WO2008009502A1 - Ladeschaltung für batteriezellen - Google Patents

Ladeschaltung für batteriezellen Download PDF

Info

Publication number
WO2008009502A1
WO2008009502A1 PCT/EP2007/054992 EP2007054992W WO2008009502A1 WO 2008009502 A1 WO2008009502 A1 WO 2008009502A1 EP 2007054992 W EP2007054992 W EP 2007054992W WO 2008009502 A1 WO2008009502 A1 WO 2008009502A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage sources
bypass
charging
individual
Prior art date
Application number
PCT/EP2007/054992
Other languages
English (en)
French (fr)
Inventor
Michael Wolf
Marcus Bremmer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US12/308,585 priority Critical patent/US8253379B2/en
Priority to EP07729430A priority patent/EP2044669A1/de
Publication of WO2008009502A1 publication Critical patent/WO2008009502A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits

Definitions

  • DE 101 50 376 A1 relates to a device for balancing the state of charge of accumulators connected in series.
  • a capacitor is provided as well as a plurality of switches arranged between the capacitor and the accumulators.
  • the device has a logic which serves to measure the voltages applied to the accumulators and when the predefined difference threshold value between the voltages applied to the accumulators is exceeded in order to activate a driver controlling the switches.
  • the capacitor is alternately connectable to the individual accumulators for the purpose of charge exchange via the switches.
  • the device known from DE 101 50 376 A1 also has two series-connected accumulators and four switches.
  • a first of the switches is between a first terminal of the capacitor and the ground remote terminal of the series-connected accumulators, a second of the switches is between the second terminal of the capacitor and ground, a third of the switch is between the second terminal of the capacitor and the connection point between the two accumulators and a fourth of the switches is arranged between the first terminal of the capacitor and the connection point between the two accumulators.
  • the voltage on the individual cells depends on their "health status" or the prevailing internal resistance when charging the battery system used, the sensitive to overvoltages, so the charging of the battery system is terminated when the maximum permissible cell voltage is reached at one of the series-connected single cells.
  • the lifetime of the battery system is the higher, the more homogeneous the single cells can be charged. Since there are single cells in the charging process in the case of inhomogeneity within the battery system, in which the maximum permissible cell voltage value is reached before other single cells reach this, the charging process is switched off, although some of the cells are not yet fully charged. During unloading, the non-fully charged single cells first reach a previously defined lower voltage source and the discharging process is terminated even though single cells are still available in the battery system that could deliver charge. This inhomogeneity effect may increase over the operating time as well as depending on the number of charging or discharging cycles to which the battery system is subjected. The greater the inhomogeneity, the smaller the stroke between removable and chargeable energy.
  • the invention has for its object to increase the life of a battery system by the individual cells are held each other in a homogeneous state of charge state.
  • an energy source connected to the battery system from the outside is used to achieve a more homogeneous charge distribution.
  • the selection of the individual cells of the battery system can be determined with a larger bandwidth.
  • the more homogeneous charge distribution within the battery system is achieved by the connection of one bypass each via each individual cell of the operating system.
  • either at least one resistor or at least one inductance can be connected in series in the bypass.
  • Each bypass via each individual cell of the battery system is assigned a bypass switch, which passes the charging current to the respective individual cell.
  • the height of the bypass current can be controlled by a clocked Ein facedung the bypass switch such that the average current from the single cell is approximately equal to 0.
  • I ⁇ y current through the single-cell bypass
  • Izz current from a single cell
  • I L charging current of the battery system
  • either the voltage across the individual cells can be monitored, which is then monitored that this does not exceed the maximum allowable limit or it can be a sensor per single cell are used, the current through the single cell measures or presents.
  • the respective individual cells of the battery system associated bypass are then switched active during the charging of the battery system when the voltage at the respective single cell reaches the maximum allowable voltage. These single cells are fully charged in this case and require no further charge. The individual cells, on the other hand, have lower charge states, have not reached their maximum allowable voltage value and therefore can take up more charge.
  • the charging process is ended when either all individual cells or a previously defined number of individual cells have reached their maximum permissible voltage value.
  • the charging current I L can be limited by the voltage or current source by means of an intelligent control by the battery charging control. The charging current limit is then activated when one or more bypasses assigned to the individual cells of the battery system are activated.
  • the sole FIGURE shows a charging circuit for series-connected battery cells for homogenizing the charge distribution.
  • the single FIGURE shows an embodiment variant of the device proposed according to the invention for charging a battery system with a number of single-voltage sources connected in series.
  • the drawing shows that the charging circuit proposed according to the invention has a voltage source 10, via which a battery system 12 is charged.
  • the battery system 12 comprises individual voltage sources 14.1, 14.2,... 14n, which are arranged in series connection 16 within the battery system 12.
  • the number of arranged in the battery system 12 single voltage sources 14.1, 14.2, ... 14.n is arbitrary. It is important that the individual voltage sources 14.1, 14.2,... 14n are arranged in series connection 16.
  • the battery system 12 as shown in the drawing is associated with a battery charge controller 24.
  • Each of the individual voltage sources 14.1, 14.2,... 14n of the battery system 12 has a bypass 18.1, 18.2,... 18.n.
  • Each of the individual bypass voltage sources 14.1, 14.2,... 14n assigned bypass 18.1, 18.2,... 18n can be connected to the respective single voltage source 14.1, 14.2,.
  • at least one resistor or also at least one inductor can be arranged serially to limit the current.
  • each of the bypass 18.1, 18.2,... 18n is assigned a bypass switch 20.1, 20.2,.
  • a voltmeter 26 is included in each of the bypass 18.1, 18.2,... 18n. Instead of the respective voltage in the individual voltage sources 14.1, 14.2,...
  • the respective individual voltage sources 14.1, 14.2, ... 14.n also be associated with a sensor which either by the respective single voltage source 14.1 , 14.2, ... 14.n measures flowing current or represents the current flowing through the respective individual voltage source 14.1, 14.2,.
  • I L of the voltage source 10 to the battery system 12 transmitted charge current is indicated.
  • I By, i n the current is identified via the bypass 18.1, 18.2,... 18.n, with I Bz , in which current is established via the respective individual voltage source 14.1, 14.2,.
  • the voltage source 10 which is present on the system side and connected from the outside to the battery system 12 is used to achieve a homogeneous charge distribution used within the battery system 12.
  • the respective individual voltage sources 14.1, 14.2, ... 14.n no transformers are required, furthermore, the selection of individual voltage sources 14.1, 14.2, ... 14.n for the battery system 12 with a larger bandwidth, ie a greater tolerance can be determined.
  • the voltage at the individual voltage sources 14.1, 14.2, ... 14.n can be detected by means of voltmeters 26.
  • the voltage at the respective individual voltage sources 14.1, 14.2,... 14.n must not exceed the maximum permissible limit value during the charging process.
  • the current through the respective individual voltage sources 14.1, 14.2, ... 14.n are indicated by I Bz, i n with one of the respective single voltage source 14.1, 14.2, ... 14.nn associated sensor which measures either the current or represented.
  • the respective bypass 18.1, 18.2, ... 18. n are respectively activated at the individual voltage sources 14.1, 14.2,... 14.n during the charging process of the battery system 12 by the externally arranged voltage source 10 when the voltage at the respective individual voltage sources 14.1, 14.2,. n reaches the maximum permissible voltage value.
  • those of the individual voltage sources 14.1, 14.2,... 14.n are fully charged and do not require any further charging by the charging current I L fed from the voltage source 10.
  • those of the individual voltage sources 14.1, 14.2,..., 14n with lower charge states still have their respective maximum permissible voltage value not reached and can be charged by the externally arranged voltage source 10 on.
  • the charging process is ended when either all individual voltage sources 14.1, 14.2,... 14.n or a previously defined number of individual voltage sources 14.1, 14.2,... 14.n have reached their maximum permissible voltage value.
  • the condition "all cells” or the condition "defined number of cells charged with maximum allowable voltage” can be used. This depends on the application purpose of the charging circuit according to the invention for the battery system 12, or depending on the allowable power loss, which can be dissipated by the bypass circuits.
  • the charging current I L can be limited by the voltage or current source 10 by means of a control by the battery charging control 24.
  • the charging current limit for the charging current I L can be activated, in particular, if one or more of the bypass 18.1, 18.2,... 18.n are activated.
  • A denotes sensors for detecting the current in the individual voltage sources 14. 1 to 14. N, which can be used as an alternative to the voltage meters 26.
  • resistors or inductors may be connected in series, further, the bypass switches 20.1 to 2O.n may be designed as a discrete switch as a semiconductor switch.
  • the inventively proposed device for charging the battery system 12 an inhomogeneous charge distribution within the single voltage sources 14.1, 14.2, ... 14.n within the battery system 12 can be avoided.

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zum Laden eines Batteriesystems (12) mit einer Anzahl von in Serienschaltung angeordneten Einzelspannungsquellen (14.1,...14.n) durch eine Spannungsquelle (10). Den Einzelspannungsquellen (14.1,...14.n) ist jeweils ein Bypass (18.1,...18.n) zugeordnet. Über diesen wird ein Ladestrom IL aus der Spannungsquelle (10) abhängig vom Ladezustand der Einzelspannungsquellen (14.1,...14.n) diesen zugeführt.

Description

Beschreibung
Titel
Ladeschaltung für Batteriezellen
Stand der Technik
DE 101 50 376 A1 bezieht sich auf eine Vorrichtung zum Ausgleich des Ladezustands von in Reihe geschalteten Akkumulatoren. Gemäß dieser Lösung ist ein Kondensator vorgesehen sowie mehrere zwischen dem Kondensator und den Akkumulatoren angeordnete Schalter. Ferner weist die Vorrichtung eine Logik auf, die zur Messung der an den Akkumulato- ren anliegenden Spannungen und beim Überschreiten des vorgegebenen Differenzschwellenwertes zwischen den an den Akkumulatoren anliegenden Spannungen zur Aktivierung eines die Schalter steuernden Treibers dient. Der Kondensator ist zum Zwecke eines La- dungsaustauschs über die Schalter abwechselnd mit den einzelnen Akkumulatoren verbindbar. Die aus DE 101 50 376 Al bekannte Vorrichtung weist darüber hinaus zwei in Reihe geschaltete Akkumulatoren und vier Schalter auf. Ein erster der Schalter ist zwischen einem ersten Anschluss des Kondensators und dem massefernen Anschluss der in Reihe geschalteten Akkumulatoren, ein zweiter der Schalter ist zwischen dem zweiten Anschluss des Kondensators und Masse, ein dritter der Schalter ist zwischen dem zweiten Anschluss des Kondensators und dem Verbindungspunkt zwischen den beiden Akkumulatoren und ein vierter der Schalter ist zwischen dem ersten Anschluss des Kondensators und dem Verbindungspunkt zwischen den beiden Akkumulatoren angeordnet.
Werden mehrere Batteriezellen in Serie geschaltet, um die Ausgangsspannung des Batteriesystems zu erhöhen, so stellt sich beim Laden des Batteriesystems die Spannung an den Ein- zelzellen neben anderen Einflussfaktoren unter anderem in Abhängigkeit von deren „Gesundheitszustand" bzw. der herrschenden Innenwiderstände ein. Werden Batteriezellen eingesetzt, die empfindlich gegen Überspannungen reagieren, so wird der Ladevorgang des Batteriesystems dann beendet, wenn die maximale zulässige Zellenspannung an einer der in Serie geschalteten Einzelzellen erreicht ist.
Die Lebensdauer des Batteriesystems ist umso höher, je homogener die Einzelzellen geladen werden können. Da es beim Ladevorgang bei Inhomogenität innerhalb des Batteriesystems Einzelzellen gibt, bei denen der maximal zulässige Zellspannungswert erreicht wird, bevor andere Einzelzellen diesen erreichen, wird der Ladevorgang abgeschaltet, obwohl ein Teil der Zellen noch nicht vollgeladen ist. Beim Entladen erreichen die nicht vollgeladenen Einzelzellen zuerst eine zuvor definierte untere Spannungsquelle und der Entladevorgang wird beendet, obwohl noch Einzelzellen im Batteriesystem verfügbar sind, die Ladung abgeben könnten. Dieser Effekt der Inhomogenität kann sich über die Betriebszeit sowie abhängig von der Anzahl der Lade- bzw. Entladezyklen, dem das Batteriesystem unterworfen wird, verstärken. Je größer die Inhomogenität wird, desto kleiner wird der Hub zwischen entnehmbarer und ladbarer Energie. Das Batteriesystem kann aufgrund des vorstehend beschriebenen Effekts nicht mehr effektiv genutzt werden und muss daher ausgetauscht wer- den. Diesem Effekt der Inhomogenität wird im Allgemeinen dadurch entgegengewirkt, dass eine genaue Auswahl der Einzelzellen mit gleicher Charakteristik zu Serienverschaltungen in einem Batteriesystem erfolgt, sowie auf eine Ladungsübertragung zurückgegriffen wird, bei welcher mittels Transformatorschaltungen von den in einem besseren Zustand befindlichen Einzelzellen zu den in einem schlechteren Zustand befindlichen Einzelzellen Ladung über- tragen wird. Die Auswahl der Einzelzellen stellt hingegen einen relativ großen Aufwand dar. Transformatoren, die bisher zur Abhilfe eingesetzt wurden, benötigen einen großen Einbauraum und sind teuer. Ferner wird ein erheblicher Aufwand dafür betrieben, die der Wärmeabfuhr während des Homogenisierungsvorgangs dient.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, die Lebensdauer eines Batteriesystems zu erhöhen, indem die Einzelzellen untereinander in einem homogeneren Ladezustandsbereich gehalten werden.
Zur Ladung des Batteriesystems wird eine systemseitig vorhandene, von außen mit dem Batteriesystem verbundene Energiequelle zur Erreichung einer homogeneren Ladungsverteilung eingesetzt. Für den Transport der Ladung zu den Einzelzellen des Batteriesystems werden keine Transformatoren benötigt, die Auswahl der Einzelzellen des Batteriesystems kann mit einer größeren Bandbreite bestimmt werden.
Die homogenere Ladungsverteilung innerhalb des Batteriesystems wird erreicht durch die Zuschaltung jeweils eines Bypasses über jede Einzelzelle des Betriebssystems. Zur Strombegrenzung kann in den Bypass seriell entweder mindestens ein Widerstand oder mindestens eine Induktivität geschaltet werden.
Jedem Bypass über eine jede Einzelzelle des Batteriesystems ist ein Bypassschalter zugeordnet, der den Ladestrom an der jeweiligen Einzelzelle vorbeiführt. Damit bei der Zuschal- tung des Bypasses die Einzelzelle nicht entladen wird, kann die Höhe des Bypassstromes durch eine getaktete Einsteuerung des Bypassschalters derart geregelt werden, dass der mittlere Strom aus der Einzelzelle näherungsweise gleich 0 wird. Für die Stromregelung gilt:
mit:
Ißy = Strom über den Einzelzellen-Bypass Ißz = Strom aus einer Einzelzelle IL = Ladestrom des Batteriesystems
Zur Sensierung des Stroms aus einer Einzelzelle IßZ auf den Wert 0 kann entweder die Spannung an den Einzelzellen überwacht werden, die daraufhin überwacht wird, dass diese den maximal zulässigen Grenzwert nicht überschreitet oder es kann ein Sensor pro Einzelzelle eingesetzt werden, der den Strom durch die Einzelzelle misst bzw. präsentiert.
Die jeweils den Einzelzellen des Batteriesystems zugeordneten Bypasse werden während des Ladevorgangs des Batteriesystems dann aktiv geschaltet, wenn die Spannung an der jeweiligen Einzelzelle den maximal zulässigen Spannungswert erreicht. Diese Einzelzellen sind in diesem Falle vollständig geladen und benötigen keine weitere Ladung. Die Einzelzellen, die demgegenüber geringere Ladungszustände aufweisen, haben ihren maximal zulässigen Spannungswert noch nicht erreicht und können daher weitere Ladung aufnehmen. Der Ladevorgang ist dann beendet, wenn entweder alle Einzelzellen oder eine zuvor definierte Anzahl von Einzelzellen ihren maximal zulässigen Spannungswert erreicht haben.
Zum Schutz der Bypass-Schaltungen kann der Ladestrom IL durch die Spannungs- bzw. Stromquelle mittels einer intelligenten Ansteuerung durch die Batterieladungssteuerung begrenzt werden. Die Ladestrombegrenzung wird dann aktiviert, wenn ein oder mehrere den Einzelzellen des Batteriesystems jeweils zugeordnete Bypasse aktiviert werden.
Zeichnung
Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
Die einzige Figur zeigt eine Ladeschaltung für in Serie geschaltete Batteriezellen zur Homogenisierung der Ladungsverteilung. -A- Ausführungsvarianten
Der einzigen Figur ist eine Ausfuhrungsvariante der erfindungsgemäß vorgeschlagenen Vorrichtung zum Laden eines Batteriesystems mit einer Anzahl von in Serie geschalteten Ein- zelspannungsquellen zu entnehmen.
Aus der Zeichnung geht hervor, dass die erfindungsgemäß vorgeschlagene Ladeschaltung eine Spannungsquelle 10 aufweist, über die ein Batteriesystem 12 geladen wird. Das Batteriesystem 12 umfasst Einzelspannungsquellen 14.1, 14.2,...14.n, die in Serienschaltung 16 innerhalb des Batteriesystems 12 angeordnet sind. Die Anzahl der im Batteriesystem 12 angeordneten Einzelspannungsquellen 14.1, 14.2,...14.n ist beliebig. Von Bedeutung ist, dass die Einzelspannungsquellen 14.1, 14.2,...14.n in Serienschaltung 16 angeordnet sind. Dem Batteriesystem 12 gemäß der Darstellung in der Zeichnung ist eine Batterieladungssteuerung 24 zugeordnet.
Jede der Einzelspannungsquellen 14.1, 14.2,...14.n des Batteriesystems 12 verfugt über einen Bypass 18.1, 18.2,...18.n. Jeder der jeweils einer der Einzelspannungsquellen 14.1, 14.2,...14.n zugeordneten Bypasse 18.1, 18.2,...18.n kann der jeweiligen Einzelspannungsquelle 14.1, 14.2,...14.n zugeschaltet werden. In jedem der Bypasse 18.1, 18.2,...18.n kann zur Strombegrenzung seriell entweder mindestens ein Widerstand oder auch mindestens eine Induktivität angeordnet sein. Daneben ist jedem der Bypasse 18.1, 18.2,...18.n ein By- pass-Schalter 20.1, 20.2, ...2O.n zugeordnet. Des Weiteren ist in der in der Zeichnung dargestellten Ausführungsvariante der Ladungsschaltung in jedem der Bypasse 18.1, 18.2,...18.n ein Spannungsmesser 26 enthalten. Anstelle des die jeweilige Spannung in den Einzelspannungsquellen 14.1, 14.2,...14.n überwachenden Spannungsmessers 26, kann den jeweiligen Einzelspannungsquellen 14.1, 14.2, ...14.n auch ein Sensor zugeordnet sein, der entweder den durch die jeweilige Einzelspannungsquelle 14.1, 14.2,...14.n fließenden Strom misst bzw. den durch die jeweilige Einzelspannungsquelle 14.1, 14.2,...14.n fließenden Strom repräsentiert.
Mit IL ist der von der Spannungsquelle 10 an das Batteriesystem 12 übertragene Ladungsstrom angedeutet. Mit IBy,i n ist der Strom über die Bypasse 18.1, 18.2,...18.n identifiziert, mit IBz,i n der sich über die jeweilige Einzelspannungsquelle 14.1, 14.2,...14.n einstellende Strom.
Durch die in der Zeichnung dargestellte Konfiguration der Ladeschaltung zur Ladung des Batteriesystems 12 wird die systemseitig vorhandene, von außen an das Batteriesystem 12 angeschlossene Spannungsquelle 10 zur Erreichung einer homogenen Ladungsverteilung innerhalb des Batteriesystems 12 eingesetzt. Für den Transport der Ladung zu den jeweiligen Einzelspannungsquellen 14.1, 14.2,...14.n sind keine Transformatoren erforderlich, ferner kann die Auswahl von Einzelspannungsquellen 14.1, 14.2,...14.n für das Batteriesystem 12 mit einer größeren Bandbreite, d.h. einer größeren Toleranz bestimmt werden.
Die homogenere Ladungsverteilung durch die erfindungsgemäß vorgeschlagene Lösung wird dadurch erreicht, dass bei der Zuschaltung eines jeweiligen Bypasses 18.1, 18.2,...18.n zur jeweiligen Einzelspannungsquelle 14.1, 14.2,...14. n eine Entladung mit der jeweiligen Einzelspannungsquelle 14.1, 14.2,...14.n vermieden wird, indem die Höhe des Bypassstro- mes Ißy,i n durch eine getaktete Ansteuerung 24 des jeweiligen Bypassschalters 20.1, 20.1,...20.n geregelt wird. Die Regelung erfolgt derart, dass ein mittlerer Strom IBz λ n aus den Einzelspannungsquellen 14.1, 14.2,...14.n näherungsweise 0 ergibt. Die Stromregelung erfolgt gemäß der Beziehung
Figure imgf000007_0001
mit
y,i n = Strom über Einzelspannungsquellen-Bypass IBz,i n = Strom über Einzelzelle IL = Ladestrom
Zur Erfassung des Stroms IßZ,i n auf den Wert von ungefähr 0 kann einerseits die Spannung an den Einzelspannungsquellen 14.1, 14.2,...14.n mittels Spannungsmessern 26 erfasst werden. Die Spannung an den jeweiligen Einzelspannungsquellen 14.1, 14.2,...14.n darf den maximal zulässigen Grenzwert beim Ladevorgang nicht überschreiten. Andererseits kann der Strom über die jeweiligen Einzelspannungsquellen 14.1, 14.2,...14.n, bezeichnet durch IBz,i n auch mit einem der jeweiligen Einzelspannungsquelle 14.1, 14.2, ...14.n n zugeordneten Sensor, der entweder den Strom misst oder diesen repräsentiert, erfasst werden.
Die jeweiligen Bypasse 18.1, 18.2,...18. n werden an den Einzelspannungsquellen 14.1, 14.2,...14.n während des Aufladevorgangs des Batteriesystems 12 durch die extern angeordnete Spannungsquelle 10 jeweils dann aktiviert, wenn die Spannung an den jeweiligen Einzelspannungsquellen 14.1, 14.2,...14. n den maximal zulässigen Spannungswert erreicht. In diesem Falle sind diejenigen der Einzelspannungsquellen 14.1, 14.2,...14.n voll geladen und benötigen keine weitere Ladung durch den von der Spannungsquelle 10 eingespeisten Ladestrom IL. Diejenigen der Einzelspannungsquellen 14.1, 14.2,...14.n mit geringeren La- dungszuständen haben ihren jeweiligen maximal zulässigen Spannungswert hingegen noch nicht erreicht und können durch die extern angeordnete Spannungsquelle 10 weiter geladen werden.
Der Ladevorgang ist dann beendet, wenn entweder alle Einzelspannungsquellen 14.1, 14.2,...14.n oder eine zuvor definierte Anzahl von Einzelspannungsquellen 14.1, 14.2,...14.n ihren maximal zulässigen Spannungswert erreicht haben.
Zur Beendigung des Ladevorgangs, d.h. des Einspeisens des Ladestroms IL durch die Spannungsquelle 10 in das Batteriesystem 12 kann entweder der Bedingung „alle Zellen" oder der Bedingung „definierte Anzahl von Zellen mit maximal zulässigem Spannungswert aufgeladen" herangezogen werden. Dies ist abhängig vom Applikationszweck der erfindungsgemäß vorgeschlagenen Ladeschaltung für das Batteriesystem 12, oder abhängig von der zulässigen Verlustleistung, die von den Bypass-Schaltungen abgeführt werden kann.
Zum Schutz der Bypass-Schaltungen, insbesondere der Bypass-Schalter 20.1, 20.2,...2O.n kann der Ladestrom IL durch die Spannungs- bzw. Stromquelle 10 mittels einer Ansteuerung durch die Batterieladungssteuerung 24 begrenzt werden. Die Ladestrombegrenzung für den Ladestrom IL kann insbesondere dann aktiviert werden, wenn ein oder mehrere der Bypasse 18.1, 18.2,...18.n aktiviert werden. Mit A sind Sensoren zur Erfassung des Stro- mes in den Einzelspannungsquellen 14.1 bis 14.n bezeichnet, die alternativ zu den Spannungsmessern 26 eingesetzt werden können. In den jeweiligen Bypässen 18.1 bis 18.n können Widerstände oder Induktivitäten in Serie geschaltet sein, ferner können die Bypass- Schalter 20.1 bis 2O.n statt als diskreter Schalter auch als Halbleiterschalter ausgeführt sein.
Durch die erfindungsgemäß vorgeschlagene Vorrichtung zum Laden des Batteriesystems 12 kann eine inhomogene Ladungsverteilung innerhalb der Einzelspannungsquellen 14.1, 14.2,...14.n innerhalb des Batteriesystems 12 vermieden werden.

Claims

Patentansprüche
1. Vorrichtung zum Laden eines Batteriesystems (12) mit einer Anzahl von in Serienschaltung (16) angeordneten Einzelspannungsquellen (14.1,...14. n) durch eine Span- nungsquelle (10), dadurch gekennzeichnet, dass den Einzelspannungsquellen
(14.1,...14.n) jeweils ein Bypass (18.1,...18.n) zugeordnet ist, über welchen ein Ladestrom (IL) aus der Spannungsquelle (10) abhängig vom Ladezustand der Einzelspannungsquellen (14.1,...14.n) diesen zugeführt wird.
2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass in die jeweiligen By- passe (18.1,...18. n) jeweils mindestens ein Widerstand seriell geschaltet ist.
3. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass in den jeweiligen By- passen (18.1,...18. n) jeweils mindestens eine Induktivität seriell geschaltet ist.
4. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass den jeweiligen Bypas- sen (18. l,...18.n) jeweils eine getaktete Ansteuerung innerhalb einer Batterieladungssteuerung (24) zur Regelung der Höhe des Stroms (Ißy,i n) über die jeweilige Einzelspannungsquellen ( 18.1 , ...18.n) zugeordnet ist.
5. Vorrichtung gemäß Anspruch 4, dadurch gekennzeichnet, dass die Stromregelung des Stroms (Ißy,i n) gemäß
erfolgt.
6. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass den Einzelspannungsquellen (14.1,...14.n) jeweils ein Spannungsmesser (26.1,...26.n) zugeordnet ist.
7. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass den Einzelspannungsquellen (14.1,...14.n) jeweils einen den Strom (IBz,i n) messender oder den Strom (IBZ,I n) repräsentierender Sensor (A) zugeordnet ist.
8. Verfahren zum Laden eines Batteriesystems (12) mit einer Anzahl von Einzelspannungsquellen (14.1,...14. n) durch eine Spannungsquelle (10), dadurch gekennzeichnet, dass die Regelung eines Stroms (IB2, I n) in den Einzelspannungsquellen (14. l,...14.n) jeweils zugeordneten Bypassen (18.1,...18.n) durchgetaktete Ansteue- rung eines den jeweiligen Einzelspannungsquellen (14.1,...14.n) zugeordneten By- pass-Schalters (20.1,...20.n), auf einen mittleren Strom IBz l n von ungefähr 0 erfolgt.
9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die Stromregelung des Stroms (IBz,i n) gemäß der Beziehung
-* &,! n By, \ n ~ * L
erfolgt.
10. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die sich an den Einzelspannungsquellen (14.1,...14.n) einstellenden Spannungen überwacht werden.
11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass die jeweiligen Bypasse (18.1,...18. n) während des Ladungsvorgangs dann aktiv geschaltet werden, wenn die Spannung an den jeweiligen Einzelspannungsquellen (14.1,...14.n) den maximal zulässigen Spannungswert erreicht.
12. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass der Ladevorgang beendet wird, wenn entweder alle Einzelspannungsquellen (14.1,...14.n) oder eine vordefinierte Anzahl von Einzelspannungsquellen (14.1,...14.n) ihren maximal zulässigen Spannungswert erreicht haben.
13. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass eine Begrenzung des Ladestroms (IL) dann erfolgen kann, wenn einer oder mehrere der Bypasse ( 18.1 , ...18.n) aktiviert werden.
PCT/EP2007/054992 2006-07-18 2007-05-23 Ladeschaltung für batteriezellen WO2008009502A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/308,585 US8253379B2 (en) 2006-07-18 2007-05-23 Charge circuit for battery cells
EP07729430A EP2044669A1 (de) 2006-07-18 2007-05-23 Ladeschaltung für batteriezellen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006033171A DE102006033171A1 (de) 2006-07-18 2006-07-18 Ladeschaltung für Batteriezellen
DE102006033171.0 2006-07-18

Publications (1)

Publication Number Publication Date
WO2008009502A1 true WO2008009502A1 (de) 2008-01-24

Family

ID=38512633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/054992 WO2008009502A1 (de) 2006-07-18 2007-05-23 Ladeschaltung für batteriezellen

Country Status (4)

Country Link
US (1) US8253379B2 (de)
EP (1) EP2044669A1 (de)
DE (1) DE102006033171A1 (de)
WO (1) WO2008009502A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009211A1 (fr) * 2012-07-10 2014-01-16 Blue Solutions Procédé de charge d'une batterie et batterie ainsi chargée
US9876347B2 (en) 2012-08-30 2018-01-23 Siemens Aktiengesellschaft Apparatus and methods for restoring power cell functionality in multi-cell power supplies

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427099B2 (en) * 2008-09-30 2013-04-23 Haemonetics Corporation Monitor for charging series connected batteries
DE102009000504B4 (de) 2009-01-30 2022-02-24 Robert Bosch Gmbh Batteriemodul
DE102010021707B4 (de) * 2010-05-27 2024-05-02 Sew-Eurodrive Gmbh & Co Kg Anordnung und Verfahren zum Betreiben einer Anordnung
DE102011079360A1 (de) 2011-07-19 2013-01-24 Sb Limotive Company Ltd. Vorrichtung und Verfahren zur Messung einer maximalen Zellspannung
DE102012200508A1 (de) * 2012-01-13 2013-07-18 Robert Bosch Gmbh Batteriesensor
DE102013003122A1 (de) * 2013-02-12 2014-11-27 Jungheinrich Aktiengesellschaft Akkumulator mit einer Vielzahl von Batteriezellen sowie Verfahren zum Betrieb eines solchen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498679A2 (de) * 1991-02-08 1992-08-12 Honda Giken Kogyo Kabushiki Kaisha Batterieladegerät
US5578914A (en) * 1994-06-08 1996-11-26 Nissan Motor Co., Ltd. Charging system for multi-cell battery
US5998967A (en) * 1998-02-16 1999-12-07 Rohm Co., Ltd. Lithium-ion battery pack
US6121752A (en) * 1997-11-21 2000-09-19 Hitachi, Ltd. Battery unit having a plurality of rechargeable battery cells and method of charging the same
EP1056182A2 (de) * 1999-05-27 2000-11-29 Lockheed Martin Corporation Autonome Batterieausgleichschaltung
US6271646B1 (en) * 2000-07-05 2001-08-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Battery cell by-pass circuit
US6329792B1 (en) * 1997-07-04 2001-12-11 Estco Energy Inc. Device and system for management of battery back up power source

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271648B1 (en) 2000-09-27 2001-08-07 Ford Global Tech., Inc. Method of preconditioning a battery to improve cold temperature starting of a vehicle
DE10150376A1 (de) 2001-10-11 2003-04-17 Bosch Gmbh Robert Vorrichtung zum Ausgleich des Ladezustands von in Reihe geschalteten Akkumulatoren
JP2005318751A (ja) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd 多直列電池制御システム
JP4400536B2 (ja) * 2004-12-27 2010-01-20 日産自動車株式会社 組電池の容量調整装置および容量調整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498679A2 (de) * 1991-02-08 1992-08-12 Honda Giken Kogyo Kabushiki Kaisha Batterieladegerät
US5578914A (en) * 1994-06-08 1996-11-26 Nissan Motor Co., Ltd. Charging system for multi-cell battery
US6329792B1 (en) * 1997-07-04 2001-12-11 Estco Energy Inc. Device and system for management of battery back up power source
US6121752A (en) * 1997-11-21 2000-09-19 Hitachi, Ltd. Battery unit having a plurality of rechargeable battery cells and method of charging the same
US5998967A (en) * 1998-02-16 1999-12-07 Rohm Co., Ltd. Lithium-ion battery pack
EP1056182A2 (de) * 1999-05-27 2000-11-29 Lockheed Martin Corporation Autonome Batterieausgleichschaltung
US6271646B1 (en) * 2000-07-05 2001-08-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Battery cell by-pass circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009211A1 (fr) * 2012-07-10 2014-01-16 Blue Solutions Procédé de charge d'une batterie et batterie ainsi chargée
FR2993417A1 (fr) * 2012-07-10 2014-01-17 Batscap Sa Procede de charge d'une batterie et batterie ainsi chargee
CN104428973A (zh) * 2012-07-10 2015-03-18 蓝色解决方案公司 用于对电池充电的方法及采用该方法充电的电池
AU2013289374B2 (en) * 2012-07-10 2017-01-19 Blue Solutions Method for charging a battery and battery thus charged
RU2612407C2 (ru) * 2012-07-10 2017-03-09 Блю Солюшнз Способ зарядки батареи и заряженная батарея
US9768629B2 (en) 2012-07-10 2017-09-19 Blue Solutions Method for charging a battery and battery thus charged
US9876347B2 (en) 2012-08-30 2018-01-23 Siemens Aktiengesellschaft Apparatus and methods for restoring power cell functionality in multi-cell power supplies
RU2644009C2 (ru) * 2012-08-30 2018-02-07 Сименс Акциенгезелльшафт Устройство и способы для восстановления функциональности элементов питания в многоэлементных источниках питания

Also Published As

Publication number Publication date
EP2044669A1 (de) 2009-04-08
DE102006033171A1 (de) 2008-01-24
US8253379B2 (en) 2012-08-28
US20110254499A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
DE102008021090B4 (de) Schaltungsanordnung und Verfahren zum Austausch elektrischer Ladung zwischen Akkumulatoren einer Akkumulatoranordnung
WO2008009502A1 (de) Ladeschaltung für batteriezellen
EP3092150B1 (de) Elektrochemischer energiespeicher und verfahren zum balancing
DE112010002427T5 (de) System und Verfahren für elnen Batteriepackausgangsschütz
DE102017213380A1 (de) Energiespeichervorrichtung für einen Motorstart, Verfahren zum Steuern dafür sowie Fahrzeug
DE102011054790A1 (de) Batterie mit mehreren Akkumulator-Zellen und Verfahren zum Betreiben einer solchen
WO2015165693A2 (de) Steuerung für elektrisch getriebenes fahrzeug, elektrisch getriebenes fahrzeug mit steuerung und verfahren
EP2572208B1 (de) Anordnung zur einzelzellenmessung in einem akkupack und einem akkupack mit einer solchen anordnung
DE102016005565A1 (de) Schaltungsanordnung für eine Zwischenkreiskapazität
DE102014212933B3 (de) Vorrichtung und Verfahren zum Ladezustandsausgleich für ein Batteriesystem
WO2009146952A1 (de) Elektrischer energiespeicher
DE102007009009A1 (de) Hybridbatterie
DE102019214240B3 (de) Konfigurierbare Gleichspannungswandlerschaltung und Fahrzeugbordnetz
DE102014201365A1 (de) Verfahren und Schaltungsanordnung zur Bestimmung des Coulomb-Wirkungsgrades von Batteriemodulen
DE112015002996T5 (de) Balancing-korrektur-steuervorrichtung, balancing-korrektur-system und elektrisches speichersystem
DE102013219965A1 (de) Traktionsbatterie mit integrierter Bordnetzbatterie
DE19526836C2 (de) Vorrichtung zum Ladungsausgleich zwischen wenigstens zwei Energiespeichern oder -wandlern
WO2008092756A2 (de) Batterie mit z-dioden-spannungsbegrenzungsschaltung
DE102018129426B3 (de) Verfahren zum aktiven Ladungsausgleich in Energiespeichern
DE102009016759A1 (de) Ladungsausgleichsschaltung für einen Energiespeicherblock und Verfahren zum Ladungsausgleich
CH715078A2 (de) Elektronische Schaltung zum Durchführen eines Ladezustandsausgleichs zwischen Batteriezellen eines Batteriesystems.
DE102018217238A1 (de) Konfigurierbare Schaltung, Ladeschaltung und Fahrzeugbordnetz
DE112018002809T5 (de) Stromversorgungseinrichtung
DE102018206822A1 (de) Elektrische Energiespeichervorrichtung, Verfahren und System zum Betreiben einer elektrischen Energiespeichervorrichtung sowie Fahrzeug
DE102008023292A1 (de) Elektrische Energieversorgungseinheit und Verfahren zum Laden und Entladen von Akkumulatoren einer elektrischen Energieversorgungseinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007729430

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12308585

Country of ref document: US