungsmittel, insbesondere aliphatische Alkohole, wie Methanol, Ethanol, Isopropanol, Isobutanol, Amylalkohol, Ethylenglykol und Ethylenglykolmonoethylether, als auch aprotische Lösungsmittel, wie Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Acetonitril, Di- methylsulfoxid, Dioxan, Sulfolan, Dichlorbenzol und Nitrobenzol, wobei die alkoholischen Lösungsmittel bevorzugt sind. Der zweite Kondensationsschritt erfolgt vorzugsweise in aliphatischen Carbonsäuren, wie Ameisensäure, Essigsäure, Propionsäure und Mono- und Dichloressigsäure. Die Reaktionstemperatur beträgt üblicherweise in der ersten Stufe 40 bis 120°C und in der zweiten Stufe 60 bis 180°C.
Bei Variante B wird in wäßrigem Medium gearbeitet, vorzugsweise in Wasser oder auch in Mischungen von Wasser und Ethylenglykol. Gewünschtenfalls können auch oberflächenaktive Mittel zugesetzt werden. Der erste Kondensationsschritt wird in der Regel bei 10 bis 180°C, insbesondere bei 10 bis 90°C, und einem pH-Wert > 7, insbe- sondere von 8 bis 11 , durchgeführt. Die weitere Umsetzung des Halbkondensats wird üblicherweise bei 40 bis 150°C, vor allem bei 40 bis 100°C, und einem pH-Wert < 7, insbesondere von 1 bis 3, vorgenommen. Die Einstellung des pH-Wertes erfolgt in der Regel durch Zugabe von Ammoniak, bevorzugt konzentrierten wäßrigen Ammoniaklösungen, bzw. von anorganischen Säuren vorzugsweise in verdünnter Form, wobei Schwefelsäure, Phosphorsäure und Salzsäure bevorzugt sind.
Die Herstellung des Rohpigments nach der Variante B ist insbesondere dann von Vorteil, wenn der erfindungsgemäße Kristallisationsprozeß durch thermische Behandlung des Rohpigments in wäßriger Suspension vorgenommen wird.
Bei dieser bevorzugten Verfahrensvariante kann die Kristallisation ohne Zwischenisolierung des Rohpigments direkt in der bei der Synthese anfallenden Suspension erfolgen.
Wenn außergewöhnlich hohe Anforderungen an die Reinheit der Isoindolinpigmente I gestellt werden, kann das Rohpigment auch isoliert und gegebenenfalls gereinigt sowie auch anschließend getrocknet und zerkleinert werden.
Bei dem erfindungsgemäßen Kristallisationsprozeß in wäßriger Suspension wird das Rohpigment 1 bis 60 h auf eine Temperatur T im Bereich von 90 bis 180°C erhitzt. Die Temperatur T [°C] hängt dabei von der Behandlungsdauer t [h] ab und ist nach folgender Formel zu berechnen: T [0C] = [148 - 14,4 In (t)] ± 10
Beispielhaft sind im folgenden einige Behandlungsdauern t [h] den entsprechend zu wählenden Temperaturen T[°C] gegenübergestellt:
Figure imgf000007_0001
Der erfindungsgemäße Kristallisationsprozeß wird in der Regel in neutralem oder, insbesondere wenn die bei der Synthese anfallende, bereits einen pH-Wert unter 7 aufweisende Reaktionssuspension eingesetzt wird, in saurem Medium durchgeführt.
Essigsäure eignet sich dabei nicht zur Einstellung des pH-Wertes. Generell sind organische Säuren weniger geeignet als anorganische Säuren, wobei Schwefelsäure, Phosphorsäure und Salzsäure als anorganische Säure bevorzugt sind.
In der Regel liegt das Gewichtsverhältnis von wäßrigem Medium zu Rohpigment bei 5 :1 bis 50 : 1 , insbesondere bei 10 : 1 bis 40 : 1.
Der wäßrigen Suspension können auch organische Lösungsmittel zugesetzt werden.
Hierdurch kann es zu Abweichungen von den nach der obigen Formel berechneten Temperaturen bzw. Behandlungsdauern kommen. In seltenen Fällen kann sich die erforderliche Behandlungsdauer verlängern, in der Regel wird sie sich jedoch auf bis ein Drittel der berechneten Dauer verkürzen.
Geeignete Lösungsmittel sind z.B. Alkohole, Etheralkohole, Ether, Ketone, Carbonsäu- reamide und Carbonsäureester sowie deren Mischungen. Im einzelnen seien beispielhaft genannt:
aliphatische und araliphatische, einwertige oder mehrwertige Alkohole mit bis zu 10 Kohlenstoffatomen, wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, Isobutanol, tert.-Butanol, Amylalkohol, Isoamylalkohol, Hexanol, Isohexanol, Heptanol, Octanol, 2- Ethylhexanol, Ethylenglykol, 1 ,2- und 1 ,3-Propylenglykol, Cyclohexanol, Methylcyclo- hexanol, Benzylalkohol und 2-Phenylethanol;
Mono- und Di-C2-C3-alkylenglykolmono-Ci-C4-alkylether, wie Ethylenglykolmonome- thyl-, -ethyl- und -butylether und Diethylenglykolmonomethyl- und -ethylether; acyclische und cyclische aliphatische Ether mit bis zu 10 Kohlenstoffatomen, wie Dipropylether, Diisopropylether, Dibutylether, Diisobutylether, Tetrahydrofuran, Dioxan, Diethylenglykoldimethyl- und -diethylether;
acyclische und cyclische aliphatische und araliphatische Ketone mit bis zu 10 Kohlenstoffatomen, wie Aceton, Methylethylketon, Methylpropylketon, Methylbutylketon, Di- ethylketon, Methylisopropylketon, Methylisobutylketon, Cyclopentanon, Cyclohexanon, Methylcyclohexanon, Acetophenon und Propiophenon;
Amide und Ci-C4-Alkylamide von aliphatischen Carbonsäuren mit bis zu 4 Kohlenstoffatomen, wie Formamid, N,N-Dimethyl- und N,N-Diethylformamid, N,N-Dimethyl- und N,N-Diethylacetamid, N,N-Dimethyl- und N,N-Diethylpropionsäureamid und N-Methyl- pyrrolidon;
Ester aromatischer Carbonsäuren mit insgesamt bis zu 12 Kohlenstoffatomen, wie Phthalsäuredimethylester und Phthalsäurediethylester.
Bevorzugt werden dabei die Lösungsmittel eingesetzt, die sich bei der Aufarbeitung leicht entfernen lassen, z.B. durch Auswaschen mit Wasser, azeotrope Destillation mit Wasser, Wasserdampfdestillation oder durch Trocknen des gesamten Ansatzes.
Besonders bevorzugte Lösungsmittel sind Glykole und deren Mono- und Dialkylether.
Enthält das wäßrige Kristallisationsmedium ein organisches Lösungsmittel, so liegt das Gewichtsverhältnis von Wasser zu organischem Lösungsmittel üblicherweise bei 99 : 1 bis 50 : 50, insbesondere bei 95 : 5 bis 80 : 20.
Der Kristallisationsprozeß kann unter Dispergieren des Rohpigments im wäßrigen Me- dium oder auch durch einfaches Verweilenlassen erfolgen. Bevorzugt wird die Mischung aus Rohpigment und wäßrigem Medium gerührt.
Da der Kristallisationsprozeß bei Temperaturen im Siedebereich des wäßrigen Mediums bzw. darüber vorgenommen wird, empfiehlt sich der Einsatz druckstabiler Appara- te, z.B. Druckkessel, oder das Arbeiten unter Rückfluß.
Die erfindungsgemäßen Isoindolinpigmente I können wie üblich durch Abfiltrieren, Waschen und Trocknen isoliert werden. Zweckmäßigerweise wird das getrocknete Produkt einer Desagglomerierungsmahlung z.B. in Rotor-, Zahnkranz- oder Strahlmühlen unterzogen. Alternativ kann der wäßrige Filterkuchen auch gefrier- oder sprühgetrocknet werden. Gewünschtenfalls kann man beim erfindungsgemäßen Kristallisationsverfahren auch ein Rohpigment einsetzen, das zuvor einer Trockenmahlung mit einem schwach basischen Mahlhilfsmittel unterzogen wurde. Hierdurch sind erfindungsgemäße Isoindolin- pigmente I mit besonders enger Primärteilchengrößenverteilung zu erhalten, die einen etwas röteren Farbton aufweisen.
Beispiele für geeignete Mahlhilfsmittel sind wasserlösliche Salze von schwachen anorganischen Säuren, insbesondere Alkalimetallcarbonate und -hydrogencarbonate, wie Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat und Kaliumhydrogencar- bonat.
In der Regel beträgt das Gewichtsverhältnis von Mahlhilfsmittel zu Rohpigment 10 : 1 bis 1 : 1 , vorzugsweise 4 : 1 bis 1 : 1.
Als Mahlapparate eignen sich beispielsweise Kugelmühlen, Schwingmühlen, Planetenmühlen und Attritoren. Geeignete Mahlkörper sind z.B. Stahlkugeln, Silicium/Alumi- nium/Zirkonoxidperlen, Glasperlen und Achatkugeln, die üblicherweise einen Durchmesser von 0,1 bis 5 cm aufweisen.
Aus Sicherheitsgründen kann es vorteilhaft sein, die Mahlung unter Inertgasatmosphäre durchzuführen.
Vorzugsweise wird so lange gemahlen, bis das Mahlgut eine mittlere Primärteilchengröße von < 50 nm aufweist, was in der Regel 1 bis 40 h, insbesondere 4 bis 20 h, dauert.
Das Mahlgut wird dann zur Entfernung des Mahlhilfsmittels in Wasser angerührt, abfiltriert, gewaschen und von den Mahlkörpern abgetrennt. Bei der Mahlung mit Stahlkugeln kann das Mahlgut zur Entfernung eventuell vorhandenen Eisenabriebs einer Nachbehandlung mit Salzsäure unterzogen werden.
Zur Steuerung der Kristallgröße kann es auch vorteilhaft sein, den Kristallisationsprozeß in Gegenwart von Pigmentsynergisten durchzuführen, wobei üblicherweise etwa 0,01 bis 0,1 g Synergist je g Rohpigment eingesetzt werden. Wenn ein Vorzerkleine- rungsschritt durchgeführt wird, kann der Pigmentsynergist auch schon hier zugesetzt werden.
Pigmentsynergisten sind Verbindungen, die den Pigmentchromophor ganz oder teilweise in ihrer Molekülstruktur enthalten. Dabei muß die Struktur des Pigmentsyner- gisten nicht mit der Struktur des Pigments, dessen Kristallisation beeinflusst werden soll, übereinstimmen. So können im vorliegenden Fall nicht nur Pigmentsynergisten eingesetzt werden, deren Struktur auf der Isoindolinstruktur basiert, sondern z.B. auch solche auf Basis der Chinophthalonstruktur.
Beispiele für besonders geeignete Pigmentsynergisten sind die aus der WO-A-02/00643 bekannten Chinophthalonderivate, wobei die sich von Cl. Pigment Yellow 138 ableitenden, eine oder mehrere Sulfonsäurefunktionen an den Naphthalinringen aufweisenden Pigmentsynergisten bevorzugt sind.
Die Anwesenheit von Pigmentsynergisten kann sich zusätzlich auch positiv auf die Dis- pergierbarkeit der erfindungsgemäßen Isoindolinpigmente I im Anwendungsmedium auswirken.
Die Dispergierbarkeit der erfindungsgemäßen Isoindolinpigmente I kann zudem durch Inkontaktbringen mit herkömmlichen Additiven verbessert werden. Neben aromati- sehen Sulfonsäurederivaten, wie Naphthalinsulfonsäuren und deren Salzen, und Additiven auf Basis von Kolophoniumderivaten sind insbesondere für die Kunststoffeinfärbung Additive auf Basis von natürlichen und synthetischen Wachsen geeignet. Beispielhaft seien Wachse auf Basis von Polyethylen und von Polypropylen, die auch oxi- diert sein können, von Polyethylenoxid, von ethoxylierten Fettalkoholen, von Polyethy- lenoxid/Polypropylenoxid/Blockcopolymerisaten, von Fettsäureestern (z.B. Montanwachse), von Fettsäureamiden und von Ethylen/Vinylacetat-Copolymerisaten genannt.
Kommen derartige Additive zum Einsatz, so liegt ihre Menge üblicherweise bei 2 bis 30 Gew.-%, bezogen auf das Pigment.
Die erfindungsgemäßen Isolindolinpigmente I eignen sich hervorragend zur Einfärbung von hochmolekularen organischen Materialien natürlicher und synthetischer Herkunft.
Als Beispiele für derartige Materialien seien Kunststoffe, Pulverlacke, Tinten, Toner und Farbfilter genannt.
Besondere Bedeutung haben die erfindungsgemäßen Isoindolinpigmente I für die Einfärbung von Kunststoffen.
Beispiele für vorteilhaft einzufärbende Kunststoffe sind im einzelnen:
Polyolefine, wie Polyethylen, Polypropylen, Polybutylen, Polyisobutylen und Poly-4- methyl-1-penten, Polyolefincopolymere, wie Luflexen® (Basell), Nordel® (Dow) und Engage® (Du Pont), Cycloolefincopolymere, wie Topas® (Celanese); Polytetrafluor- ethylen (PTFE), Ethylen/Tetrafluorethylen-Copolymere (ETFE); Polyvinylidendifluorid (PVDF), Polyvinylchlorid (PVC), Polyvinylidenchlorid, Polyvinylalkohole, Polyvinylester, wie Polyvinylacetat, Vinylestercopolymere, wie Ethylen/Vinylacetat-Copolymere (EVA), Polyvinylalkanale, wie Polyvinylacetal und Polyvinylbutyral (PVB), Polyvinylketale, Polyamide, wie Nylon® [6], Nylon [12] und Nylon [6,6] (DuPont), Polyimide, Polycarbonat, Polycarbonat-Copolymere und physikalische Blends von Polycarbonaten mit Acryl- Butadien-Styrol-Copolymeren, Acrylnitril-Styrol-Acrylester-Copolymeren, Polymethyl- methacrylaten, Polybutylacrylaten, Polybutylmethacrylaten, Polybutylenterephthalaten und Polyethylenterephthalaten, Polyester wie Polyethylenterephthalat (PET), Polybuty- lenterephthalat (PBT) und Polyethylennaphthalat (PEN), Copolymerisate, Umeste- rungsprodukte und physikalische Gemische (Blends) der zuvor genannten Polyalkylen- terephthalate, Poly(meth)acrylate, Polyacrylamide, Polyacrylnitril, Poly(meth)acrylat/ Polyvinylidendifluorid-Blends, Polyurethane, Polystyrol, Styrolcoplymere, wie Styrol/ Butadien-Copolymere, Styrol/Acrylnitril-Copolymere (SAN), Styrol/Ethylmethacrylat- Copolymere, Styrol/Butadien/Ethylacrylat-Copolymere, Styrol/Acrylnitril/Methacrylat- Copolymere, Acrylnitril/Butadien/Styrol-Copolymere (ABS) und Methacrylat/Butadien/- Styrol-Copolymere (MBS), Polyether wie Polyphenylenoxid, Polyetherketone, Polysul- föne, Polyethersulfone, Polyglykole wie Polyoxymethylen (POM), Polyarylenvinylene, Silicone, lonomere, thermoplastische und duroplastische Polyurethane sowie deren Mischungen, wobei Polyolefine, vor allem Polyethylen (LDPE, MDPE, HDPE), und Polyvinylchlorid hervorzuheben sind.
Die Einarbeitung der erfindungsgemäßen Isoindolinpigmente I in die Kunststoffe kann nach allen bekannten Methoden erfolgen, z.B. durch gemeinsames Extrudieren (vorzugsweise mit einem Ein- oder Zweischneckenextruder), Walzen, Kneten, Pressen oder Mahlen, wobei die Kunststoffe zu Kunststofformkörpern, Endlosprofilen, Platten, Folien, Fasern, Filmen und Beschichtungen verarbeitet werden können.
Ebenfalls vorteilhaft ist ein Einsatz zuvor separat hergestellter Pigmentpräparationen auf Basis eines Polymeren oder eines Polymer-Blends, eines oder mehrerer Polyole- finwachse oder von deren Mischungen zur Erzielung homogener, farbstarker Einfär- bungen bei niedrigschmelzenden Polymeren (z.B. den meisten gängigen Polyolefinen) oder solchen mit niedriger Schmelzviskosität (z.B. weichgemachtem PVC und PVB sowie blasformbarem PET). Während das bei den polymerbasierenden Pigmentpräparationen ("Masterbatch", "Compound") eingesetzte Trägerpolymer(blend) im allgemeinen mit dem einzufärbenden hochmolekularen synthetischen organischen Material identisch ist, finden zur Herstellung polyolefinwachsbasierender Pigmentpräparationen als Trägermaterial insbesondere homo- und copolymere PE- und PP-Wachse, wie
Luwax® A (Ethylen-Homopolymerisat; BASF), Luwax EVA (Ethylen-Vinylacetat-Copoly- merisat; BASF) und Licowax® PP 230 (Propylen-Homopolymerisat; Clariant) Verwendung.
Beispiele
A. Herstellung von erfindungsgemäßen Isoindolinpigmenten I Beispiel 1
100 g eines wasserfeuchten Preßkuchens von Cl. Pigment Yellow 185 (Trockengehalt etwa 50 Gew.-%; hergestellt gemäß Beispiel 1 der DE-A-29 14 086) wurden 1 h in 1 125 ml Wasser homogen suspendiert. Die Suspension wurde dann in einem 2,4 I- Druckkessel (Fa. Juchheim) mit Ankerrührer (Drehzahl 150 U/min) in 2 h auf 1 15°C erhitzt und 12 h bei dieser Temperatur gerührt.
Nach Abkühlen auf 60°C in 1 h wurde das Pigment abfiltriert und mit 5 I 60°C warmen Wassers gewaschen (Leitfähigkeit des ablaufenden Wassers < 100 μS). Der feuchte Preßkuchen wurde im Umlufttrockenschrank bei 70°C getrocknet und zur Desagglome- rierung in einer Zahnkranzmühle (Ultrazentrifugalmühle ZM 100, Fa. Retsch; 12er Zahnkranz, 1 ,0 mm Sieb, 10 000 U/min) gemahlen. Die Ausbeute betrug 100%.
Beispiel 2
570 g einer gemäß Beispiel 1 der DE-A-29 14 086 erhaltenen Synthesesuspension von Cl. Pigment Yellow 185 (Pigmentgehalt: 5,4 Gew.-%) wurden nach Zugabe von 100 g Ethylenglykolmonobutylether unter Rühren auf 100°C (Rückflußtemperatur) erhitzt und 12 h bei dieser Temperatur gerührt.
Die nach einstündigem Abkühlen auf 70°C gebildeten Granulate wurden abfiltriert und mit 5 I 60°C warmen Wassers gewaschen (Leitfähigkeit des ablaufenden Wassers < 50 μS). Der feuchte Preßkuchen wurde im Umlufttrockenschrank bei 120°C getrocknet und zur Desagglomerierung wie in Beispiel 1 gemahlen. Die Ausbeute betrug 90%.
Beispiel 3
570 g einer gemäß Beispiel 1 der DE-A-29 14 086 erhaltenen Synthesesuspension von Cl. Pigment Yellow 185 (Pigmentgehalt: 5,4 Gew.-%) wurden in einem 2,4 I-Druck- kessel (Fa. Juchheim) mit Ankerrührer (Drehzahl 150 U/min) in 2 h auf 130°C erhitzt und 3 h bei dieser Temperatur gerührt.
Nach Abkühlen auf 60°C in 1 h wurde das Pigment abfiltriert und mit 5 I 60°C warmen Wassers gewaschen (Leitfähigkeit des ablaufenden Wassers < 50 μS). Der feuchte Preßkuchen wurde im Umlufttrockenschrank bei 70°C getrocknet und zur Desagglomerierung wie in Beispiel 1 gemahlen. Die Ausbeute betrug 100%.
Beispiel 4 600 g einer gemäß Beispiel 1 der DE-A-29 14 086 erhaltenen Synthesesuspension von Cl. Pigment Yellow 185 (Pigmentgehalt: 5,1 Gew.-%) wurden in einem 1 I-Glasreaktor (Fa. Normag) mit Ankerrührer (Drehzahl 150 U/min) in 2 h auf 95°C erhitzt und 36 h bei dieser Temperatur gerührt.
Nach Abkühlen auf 60°C in 1 h wurde das Pigment abfiltriert und mit 5 I 60°C warmen Wassers gewaschen (Leitfähigkeit des ablaufenden Wassers < 50 μS). Der feuchte Preßkuchen wurde im Umlufttrockenschrank bei 70°C getrocknet und zur Desagglome- rierung wie in Beispiel 1 gemahlen. Die Ausbeute betrug 100%.
B. Prüfung von erfindungsgemäßen Pigmenten in Kunststoffen
Zur Prüfung ihrer Anwendungseigenschaften wurden die erhaltenen Pigmente in PoIy- ethylen (LDPE) und Weich-PVC eingearbeitet.
Die Bestimmung der koloristischen Eigenschaften und der Dispergierhärte erfolgte jeweils in der Weißaufhellung (1 :10) an wie folgt hergestellten Walzfellen:
LDPE-Walzfell:
80 g weiß eingefärbtes LDPE-Granulat (Sicolen® Weiß 00/24729 Granulat mit 5 Gew.- % Titandioxid) und 0,4 g des jeweiligen Pigments wurden getrennt abgewogen und auf einem Collin-Mischwalzwerk wie folgt weiterverarbeitet:
Das weiß eingefärbte LDPE-Granulat wurde bei 150°C (± 2°C) Walzentemperatur vorgelegt. Nach Fellbildung wurde das Pigment portionsweise zugegeben und bei einer Walzentemperatur von 150°C (± 2°C) und 250 Walzenumdrehungen zu einem Walzfell der Stärke 0,4 mm (± 10%) verarbeitet. Nach Abschneiden von ca. 10 g (Walzfell 1 ) wurde das restliche Walzfell halbiert und nach Übereinanderlegen der beiden Hälften weitere 220 Walzenumdrehungen bei 150°C (± 2°C) gewalzt (Walzfell 2).
PVC-Walzfell:
80 g weiß eingefärbte PVC-Grundmischung nach DIN 53775-B (48,7 g Vinylchlorid- Homopolymerisat, 25,1 g Diisodecylphthalat, 1 ,12 g epoxidiertes Sojaöl, 0,97 g Stabilisator, 0,15 g Stearinsäure und 4,0 g Titandioxid) und 0,4 g des jeweiligen Pigments wurden auf einem Turbularmischer homogenisiert.
Die erhaltene Mischung wurde auf einem Collin-Walzwerk bei 150°C (± 2°C) Walzen- temperatur und 165 Walzenumdrehungen zu einem Walzfell der Stärke 0,4 mm (± 10%) verarbeitet. Nach Abschneiden von ca. 10 g (Walzfell 1 ) wurde das restliche Walzfell halbiert und nach Übereinanderlegen der beiden Hälften weitere 225 Walzenumdrehungen bei 1500C (± 2°C) gewalzt (Walzfell 2).
Die farbmetrische Vermessung der Proben (Walzfell 2) erfolgte nach DIN 5033 (0/0° Meßgeometrie) mit einem Spektralphotometer Teleflash (Fa. Optronik).
Das Aufhellverhältnis AV wurde nach DIN 53235-1 durch Angleich der Farbtiefe der zu prüfenden Probe an die Standardfarbtiefe 1/3 nach der FIAF-Methode. Die in der Tabelle angegebenen CIELAB-Farbwerte Farbwinkel Hue [°], Chroma C*, Helligkeit L* (lightness), a* (Rot- bzw. Grünanteil) und b* (Blau- bzw. Gelbanteil) wurden nach Angleich der Farbtiefe nach DIN 6174 (Normlichtart D65, 10°-Normalbetrachter) ermittelt.
Die Dispergierhärte (DH) wurde aus den jeweils bei der Messung erhaltenen Aufhellverhältnissen nach der folgenden Formel berechnet:
AV2
DH = - 1 x 100 AV1
mit:: AV 1 = Aufhellverhältnis beim Walzfell 1 AV 2 = Aufhellverhältnis beim Walzfell 2
Die erhaltenen Meßergebnisse (CIELAB-Farbwerte und Dispergierhärten) sind in der folgenden Tabelle zusammengestellt. Dabei sind zum Vergleich V auch die für das in Beispiel 14 der EP-A-29 007 in LDPE erhaltenen Meßergebnisse aufgeführt.
Tabelle
Figure imgf000014_0001

Claims

Patentansprüche
1. Isoindolinpigmente der allgemeinen Formel I
Figure imgf000015_0001
in der die Variablen folgende Bedeutung haben:
R1 Ci-C4-Alkyl; R2 Wasserstoff oder Ci-C4-Alkyl,
die in LDPE eine Dispergierhärte < 10 aufweisen und zur Einstellung der Standardfarbtiefe 1/3 ein Aufhellverhältnis von > 5 erfordern.
2. Isoindolinpigmente der Formel I nach Anspruch 1 , in der R1 Methyl und R2 Wasserstoff bedeutet.
3. Verfahren zur Herstellung von Isoindolinpigmenten gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man das bei der Pigmentsynthese anfallende Rohpigment einem Kristallisationsprozeß in Gegenwart eines die Pigmentteilchen nur anlösenden Mittels unterzieht.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man das Rohpigment in wäßriger Suspension einer 1 bis öOstündigen thermischen Behandlung bei einer Temperatur T im Bereich von 90 bis 180°C unterzieht und anschließend auf übliche Weise isoliert, wobei die Temperatur T [°C] von der Behandlungsdauer t [h] nach folgender Formel aus der gewählten Behandlungsdauer zu berechnen ist:
T [0C] = [148 - 14,4 In (t)] ± 10
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß man die bei der wäßrigen Pigmentsynthese anfallende Suspension der thermischen Behandlung unterzieht.
6. Verwendung von Isoindolinpigmenten der Formel I gemäß Anspruch 1 oder 2 zur Einfärbung von hochmolekularen organischen Materialien natürlicher und synthetischer Herkunft.
7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß es sich bei den hochmolekularen Materialien um Kunststoffe, Pulverlacke, Tinten, Toner und Farbfilter handelt.
8. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß es bei den hochmolekularen Materialien um Kunststoffe handelt.
9. Kunststoffe, eingefärbt mit Isoindolinpigmenten gemäß Anspruch 1 oder 2.
PCT/EP2007/057078 2006-07-18 2007-07-11 Isoindolinpigmente WO2008009597A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009519935A JP5447833B2 (ja) 2006-07-18 2007-07-11 イソインドリン顔料
CN200780027060.0A CN101490178B (zh) 2006-07-18 2007-07-11 异吲哚啉颜料
EP07787352A EP2044157B1 (de) 2006-07-18 2007-07-11 Isoindolinpigmente
US12/373,639 US8026361B2 (en) 2006-07-18 2007-07-11 Isoindoline pigments
AT07787352T ATE481454T1 (de) 2006-07-18 2007-07-11 Isoindolinpigmente
BRPI0714364-8A BRPI0714364A2 (pt) 2006-07-18 2007-07-11 pigmento de isoindolina, processo para a preparaÇço de pigmentos de isoindolina, uso de pigmentos de isoindolina, e, plÁstico
DE502007005064T DE502007005064D1 (de) 2006-07-18 2007-07-11 Isoindolinpigmente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06117360.5 2006-07-18
EP06117360 2006-07-18

Publications (2)

Publication Number Publication Date
WO2008009597A2 true WO2008009597A2 (de) 2008-01-24
WO2008009597A3 WO2008009597A3 (de) 2008-03-20

Family

ID=38693419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057078 WO2008009597A2 (de) 2006-07-18 2007-07-11 Isoindolinpigmente

Country Status (8)

Country Link
US (1) US8026361B2 (de)
EP (1) EP2044157B1 (de)
JP (1) JP5447833B2 (de)
CN (1) CN101490178B (de)
AT (1) ATE481454T1 (de)
BR (1) BRPI0714364A2 (de)
DE (1) DE502007005064D1 (de)
WO (1) WO2008009597A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110008723A1 (en) * 2009-07-08 2011-01-13 Tatsuya Morita Toner colorant, electrophotographic toner, two-component developer, image forming method, image forming apparatus, and process cartridge
EP3960824A4 (de) * 2019-04-22 2022-07-27 Toyo Ink SC Holdings Co., Ltd. Färbezusammensetzung mit isoindolinverbindung und verwendung davon

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE541900T1 (de) * 2007-12-10 2012-02-15 Basf Se Isometrisches isoindolin-gelbpigment
WO2012153669A1 (en) * 2011-05-10 2012-11-15 Canon Kabushiki Kaisha Pigment dispersion, ink composition including pigment dispersion, and color filter yellow resist composition including pigment dispersion
CN102585542A (zh) * 2011-12-27 2012-07-18 百合花集团有限公司 一种制备c.i.颜料黄139的方法
TWI754733B (zh) * 2017-03-29 2022-02-11 日商住友化學股份有限公司 異吲哚啉色素及其製造方法
JP7192639B2 (ja) * 2019-04-23 2022-12-20 東洋インキScホールディングス株式会社 イソインドリン化合物及びその利用
US20230365811A1 (en) 2020-07-15 2023-11-16 Toyo Ink Sc Holdings Co., Ltd. Pigment composition, coloring composition, paint, ink, ink set, printed article, and packaging material
JP7017006B1 (ja) 2020-07-15 2022-02-08 東洋インキScホールディングス株式会社 顔料組成物、着色組成物、塗料、インキ、インキセット、印刷物、及び包装材料
JP7105024B1 (ja) 2021-08-03 2022-07-22 東洋インキScホールディングス株式会社 顔料組成物、着色組成物、塗料、インキ、インキセット、印刷物、及び包装材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800815A1 (de) * 1978-01-10 1979-07-12 Basf Ag Verfahren zur herstellung leicht verteilbarer und deckender isoindolinpigmentfarbstoffe
EP0017214A1 (de) * 1979-04-07 1980-10-15 BASF Aktiengesellschaft Neue Isoindolinfarbstoffe und deren Verwendung
EP0029007A1 (de) * 1979-11-09 1981-05-20 Ciba-Geigy Ag Isoindolinpigmente, Verfahren zu deren Herstellung und Verwendung
EP0036523A2 (de) * 1980-03-13 1981-09-30 BASF Aktiengesellschaft Verfahren zur Formierung von feinteiligen organischen Rohpigmenten
WO2004108837A1 (de) * 2003-06-11 2004-12-16 Basf Aktiengesellschaft Verwendung von chinaldin-und naphthalinderivaten als kristallisationsmodifikatoren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1670748A1 (de) 1966-09-09 1973-05-30 Bayer Ag Verfahren zur herstellung neuer isoindolinderivate
DE2757982C2 (de) 1977-12-24 1980-02-21 Basf Ag, 6700 Ludwigshafen Verbindungen der Isoindolinreihe und Verfahren zur Herstellung von in den anwendungstechnischen Eigenschaften verbesserten Pigmenten
US4451654A (en) 1981-03-05 1984-05-29 Basf Aktiengesellschaft Conditioning of finely divided crude organic pigments
CH668980A5 (de) * 1985-07-05 1989-02-15 Basf Ag Verfahren zur formierung von isoindolinpigmenten.
JPH09279052A (ja) * 1996-04-16 1997-10-28 Dainippon Ink & Chem Inc イソインドリノン系顔料の製造方法および当該顔料を用いた光学素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2800815A1 (de) * 1978-01-10 1979-07-12 Basf Ag Verfahren zur herstellung leicht verteilbarer und deckender isoindolinpigmentfarbstoffe
EP0017214A1 (de) * 1979-04-07 1980-10-15 BASF Aktiengesellschaft Neue Isoindolinfarbstoffe und deren Verwendung
EP0029007A1 (de) * 1979-11-09 1981-05-20 Ciba-Geigy Ag Isoindolinpigmente, Verfahren zu deren Herstellung und Verwendung
EP0036523A2 (de) * 1980-03-13 1981-09-30 BASF Aktiengesellschaft Verfahren zur Formierung von feinteiligen organischen Rohpigmenten
WO2004108837A1 (de) * 2003-06-11 2004-12-16 Basf Aktiengesellschaft Verwendung von chinaldin-und naphthalinderivaten als kristallisationsmodifikatoren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110008723A1 (en) * 2009-07-08 2011-01-13 Tatsuya Morita Toner colorant, electrophotographic toner, two-component developer, image forming method, image forming apparatus, and process cartridge
EP3960824A4 (de) * 2019-04-22 2022-07-27 Toyo Ink SC Holdings Co., Ltd. Färbezusammensetzung mit isoindolinverbindung und verwendung davon

Also Published As

Publication number Publication date
EP2044157A2 (de) 2009-04-08
US8026361B2 (en) 2011-09-27
CN101490178B (zh) 2014-01-08
JP5447833B2 (ja) 2014-03-19
WO2008009597A3 (de) 2008-03-20
ATE481454T1 (de) 2010-10-15
EP2044157B1 (de) 2010-09-15
US20100003612A1 (en) 2010-01-07
BRPI0714364A2 (pt) 2013-03-12
DE502007005064D1 (de) 2010-10-28
CN101490178A (zh) 2009-07-22
JP2009543917A (ja) 2009-12-10

Similar Documents

Publication Publication Date Title
EP2044157B1 (de) Isoindolinpigmente
EP1716208B1 (de) Schwarze perylenpigmente
EP0256983B1 (de) Feste Lösungen von Pyrrolo-[3,4-c]-pyrrolen
DE69213368T3 (de) Verfahren zur Konditionierung organischer Pigmente
EP1529082B1 (de) Pigmentzubereitungen auf basis von diketopyrrolopyrrolpigmenten zum verzugsfreien pigmentieren von teilkristallinen kunststoffen
EP2288742B1 (de) Schwarze fasereinfärbung
EP0748851B1 (de) Pigmentzusammensetzungen aus Diketopyrrolopyrrolen
EP0408499A2 (de) Verfahren zur Konditionierung organischer Pigmente
DE19613186A1 (de) Verfahren zur Herstellung von Chinacridonpigmenten
EP0896034B1 (de) Mischkristallpigmente der Chinacridonreihe
EP0277914B1 (de) Feste Lösungen von Pyrrolo-[3,4-c]-pyrrolen mit Chinacridonen
EP0655485B1 (de) Verfahren zur Herstellung von linearen, unsubstituierten Chinacridonpigmenten der beta-Phasen
EP0042816A2 (de) Verfahren zur Herstellung von Pigmentlegierungen
US5641351A (en) Pigment compositions based on 3,6-di(biphenyl)1,4-diketo-pyrrolo[3,4c]-pyrrole
DE69114827T2 (de) Mit 2,9-Dichlorchinacridon pigmentierte technische Kunststoffe und Überzüge.
CA2125743A1 (en) Compositions based on 2,9-dichloroquinacridone pigments
EP0221853A2 (de) Verfahren zur Herstellung und Konditionierung organischer Pigmente
DE69830445T2 (de) Beta-Chinacridonpigment
DE60200933T2 (de) Deckendes 2,9-dichlorchinacridonpigment
EP0337435B1 (de) Verfahren zur Herstellung deckender Diketopyrrolopyrrolpigmente
EP0656404B1 (de) Zubereitungen auf Basis von 2,9-Dichlorochinacridonpigmenten
DE69917897T2 (de) Gelbes pteridin mit einem farbton-winkel von mindestens 98
DE102004007382A1 (de) Schwarze Perylenpigmente
DE102004057876A1 (de) Schwarze Perylenpigmente
EP0314621A2 (de) Feste Lösungen von Azomethinpigmenten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027060.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787352

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12373639

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009519935

Country of ref document: JP

Ref document number: 2007787352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: PI0714364

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090114