WO2008007499A1 - Puce a dosage immunologique electrochimique - Google Patents

Puce a dosage immunologique electrochimique Download PDF

Info

Publication number
WO2008007499A1
WO2008007499A1 PCT/JP2007/060447 JP2007060447W WO2008007499A1 WO 2008007499 A1 WO2008007499 A1 WO 2008007499A1 JP 2007060447 W JP2007060447 W JP 2007060447W WO 2008007499 A1 WO2008007499 A1 WO 2008007499A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
solution
reaction
reagent
malate
Prior art date
Application number
PCT/JP2007/060447
Other languages
English (en)
French (fr)
Inventor
Hidenobu Yaku
Hirokazu Sugihara
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2007535937A priority Critical patent/JP4083213B2/ja
Priority to US11/976,950 priority patent/US7585400B2/en
Publication of WO2008007499A1 publication Critical patent/WO2008007499A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/904Oxidoreductases (1.) acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)

Definitions

  • the present invention relates to a chip for measuring the amount of target substance electrochemically using an immunoassay.
  • An immunoassay is a method of measuring the amount of a target substance by using the binding property of an antigen and an antibody, that is, an antigen-antibody reaction.
  • the antigen-antibody reaction is the most abundant type of biological phenomenon known to date and the most distinctive of the target substance. Therefore, the immunoassay method can directly measure the amount of target substance contained in a biological sample in which a large number of biological molecules are mixed, from the biological sample without the need for isolation and purification of the target substance. It is noted as a method.
  • FIG. 1 is a process diagram for describing an example of an immunoassay.
  • the sample solution 5 containing the target substance 4 is added (Al) into the vessel 1 on which the antibody 2 is immobilized.
  • Antibody 2 has an antigen binding site for target substance 4. Therefore, the antigen-antibody reaction proceeds between the target substance 4 and the antibody 2 by the addition.
  • the interior of the tank 1 is cleaned using a knocker solution or the like (A2). Thereby, the contaminant 3 that may be contained in the sample solution is removed from the inside of the tank 1.
  • the second antibody 7 is added to tank 1 (A3).
  • the second antibody 7 contains an antigen binding site that is different from antibody 2.
  • the antigen-antibody reaction proceeds between the target substance 4 bound to the antibody 2 and the second antibody 7 by the addition.
  • the second antibody 7 is in a state of being labeled with a known label 6 such as a fluorescent substance, a radioactive substance, or an enzyme.
  • a known label 6 such as a fluorescent substance, a radioactive substance, or an enzyme.
  • the interior of the tank 1 is again cleaned using a knocker solution or the like (A4).
  • A4 a knocker solution or the like
  • the second antibody 7 not bound to the target substance 4 is removed from the inside of the tank 1.
  • the amount of the complex of the antibody 2, the labeling substance 4 and the second antibody 7 remaining in the tank more specifically, the labeled state in which the second antibody 7 in the complex is in a labeled state.
  • the amount of target substance 4 is calculated by measuring the amount of body 6 (A5).
  • FIG. 2 is a flow chart for explaining another example of the immunoassay.
  • a solution prepared to contain the target substance at a predetermined concentration is added to the tank 1 together with the sample solution containing the target substance 4a (Bl).
  • the labeled target substance is a pseudo target substance 4 b which has an antigenic site in common with the target substance 4 a and is in the state of being labeled by the label 6.
  • a competitive antigen-antibody reaction proceeds among the three of the antibody 2, the target substance 4a and the labeled target substance in the tank 1.
  • the interior of the tank 1 is cleaned using a knocker solution or the like (B2).
  • contaminating substances 3 and unreacted labeled target substances which may be contained in the sample solution are removed from the inside of the tank 1. Thereafter, the amount of the complex of the antibody 2 and the labeled target substance remaining in the tank 1, more specifically, the amount of the labeled substance 6 in the state where the labeled target substance is labeled in the complex is measured. Based on the addition amount of the labeled target substance, the amount of target substance 4a is calculated (B3).
  • JP-A-2-062952 and JP-A-9-297121 disclose enzyme cycling reactions using alkaline phosphatase as a marker and potassium hexacyanoferrate (III) (ferricyanide potassium) as an electron carrier.
  • a biosensor that utilizes the system to electrochemically measure the amount of target substance in a sample.
  • FIG. 3 is a view for explaining an enzyme cycling reaction system used in the biosensors described in JP-A-2-062952 and JP-A-9 297 121.
  • This enzyme cycling reaction system is induced in a reaction solution containing alkaline phosphatase, nicotinamide adenine dinucleotide phosphated form (NADP), ethanol, alcohol dehydrogenase, phorphorase, and potassium ferricyanide which is a substrate for phorphorase.
  • NADP alkaline phosphatase
  • NADP nicotinamide adenine dinucleotide phosphated form
  • ethanol ethanol
  • alcohol dehydrogenase phorphorase
  • potassium ferricyanide which is a substrate for phorphorase.
  • the first reaction is that NADP is dephosphorylated by alkaline phosphatase and nicotinamide adenine It is a reaction that is converted to nucleotidic acid form (NAD
  • NADH nicotinamide adenine dinucleotide reduced form
  • NADH force generated by the second reaction is reacted with potassium ferricyanide by catalysis of dipolar phorphorase, and is oxidized to NAD, and ferricyanide potassium is hexacyanoferrate (II). It is a reaction that is converted to potassium acid (potassium ferrocyanide).
  • the NADP may be nicotinamide adenine dinucleotide phosphate reduced type (NADPH).
  • Potassium ferrocyanide is converted to potassium ferricyanide by applying a voltage to the reaction solution.
  • the amount of alkaline phosphatase in the reaction solution is reflected in the amount of potassium cyanide formed in the third reaction through the above-described first to third reactions.
  • the amount of alkaline phosphatase can be measured by measuring the amount of acid current generated upon conversion to potassium cyanide and potassium ferricyanide.
  • FIG. 4 is a diagram for explaining this novel enzyme cycling reaction system.
  • the basic reaction mechanism is the same as that of the enzyme cycling reaction system shown in FIG. 3.
  • the enzyme cycling reaction system proposed by the present inventor is malic acid dehydration instead of alcohol dehydrogenase.
  • ethanol at least one selected from malic acid and malate power is used instead of ethanol.
  • This enzyme cycling reaction system is highly volatile, containing no reagents, such as ethanol.
  • the novel enzyme cycling reaction system shown in Figure 4 is a reaction system that does not involve lipid modifying enzymes It is.
  • oxidation current value blade value
  • the state in which the enzyme and the electron carrier are completely separated It is considered to be desirable to be held in the chip by (see, for example, JP-A-2005-046001).
  • the present inventor examined and used the novel enzyme cycling reaction system shown in FIG. 4, as shown in a comparative example to be described later, the chip in a state where the enzyme and the electron carrier were completely separated. Although the generation of the blank value can be suppressed by holding it, the measurement accuracy of the chip can not be improved to a level sufficient for practical use.
  • the present inventors have the reagent group involved in the reaction system shown in FIG. 4 be held on the chip in a state in which only a part of electron carriers (ferricyanide potassium) are separated as well as the enzyme power, and the other parts are By fixing the electron carrier (NADP or NADPH) in the same place as the enzyme, it is possible to suppress the generation of the blank value and to improve the measurement accuracy of the chip to a level sufficient for practical use.
  • the present invention is a chip for measuring the amount of a target substance electrochemically using an immunoassay, wherein at least one selected from among NADP and NADPH, malate dehydrogenase, is contained in the chip.
  • a substrate of the malate dehydrogenase, potassium ferricyanide, and a diaphorase are immobilized, and immobilized in a state where the malate dehydrogenase, at least one selected from the NADP and the NADPH power, and the substrate are mixed;
  • FIG. 1 is a flow chart for explaining an example of an immunoassay.
  • FIG. 2 is a flow chart for explaining another example of the immunoassay.
  • FIG. 3 is a view for explaining an enzyme cycling reaction system utilizing alcohol dehydrogenase.
  • FIG. 4 is a view for explaining a novel enzyme cycling reaction system.
  • FIG. 5 is a view showing an example of a measurement chip of the present invention.
  • FIG. 6 is a view showing another example of the measurement chip of the present invention.
  • FIG. 7 is a view showing chips used in Examples and Comparative Examples.
  • FIG. 8 is a graph showing the results of constant potential measurement in Comparative Example 1.
  • FIG. 9 is a graph showing the results of constant potential measurement in Comparative Example 2.
  • FIG. 10 is a graph showing the results of constant potential measurement in Example 1.
  • FIG. 11 is a graph showing the results of constant potential measurement in Comparative Example 3.
  • FIG. 5 and FIG. 6 are diagrams for explaining an example of a chip for measuring the amount of a target substance in a sample solution using the enzyme cycling reaction system shown in FIG.
  • the chip 100 has a sample inlet 8 for introducing a sample solution into the chip, and an amount of alkaline phosphatase-labeled material that reflects the amount of the target substance in the sample solution. It has a reaction vessel 9 for obtaining a solution to be contained, a reagent fixing vessel 10, and an electrode vessel 13 in which an electrode capable of measuring a constant potential is held.
  • the reagent fixing tank 10 and the electrode tank 13 are in communication with each other by the flow path 14a.
  • the reaction layer 9 and the reagent fixing tank 10 are in communication with each other by the flow path 14 b.
  • the sample inlet 8 and the reaction layer 9 are in communication with each other by the flow path 14c.
  • the chip 200 has a sample inlet 8, a reagent fixing tank 10 and an electrode tank 13 as shown in FIG.
  • the reagent fixing tank 10 and the electrode tank 13 are in communication with each other by the flow path 14a, and the sample inlet 8 and the reagent fixing tank 10 are in communication with each other by the flow path 14d.
  • These reservoirs and flow channels are formed on the chip substrate 20.
  • the material of the chip substrate include polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the material of the chip substrate may be a resin material other than PET typified by polycarbonate, polyimide and polypropylene, or may be glass.
  • potassium ferricyanide 11 and a reagent mixture 12 are fixed in a separated state and in a dried state.
  • the reagent mixture 12 contains malic acid dehydrogenase, at least one selected from NADP and NADPH, and a substrate of malic acid dehydrogenation enzyme.
  • the diaphorase is also fixed in a dry state.
  • the reagent in the state where the reagent is fixed in the chip, the reagent is held in the chip with a certain degree of strength so that the positional force does not deviate even if a small impact is applied to the chip. I say the state. The reagent in such a state is easily dissolved in the sample solution. It is in the state to understand.
  • the malate dehydrogenase substrate examples include at least one selected from malic acid and malate.
  • malate at least one selected from sodium malate and potassium malate can be exemplified.
  • the chip 100, 200 of the present invention has the chip substrate 20 and the potassium ferricyanide 11 and the reagent mixture 12 immobilized on the chip substrate 20, and the potassium ferricyanide 11 and the reagent mixture 12 are mutually different. It is in the state of being separated.
  • the chip 100, 200 further comprises a diaphorase immobilized on the chip substrate 20 as part of the reagent mixture 12 or as a separate component.
  • the sample solution introduced from the sample inlet 8 is sent to the reaction tank 9 through the flow path 14c.
  • a solution containing an alkaline phosphatase-labeled substance, which reflects the amount of the target substance in the sample solution is prepared. Thereafter, the solution is sent to the reagent fixing tank 10 through the flow path 14b.
  • the reaction for obtaining the solution has various patterns as typified by the flowcharts of FIGS. 1 and 2. For this reason, reaction tank 9 appropriately adjusts the number and arrangement pattern of the tank and flow channels according to the reaction pattern.
  • a solution containing a substance labeled with alkaline phosphatase, which reflects the amount of the target substance in the sample solution is introduced into the reagent fixing tank 10 from the sample inlet 8 through the flow path 14d.
  • the solution is prepared prior to introduction into the chip's user force chip.
  • potassium ferrocyanide obtained by the cycling reaction is converted to potassium ferricyanide, and the current value flowing in the conversion is measured (constant potential measurement). Then, as described above, the amount of the target substance in the sample solution is calculated based on the current value obtained by the constant potential measurement.
  • Reagents involved in the reaction system shown in FIG. 4 are replaced with the reagent fixing tank 10 and flow channels 14a, 14b, 1 In 4 d or the electrode tank 13, it may be fixed so as to be soluble in the sample solution.
  • the configuration of the electrodes in the electrode tank 13 may be a working electrode and a two-pole type that can be paired as much as possible, or a working electrode, a counter electrode, and a three-pole type that can be referenced and may be used as a reference.
  • the liquid transfer between the tanks may be performed, for example, by utilizing a centrifugal force, or may be performed, for example, by applying pressure in the flow path using a pump or the like.
  • a chip 300 shown in FIG. 7 was prepared.
  • the chip 300 includes a chip substrate 15 made of PET, a counter electrode disposed on the chip substrate 15, and an electrode system 16 that can also measure as much as possible, and an insulating layer 17 disposed on the chip substrate 15.
  • the electrode system 16 may be formed, for example, by screen printing a known conductive carbon paste on the chip substrate 15 in a predetermined pattern, followed by heating and drying.
  • an electrode exposed portion 19 in which a part of the electrode system 16 is exposed is formed in a known insulating paste, and a state in which a chip external force can also apply a voltage to the electrode system 16.
  • It may be formed by screen printing on the chip substrate 15 so that the other part of the electrode system 16 is exposed and then heating and drying.
  • a partial area of the surface of the insulating layer 17 was used as a reagent immobilizing site 18 for immobilizing the reagent group involved in the enzyme cycling reaction shown in FIG. 4 in a dry state.
  • 1M potassium ferricyanide solution (l / z L lOOOUZmL of dipolarase solution (6. 7 ⁇ L), 4% sodium malate solution (7.8: L), 5 mM NADP solution (1 ⁇ L), 2500 OUZmL
  • a mixed solution was prepared by mixing 1 M malate dehydrogenase solution (1 ⁇ L), and 1 M Tris-HC1 solution (5 ⁇ L, pH 9) This mixed solution (22.5 L) was prepared by The chip 300 was placed on the reagent immobilization site 18 of the chip 300 and vacuum dried at normal temperature (25 ° C.) for 3 hours to mix all the reagents involved in the enzyme cycling reaction shown in FIG. In the state, it was dried and fixed on the reagent fixing site 18.
  • an alkaline phosphatase-labeled CRP antibody solution (100 ⁇ L) is added to the reagent group that has been dried and fixed on the reagent-immobilized site 18, and the reagent group is dissolved in the solution.
  • the reaction solution was prepared.
  • the reaction solution contains the concentration of alkaline phosphatase labeled CRP antibody Plural species were prepared to be 0 M, 0.083 nM, 0.415 nM, and 0. 830 ⁇ .
  • the reaction solution was incubated at 30 ° C. for 10 minutes, moved to the electrode exposed site 19 of the chip 300, and constant potential measurement was performed by applying a constant voltage of 400 mV to the reaction solution.
  • FIG. 8 is a graph showing the relationship between the alkaline phosphatase labeled CRP antibody concentration (ALP-Ab concentration) in the reaction solution and the current value flowing in each reaction solution immediately after voltage application in Comparative Example 1. It is. As shown in FIG. 8, the current values detected by constant potential measurement showed large variations, and the correlation between ALP and Ab concentration was very poor. Thus, it is difficult to measure the amount of target substance with high accuracy using the chip of Comparative Example 1.
  • the reagents involved in the enzyme cycling reaction shown in FIG. 4 are separated on the reagent immobilizing site 18 with the electron carriers (potassium ferricyanide and NADP) and the enzymes (malate dehydrogenase and diaphorase) separated.
  • the constant potential measurement was performed in the same manner as in Comparative Example 1 except that the chip 300 dried and fixed was used.
  • the reagent group was dried and fixed as follows. lOOOUZmL of the diaphorase solution (6.7
  • FIG. 9 is a graph showing the relationship between the ALP-Ab concentration in the reaction solution and the current value flowing in each reaction solution immediately after application of voltage in Comparative Example 2.
  • the current value detected by constant potential measurement was in a state where the blank value was suppressed as compared with Comparative Example 1, but the variation was strong.
  • the slope of the approximation line (the slope of the calibration curve) with respect to the plot of the current value was smaller than that of Comparative Example 1. Thus, it is difficult to measure the amount of target substance with high accuracy using the chip of Comparative Example 2.
  • Example 1 In the reagent group involved in the enzyme cycling reaction shown in FIG. 4, a chip 300 was used, which was dried and fixed on the reagent fixing site 18 with only potassium ferricyanide among the electron carriers separated from the enzyme and its substrate power. The constant potential measurement was performed in the same manner as in Comparative Example 2 except for the following.
  • the reagent group was dried and fixed as follows. lOOOUZ mL of the phorphorase solution (6.7 ⁇ L), 4% sodium malate solution (7.8: L), 5 mM NADP solution (1 ⁇ L), 2500 OUZ mL of malate dehydrogenase solution (1 ⁇ L)
  • a mixed solution was prepared by mixing L) and 1 M Tris-HC1 solution (5 ⁇ L, pH 9). Also, 1 M potassium ferricyanide solution (1 ⁇ L) was prepared.
  • the mixed solution (21.5 L) and the ferricyanide potassium solution (1 / z L) were placed in different regions on the reagent fixing site 18, respectively, and then vacuum dried at room temperature for 3 hours.
  • FIG. 10 is a graph showing the relationship between the ALP-Ab concentration in the reaction solution and the current value flowing in each reaction solution immediately after application of voltage in Example 1. As shown in FIG. 10, the current value detected by the constant potential measurement was highly correlated with the ALP-Ab concentration. Thus, using the chip of Example 1, the amount of target substance can be measured with high accuracy.
  • the reagent group involved in the enzyme cycling reaction shown in FIG. 4 is a chip 300 which is dried and fixed on the reagent fixing site 18 in a state where only NADP of the electron carriers is separated from the enzyme and its substrate force. In the same manner as Comparative Example 2, constant potential measurement was performed.
  • the reagent group was dried and fixed as follows. 1M ferricyanide potassium solution (1 ⁇ L), lOOOUZmL of the phospholase solution (6.7L), 4M sodium malate solution (7.8 ⁇ L), 25000UZmL of malate dehydrogenase solution (1 ⁇ L) And a mixed solution was prepared by mixing 1 M Tris-HCl solution (5 / z L, pH 9). In addition, 5 mM NAD P solution (1 ⁇ L) was prepared. The mixed solution (21.5 L) and the NADP solution (1 ⁇ L) were respectively placed in different regions on the reagent fixing site 18, and then vacuum dried at room temperature for 3 hours.
  • FIG. 11 shows the ALP-Ab concentration in the reaction solution in Comparative Example 3, and immediately after voltage application.
  • FIG. 7 is a graph showing the relationship with the current value flowing in each reaction solution. As shown in FIG. 11, the slope of the approximate line (21.6) to the plot of the current value detected by constant potential measurement is compared to the slope (72.7) of the approximate line obtained in Example 1. It was too small to meet 1Z3. Thus, in the chip of Comparative Example 3, it is difficult to measure the amount of the target substance with high accuracy comparable to the case of using the chip of Example 1.
  • the present invention provides a chip capable of performing highly accurate immunological measurement without requiring a highly volatile reagent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

明 細 書
電気化学的免疫測定チップ
技術分野
[0001] 本発明は、免疫測定法を用いて、標的物質の量を電気化学的に測定するチップに 関する。
背景技術
[0002] 免疫測定法は、抗原と抗体の結合性、すなわち抗原抗体反応、を利用することによ り、標的物質の量を測定する方法である。抗原抗体反応は、これまでに知られている 生物現象の中で最も種類が多ぐかつ標的物質の識別性が最も高い。このため、免 疫測定法は、膨大な種類の生体分子が混在する生体試料に含有された標的物質の 量を、当該標的物質の単離精製作業を必要とせずに、生体試料から直接測定できる 方法として注目されている。
[0003] 図 1は、免疫測定法の一例について説明するための工程図である。この例では、ま ず、標的物質 4を含む試料溶液 5を、抗体 2が固定された槽 1内に添加する (Al)。抗 体 2は、標的物質 4に対する抗原結合部位を有している。このため、当該添カ卩により、 標的物質 4と抗体 2との間で抗原抗体反応が進行する。次に、ノ ッファー溶液などを 用いて槽 1内を洗浄する (A2)。これにより、試料溶液に含有され得る夾雑物質 3が、 槽 1内から除去される。その後、第 2の抗体 7を槽 1内に添加する (A3)。第 2の抗体 7 は、抗体 2とは異なる抗原結合部位を含む。このため、当該添カ卩により、抗体 2に結 合した状態にある標的物質 4と第 2の抗体 7との間で、抗原抗体反応が進行する。第 2の抗体 7は、蛍光物質、放射性物質、酵素などの公知の標識体 6により標識された 状態にある。続いて、再度、ノ ッファー溶液などを用いて槽 1内を洗浄する (A4)。こ れにより、標的物質 4に結合していない第 2の抗体 7が、槽 1内から除去される。その 後、槽 1内に残存した、抗体 2、標識物質 4および第 2の抗体 7の複合体の量、より具 体的には当該複合体における第 2の抗体 7を標識した状態にある標識体 6の量、を 測定することにより、標的物質 4の量を算出する (A5)。
[0004] 図 2は、免疫測定法の別例について説明するための工程図である。この例では、標 的物質 4aを含む試料溶液とともに、標識ィ匕標的物質を所定濃度で含有するように調 製された溶液を、槽 1内に添加する (Bl)。標識化標的物質は、標的物質 4aと共通 する抗原部位を有し、標識体 6によって標識された状態にある、擬似的な標的物質 4 bである。当該添カ卩により、槽 1内において、抗体 2、標的物質 4aおよび標識化標的 物質の三者間で競合的な抗原抗体反応が進行する。次に、ノ ッファー溶液などを用 いて槽 1内を洗浄する(B2)。これにより、試料溶液に含有され得る夾雑物質 3および 未反応の標識ィ匕標的物質などが、槽 1内から除去される。その後、槽 1内に残存した 、抗体 2および標識化標的物質の複合体の量、より具体的には当該複合体における 標識化標的物質を標識した状態にある標識体 6の量、を測定し、標識化標的物質の 添加量に基づ 、て、標的物質 4aの量を算出する(B3)。
[0005] 免疫測定法には、上述の二例以外にも様々なパタンが存在する。しかし、 V、ずれの ノタンにおいても、試料溶液中の標的物質の量は、当該量を反映した標識体の量に 基づいて算出される。標識体の量を測定する方法としては、光学的な測定手段を用 いる方法があるが、光源および輝度検出器を必要とするため、測定装置を小型化お よび低コストィ匕することが難し 、。
[0006] 測定装置を小型化および低コスト化するとともに、測定を、安全かつ容易に、また、 高 ヽ精度で実施する観点から、電気化学的な測定手段を用いる方法が注目されて いる。例えば、特開平 2— 062952号公報および特開平 9— 297121号公報は、アル カリホスファターゼを標識体とし、へキサシァノ鉄 (III)酸カリウム (フェリシアンィ匕カリウ ム)を電子伝達体として用いる酵素サイクリング反応系を利用して、試料中の標的物 質の量を電気化学的に測定するバイオセンサを開示する。
[0007] 図 3は、特開平 2— 062952号公報および特開平 9 297121号公報に記載のバ ィォセンサにおいて利用される、酵素サイクリング反応系について説明するための図 である。この酵素サイクリング反応系は、アルカリホスファターゼ、ニコチンアミドアデ ニンジヌクレオチドリン酸酸化型(NADP)、エタノール、アルコール脱水素酵素、ジ ァホラーゼ、およびジァホラーゼの基質となるフェリシアンィ匕カリウムを含有する反応 溶液において誘導される、第 1〜第 3の反応によって構成されている。第 1の反応は、 NADPが、アルカリホスファターゼにより脱リン酸化され、ニコチンアミドアデニンジヌ クレオチド酸ィ匕型 (NAD)へと変換される反応である。第 2の反応は、第 1の反応によ つて生成した NAD力 エタノールとともに、アルコール脱水素酵素の触媒作用による 酸化還元反応を受けて、ニコチンアミドアデニンジヌクレオチド還元型 (NADH)へと 還元される反応である。第 3の反応は、第 2の反応によって生成した NADH力 ジァ ホラーゼの触媒作用によってフェリシアンィ匕カリウムと反応し、 NADへと酸ィ匕されると ともに、フェリシアンィ匕カリウムがへキサシァノ鉄 (II)酸カリウム (フエロシアン化カリウム )へと変換される反応である。なお、 NADPは、ニコチンアミドアデニンジヌクレオチド リン酸還元型 (NADPH)であってもよい。フエロシアンィ匕カリウムは、反応溶液中に 電圧を印加することにより、フェリシアンィ匕カリウムに変換される。反応溶液中のアル カリホスファタ一ゼの量は、上記の第 1〜3の反応を経ることにより、第 3の反応におい て生成したフエロシアン化カリウムの量に反映される。これにより、フエロシアン化カリ ゥム力 フェリシアンィ匕カリウムへの変換に伴って生じる酸ィ匕電流量を測定することで 、アルカリホスファタ一ゼの量を測定できる。
[0008] ノィォセンサをチップ化するためには、酵素サイクリング反応に必要な試薬をチッ プ内に長期的に保持させることが重要である。アルコール脱水素酵素を利用する酵 素サイクリング反応系では、上記のとおりエタノールを用いる必要がある。エタノール は、高い揮発性を有するために、チップ内に長期的に保持させることが難しい。この ため、アルコール脱水素酵素を含む酵素サイクリング反応系を利用して、バイオセン サをチップィ匕することは容易ではな 、。
発明の開示
[0009] 本発明者は、これまでに、揮発性の高 ヽ試薬を必要としな ヽ新規な酵素サイクリン グ反応系の確立を進めてきた。図 4は、この新規な酵素サイクリング反応系について 説明するための図である。基本的な反応メカニズムは図 3に示す酵素サイクリング反 応系と同様であるが、本発明者が提案する酵素サイクリング反応系は、図 4に示すよ うに、アルコール脱水素酵素に代えてリンゴ酸脱水素酵素を、また、エタノールに代 えてリンゴ酸およびリンゴ酸塩力 選ばれる少なくとも 1種を用いる。この酵素サイタリ ング反応系は、エタノールのような揮発性の高 、試薬を含まな 、。
[0010] 図 4に示す新規な酵素サイクリング反応系は、脂質修飾酵素が関与しない反応系 である。従来、基質を含有しない試料液に対する酸化電流値 (ブランク値)の発生を 抑制する側面から、脂質修飾酵素が関与しない酵素サイクリング反応系を利用する 場合、酵素および電子伝達体を完全に分離した状態でチップ内に保持させることが 望ま 、と考えられて 、た (例えば、特開 2005 - 046001号公報)。
[0011] ところが、本発明者が検討したところ、図 4に示す新規な酵素サイクリング反応系を 利用する場合、後述する比較例に示すように、酵素および電子伝達体を完全に分離 した状態でチップに保持させることによっては、ブランク値の発生は抑制できるものの 、チップの測定精度を実用に十分な程度にまで向上することはできな 、。
[0012] 本発明者は、図 4に示す反応系に関与する試薬群を、一部の電子伝達体 (フエリシ アンィ匕カリウム)のみを酵素力も分離した状態でチップに保持させ、他の一部の電子 伝達体 (NADPまたは NADPH)を酵素と同一の場所に固定することによって、ブラ ンク値の発生を抑制できるとともに、チップの測定精度を実用に十分な程度にまで向 上できることを見出し、本発明を完成させた。すなわち、本発明は、免疫測定法を用 いて電気化学的に標的物質の量を測定するチップであって、該チップ内に、 NADP および NADPHカゝら選ばれる少なくとも 1種、リンゴ酸脱水素酵素、該リンゴ酸脱水素 酵素の基質、フェリシアンィ匕カリウムならびにジァホラーゼが固定され、前記リンゴ酸 脱水素酵素と、前記 NADPおよび前記 NADPH力 選ばれる少なくとも 1種と、前記 基質とが混合された状態で固定され、前記リンゴ酸脱水素酵素と、前記フ リシアン 化カリウムとが離間した状態で固定されたチップを提供する。
[0013] 本発明によれば、揮発性の高 、試薬を必要とせずに、高精度な免疫学的測定を実 施できるチップを提供できる。
図面の簡単な説明
[0014] [図 1]図 1は、免疫測定法の一例を説明するための工程図である。
[図 2]図 2は、免疫測定法の別例を説明するための工程図である。
[図 3]図 3は、アルコール脱水素酵素を利用する酵素サイクリング反応系について説 明するための図である。
[図 4]図 4は、新規な酵素サイクリング反応系について説明するための図である。
[図 5]本発明の測定チップの一例を示す図である。 [図 6]本発明の測定チップの別例を示す図である。
[図 7]実施例および比較例で用いたチップを示す図である。
[図 8]比較例 1における定電位測定の結果を示すグラフである。
[図 9]比較例 2における定電位測定の結果を示すグラフである。
[図 10]実施例 1における定電位測定の結果を示すグラフである。
[図 11]比較例 3における定電位測定の結果を示すグラフである。
発明を実施するための最良の形態
[0015] 図 5および図 6は、図 4に示す酵素サイクリング反応系を利用して試料溶液中の標 的物質の量を測定するチップの一例について説明するための図である。
[0016] チップ 100は、図 5に示すように、試料溶液をチップ内に導入するための試料導入 口 8、試料溶液中の標的物質の量を反映した量のアルカリホスファターゼ標識ィ匕物 質を含む溶液を得るための反応槽 9、試薬固定槽 10、および定電位測定が可能な 電極が保持された電極槽 13を有している。試薬固定槽 10と電極槽 13は流路 14aに より連通されている。反応層 9と試薬固定槽 10は流路 14bにより連通されている。試 料導入口 8と反応層 9は流路 14cにより連通されている。チップ 200は、図 6に示すよ うに、試料導入口 8、試薬固定槽 10および電極槽 13を有している。試薬固定槽 10と 電極槽 13は流路 14aにより、また、試料導入口 8と試薬固定槽 10は流路 14dにより 連通されている。これらの槽ゃ流路などは、チップ基板 20上に形成されている。チッ プ基板の材料としては、ポリエチレンテレフタレート(PET)が例示できる。チップ基板 の材料は、ポリカーボネート、ポリイミドおよびポリプロピレンなどに代表される、 PET 以外の榭脂材料であっても、また、ガラスであっても構わない。
[0017] 試薬固定槽 10には、フェリシアン化カリウム 11と、試薬混合物 12とが、離間した状 態で、かつ乾燥した状態で、固定されている。試薬混合物 12は、リンゴ酸脱水素酵 素、 NADPおよび NADPH力も選ばれる少なくとも 1種、ならびにリンゴ酸脱水素酵 素の基質を含有する。試薬固定槽 10には、ジァホラーゼも乾燥状態で固定されてい る。なお、本明細書において試薬がチップ内に固定されている状態とは、チップに多 少の衝撃が加わっても、所定の位置力 ずれない程度の強固さで試薬がチップ内に 保持されている状態をいう。こうした状態にある試薬は、試料溶液に対して容易に溶 解する状態にある。リンゴ酸脱水素酵素の基質としては、リンゴ酸およびリンゴ酸塩か ら選ばれる少なくとも 1種が例示できる。リンゴ酸塩としては、リンゴ酸ナトリウムおよび リンゴ酸カリウム力も選ばれる少なくとも 1種を例示できる。このように、本発明のチップ 100、 200は、チップ基板 20と、チップ基板 20上に固定されたフェリシアン化カリウム 11および試薬混合物 12とを有し、フェリシアン化カリウム 11と試薬混合物 12とが、互 いに離間した状態にある。チップ 100、 200は、さらに、試薬混合物 12の一部として、 または別の成分として、チップ基板 20上に固定されたジァホラーゼを有する。
[0018] チップ 100では、試料導入口 8から導入された試料溶液が、流路 14cを通じて反応 槽 9に送られる。反応槽 9では、試料溶液中の標的物質の量を反映する、アルカリホ スファターゼ標識された物質を含有する溶液が調製される。その後、当該溶液は、流 路 14bを通じて試薬固定槽 10に送られる。当該溶液を得るための反応は、図 1およ び 2の工程図に代表されるように種々のパタンが存在する。このため、反応槽 9は、反 応のパタンに応じ、槽ならびに流路の数および配置パタンを適宜調整してょ 、。
[0019] チップ 200では、試料溶液中の標的物質の量を反映する、アルカリホスファターゼ 標識された物質を含有する溶液を、流路 14dを通じて試料導入口 8から試薬固定槽 10に導入する。当該溶液は、チップの使用者力 チップ内に導入する前に調製する
[0020] チップ 100および 200のいずれにおいても、アルカリホスファターゼ標識された物質 を含有する溶液が試薬固定槽 10に導入されると、当該溶液に、上記のフェリシアン 化カリウム力もジァホラーゼまでの試薬群が溶解する。これにより、試薬固定槽 10に おいて、当該試薬群と、溶液中のアルカリホスファターゼとの間で、図 4に示すサイク リング反応が進行する。サイクリング反応後の溶液は、流路 14aを通じて電極槽 13に 送られる。電極槽 13では、当該電極槽 13に導入された溶液に電圧が印加される。こ れにより、サイクリング反応によって得られたフエロシアンィ匕カリウムがフェリシアンィ匕 カリウムに変換されるとともに、当該変換の際に流れる電流値が測定される(定電位 測定)。そして、上記のとおり、定電位測定により得た電流値に基づいて、試料溶液 中の標的物質の量が算出される。
[0021] 図 4に示す反応系に関与する試薬は、試薬固定槽 10に代えて、流路 14a、 14b、 1 4dや電極槽 13において、試料溶液に溶解可能な状態で固定されていてもよい。電 極槽 13における電極の構成は、作用極および対極力もなる二極式としてもよいし、 作用極、対極および参照極力 なる三極式としてもよい。各槽間の送液は、例えば遠 心力を利用することにより行ってもょ 、し、また例えばポンプなどを利用して流路内に 圧力をかけることにより行ってもよい。
実施例
[0022] 以下、実施例により、本発明をさらに詳細に説明する。
[0023] 図 7に示すチップ 300を用意した。チップ 300は、 PETにより構成されたチップ基板 15、チップ基板 15上に配置された対極および測定極力もなる電極系 16、ならびに チップ基板 15上に配置された絶縁層 17を備える。電極系 16は、例えば、公知の導 電性カーボンペーストを所定のパタンでチップ基板 15上にスクリーン印刷した後、加 熱し、乾燥させることにより形成すればよい。絶縁層 17は、例えば、公知の絶縁性ぺ 一ストを、電極系 16の一部が露出した状態にある電極露出部位 19が形成され、また 、チップ外力も電極系 16に電圧を印加できる状態で電極系 16の他の一部が露出す るように、チップ基板 15上にスクリーン印刷した後、加熱し、乾燥することにより形成 すればよい。絶縁層 17の表面の一部の領域は、図 4に示す酵素サイクリング反応に 関与する試薬群を乾燥状態で固定させる試薬固定部位 18として使用した。
[0024] (比較例 1)
1Mのフェリシアン化カリウム溶液(l /z L lOOOUZmLのジァホラーゼ溶液(6. 7 μ L)、 4Μのリンゴ酸ナ卜リウム溶液(7. 8 : L)、 5mMの NADP溶液(1 μ L)、 2500 OUZmLのリンゴ酸脱水素酵素溶液(1 μ L)、および 1Mの Tris— HC1溶液(5 μ L、 pH9)を混合することにより、混合溶液を調製した。この混合溶液(22. 5 L)を、チ ップ 300の試薬固定部位 18上に配置した後、常温(25°C)で 3時間、真空乾燥させ た。これにより、図 4に示す酵素サイクリング反応に関与する試薬群を、全て混合した 状態で試薬固定部位 18上に乾燥固定した。
[0025] 続、て、アルカリホスファターゼ標識 CRP抗体溶液(100 μ L)を、試薬固定部位 1 8上に乾燥固定されている試薬群に添加し、当該溶液に試薬群を溶解させることによ り、反応溶液を調製した。反応溶液は、アルカリホスファターゼ標識 CRP抗体の濃度 0M、 0. 083nM、 0. 415nM、 0. 830ηΜとなるように複数種を調製した。
[0026] 反応溶液を 30°Cで 10分間インキュベートした後、チップ 300の電極露出部位 19に 移動させ、 400mVの定電圧を反応溶液に印加する定電位測定を実施した。
[0027] 図 8は、比較例 1における、反応溶液中のアルカリホスファターゼ標識 CRP抗体濃 度 (ALP— Ab濃度)と、電圧印加直後にそれぞれの反応溶液において流れた電流 値との関係を示すグラフである。図 8に示すように、定電位測定により検出された電流 値は、ばらつきが大きぐまた、 ALP— Ab濃度との間の相関が非常に乏し力つた。こ のように、比較例 1のチップを使用して、標的物質の量を高精度に測定することは難 しい。
[0028] (比較例 2)
図 4に示す酵素サイクリング反応に関与する試薬群を、電子伝達体 (フェリシアン化 カリウムおよび NADP)と、酵素(リンゴ酸脱水素酵素およびジァホラーゼ)とを分離し た状態で試薬固定部位 18上に乾燥固定したチップ 300を用いたこと以外は、比較 例 1と同様にして定電位測定を実施した。
[0029] 試薬群は、次のようにして乾燥固定した。 lOOOUZmLのジァホラーゼ溶液(6. 7
μ L)、 4Μのリンゴ酸ナトリウム溶液(7. 8 L)、 25000UZmLのリンゴ酸脱水素酵 素溶液(: L)、および 1Mの Tris— HC1溶液(5 /z L、 pH9)を混合することにより、 混合溶液を調製した。また、 1Mのフェリシアン化カリウム溶液(: L)、および 5mM の NADP溶液(1 μ L)を用意した。これらの混合溶液 (20. 5 L)、フェリシアン化力 リウム溶液(1 IX L)、および NADP溶液(1 μ L)を、それぞれ試薬固定部位 18上の 異なる領域に配置した後、常温で 3時間、真空乾燥させた。
[0030] 図 9は、比較例 2における、反応溶液中の ALP— Ab濃度と、電圧印加直後にそれ ぞれの反応溶液にお!、て流れた電流値との関係を示すグラフである。図 9に示すよう に、定電位測定により検出された電流値は、比較例 1と比べてブランク値が抑制され た状態にあつたが、ばらつきが大き力つた。また、当該電流値のプロットに対する近似 線の傾き (検量線の傾き)は、比較例 1と比べてさらに小さ力つた。このように、比較例 2のチップを使用して、標的物質の量を高精度に測定することは難しい。
[0031] (実施例 1) 図 4に示す酵素サイクリング反応に関与する試薬群を、電子伝達体のうちフェリシア ン化カリウムのみを酵素およびその基質力も分離した状態で、試薬固定部位 18上に 乾燥固定したチップ 300を用いたこと以外は、比較例 2と同様にして定電位測定を実 施した。
[0032] 試薬群は、次のようにして乾燥固定した。 lOOOUZmLのジァホラーゼ溶液(6. 7 μ L)、 4Μのリンゴ酸ナ卜リウム溶液(7. 8 : L)、 5mMの NADP溶液(1 μ L)、 2500 OUZmLのリンゴ酸脱水素酵素溶液(1 μ L)、および 1Mの Tris— HC1溶液(5 μ L、 pH9)を混合することにより、混合溶液を調製した。また、 1Mのフェリシアン化カリウム 溶液(1 μ L)を用意した。これらの混合溶液(21. 5 L)、およびフェリシアンィ匕カリウ ム溶液(1 /z L)を、それぞれ試薬固定部位 18上の異なる領域に配置した後、常温で 3時間、真空乾燥させた。
[0033] 図 10は、実施例 1における、反応溶液中の ALP—Ab濃度と、電圧印加直後にそ れぞれの反応溶液において流れた電流値との関係を示すグラフである。図 10に示 すように、定電位測定により検出された電流値は、 ALP— Ab濃度との間に高い相関 が認められた。このように、実施例 1のチップを使用すると、標的物質の量を高精度に 測定できる。
[0034] (比較例 3)
図 4に示す酵素サイクリング反応に関与する試薬群を、電子伝達体のうち NADPの みを酵素およびその基質力も分離した状態で、試薬固定部位 18上に乾燥固定した チップ 300を用いたこと以外は、比較例 2と同様にして定電位測定を実施した。
[0035] 試薬群は、次のようにして乾燥固定した。 1Mのフェリシアンィ匕カリウム溶液(1 μ L) 、 lOOOUZmLのジァホラーゼ溶液(6. 7 L)、 4Mのリンゴ酸ナトリウム溶液(7. 8 μ L)、 25000UZmLのリンゴ酸脱水素酵素溶液(1 μ L)、および 1Mの Tris— HC1 溶液(5 /z L、 pH9)を混合することにより、混合溶液を調製した。また、 5mMの NAD P溶液(1 μ L)を用意した。これらの混合溶液(21. 5 L)、および NADP溶液(1 μ L)を、それぞれ試薬固定部位 18上の異なる領域に配置した後、常温で 3時間、真空 乾燥させた。
[0036] 図 11は、比較例 3における、反応溶液中の ALP—Ab濃度と、電圧印加直後にそ れぞれの反応溶液にぉ ヽて流れた電流値との関係を示すグラフである。図 11に示 すように、定電位測定により検出された電流値のプロットに対する近似線の傾き(21. 6)は、実施例 1において得られた近似線の傾き(72. 7)と比べて、 1Z3にも満たな い程度に小さ力つた。このように、比較例 3のチップでは、実施例 1のチップを使用し た場合に匹敵する程度の高精度で、標的物質の量を測定することは難 、。
産業上の利用可能性
本発明により、揮発性の高い試薬を必要とせずに、高精度な免疫学的測定を実施 できるチップが提供される。

Claims

請求の範囲
[1] 免疫測定法を用いて電気化学的に標的物質の量を測定するチップであって、 該チップ内に、 NADPおよび NADPH力 選ばれる少なくとも 1種、リンゴ酸脱水素 酵素、該リンゴ酸脱水素酵素の基質、フェリシアンィ匕カリウムならびにジァホラーゼが 固定され、
前記リンゴ酸脱水素酵素と、前記 NADPおよび前記 NADPH力 選ばれる少なく とも 1種と、前記基質とが混合された状態で固定され、
前記リンゴ酸脱水素酵素と、前記フ リシアンィ匕カリウムとが離間した状態で固定さ れたチップ。
[2] 前記リンゴ酸脱水素酵素の前記基質が、リンゴ酸およびリンゴ酸塩力 選ばれる少 なくとも 1種である、請求項 1に記載のチップ。
[3] 前記リンゴ酸塩が、リンゴ酸ナトリウムおよびリンゴ酸カリウム力も選ばれる少なくとも
1種を含む、請求項 2に記載のチップ。
PCT/JP2007/060447 2006-07-13 2007-05-22 Puce a dosage immunologique electrochimique WO2008007499A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007535937A JP4083213B2 (ja) 2006-07-13 2007-05-22 電気化学的免疫測定チップ
US11/976,950 US7585400B2 (en) 2006-07-13 2007-10-30 Chip for electrochemical immunoassay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006192581 2006-07-13
JP2006-192581 2006-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/976,950 Continuation US7585400B2 (en) 2006-07-13 2007-10-30 Chip for electrochemical immunoassay

Publications (1)

Publication Number Publication Date
WO2008007499A1 true WO2008007499A1 (fr) 2008-01-17

Family

ID=38923068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060447 WO2008007499A1 (fr) 2006-07-13 2007-05-22 Puce a dosage immunologique electrochimique

Country Status (3)

Country Link
US (1) US7585400B2 (ja)
JP (1) JP4083213B2 (ja)
WO (1) WO2008007499A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000027A (ja) * 2008-06-19 2010-01-07 Denka Seiken Co Ltd 新規検査方法及びそれに用いる検査キット
WO2019187574A1 (ja) * 2018-03-26 2019-10-03 Phcホールディングス株式会社 バイオセンサ
WO2019231332A2 (en) 2018-06-01 2019-12-05 Prores As At-the-bit mud loss treatment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513860A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Enzyme electrode
JPS59166084A (ja) * 1983-03-11 1984-09-19 Hitachi Chem Co Ltd 安定な酵素試薬の製造法
JPH0296649A (ja) * 1988-10-04 1990-04-09 Unitika Ltd デヒドロゲナーゼ電極
JPH07110313A (ja) * 1993-10-08 1995-04-25 Matsushita Electric Ind Co Ltd バイオセンサおよびその製造法
JPH08327582A (ja) * 1995-06-01 1996-12-13 Lg Electron Inc 電気化学式免疫バイオセンサ
JP2004024254A (ja) * 2002-04-30 2004-01-29 Masao Umemoto ミオイノシトールの簡易測定法
JP2005046001A (ja) * 2001-06-15 2005-02-24 Matsushita Electric Ind Co Ltd 脂質修飾酵素の製造方法およびバイオセンサ
WO2005108968A1 (ja) * 2004-05-12 2005-11-17 Matsushita Electric Industrial Co., Ltd. バイオセンサ、バイオセンサ用容器、およびバイオセンサ測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502666B2 (ja) 1988-01-29 1996-05-29 松下電器産業株式会社 バイオセンサ及びその製造方法
JPH08327852A (ja) 1995-05-31 1996-12-13 Sumitomo Electric Ind Ltd 光ファイバカプラおよびその製造方法
JPH09297121A (ja) 1996-03-07 1997-11-18 Matsushita Electric Ind Co Ltd コレステロールセンサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513860A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Enzyme electrode
JPS59166084A (ja) * 1983-03-11 1984-09-19 Hitachi Chem Co Ltd 安定な酵素試薬の製造法
JPH0296649A (ja) * 1988-10-04 1990-04-09 Unitika Ltd デヒドロゲナーゼ電極
JPH07110313A (ja) * 1993-10-08 1995-04-25 Matsushita Electric Ind Co Ltd バイオセンサおよびその製造法
JPH08327582A (ja) * 1995-06-01 1996-12-13 Lg Electron Inc 電気化学式免疫バイオセンサ
JP2005046001A (ja) * 2001-06-15 2005-02-24 Matsushita Electric Ind Co Ltd 脂質修飾酵素の製造方法およびバイオセンサ
JP2004024254A (ja) * 2002-04-30 2004-01-29 Masao Umemoto ミオイノシトールの簡易測定法
WO2005108968A1 (ja) * 2004-05-12 2005-11-17 Matsushita Electric Industrial Co., Ltd. バイオセンサ、バイオセンサ用容器、およびバイオセンサ測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000027A (ja) * 2008-06-19 2010-01-07 Denka Seiken Co Ltd 新規検査方法及びそれに用いる検査キット
WO2019187574A1 (ja) * 2018-03-26 2019-10-03 Phcホールディングス株式会社 バイオセンサ
WO2019231332A2 (en) 2018-06-01 2019-12-05 Prores As At-the-bit mud loss treatment

Also Published As

Publication number Publication date
JP4083213B2 (ja) 2008-04-30
JPWO2008007499A1 (ja) 2009-12-10
US20080308419A1 (en) 2008-12-18
US7585400B2 (en) 2009-09-08

Similar Documents

Publication Publication Date Title
Marquette et al. Electro-chemiluminescent biosensing
Frew et al. Electrochemical biosensors
Adeloju Progress and recent advances in phosphate sensors: A review
EP0798561B1 (en) Analytical method for precise analysis with a simple sensor
CA2742025C (en) Method for increasing and regulating light emission from a chemiluminescent reaction
Scheller et al. Biosensors
CA2356364C (en) Cholesterol sensor and method for determining cholesterol
EP2673643B1 (en) Microfluidics based assay device
EP0300651B1 (en) Photoresponsive electrode for determination of redox potential
US5036000A (en) Threshold color control system
EP0964059A2 (en) Biosensor
EP0752099A1 (en) Diagnostic flow cell device
US7169273B2 (en) Enzyme electrode
WO2008007499A1 (fr) Puce a dosage immunologique electrochimique
Marquette et al. Design of luminescent biochips based on enzyme, antibody, or DNA composite layers
KR960002559B1 (ko) 효소 역학의 자동측정 방법
KR102009455B1 (ko) 산화환원 효소를 이용한 바이오센서
JP4050308B2 (ja) リンゴ酸デヒドロゲナーゼを基板上に固定する方法
Monroe Amperometric immunoassay
JP7493091B2 (ja) 電極表面近傍の溶液のpHの電子制御
Scheller et al. Overview of biosensor technology
KR20230138768A (ko) 비드를 포함하는 바이오센서 시스템
JPS61271457A (ja) 免疫学的分析方法
KR20140132584A (ko) 전도성 고분자 전극을 이용한 전기화학적 콜레스테롤 센서 및 그 제조방법
Cho The development and evaluation of a Multichannel Electrochemical Centrifugal Analyzer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007535937

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07743881

Country of ref document: EP

Kind code of ref document: A1