WO2007148398A1 - Resin-sealed module, optical module and method of resin sealing - Google Patents

Resin-sealed module, optical module and method of resin sealing Download PDF

Info

Publication number
WO2007148398A1
WO2007148398A1 PCT/JP2006/312510 JP2006312510W WO2007148398A1 WO 2007148398 A1 WO2007148398 A1 WO 2007148398A1 JP 2006312510 W JP2006312510 W JP 2006312510W WO 2007148398 A1 WO2007148398 A1 WO 2007148398A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
resin
mounting member
sealing resin
component
Prior art date
Application number
PCT/JP2006/312510
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Terada
Jun Matsui
Hiroyuki Nobuhara
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008522210A priority Critical patent/JP4681648B2/en
Priority to PCT/JP2006/312510 priority patent/WO2007148398A1/en
Publication of WO2007148398A1 publication Critical patent/WO2007148398A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a resin sealing module and an optical module including mounting members having different linear expansion coefficients, and a resin sealing method in these modules, and in particular, straddling mounting members having different linear expansion coefficients.
  • the present invention relates to a resin-sealed module, an optical module, and a resin-sealing method that are not damaged due to temperature changes even if they are sealed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-252219
  • optical modules have a low parasitic capacitance and a compact mounting state, as when an optical element and its driving IC (Integrated Circuit) are directly connected with a bonding wire. It is summer.
  • IC Integrated Circuit
  • a material having a linear expansion coefficient equivalent to that of an optical element is used for a mounting member on which an optical element is mounted, and a linear expansion equivalent to that of a driving IC is used on a mounting member on which a driving IC is mounted. Since materials with coefficients are used, the linear expansion coefficient of each mounting member is different. And In an optical module having a notable mounting form, mounting members having different linear expansion coefficients are arranged in close proximity.
  • the present invention has been made in view of the above, and is a resin sealing module that does not break due to temperature change even when resin sealing is performed across mounting members having different linear expansion coefficients.
  • An object is to provide an optical module and a resin sealing method.
  • a first mounting member on which a predetermined component is mounted and a linear expansion coefficient different from that of the first mounting member are set.
  • a grease sealing module comprising: a second mounting member; and a connection part for electrically connecting a component on the first mounting member to a component or wiring on the second mounting member, A first sealing resin for resin-sealing components on the first mounting member such that a sealing region does not reach the second mounting member; and a Younger sealing oil than the first sealing resin. It is characterized by comprising a second sealing resin that seals a portion of the connecting portion that is not covered with the first sealing resin, with a low material force.
  • the first sealing resin has lower moisture permeability and more material strength than the second sealing resin.
  • the second sealing resin includes the whole of the first sealing resin in a sealing region. It is characterized by doing.
  • the second sealing resin includes a component on the second mounting member in a sealing region to seal the resin. It is characterized by that.
  • the second sealing resin is a third sealing resin that seals a component on the second mounting member. It is characterized by including grease in the sealing region and sealing with grease.
  • the connection portion is a bonding wire.
  • a first mounting member on which a driving IC is mounted a second mounting member on which an optical element driven by the driving IC is mounted, and the driving IC on the light
  • An optical module including a connection portion that is electrically connected to an element, the first sealing resin sealing the drive IC such that a sealing region does not reach the second mounting member;
  • the second sealing material has a lower Young's modulus than the first sealing resin, and is covered with the first sealing resin in the connecting portion, and the part is sealed with the resin. It is characterized by containing anti-grease.
  • the first sealing resin has lower moisture permeability and more material strength than the second sealing resin.
  • the second sealing resin contains the entire first sealing resin in a sealing region and is sealed with a resin. It is characterized by doing.
  • a first mounting member on which a predetermined component is mounted a second mounting member having a linear expansion coefficient different from that of the first mounting member, and the first mounting member
  • a grease sealing module including a connection portion that electrically connects a component on the mounting member to a component or wiring on the second mounting member, the component on the first mounting member and the connection portion are sealed.
  • a resin sealing method that stops the component on the first mounting member using the first sealing resin so that the sealing region does not reach the second mounting member.
  • the first sealing step and the second sealing resin having a material force having a Young's modulus lower than that of the first sealing resin V, and the first sealing of the connecting portions. It is covered with a resin! /, And a second sealing step for sealing the part with a resin is characterized.
  • a resin sealing module or an optical module including mounting members having different linear expansion coefficients is sealed across the mounting members having different linear expansion coefficients. Parts that are not required are sealed with the first sealing resin, and the parts that need to be sealed across the mounting members with different linear expansion coefficients are low in Young's modulus! Since it is configured to seal, the resin sealing performed by straddling the mounting members with different linear expansion coefficients while the vitality of the characteristics of the first sealing resin is caused by the thermal stress caused by the temperature change Relevant The module can be prevented from being damaged.
  • the first sealing resin is configured to use a material having low moisture permeability and made of a material, failure or performance deterioration due to humidity may occur. If sex can be reduced, it will have a positive effect.
  • the component on the first mounting member and the component or wiring on the second mounting member are connected by wire bonding, the component can be connected at high speed. There is an effect that a resin sealing module capable of operation can be obtained.
  • FIG. 1 is a diagram showing an example of a resin sealing module created by the resin sealing method according to this example according to this example.
  • FIG. 2 is a view showing another example of the resin sealing module created by the resin sealing method according to the present example according to the present example.
  • FIG. 3 is a view showing another example of the resin sealing module created by the resin sealing method according to the present example of the present example.
  • FIG. 4 is a view showing another example of the resin-sealed module created by the resin-sealing method according to this example according to this example.
  • FIG. 5 is a diagram showing an example of an optical module created by the resin sealing method according to the present example according to the present example.
  • FIG. 6 is a diagram showing the periphery of the optical element of the optical module shown in FIG.
  • FIG. 7 is a diagram showing a process of mounting a driving IC on a printed board.
  • FIG. 8 is a diagram showing a process of mounting an optical element on a subcarrier.
  • FIG. 9 is a diagram showing a process of assembling each member.
  • FIG. 10 is a diagram showing a process of performing wire bonding.
  • FIG. 11 is a diagram showing a step of sealing the periphery of the optical element with a resin.
  • FIG. 12 is a diagram showing a step of sealing the periphery of the driving IC with a resin.
  • FIG. 13 is a diagram showing a step of encapsulating the exposed portion of the bonding wire with grease.
  • FIG. 14 is a diagram showing a process of attaching a fiber block.
  • FIG. 15 is a diagram showing an example of a resin sealing module created by a conventional resin sealing method.
  • FIG. 16 is a view showing an example of a resin-sealed module that is resin-sealed across mounting members having different linear expansion coefficients.
  • FIG. 17 is a view showing a surface where the sealing resin is peeled off in the resin sealing module shown in FIG.
  • FIG. 18 is a diagram showing a method conventionally used when connecting parts having different linear expansion coefficients.
  • FIG. 15 is a view showing an example of a resin sealing module produced by a conventional resin sealing method.
  • the component 121 is mounted on the mounting member 111, and the wiring on the mounting member 111 and the component 121 connected by the bonding wires 131 and 132 are sealed with a sealing resin 141. It is the composition to do.
  • the component 121 is, for example, a semiconductor element.
  • the component 121 is mounted on the mounting member 111 for the purpose of supplementing mechanical strength.
  • the mounting member 111 is formed of a material having a linear expansion coefficient equivalent to that of the component 121.
  • the sealing resin 141 is a resin used to protect the component 121 and the bonding wires 131 and 132 from humidity and mechanical shock.
  • the sealing resin 141 peels off from the mounting member 111 due to temperature change, and the resin sealing module 100 was prevented from being damaged.
  • FIG. 16 is a diagram showing an example of a resin sealing module in which mounting members having different linear expansion coefficients are close to each other.
  • the resin sealing module 200 has a component 221 mounted on the mounting member 211, and the wiring on the mounting member 211 and the component 221 are connected by a bonding wire 231.
  • the component 221 is, for example, a semiconductor element.
  • the component 221 is mounted on the mounting member 211 for the purpose of supplementing mechanical strength.
  • the mounting member 211 is formed of a material having a linear expansion coefficient equivalent to that of the component 221.
  • the mounting member 212 is a mounting member on which a component (not shown) of a different type from the component 221 is mounted, and has a linear expansion coefficient different from that of the mounting member 211. Since the component and the component 221 mounted on the mounting member 212 need to exchange signals at high speed, the mounting member 211 and the mounting member 212 are arranged adjacent to each other.
  • the sealing resin 241 is a resin used to protect the component 221 and the bonding wires 231 and 232 from humidity and mechanical impact.
  • the sealing resin 241 seals the parts 221 and the like across the mounting member 211 and the mounting member 212, but the mounting member 21 Since the linear expansion coefficient of 1 and the mounting member 212 are different, it is not possible to match the linear expansion coefficient with at least one of them.
  • FIG. 18 is a diagram showing an example of a resin sealing module that performs resin sealing without straddling between mounting members.
  • the resin sealing module 300 has a component 321 mounted on a mounting member 311, and the wiring on the mounting member 311 and the component 321 connected by a bonding wire 331 are sealed.
  • the resin is sealed with the resin 341, the wiring connected to the bonding wire 331 is drawn out of the sealing region, and the wiring and the optical element package 322 are connected with the lead wires 332 and 333.
  • the sealing resin 341 is peeled off from the mounting member 311 due to a temperature change, and the resin sealing module. It is possible to prevent the Le 300 from being damaged. Further, by providing the lead wires 332 and 333 with sufficient mechanical strength, the strength of the connecting portion can be ensured without sealing with grease.
  • the resin sealing method according to the present embodiment will be described.
  • the Young's modulus is used in the resin sealing method according to this example.
  • Low (soft) soft resin is used as the sealing resin.
  • This table is based on the above formula, taking as an example a glass filler-containing epoxy resin that has been widely used as a sealing resin, and a modified attalate resin having a low Young's modulus. It is used to determine the approximate value of thermal stress. According to this calculation, it is possible to reduce the generation of thermal stress to about 1Z30 by using a low Young's modulus resin as the sealing resin.
  • a sealing resin having a low Young's modulus is used as the sealing resin, it is necessary to pay attention to moisture permeation of the resin.
  • a low Young's modulus resin has a rough network of molecular chains and many gaps through which water molecules permeate. For this reason, a low Young's modulus resin usually has high moisture permeability. Therefore, even if the components on the mounting member are sealed only with a low Young's modulus resin, the moisture resistance of those components cannot be sufficiently secured, and there is a high possibility.
  • a sealing resin having a low moisture permeability which has been conventionally used, is used for the Young's modulus. Use with low sealing grease.
  • An example of a resin sealing module created by the resin sealing method according to this example is shown below.
  • FIG. 1 is a diagram showing an example of a resin sealing module created by the resin sealing method according to the present example. As shown in the figure, the resin sealing module 400 is sealed with two types of sealing resins: a sealing resin 441 and a sealing resin 442.
  • the sealing resin 441 is a resin having a high Young's modulus and a low moisture permeability, and is made of, for example, a glass filler-containing epoxy resin.
  • the sealing resin 441 seals the component 421 mounted on the mounting member 411 and the bonding wires 431 and 432 connected to the component 421.
  • the linear expansion coefficients of the sealing resin 441 and the mounting member 411 are substantially matched.
  • the component 421 is a component that is sensitive to humidity, is mounted on the mounting member 411 having the same linear expansion coefficient, and is electrically connected to a wiring (not shown) on the mounting member 411 by the bonding wire 431.
  • the wiring is electrically connected to the wiring (not shown) on the mounting member 412 by the bonding wire 432.
  • the mounting member 412 is a mounting member on which a component (not shown) having a linear expansion coefficient different from that of the component 421 is mounted, and has a linear expansion coefficient equivalent to that of the mounted component. That is, the mounting member 412 Has a linear expansion coefficient different from that of the mounting member 411. Since the component and the component 421 mounted on the mounting member 412 need to exchange signals at high speed, the mounting member 412 is disposed adjacent to the mounting member 411.
  • the sealing resin 441 seals the entire part 421 in order to protect the part 421 from humidity and mechanical shock.
  • the entire bonding wire 431 is sealed to protect the bonding wire 431 that connects the component 421 to the wiring on the mounting member 411 from the mechanical shock.
  • the sealing resin 441 does not entirely seal the bonding wire 432 that connects the component 421 to the wiring on the mounting member 412. This is because when the sealing resin 441 seals the entire bonding wire 432, the region where the sealing resin 441 having a high Young's modulus seals the resin extends to the mounting member 412 having a different linear expansion coefficient. This is because if the sealing resin 441 is peeled off from the mounting member 412 due to the thermal stress caused by the temperature change and the bonding wire 432 is disconnected, there is a high possibility that another failure will occur.
  • the portion of the bonding wire 432 that has been sealed with grease may be broken by a mechanical impact in the state where the bonding wire 432 is exposed as it is. Therefore, in the resin sealing module 400, the exposed portions of the sealing resin 441 and the bonding wire 432 are sealed with the sealing resin 442.
  • the sealing resin 442 is a resin having a low Young's modulus, and is made of, for example, a modified acrylated resin.
  • the bonding wire 432 can be protected from a disconnection force due to a mechanical impact. Even if the sealing resin 442 has a different coefficient of linear expansion from the mounting member 411, the mounting member 412, and the sealing resin 441, the Young's modulus is low, so that the thermal stress caused by the temperature change is small. None do.
  • the bonding wire 432 is generally made of a material that is not easily affected by humidity, such as a gold wire, and the component 421 that is sensitive to humidity is already covered with the sealing resin 441 having low moisture permeability. Therefore, there is no problem even if the sealing resin 442 has high moisture permeability.
  • the sealing resin 442 covers the entire sealing resin 441.
  • the sealing resin 441 and the sealing resin 442 Is bonded with sufficient strength, a structure in which a part of the sealing resin 441 is exposed to the sealing region force by the sealing resin 442 as in the resin sealing module 401 shown in FIG. You can also
  • the force with which the component 421 is connected to the wiring on the mounting member 412 by the bonding wire 432 is the resin sealing shown in FIG.
  • the part 421 may be directly connected to the part 422 on the mounting member 412 by the bonding wire 433.
  • the sealing resin 442 is included in order to protect the mechanical impact force of the part 4 22 and the bonding wire 434 for connecting the part 422 to the wiring (not shown) on the mounting member 412.
  • the structure is sealed with grease.
  • the component 422 when it is necessary to protect the component 422 in the same manner as the component 421, the component 422 is passed through like the grease sealing module 403 shown in FIG. A structure in which the whole or a part of the sealing resin 443 is sealed with the sealing resin 442 after being sealed with the low-humidity sealing resin 443. At this time, it is necessary that the linear expansion coefficients of the sealing resin 443 and the mounting member 412 are substantially matched.
  • the resin sealing method according to the present embodiment is preferably applied to a small optical module having a low parasitic capacitance, and can be applied to, for example, the optical module 500 shown in FIG.
  • the optical module 500 is configured by connecting an optical element 522 and a driving IC 521. Due to the demand for higher speed (for example, about lOGbpsZch) and downsizing, the optical element 522 and the driving IC 521 are directly electrically connected by the bonding wire 532, and the subcarrier 513 mounting the optical element 522 and the driving IC 521 are mounted.
  • the printed circuit board 511 on which is mounted is disposed in proximity.
  • the linear expansion coefficient of a general printed circuit board including the printed circuit board 511 is about 20E-6Z ° C. If the subcarrier 513 is an iridium phosphorus (InP) substrate, its linear expansion coefficient is about 4E-6Z ° C. In this way, there is a difference of about 5 times in the linear expansion coefficient between the two mounting members.
  • the optical element 522 and the driving IC 521 are sealed with grease to protect them from mechanical impact and the like, they are sealed due to temperature changes. There is a possibility that the sealant may peel off any mounting member force and cause a failure such as disconnection of the bonding wire 5 32.
  • the resin sealing method according to the present embodiment is applied to the optical module 500.
  • the driving IC521 which is sensitive to humidity, is sealed with a low moisture-permeable sealing resin 541 such as a glass filler-containing epoxy resin so that the sealing area does not extend outside the printed board 511. ing.
  • a low moisture-permeable sealing resin 541 such as a glass filler-containing epoxy resin so that the sealing area does not extend outside the printed board 511.
  • the exposed portion of the bonding wire 532 that connects the optical element 522 and the driving IC 521 is sealed with a sealing resin 542 having a low Young's modulus such as a modified atalylate-based resin.
  • the sealing resin 541 has a linear expansion coefficient equivalent to that of the printed board 511. Therefore, the sealing resin 542 seals the bonding wire 532 across the parts of the sealing resin 541 and the subcarrier 513 that have different linear expansion coefficients by about 5 times. However, since the sealing resin 542 has a low Young's modulus, the subcarrier 513 isotropic force that does not generate a large thermal stress due to a temperature change does not occur, and a failure such as disconnection of the bonding wire 532 does not occur. .
  • the driving IC 521 is mounted on a printed board 511, connected to a wiring (not shown) on the printed board 511 by a bonding wire 531, and an optical element 522 mounted on a subcarrier 513. Connected by bonding wire 532.
  • Sealing resin 541 is a low moisture-permeable resin having a linear expansion coefficient equivalent to that of printed board 511, and within a range where the sealing area does not extend outside printed board 511, and driving IC 521 and bonding wire 531 The whole is sealed. Also, the sealing resin 541 seals a part of the bonding wire 532 in the vicinity of the joint between the driving IC 521 and the bonding wire 532!
  • the optical element 522 is mounted on the subcarrier 513, and the subcarrier 513 is housed in the housing 512.
  • the casing 512 is combined with the printed board 511 to provide a fiber block. Connected with lock 560.
  • the casing 512 is made of, for example, Kovar with a linear expansion coefficient that is weaker and thinner than the printed board 511, for example.
  • the sealing resin 542 is a resin having a low Young's modulus and seals the exposed portion of the bonding wire 532.
  • the subcarrier 513 is arranged substantially perpendicular to the printed board 511.
  • the configuration in which the subcarrier 513 is arranged vertically is a configuration necessary for simply optically coupling input / output light to the module to the optical element 522.
  • a planar optical element (V CSEL array, PIN-PD array, etc.) that inputs and outputs light perpendicular to the substrate surface is often used.
  • the input / output of light to / from the optical module 500 is performed in the front-rear direction of the module, that is, in the horizontal direction with the printed circuit board 511.
  • the subcarrier 513 on which the optical element 522 is mounted needs to be set substantially vertically.
  • the bonding wire 532 By sealing the bonding wire 532 with the sealing resin 541 only partly and sealing the other part with the sealing resin 542 having a low hang ratio, the bonding wire 532 is also mechanically impacted. While protecting, the thermal stress acting on the interface between the subcarrier 513 and the sealing resin 541 can be reduced, and the sealing resin peeling can be suppressed.
  • the subcarrier 513 is arranged substantially perpendicular to the printed board 511 in order to reduce the distance between the driving IC 521 and the optical element 522 and realize high-speed operation. Is also known as lj.
  • Fig. 6 shows a detailed configuration around the optical element 522.
  • the optical element 522 is disposed on the back surface of the subcarrier 513 when viewed from the drive IC 521.
  • a lens 525 having a light receiving portion (not shown) as a focal point is formed on one surface of the optical element 522, and an electrode 523 is formed on the other surface.
  • the subcarrier 513 has a bonding wire 532 and wire bonding on one side.
  • a bonding pad 572 to be further connected is formed, and a flip chip mounting pad 573 for connecting to the optical element 522 is formed on the other surface.
  • the bonding pad 572 and the flip chip mounting pad 573 are electrically connected by a via 571.
  • the optical element 522 and the subcarrier 513 are fixed by connecting the electrode 523 and the flip chip mounting pad 573 with a noder 524.
  • the configuration in which one surface of the subcarrier 513 is connected to the driving IC 521 by the bonding wire 532 and the other surface is flip-flop connected to the optical element 522 is an arrangement like the lead wire 332 shown in FIG. Since no line drawing is required, the parasitic capacitance is small and high-speed operation is easy to realize.
  • the via 571 that electrically connects the bonding wire 532 and the optical element 522 is preferably small in diameter, and the thickness of the subcarrier 513 is also small.
  • the thickness is preferably thin as long as the mechanical strength is maintained.
  • the sealing resin 580 shown in FIG. 6 covers the electrode 523 side and the side surface of the optical element 522 and does not cover the lens 525 side.
  • the electrode 523 side of the optical element 522 must be sealed with grease in order to protect the humidity force, but the lens 525 side is not particularly sensitive to humidity, and the optical element 522 has an AR (Anti-Reflective) structure. This is because the coating (formed on the back surface including the back lens) is designed against the air and is not covered with the sealing resin 580 because of its superior characteristics.
  • sealing resin 580 for example, an epoxy-based resin containing glass filler in which the linear expansion coefficient is matched with the linear expansion coefficient (about 4E-6Z ° C) of the optical element 522 and the subcarrier 513 is used. It can be done.
  • the driving IC 521 is bonded to the print plate 511 using an adhesive having high thermal conductivity, such as silver paste 590.
  • the optical element 522 is flip-chip mounted on the subcarrier 513.
  • the electrode 523 of the optical element 522 is patterned with solder 524 such as AnSu.
  • the optical element 522 is placed at a predetermined position of the subcarrier 513 and heated to the solder melting temperature or higher.
  • the electrode 523 force of the optical element 522 is connected to the flip chip mounting pad 573 of the subcarrier 513.
  • each member is assembled. Specifically, as shown in FIG. 9, a printed board 511 and a subcarrier 513 are attached to a housing 512, and are fixed using an adhesive (for example, an epoxy adhesive).
  • an adhesive for example, an epoxy adhesive
  • wire bonding is performed. Specifically, one end of the bonding wire 531 is bonded to the driving IC 521 by wire bonding, and the other end is bonded to the wiring on the printed board 511. Then, after one end of the bonding wire 532 is bonded to the driving IC 521 by wire bonding, the casing 512 is rotated by 90 °, and the other end of the bonding wire 532 is bonded to the subcarrier 513. Since the optical module 500 has a structure in which the subcarrier 513 stands vertically with respect to the printed board 511, it is necessary to rotate the casing 512 by 90 ° during the wire bonding process.
  • the periphery of the drive IC 521 is sealed with a sealing resin 541.
  • the sealing resin 541 is prevented from protruding the printed board 511.
  • the bonding wire 532 connecting the driving IC 521 and the subcarrier 513 is exposed except for the vicinity of the junction with the driving IC 521.
  • the periphery of the bonding wire 532 is sealed with a sealing grease 542 as shown in FIG.
  • the sealing resin 542 is bonded to the subcarriers 513 and the casing 512 having different linear expansion coefficients. Since the sealing resin 542 has a small Young's modulus, a large thermal stress is applied to the bonding surface. There is no possibility of disconnection of the bonding wire 532 due to peeling of the sealing resin 542 that does not occur. It should be noted that the bonding wire 532 is prevented from being disconnected due to a deviation of both sealing resins at the interface between the sealing resin 541 and the sealing resin 542. Therefore, it is necessary to sufficiently bond the sealing resin 541 and the sealing resin 542.
  • the fiber block 560 is connected as shown in FIG.
  • the driving IC 521 is operated so that the optical element 522 receives and emits light, and this and the core of the optical fiber in the fiber block 560 are aligned and fixed with an adhesive (not shown).
  • Fixing adhesives need to be cured in a short time, and UV curable adhesives that cure in a few minutes are suitable.
  • the material of the fiber block 560 is preferably a glass-based material that transmits UV light.
  • the resin sealing module, the optical module, and the resin sealing method according to the present invention provide a resin sealing across mounting members having different linear expansion coefficients in order to realize a compact form. This is useful in the case of carrying out the process, and particularly suitable for the case where the damage due to the peeling of the resin seal due to the temperature change is prevented.

Abstract

A resin-sealed module that even when a resin sealing is carried out astride mounted members having different linear expansion coefficients, is free from damaging by temperature change; and a relevant optical module and method of resin sealing. There is provided resin-sealed module (400) having mounted member (411) and mounted member (412) as mounted members having different linear expansion coefficients, wherein part (421) is sealed by means of sealing resin (441) lest the sealing region reach the mounted member (412), and wherein exposed portion of bonding wire (432) is sealed by means of sealing resin (442) with low Young's modulus.

Description

明 細 書  Specification
樹脂封止モジュール、光モジュールおよび樹脂封止方法  Resin sealing module, optical module, and resin sealing method
技術分野  Technical field
[0001] 本発明は、線膨張係数が異なる実装部材を含む榭脂封止モジュールおよび光モ ジュールと、それらのモジュールにおける榭脂封止方法に関し、特に、線膨張係数が 異なる実装部材を跨いで榭脂封止をおこなっても温度変化によって破損することが な 、榭脂封止モジュール、光モジュールおよび榭脂封止方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a resin sealing module and an optical module including mounting members having different linear expansion coefficients, and a resin sealing method in these modules, and in particular, straddling mounting members having different linear expansion coefficients. The present invention relates to a resin-sealed module, an optical module, and a resin-sealing method that are not damaged due to temperature changes even if they are sealed.
背景技術  Background art
[0002] 従来より、半導体素子や光素子を湿度や機械的衝撃から守るために榭脂封止する 技術が知られている。榭脂封止する場合、半導体素子等を搭載する実装部材と、榭 脂封止に用いられる封止榭脂の線膨張係数が異なっていると、温度変化によって封 止榭脂が剥離し、半導体素子等が破損してしまう可能性がある。そこで、一般的には 、実装部材と同等の線膨張係数をもつ封止榭脂が榭脂封止において用いられる (例 えば、特許文献 1)。  Conventionally, a technology for encapsulating a resin to protect a semiconductor element and an optical element from humidity and mechanical shock is known. In the case of resin sealing, if the linear expansion coefficient of the mounting member on which the semiconductor element or the like is mounted and the sealing resin used for the resin sealing are different, the sealing resin is peeled off due to temperature change, and the semiconductor The element or the like may be damaged. Therefore, generally, a sealing resin having a linear expansion coefficient equivalent to that of the mounting member is used for the sealing of the resin (for example, Patent Document 1).
[0003] 特許文献 1 :特開 2005— 252219号公報  [0003] Patent Document 1: Japanese Patent Application Laid-Open No. 2005-252219
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、近年、ハイエンドサーバ等では、性能向上のため、装置内のデータ伝送 にお 、て光伝送が用いられるようになって!/、る。このように装置内のデータ伝送に光 伝送を用いる場合、高速化を実現し、さらに、回路設計の自由度を向上させるため、 光モジュールを小型化することが非常に重要である。 [0004] By the way, in recent years, high-end servers and the like have been using optical transmission for data transmission within the apparatus to improve performance! In this way, when optical transmission is used for data transmission in the device, it is very important to reduce the size of the optical module in order to achieve high speed and to improve the degree of freedom in circuit design.
[0005] そこで、多くの光モジュールは、光素子とその駆動 IC (Integrated Circuit)の間をボ ンデイングワイヤで直接接続するといつたように、低寄生容量かつコンパクトな実装形 態をもつようになつている。 [0005] Therefore, many optical modules have a low parasitic capacitance and a compact mounting state, as when an optical element and its driving IC (Integrated Circuit) are directly connected with a bonding wire. It is summer.
[0006] 一般的に、光素子を搭載する実装部材には、光素子と同等の線膨張係数をもつ素 材が用いられ、駆動 ICを搭載する実装部材には、駆動 ICと同等の線膨張係数をも つ素材が用いられるため、それぞれの実装部材の線膨張係数は異なる。そして、コン ノタトな実装形態をとつた光モジュールでは、このように異なる線膨張係数をもつ実 装部材が近接して配置されることになる。 [0006] Generally, a material having a linear expansion coefficient equivalent to that of an optical element is used for a mounting member on which an optical element is mounted, and a linear expansion equivalent to that of a driving IC is used on a mounting member on which a driving IC is mounted. Since materials with coefficients are used, the linear expansion coefficient of each mounting member is different. And In an optical module having a notable mounting form, mounting members having different linear expansion coefficients are arranged in close proximity.
[0007] そのため、上記のようにコンパクトな実装形態を採用した光モジュールにおいて、光 素子、駆動 ICおよびボンディングワイヤを保護するためにそれらを榭脂封止する場 合、少なくともいずれか一方の実装部材と線膨張係数が異なる封止榭脂を用いざる をえず、温度変化によって封止榭脂が剥離して光モジュールが破損することがあった  [0007] Therefore, in the optical module adopting the compact mounting form as described above, when the optical element, the driving IC, and the bonding wire are sealed with grease in order to protect them, at least one of the mounting members In other words, it was necessary to use a sealing resin with a different linear expansion coefficient, and the temperature change could cause the sealing resin to peel off and damage the optical module.
[0008] 本発明は、上記に鑑みてなされたものであって、線膨張係数が異なる実装部材を 跨いで榭脂封止をおこなっても温度変化によって破損することがない榭脂封止モジ ユール、光モジュールおよび榭脂封止方法を提供することを目的とする。 [0008] The present invention has been made in view of the above, and is a resin sealing module that does not break due to temperature change even when resin sealing is performed across mounting members having different linear expansion coefficients. An object is to provide an optical module and a resin sealing method.
課題を解決するための手段  Means for solving the problem
[0009] 上述した課題を解決し、目的を達成するために、本発明の一つの態様では、所定 の部品を搭載する第 1の実装部材と、前記第 1の実装部材と異なる線膨張係数をも つ第 2の実装部材と、前記第 1の実装部材上の部品を前記第 2の実装部材上の部品 もしくは配線と電気的に接続させる接続部とを含む榭脂封止モジュールであって、封 止領域が前記第 2の実装部材に及ばないように前記第 1の実装部材上の部品を榭 脂封止する第 1の封止榭脂と、前記第 1の封止榭脂よりもヤング率の低い素材力 な り、前記接続部のうち前記第 1の封止榭脂で覆われていない部分を榭脂封止する第 2の封止榭脂とを含んだことを特徴とする。  In order to solve the above-described problems and achieve the object, according to one aspect of the present invention, a first mounting member on which a predetermined component is mounted and a linear expansion coefficient different from that of the first mounting member are set. A grease sealing module comprising: a second mounting member; and a connection part for electrically connecting a component on the first mounting member to a component or wiring on the second mounting member, A first sealing resin for resin-sealing components on the first mounting member such that a sealing region does not reach the second mounting member; and a Younger sealing oil than the first sealing resin. It is characterized by comprising a second sealing resin that seals a portion of the connecting portion that is not covered with the first sealing resin, with a low material force.
[0010] また、本発明の他の態様では、上記の発明の態様において、前記第 1の封止榭脂 は、前記第 2の封止榭脂よりも透湿性が低 、素材力もなることを特徴とする。  [0010] Further, in another aspect of the present invention, in the above aspect of the invention, the first sealing resin has lower moisture permeability and more material strength than the second sealing resin. Features.
[0011] また、本発明の他の態様では、上記の発明の態様において、前記第 2の封止榭脂 は、前記第 1の封止榭脂全体を封止領域に含めて榭脂封止することを特徴とする。  [0011] Further, in another aspect of the present invention, in the above aspect of the invention, the second sealing resin includes the whole of the first sealing resin in a sealing region. It is characterized by doing.
[0012] また、本発明の他の態様では、上記の発明の態様において、前記第 2の封止榭脂 は、第 2の実装部材上の部品を封止領域に含めて榭脂封止することを特徴とする。  [0012] Further, in another aspect of the present invention, in the above aspect of the invention, the second sealing resin includes a component on the second mounting member in a sealing region to seal the resin. It is characterized by that.
[0013] また、本発明の他の態様では、上記の発明の態様において、前記第 2の封止榭脂 は、第 2の実装部材上の部品を榭脂封止する第 3の封止榭脂を封止領域に含めて 榭脂封止することを特徴とする。 [0014] また、本発明の他の態様では、上記の発明の態様において、前記接続部は、ボン デイングワイヤであることを特徴とする。 [0013] Further, in another aspect of the present invention, in the above aspect of the invention, the second sealing resin is a third sealing resin that seals a component on the second mounting member. It is characterized by including grease in the sealing region and sealing with grease. [0014] In another aspect of the present invention, in the above aspect of the invention, the connection portion is a bonding wire.
[0015] また、本発明の他の態様では、駆動 ICを搭載する第 1の実装部材と、前記駆動 IC に駆動される光素子を搭載する第 2の実装部材と、前記駆動 ICを前記光素子と電気 的に接続させる接続部とを含む光モジュールであって、封止領域が前記第 2の実装 部材に及ばないように前記駆動 ICを榭脂封止する第 1の封止榭脂と、前記第 1の封 止榭脂よりもヤング率の低い素材力 なり、前記接続部のうち前記第 1の封止榭脂で 覆われて 、な 、部分を榭脂封止する第 2の封止榭脂とを含んだことを特徴とする。  [0015] In another aspect of the present invention, a first mounting member on which a driving IC is mounted, a second mounting member on which an optical element driven by the driving IC is mounted, and the driving IC on the light An optical module including a connection portion that is electrically connected to an element, the first sealing resin sealing the drive IC such that a sealing region does not reach the second mounting member; The second sealing material has a lower Young's modulus than the first sealing resin, and is covered with the first sealing resin in the connecting portion, and the part is sealed with the resin. It is characterized by containing anti-grease.
[0016] また、本発明の他の態様では、上記の発明の態様において、前記第 1の封止榭脂 は、前記第 2の封止榭脂よりも透湿性が低 、素材力もなることを特徴とする。  [0016] Further, in another aspect of the present invention, in the above aspect of the present invention, the first sealing resin has lower moisture permeability and more material strength than the second sealing resin. Features.
[0017] また、本発明の他の態様では、上記の発明の態様において、前記第 2の封止榭脂 は、前記第 1の封止榭脂全体を封止領域に含めて榭脂封止することを特徴とする。  [0017] Further, in another aspect of the present invention, in the aspect of the invention described above, the second sealing resin contains the entire first sealing resin in a sealing region and is sealed with a resin. It is characterized by doing.
[0018] また、本発明の他の態様では、所定の部品を搭載する第 1の実装部材と、前記第 1 の実装部材と異なる線膨張係数をもつ第 2の実装部材と、前記第 1の実装部材上の 部品を前記第 2の実装部材上の部品もしくは配線と電気的に接続させる接続部とを 含む榭脂封止モジュールにおいて、前記第 1の実装部材上の部品と前記接続部を 封止する榭脂封止方法であって、封止領域が前記第 2の実装部材に及ばないように 前記第 1の実装部材上の部品を第 1の封止榭脂を用いて榭脂封止する第 1の封止 工程と、前記第 1の封止榭脂よりもヤング率の低い素材力 なる第 2の封止榭脂を用 V、て、前記接続部のうち前記第 1の封止榭脂で覆われて!/、な 、部分を榭脂封止する 第 2の封止工程とを含んだことを特徴とする。  [0018] In another aspect of the present invention, a first mounting member on which a predetermined component is mounted, a second mounting member having a linear expansion coefficient different from that of the first mounting member, and the first mounting member In a grease sealing module including a connection portion that electrically connects a component on the mounting member to a component or wiring on the second mounting member, the component on the first mounting member and the connection portion are sealed. A resin sealing method that stops the component on the first mounting member using the first sealing resin so that the sealing region does not reach the second mounting member. The first sealing step and the second sealing resin having a material force having a Young's modulus lower than that of the first sealing resin V, and the first sealing of the connecting portions. It is covered with a resin! /, And a second sealing step for sealing the part with a resin is characterized.
発明の効果  The invention's effect
[0019] 本発明の一つの態様によれば、異なる線膨張係数をもつ実装部材を含む榭脂封 止モジュールや光モジュールにお 、て、線膨張係数が異なる実装部材を跨 、で封 止する必要のない部分を第 1の封止榭脂で封止し、線膨張係数が異なる実装部材を 跨 、で封止する必要がある部分をヤング率の低!、第 2の封止榭脂で封止するように 構成したので、第 1の封止榭脂のもつ特性を生力しつつ、線膨張係数が異なる実装 部材を跨 、でおこなわれる榭脂封止が温度変化によって生じる熱応力により当該の モジュールを破損させることを防止することができるという効果を奏する。 [0019] According to one aspect of the present invention, a resin sealing module or an optical module including mounting members having different linear expansion coefficients is sealed across the mounting members having different linear expansion coefficients. Parts that are not required are sealed with the first sealing resin, and the parts that need to be sealed across the mounting members with different linear expansion coefficients are low in Young's modulus! Since it is configured to seal, the resin sealing performed by straddling the mounting members with different linear expansion coefficients while the vitality of the characteristics of the first sealing resin is caused by the thermal stress caused by the temperature change Relevant The module can be prevented from being damaged.
[0020] また、本発明の他の態様によれば、第 1の封止榭脂として透湿性が低 、素材からな るものを用いるように構成したので、湿度による故障や性能劣化が生じる可能性を低 減することができると 、う効果を奏する。  [0020] Further, according to another aspect of the present invention, since the first sealing resin is configured to use a material having low moisture permeability and made of a material, failure or performance deterioration due to humidity may occur. If sex can be reduced, it will have a positive effect.
[0021] また、本発明の他の態様によれば、第 1の実装部材上の部品と、第 2の実装部材上 の部品もしくは配線とをワイヤボンディングにより接続するように構成したので、高速 に動作が可能な榭脂封止モジュール等を得ることができるという効果を奏する。 図面の簡単な説明  [0021] Further, according to another aspect of the present invention, since the component on the first mounting member and the component or wiring on the second mounting member are connected by wire bonding, the component can be connected at high speed. There is an effect that a resin sealing module capable of operation can be obtained. Brief Description of Drawings
[0022] [図 1]図 1は、本実施例に係る本実施例に係る榭脂封止方法で作成された榭脂封止 モジュールの一例を示す図である。  FIG. 1 is a diagram showing an example of a resin sealing module created by the resin sealing method according to this example according to this example.
[図 2]図 2は、本実施例に係る本実施例に係る榭脂封止方法で作成された榭脂封止 モジュールの他の一例を示す図である。  FIG. 2 is a view showing another example of the resin sealing module created by the resin sealing method according to the present example according to the present example.
[図 3]図 3は、本実施例に係る本実施例に係る榭脂封止方法で作成された榭脂封止 モジュールの他の一例を示す図である。  FIG. 3 is a view showing another example of the resin sealing module created by the resin sealing method according to the present example of the present example.
[図 4]図 4は、本実施例に係る本実施例に係る榭脂封止方法で作成された榭脂封止 モジュールの他の一例を示す図である。  FIG. 4 is a view showing another example of the resin-sealed module created by the resin-sealing method according to this example according to this example.
[図 5]図 5は、本実施例に係る本実施例に係る榭脂封止方法で作成された光モジュ ールの一例を示す図である。  FIG. 5 is a diagram showing an example of an optical module created by the resin sealing method according to the present example according to the present example.
[図 6]図 6は、図 5に示した光モジュールの光素子周辺を示す図である。  FIG. 6 is a diagram showing the periphery of the optical element of the optical module shown in FIG.
[図 7]図 7は、プリント板に駆動 ICを搭載する工程を示す図である。  FIG. 7 is a diagram showing a process of mounting a driving IC on a printed board.
[図 8]図 8は、サブキャリアに光素子を搭載する工程を示す図である。  FIG. 8 is a diagram showing a process of mounting an optical element on a subcarrier.
[図 9]図 9は、各部材をアセンブリする工程を示す図である。  FIG. 9 is a diagram showing a process of assembling each member.
[図 10]図 10は、ワイヤボンディングを実施する工程を示す図である。  FIG. 10 is a diagram showing a process of performing wire bonding.
[図 11]図 11は、光素子周辺を榭脂封止する工程を示す図である。  FIG. 11 is a diagram showing a step of sealing the periphery of the optical element with a resin.
[図 12]図 12は、駆動 IC周辺を榭脂封止する工程を示す図である。  [FIG. 12] FIG. 12 is a diagram showing a step of sealing the periphery of the driving IC with a resin.
[図 13]図 13は、ボンディングワイヤの露出部分を榭脂封止する工程を示す図である  [FIG. 13] FIG. 13 is a diagram showing a step of encapsulating the exposed portion of the bonding wire with grease.
[図 14]図 14は、ファイバブロックを取り付ける工程を示す図である。 [図 15]図 15は、従来の榭脂封止方法で作成された榭脂封止モジュールの一例を示 す図である。 FIG. 14 is a diagram showing a process of attaching a fiber block. FIG. 15 is a diagram showing an example of a resin sealing module created by a conventional resin sealing method.
[図 16]図 16は、線膨張係数の異なる実装部材を跨いで樹脂封止した榭脂封止モジ ユーノレの一例を示す図である。  FIG. 16 is a view showing an example of a resin-sealed module that is resin-sealed across mounting members having different linear expansion coefficients.
[図 17]図 17は、図 16に示した榭脂封止モジュールにおいて封止榭脂が剥離した場 面を示す図である。  FIG. 17 is a view showing a surface where the sealing resin is peeled off in the resin sealing module shown in FIG.
[図 18]図 18は、線膨張係数の異なる部品を接続する場合に従来用いられていた方 法を示す図である。  [FIG. 18] FIG. 18 is a diagram showing a method conventionally used when connecting parts having different linear expansion coefficients.
符号の説明 Explanation of symbols
100 榭脂封止モジュール  100 resin sealing module
111 実装部材  111 Mounting material
121 部品  121 parts
131、 132 ボンディングワイ- 131, 132 Bonding wire
141 封止樹脂 141 Sealing resin
200 榭脂封止モジュール  200 Grease sealing module
211、 212 実装部材  211, 212 Mounting material
221 ロロ  221 Lolo
231、 232 ボンディングワイ- 231, 232 Bonding wire
241 封止樹脂 241 Sealing resin
300 榭脂封止モジュール  300 Grease sealing module
311 実装部材  311 Mounting material
321 部品  321 parts
322 光素子パッケージ  322 Optical device package
331 ボンディングワイヤ  331 Bonding wire
332、 333 リード線  332, 333 lead wire
341 封止樹脂  341 Sealing resin
400- -403 榭脂封止モジュ  400- -403 Grease sealing module
411、 412 実装部材 421, 422 部品 411, 412 Mounting material 421, 422 parts
431〜434 ボンディングワイヤ  431 ~ 434 Bonding wire
441〜443 封止榭脂  441-443 Sealing resin
500 光モジユーノレ  500 light module
511 プリント板  511 printed board
512 筐体  512 cases
513 サブキャリア  513 Subcarrier
521 駆動 IC  521 Drive IC
522 光素子  522 Optical element
523 電極  523 electrode
524 ハンダ  524 Solder
525 レンズ  525 lens
531、 532 ボンディングワイヤ  531, 532 Bonding wire
541、 542 封止榭脂  541, 542 Sealed resin
560 ファイバブロック  560 Fiber block
571 ビア  571 Beer
572 ボンディングパッド  572 bonding pads
573 フリップチップ実装用パッド  573 Flip chip mounting pad
580 封止樹脂  580 Sealing resin
590 銀ペースト  590 silver paste
600 ヘッド  600 heads
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下に、本発明に係る榭脂封止モジュール、光モジュールおよび榭脂封止方法の 実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定 されるものではない。 Hereinafter, embodiments of the resin sealing module, the optical module, and the resin sealing method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施例  Example
[0025] まず、従来の榭脂封止方法について説明する。図 15は、従来の樹脂封止方法で 作成された榭脂封止モジュールの一例を示す図である。同図に示すように、榭脂封 止モジュール 100は、実装部材 111の上に部品 121を搭載し、実装部材 111上の配 線と部品 121をボンディングワイヤ 131および 132により接続したものを、封止榭脂 1 41で榭脂封止する構成となっている。 First, a conventional grease sealing method will be described. FIG. 15 is a view showing an example of a resin sealing module produced by a conventional resin sealing method. As shown in the figure, In the stop module 100, the component 121 is mounted on the mounting member 111, and the wiring on the mounting member 111 and the component 121 connected by the bonding wires 131 and 132 are sealed with a sealing resin 141. It is the composition to do.
[0026] 部品 121は、例えば、半導体素子である。部品 121は、機械的な強度を補う目的等 で、実装部材 111に搭載される。温度変化によって部品 121が実装部材 111から剥 離することを防止するため、実装部材 111は、部品 121と同等の線膨張係数をもつ 素材から形成される。 [0026] The component 121 is, for example, a semiconductor element. The component 121 is mounted on the mounting member 111 for the purpose of supplementing mechanical strength. In order to prevent the component 121 from being separated from the mounting member 111 due to a temperature change, the mounting member 111 is formed of a material having a linear expansion coefficient equivalent to that of the component 121.
[0027] 封止榭脂 141は、部品 121、ボンディングワイヤ 131および 132を湿度や機械的衝 撃から守るために使用される榭脂である。従来の榭脂封止方法では、封止榭脂 141 と実装部材 111の線膨張係数をほぼ一致させることにより、温度変化によって封止榭 脂 141が実装部材 111から剥離し、榭脂封止モジュール 100が破損するのを防止し ていた。  [0027] The sealing resin 141 is a resin used to protect the component 121 and the bonding wires 131 and 132 from humidity and mechanical shock. In the conventional resin sealing method, by making the linear expansion coefficients of the sealing resin 141 and the mounting member 111 substantially coincide with each other, the sealing resin 141 peels off from the mounting member 111 due to temperature change, and the resin sealing module 100 was prevented from being damaged.
[0028] 図 16は、異なる線膨張係数をもつ実装部材が近接している榭脂封止モジュールの 一例を示す図である。同図に示すように、榭脂封止モジュール 200は、実装部材 21 1の上に部品 221を搭載し、実装部材 211上の配線と部品 221をボンディングワイヤ 231により接続し、実装部材 212上の配線と部品 221をボンディングワイヤ 232により 接続したものを、封止榭脂 241で榭脂封止する構成となっている。  FIG. 16 is a diagram showing an example of a resin sealing module in which mounting members having different linear expansion coefficients are close to each other. As shown in the figure, the resin sealing module 200 has a component 221 mounted on the mounting member 211, and the wiring on the mounting member 211 and the component 221 are connected by a bonding wire 231. A structure in which the wiring and the component 221 are connected by a bonding wire 232 is sealed with a sealing resin 241.
[0029] 部品 221は、例えば、半導体素子である。部品 221は、機械的な強度を補う目的等 で、実装部材 211に搭載される。温度変化によって部品 221が実装部材 211から剥 離することを防止するため、実装部材 211は、部品 221と同等の線膨張係数をもつ 素材から形成される。  [0029] The component 221 is, for example, a semiconductor element. The component 221 is mounted on the mounting member 211 for the purpose of supplementing mechanical strength. In order to prevent the component 221 from being separated from the mounting member 211 due to a temperature change, the mounting member 211 is formed of a material having a linear expansion coefficient equivalent to that of the component 221.
[0030] 実装部材 212は、部品 221と異なる種類の部品(図示せず)を搭載する実装部材で あり、実装部材 211と異なる線膨張係数をもつ。実装部材 212に搭載された部品と部 品 221は、高速に信号をやりとりする必要があるため、実装部材 211と実装部材 212 は、隣り合って配置されている。  The mounting member 212 is a mounting member on which a component (not shown) of a different type from the component 221 is mounted, and has a linear expansion coefficient different from that of the mounting member 211. Since the component and the component 221 mounted on the mounting member 212 need to exchange signals at high speed, the mounting member 211 and the mounting member 212 are arranged adjacent to each other.
[0031] 封止榭脂 241は、部品 221、ボンディングワイヤ 231および 232を湿度や機械的衝 撃力も守るために使用される榭脂である。この例の場合、封止榭脂 241は、実装部材 211と実装部材 212を跨いで部品 221等を榭脂封止することになるが、実装部材 21 1と実装部材 212の線膨張係数は異なるため、少なくともいずれか一方と線膨張係数 を一致させることはできな 、。 [0031] The sealing resin 241 is a resin used to protect the component 221 and the bonding wires 231 and 232 from humidity and mechanical impact. In this example, the sealing resin 241 seals the parts 221 and the like across the mounting member 211 and the mounting member 212, but the mounting member 21 Since the linear expansion coefficient of 1 and the mounting member 212 are different, it is not possible to match the linear expansion coefficient with at least one of them.
[0032] そのため、例えば、封止榭脂 241と実装部材 211の線膨張係数をほぼ一致させる こととすると、封止榭脂 241と実装部材 212の線膨張係数の差が大きくなり、図 17〖こ 示すように、温度変化によって封止榭脂 241が実装部材 212から剥離し、ボンディン グワイヤ 232等を破損させてしまう可能性が高くなる。 Therefore, for example, if the linear expansion coefficients of the sealing resin 241 and the mounting member 211 are made to substantially coincide, the difference between the linear expansion coefficients of the sealing resin 241 and the mounting member 212 becomes large, and FIG. As shown, there is a high possibility that the sealing resin 241 is peeled off from the mounting member 212 due to a temperature change, and the bonding wire 232 and the like are damaged.
[0033] このような破損を防止するため、従来は、線膨張係数が異なる実装部材を電気接 続する場合は、実装部材を跨ぐことがないように榭脂封止がおこなわれていた。図 18 は、実装部材間を跨ぐことなく榭脂封止をおこなった榭脂封止モジュールの一例を 示す図である。 [0033] In order to prevent such damage, conventionally, when mounting members having different linear expansion coefficients are electrically connected, grease sealing has been performed so as not to straddle the mounting member. FIG. 18 is a diagram showing an example of a resin sealing module that performs resin sealing without straddling between mounting members.
[0034] 同図に示すように、榭脂封止モジュール 300は、実装部材 311の上に部品 321を 搭載し、実装部材 311上の配線と部品 321をボンディングワイヤ 331により接続した ものを封止榭脂 341で榭脂封止し、ボンディングワイヤ 331と接続された配線を封止 領域の外へ引き出し、その配線と光素子パッケージ 322をリード線 332および 333で 接続する構成となっている。  [0034] As shown in the figure, the resin sealing module 300 has a component 321 mounted on a mounting member 311, and the wiring on the mounting member 311 and the component 321 connected by a bonding wire 331 are sealed. The resin is sealed with the resin 341, the wiring connected to the bonding wire 331 is drawn out of the sealing region, and the wiring and the optical element package 322 are connected with the lead wires 332 and 333.
[0035] この例では、封止榭脂 341と実装部材 311の線膨張係数をほぼ一致させることによ り、温度変化によって封止榭脂 341が実装部材 311から剥離し、榭脂封止モジユー ル 300が破損するのを防止することができる。また、リード線 332および 333に十分な 機械的強度をもたせることにより、榭脂封止することなくこの接続部分の強度を確保 することができる。  In this example, by making the linear expansion coefficients of the sealing resin 341 and the mounting member 311 substantially coincide with each other, the sealing resin 341 is peeled off from the mounting member 311 due to a temperature change, and the resin sealing module. It is possible to prevent the Le 300 from being damaged. Further, by providing the lead wires 332 and 333 with sufficient mechanical strength, the strength of the connecting portion can be ensured without sealing with grease.
[0036] しかし、この実装形態では、実装部材 311上の配線引き出し部分やリードフレーム 部に寄生容量が発生して高速なデータ伝送が妨げられ、また、コンパクトな実装が困 難になる。  However, in this mounting mode, parasitic capacitance is generated in the wiring lead-out portion and the lead frame portion on the mounting member 311, and high-speed data transmission is hindered, and compact mounting becomes difficult.
[0037] 次に、本実施例に係る榭脂封止方法について説明する。線膨張係数の異なる実装 部材を跨 、で榭脂封止をおこなった場合であっても、温度変化による破損が生じる のを防止するため、本実施例に係る榭脂封止方法では、ヤング率の低い(柔ら力い) 榭脂を封止榭脂として用いる。  Next, the resin sealing method according to the present embodiment will be described. In order to prevent the occurrence of breakage due to temperature change even when the resin sealing is performed across the mounting members having different linear expansion coefficients, the Young's modulus is used in the resin sealing method according to this example. Low (soft) soft resin is used as the sealing resin.
[0038] 線膨張係数の異なる実装部材を跨 、で榭脂封止をおこなった場合、温度変化によ つて熱応力が発生し、この熱応力が榭脂封止モジュールを破損させる。熱応力は、 封止榭脂と実装部材の線膨張係数の差を Δひとし、封止榭脂の [0038] When the resin sealing is performed across the mounting members having different linear expansion coefficients, the temperature changes. Thermal stress is generated, and this thermal stress damages the resin sealing module. The thermal stress is the difference between the linear expansion coefficients of the sealing resin and the mounting member.
平衡温度 (応力フリーの温度)と現在の温度の差を Δ Τとし、封止榭脂のャ ング率を Eとした場合に、以下のような比例関係がある。  When the difference between the equilibrium temperature (stress-free temperature) and the current temperature is Δ 、, and the ungulation rate of the sealing resin is E, the following proportional relationship is established.
[0039] 熱応力 ∞ Δ a - Δ Τ-Ε [0039] Thermal stress ∞ Δ a-Δ Τ-Ε
[0040] ヤング率を下げるアプローチは、熱応力を 0にすることはできないが、 Δ αを 0に近 づけることができな 、場合でも、封止榭脂と実装部材が剥離しな 、程度に熱応力を 下げることが可能である。  [0040] Although the approach to lower the Young's modulus cannot make the thermal stress zero, Δα cannot be brought close to zero. Even in such a case, the sealing resin and the mounting member do not peel off. It is possible to reduce the thermal stress.
[0041] 以下に、ヤング率の低い榭脂を封止榭脂として用いた場合における熱応力低減の 効果の試算結果を示す。  [0041] The following shows the results of a trial calculation of the effect of reducing thermal stress when using a resin having a low Young's modulus as the sealing resin.
[0042] [表 1] [0042] [Table 1]
(表 1) (table 1)
Figure imgf000012_0001
Figure imgf000012_0001
[0043] この表は、従来より封止榭脂として多く用いられてきたガラスフイラ含有エポキシ系 榭脂と、ヤング率が低い榭脂である変性アタリレート系榭脂を例にして、上記の式を 用いて、熱応力の概算値を求めたものである。この試算によると、ヤング率の低い榭 脂を封止榭脂として用いることにより、熱応力の発生を従来の 1Z30程度まで低減で さることがゎカゝる。 [0043] This table is based on the above formula, taking as an example a glass filler-containing epoxy resin that has been widely used as a sealing resin, and a modified attalate resin having a low Young's modulus. It is used to determine the approximate value of thermal stress. According to this calculation, it is possible to reduce the generation of thermal stress to about 1Z30 by using a low Young's modulus resin as the sealing resin.
[0044] ただし、封止榭脂としてヤング率の低 、封止榭脂を用いる場合、榭脂の透湿に留 意する必要がある。ヤング率の低い榭脂は分子鎖がつくるネットワークが粗であり、水 分子が透過する隙間が多い。このため、低ヤング率の榭脂は、通常、透湿性が高い 。したがって、低ヤング率の榭脂のみで実装部材上の部品を封止しても、それらの部 品の耐湿性を十分に確保できな 、可能性が高 、。  [0044] However, when a sealing resin having a low Young's modulus is used as the sealing resin, it is necessary to pay attention to moisture permeation of the resin. A low Young's modulus resin has a rough network of molecular chains and many gaps through which water molecules permeate. For this reason, a low Young's modulus resin usually has high moisture permeability. Therefore, even if the components on the mounting member are sealed only with a low Young's modulus resin, the moisture resistance of those components cannot be sufficiently secured, and there is a high possibility.
[0045] そこで、本実施例に係る榭脂封止方法では、湿度に対する保護が必要な部品を保 護するために、従来力 用いられてきた透湿性の低い封止榭脂を、ヤング率の低い 封止榭脂と併用する。以下に、本実施例に係る榭脂封止方法で作成された榭脂封 止モジュールの例を示す。  [0045] Therefore, in the resin sealing method according to the present embodiment, in order to protect the components that need to be protected against humidity, a sealing resin having a low moisture permeability, which has been conventionally used, is used for the Young's modulus. Use with low sealing grease. An example of a resin sealing module created by the resin sealing method according to this example is shown below.
[0046] 図 1は、本実施例に係る榭脂封止方法で作成された榭脂封止モジュールの一例を 示す図である。同図に示すように、榭脂封止モジュール 400は、封止榭脂 441と封止 榭脂 442という 2種類の封止榭脂により封止されている。  FIG. 1 is a diagram showing an example of a resin sealing module created by the resin sealing method according to the present example. As shown in the figure, the resin sealing module 400 is sealed with two types of sealing resins: a sealing resin 441 and a sealing resin 442.
[0047] 封止榭脂 441は、ヤング率が高ぐ透湿性の低い榭脂であり、例えば、ガラスフイラ 含有エポキシ系榭脂からなる。封止榭脂 441は、実装部材 411上に搭載された部品 421と、部品 421と接続されているボンディングワイヤ 431および 432とを榭脂封止し ている。温度変化によって封止榭脂 441が実装部材 411から剥離することを防ぐため 、封止榭脂 441と実装部材 411の線膨張係数は、ほぼ一致させられている。  [0047] The sealing resin 441 is a resin having a high Young's modulus and a low moisture permeability, and is made of, for example, a glass filler-containing epoxy resin. The sealing resin 441 seals the component 421 mounted on the mounting member 411 and the bonding wires 431 and 432 connected to the component 421. In order to prevent the sealing resin 441 from being peeled off from the mounting member 411 due to temperature changes, the linear expansion coefficients of the sealing resin 441 and the mounting member 411 are substantially matched.
[0048] 部品 421は、湿度に弱い部品であり、同等の線膨張係数をもつ実装部材 411に搭 載され、ボンディングワイヤ 431によって実装部材 411上の配線(図示せず)と電気 的に接続され、ボンディングワイヤ 432によって実装部材 412上の配線(図示せず)と 電気的に接続されている。  [0048] The component 421 is a component that is sensitive to humidity, is mounted on the mounting member 411 having the same linear expansion coefficient, and is electrically connected to a wiring (not shown) on the mounting member 411 by the bonding wire 431. The wiring is electrically connected to the wiring (not shown) on the mounting member 412 by the bonding wire 432.
[0049] 実装部材 412は、部品 421と線膨張係数が異なる部品(図示せず)を搭載する実 装部材であり、搭載する部品と同等の線膨張係数をもつ。すなわち、実装部材 412 は、実装部材 411と異なる線膨張係数をもつ。そして、実装部材 412が搭載する部 品と部品 421は、高速に信号のやりとりをおこなう必要があるため、実装部材 412は、 実装部材 411と隣接配置されて 、る。 The mounting member 412 is a mounting member on which a component (not shown) having a linear expansion coefficient different from that of the component 421 is mounted, and has a linear expansion coefficient equivalent to that of the mounted component. That is, the mounting member 412 Has a linear expansion coefficient different from that of the mounting member 411. Since the component and the component 421 mounted on the mounting member 412 need to exchange signals at high speed, the mounting member 412 is disposed adjacent to the mounting member 411.
[0050] 封止榭脂 441は、部品 421を湿度や機械的衝撃から守るために、部品 421全体を 榭脂封止している。また、部品 421を実装部材 411上の配線と接続するボンディング ワイヤ 431を機械的衝撃カゝら守るため、ボンディングワイヤ 431全体も榭脂封止して いる。 [0050] The sealing resin 441 seals the entire part 421 in order to protect the part 421 from humidity and mechanical shock. In addition, the entire bonding wire 431 is sealed to protect the bonding wire 431 that connects the component 421 to the wiring on the mounting member 411 from the mechanical shock.
[0051] しかし、封止榭脂 441は、部品 421を実装部材 412上の配線と接続するボンディン グワイヤ 432については全体を榭脂封止していない。これは、封止榭脂 441がボン デイングワイヤ 432全体を榭脂封止すると、ヤング率の高い封止榭脂 441が榭脂封 止する領域が、線膨張係数の異なる実装部材 412へ及び、温度変化によって生じる 熱応力によって、封止榭脂 441が実装部材 412から剥離し、ボンディングワイヤ 432 を断線させると 、つた故障を発生させる可能性が高 、ためである。  [0051] However, the sealing resin 441 does not entirely seal the bonding wire 432 that connects the component 421 to the wiring on the mounting member 412. This is because when the sealing resin 441 seals the entire bonding wire 432, the region where the sealing resin 441 having a high Young's modulus seals the resin extends to the mounting member 412 having a different linear expansion coefficient. This is because if the sealing resin 441 is peeled off from the mounting member 412 due to the thermal stress caused by the temperature change and the bonding wire 432 is disconnected, there is a high possibility that another failure will occur.
[0052] ただし、ボンディングワイヤ 432の榭脂封止されて ヽな 、部分は、そのまま剥き出し の状態では、機械的衝撃によって断線する可能性がある。そこで、榭脂封止モジュ ール 400では、封止榭脂 441とボンディングワイヤ 432の剥き出しの部分を、封止榭 脂 442で榭脂封止している。封止榭脂 442は、ヤング率が低い榭脂であり、例えば、 変性アタリレート系榭脂からなる。  [0052] However, the portion of the bonding wire 432 that has been sealed with grease may be broken by a mechanical impact in the state where the bonding wire 432 is exposed as it is. Therefore, in the resin sealing module 400, the exposed portions of the sealing resin 441 and the bonding wire 432 are sealed with the sealing resin 442. The sealing resin 442 is a resin having a low Young's modulus, and is made of, for example, a modified acrylated resin.
[0053] このように、封止榭脂 442で榭脂封止することにより、ボンディングワイヤ 432を機械 的衝撃による断線力も守ることができる。また、封止榭脂 442は、実装部材 411、実 装部材 412および封止榭脂 441と線膨張係数が異なっていても、ヤング率が低いた め、温度変化によって生じる熱応力が小さぐ剥離することはない。  As described above, by sealing with the sealing resin 442, the bonding wire 432 can be protected from a disconnection force due to a mechanical impact. Even if the sealing resin 442 has a different coefficient of linear expansion from the mounting member 411, the mounting member 412, and the sealing resin 441, the Young's modulus is low, so that the thermal stress caused by the temperature change is small. Never do.
[0054] また、ボンディングワイヤ 432は、一般的に、金線等の湿度による変化を受け難い 素材からなり、湿度に弱い部品 421は、既に透湿性の低い封止榭脂 441に覆われて いるため、封止榭脂 442の透湿性が高くても問題とならない。  [0054] Also, the bonding wire 432 is generally made of a material that is not easily affected by humidity, such as a gold wire, and the component 421 that is sensitive to humidity is already covered with the sealing resin 441 having low moisture permeability. Therefore, there is no problem even if the sealing resin 442 has high moisture permeability.
[0055] 以上説明してきたように、線膨張率の異なる実装部材を跨 ヽで榭脂封止をおこなう 場合に、湿度に弱い部品を、透湿性の低い封止榭脂で、実装部材を跨ぐことがない ように封止し、さらに、機械的衝撃力 守りたい部分全体をヤング率の低い封止榭脂 で封止することにより、従来と同等の耐湿性をもちながら、温度変化による破損が発 生し 1 、コンパクトな榭脂封止モジュールを得ることができる。 [0055] As described above, when the resin sealing is performed across the mounting members having different linear expansion coefficients, the moisture-sensitive component is straddled with the low moisture-permeable sealing resin. In addition, the entire part where the mechanical impact force is to be protected is sealed with a low Young's modulus. By sealing with, damage due to temperature change occurs while maintaining moisture resistance equivalent to conventional ones, and a compact resin-sealed module can be obtained.
[0056] なお、図 1に示した榭脂封止モジュール 400では、封止榭脂 442が封止榭脂 441 全体を覆う構造となっているが、封止榭脂 441と封止榭脂 442が十分な強度をもって 接着される場合は、図 2に示す榭脂封止モジュール 401のように、封止榭脂 441の 一部が、封止榭脂 442による封止領域力も露出する構造とすることもできる。  In the resin sealing module 400 shown in FIG. 1, the sealing resin 442 covers the entire sealing resin 441. However, the sealing resin 441 and the sealing resin 442 Is bonded with sufficient strength, a structure in which a part of the sealing resin 441 is exposed to the sealing region force by the sealing resin 442 as in the resin sealing module 401 shown in FIG. You can also
[0057] また、図 1に示した榭脂封止モジュール 400では、部品 421が、ボンディングワイヤ 432によって実装部材 412上の配線と接続される構造となつている力 図 3に示す榭 脂封止モジュール 402のように、部品 421が、ボンディングワイヤ 433によって実装 部材 412上の部品 422と直接接続される構造とすることもできる。この例では、部品 4 22と、部品 422を実装部材 412上の配線(図示せず)と接続するためのボンディング ワイヤ 434とを機械系衝撃力も守るため、封止榭脂 442がこれらを含めて榭脂封止 する構造となっている。  Further, in the resin sealing module 400 shown in FIG. 1, the force with which the component 421 is connected to the wiring on the mounting member 412 by the bonding wire 432 is the resin sealing shown in FIG. As in the module 402, the part 421 may be directly connected to the part 422 on the mounting member 412 by the bonding wire 433. In this example, the sealing resin 442 is included in order to protect the mechanical impact force of the part 4 22 and the bonding wire 434 for connecting the part 422 to the wiring (not shown) on the mounting member 412. The structure is sealed with grease.
[0058] また、図 3に示した例において、部品 422を部品 421と同様に湿度力も保護する必 要がある場合は、図 4に示す榭脂封止モジュール 403のように、部品 422を透湿性の 低い封止榭脂 443で榭脂封止した上で、封止榭脂 443の全体もしくは一部を封止榭 脂 442で封止する構造としてもよい。このとき、封止榭脂 443と実装部材 412の線膨 張係数をほぼ一致させておく必要がある。  Further, in the example shown in FIG. 3, when it is necessary to protect the component 422 in the same manner as the component 421, the component 422 is passed through like the grease sealing module 403 shown in FIG. A structure in which the whole or a part of the sealing resin 443 is sealed with the sealing resin 442 after being sealed with the low-humidity sealing resin 443. At this time, it is necessary that the linear expansion coefficients of the sealing resin 443 and the mounting member 412 are substantially matched.
[0059] 次に、本実施例に係る榭脂封止方法を用いて製造された榭脂封止モジュールの具 体例について説明する。本実施例に係る榭脂封止方法は、低寄生容量でかつ小型 な光モジュールへの適用が好適であり、例えば、図 5に示す光モジュール 500に適 用することができる。  Next, a specific example of the resin sealing module manufactured using the resin sealing method according to the present embodiment will be described. The resin sealing method according to the present embodiment is preferably applied to a small optical module having a low parasitic capacitance, and can be applied to, for example, the optical module 500 shown in FIG.
[0060] 同図に示すように、光モジュール 500は、光素子 522と駆動 IC521を接続して構成 されている。高速化 (例えば、 lOGbpsZch程度)と小型化の要請から、光素子 522 と駆動 IC521は、ボンディングワイヤ 532によって、直接、電気的に接続され、光素 子 522を搭載するサブキャリア 513と、駆動 IC521を搭載するプリント板 511は、近接 して配置されている。  As shown in the figure, the optical module 500 is configured by connecting an optical element 522 and a driving IC 521. Due to the demand for higher speed (for example, about lOGbpsZch) and downsizing, the optical element 522 and the driving IC 521 are directly electrically connected by the bonding wire 532, and the subcarrier 513 mounting the optical element 522 and the driving IC 521 are mounted. The printed circuit board 511 on which is mounted is disposed in proximity.
[0061] プリント板 511を含む一般的なプリント基板の線膨張係数は、約 20E— 6Z°Cであり 、サブキャリア 513がイリジウムリン (InP)基板であるとすると、その線膨張係数は、約 4E— 6Z°Cである。このように、 2つの実装部材の線膨張係数には 5倍程度の差があ り、光素子 522と駆動 IC521を機械的衝撃等力も守るために榭脂封止した場合に、 温度変化によって封止榭脂がいずれかの実装部材力 剥離し、ボンディングワイヤ 5 32の断線等の障害を生じさせる可能性がある。 [0061] The linear expansion coefficient of a general printed circuit board including the printed circuit board 511 is about 20E-6Z ° C. If the subcarrier 513 is an iridium phosphorus (InP) substrate, its linear expansion coefficient is about 4E-6Z ° C. In this way, there is a difference of about 5 times in the linear expansion coefficient between the two mounting members. When the optical element 522 and the driving IC 521 are sealed with grease to protect them from mechanical impact and the like, they are sealed due to temperature changes. There is a possibility that the sealant may peel off any mounting member force and cause a failure such as disconnection of the bonding wire 5 32.
[0062] そこで、光モジュール 500には、本実施例に係る榭脂封止方法が適用されている。 Accordingly, the resin sealing method according to the present embodiment is applied to the optical module 500.
具体的には、湿度に弱い駆動 IC521は、ガラスフイラ含有エポキシ系榭脂等の透湿 性の低い封止榭脂 541により、封止領域がプリント板 511外に及ばないように榭脂封 止されている。そして、光素子 522と駆動 IC521を接続するボンディングワイヤ 532 の露出部分は、変性アタリレート系榭脂等のヤング率の低い封止榭脂 542によって 榭脂封止されている。  Specifically, the driving IC521, which is sensitive to humidity, is sealed with a low moisture-permeable sealing resin 541 such as a glass filler-containing epoxy resin so that the sealing area does not extend outside the printed board 511. ing. The exposed portion of the bonding wire 532 that connects the optical element 522 and the driving IC 521 is sealed with a sealing resin 542 having a low Young's modulus such as a modified atalylate-based resin.
[0063] 封止榭脂 541は、プリント板 511と同等の線膨張係数を有する。したがって、封止 榭脂 542は、封止榭脂 541とサブキャリア 513という線膨張係数が 5倍程度異なる部 材を跨いでボンディングワイヤ 532を榭脂封止することになる。しかし、封止榭脂 542 は、ヤング率が低いため、温度変化によって大きな熱応力を生じさせることはなぐサ ブキャリア 513等力も剥離して、ボンディングワイヤ 532の断線等の障害を発生させる ことがない。  The sealing resin 541 has a linear expansion coefficient equivalent to that of the printed board 511. Therefore, the sealing resin 542 seals the bonding wire 532 across the parts of the sealing resin 541 and the subcarrier 513 that have different linear expansion coefficients by about 5 times. However, since the sealing resin 542 has a low Young's modulus, the subcarrier 513 isotropic force that does not generate a large thermal stress due to a temperature change does not occur, and a failure such as disconnection of the bonding wire 532 does not occur. .
[0064] ここで、光モジュール 500の全体的な構成について説明しておく。図 5に示すように 、駆動 IC521は、プリント板 511に搭載され、プリント板 511上の配線(図示せず)とボ ンデイングワイヤ 531によって接続され、サブキャリア 513に搭載された光素子 522と ボンディングワイヤ 532によって接続されている。  Here, an overall configuration of the optical module 500 will be described. As shown in FIG. 5, the driving IC 521 is mounted on a printed board 511, connected to a wiring (not shown) on the printed board 511 by a bonding wire 531, and an optical element 522 mounted on a subcarrier 513. Connected by bonding wire 532.
[0065] 封止榭脂 541は、プリント板 511と同等の線膨張係数をもつ透湿性の低い樹脂で あり、封止領域がプリント板 511の外に及ばない範囲で、駆動 IC521とボンディング ワイヤ 531の全体を封止している。また、封止榭脂 541は、駆動 IC521とボンディン グワイヤ 532の接合部付近にお!、て、ボンディングワイヤ 532の一部を封止して!/、る  [0065] Sealing resin 541 is a low moisture-permeable resin having a linear expansion coefficient equivalent to that of printed board 511, and within a range where the sealing area does not extend outside printed board 511, and driving IC 521 and bonding wire 531 The whole is sealed. Also, the sealing resin 541 seals a part of the bonding wire 532 in the vicinity of the joint between the driving IC 521 and the bonding wire 532!
[0066] 光素子 522は、サブキャリア 513に搭載され、さらに、サブキャリア 513は、筐体 51 2に収容されている。そして、筐体 512は、プリント板 511と組み合わされ、ファイバブ ロック 560と接続されている。筐体 512は、プリント板 511より脆くて薄いサブキャリア 5 13線膨張係数を合わせて、例えば、コバールを素材として形成される。 The optical element 522 is mounted on the subcarrier 513, and the subcarrier 513 is housed in the housing 512. The casing 512 is combined with the printed board 511 to provide a fiber block. Connected with lock 560. The casing 512 is made of, for example, Kovar with a linear expansion coefficient that is weaker and thinner than the printed board 511, for example.
[0067] 封止榭脂 542は、ヤング率の低い榭脂であり、ボンディングワイヤ 532の露出部分 を封止している。図 5に示した構成では、サブキャリア 513がプリント板 511に対して ほぼ垂直に配置されている。サブキャリア 513を垂直に配置する構成は、モジュール への入出力光を光素子 522へシンプルに光結合させるのに必要となる構成である。  The sealing resin 542 is a resin having a low Young's modulus and seals the exposed portion of the bonding wire 532. In the configuration shown in FIG. 5, the subcarrier 513 is arranged substantially perpendicular to the printed board 511. The configuration in which the subcarrier 513 is arranged vertically is a configuration necessary for simply optically coupling input / output light to the module to the optical element 522.
[0068] 光モジュール用の光素子には、基板面に垂直に光が入出力する面型の光素子 (V CSELアレイ、 PIN— PDアレイなど)が利用されることが多い。光モジュール 500へ の光の入出力は、モジュールの前後方向、すなわち、プリント板 511と水平方向にお こなわれるが、入出力光を面型の光素子 522に最もシンプルに結合させるには、入 出力光が伝搬する光ファイバの正面に光素子 522を配置すればよぐそのためには 、光素子 522を搭載したサブキャリア 513をほぼ垂直に立てる必要がある。  As the optical element for the optical module, a planar optical element (V CSEL array, PIN-PD array, etc.) that inputs and outputs light perpendicular to the substrate surface is often used. The input / output of light to / from the optical module 500 is performed in the front-rear direction of the module, that is, in the horizontal direction with the printed circuit board 511. To place the optical element 522 in front of the optical fiber through which the input / output light propagates, the subcarrier 513 on which the optical element 522 is mounted needs to be set substantially vertically.
[0069] ただし、このような配置では、ヤング率の高い封止榭脂 541でボンディングワイヤ 53 2全体を封止すると、温度変化によって、サブキャリア 513と封止榭脂 541の界面に 強い剥離力がはたらき、ボンディングワイヤ 532の断線やワイヤ外れが発生しやすく なる。  However, in such an arrangement, when the entire bonding wire 532 is sealed with the sealing resin 541 having a high Young's modulus, a strong peeling force is exerted on the interface between the subcarrier 513 and the sealing resin 541 due to a temperature change. This causes breakage of the bonding wire 532 and disconnection of the wire.
[0070] 封止榭脂 541によるボンディングワイヤ 532の封止を一部のみとし、他の部分をャ ング率の低い封止榭脂 542で封止することにより、ボンディングワイヤ 532を機械的 衝撃力も保護しつつ、サブキャリア 513と封止榭脂 541の界面にはたらく熱応力を低 減させ、封止榭脂剥離を抑制することができる。  [0070] By sealing the bonding wire 532 with the sealing resin 541 only partly and sealing the other part with the sealing resin 542 having a low hang ratio, the bonding wire 532 is also mechanically impacted. While protecting, the thermal stress acting on the interface between the subcarrier 513 and the sealing resin 541 can be reduced, and the sealing resin peeling can be suppressed.
[0071] また、図 5に示すように、サブキャリア 513をプリント板 511に対してほぼ垂直に配置 することは、駆動 IC521と光素子 522の距離を近くし、高速な動作を実現させるため にも有禾 ljである。  In addition, as shown in FIG. 5, the subcarrier 513 is arranged substantially perpendicular to the printed board 511 in order to reduce the distance between the driving IC 521 and the optical element 522 and realize high-speed operation. Is also known as lj.
[0072] 光素子 522周辺の詳細な構成について図 6に示す。同図に示すように、光素子 52 2は、駆動 IC521からみて、サブキャリア 513の裏面に配置されている。光素子 522 の一方の面には、受光部(図示せず)を焦点とするレンズ 525が形成され、他方の面 には、電極 523が形成されている。  [0072] Fig. 6 shows a detailed configuration around the optical element 522. As shown in the figure, the optical element 522 is disposed on the back surface of the subcarrier 513 when viewed from the drive IC 521. A lens 525 having a light receiving portion (not shown) as a focal point is formed on one surface of the optical element 522, and an electrode 523 is formed on the other surface.
[0073] サブキャリア 513には、一方の面に、ボンディングワイヤ 532とワイヤボンディングに より接続されるボンディングパッド 572が形成され、他方の面に、光素子 522と接続す るためのフリップチップ実装用パッド 573が形成されている。そして、ボンディングパッ ド 572とフリップチップ実装用パッド 573は、ビア 571によって電気的に接続されてい る。 [0073] The subcarrier 513 has a bonding wire 532 and wire bonding on one side. A bonding pad 572 to be further connected is formed, and a flip chip mounting pad 573 for connecting to the optical element 522 is formed on the other surface. The bonding pad 572 and the flip chip mounting pad 573 are electrically connected by a via 571.
[0074] そして、光素子 522とサブキャリア 513は、電極 523とフリップチップ実装用パッド 5 73をノヽンダ 524によって接続することにより固定されている。このように、サブキャリア 513の一方の面が駆動 IC521とボンディングワイヤ 532で接続され、他方の面が光 素子 522とフリップフロップ接続される構成は、図 12に示したリード線 332のような配 線引き出しが不要なことから、寄生容量が小さく高速な動作が実現しやすい。  Then, the optical element 522 and the subcarrier 513 are fixed by connecting the electrode 523 and the flip chip mounting pad 573 with a noder 524. In this manner, the configuration in which one surface of the subcarrier 513 is connected to the driving IC 521 by the bonding wire 532 and the other surface is flip-flop connected to the optical element 522 is an arrangement like the lead wire 332 shown in FIG. Since no line drawing is required, the parasitic capacitance is small and high-speed operation is easy to realize.
[0075] なお、この構成においては、低容量ィ匕の観点から、ボンディングワイヤ 532と光素子 522を電気的に接続するビア 571は、直径が小さいことが好ましぐまた、サブキヤリ ァ 513の厚さは、機械的強度が保たれる範囲で薄いことが好ましい。  In this configuration, from the viewpoint of low capacitance, the via 571 that electrically connects the bonding wire 532 and the optical element 522 is preferably small in diameter, and the thickness of the subcarrier 513 is also small. The thickness is preferably thin as long as the mechanical strength is maintained.
[0076] また、図 6〖こ示した封止榭脂 580は、光素子 522の電極 523側と側面を覆い、レン ズ 525側を覆っていない。光素子 522の電極 523側は、湿度力も保護するため榭脂 封止する必要があるが、レンズ 525側には湿度に弱い構造が特になぐまた、光素子 522のレンズ 525と AR (Anti-Reflective)コーティング(裏面レンズを含む裏面表面に 形成)は対空気で設計されており、封止榭脂 580で覆わない方が特性上優れている ためである。  Further, the sealing resin 580 shown in FIG. 6 covers the electrode 523 side and the side surface of the optical element 522 and does not cover the lens 525 side. The electrode 523 side of the optical element 522 must be sealed with grease in order to protect the humidity force, but the lens 525 side is not particularly sensitive to humidity, and the optical element 522 has an AR (Anti-Reflective) structure. This is because the coating (formed on the back surface including the back lens) is designed against the air and is not covered with the sealing resin 580 because of its superior characteristics.
[0077] なお、封止榭脂 580には、例えば、光素子 522およびサブキャリア 513の線膨張係 数 (約 4E— 6Z°C)に線膨張係数を合わせたガラスフイラ含有エポキシ系榭脂を用い ることがでさる。  [0077] For the sealing resin 580, for example, an epoxy-based resin containing glass filler in which the linear expansion coefficient is matched with the linear expansion coefficient (about 4E-6Z ° C) of the optical element 522 and the subcarrier 513 is used. It can be done.
[0078] 次に、図 7〜14を参照しながら、図 5に示した光モジュール 500の製作方法につい て説明する。まず、各実装部材に所定の部品を搭載する。具体的には、図 7に示す ように、銀ペースト 590のように熱伝導性の高い接着剤を用いて、駆動 IC521をプリ ント板 511に接着する。  Next, a method for manufacturing the optical module 500 shown in FIG. 5 will be described with reference to FIGS. First, predetermined parts are mounted on each mounting member. Specifically, as shown in FIG. 7, the driving IC 521 is bonded to the print plate 511 using an adhesive having high thermal conductivity, such as silver paste 590.
[0079] また、図 8に示すように、光素子 522をサブキャリア 513にフリップチップ実装する。  Further, as shown in FIG. 8, the optical element 522 is flip-chip mounted on the subcarrier 513.
光素子 522の電極 523には AnSu等のハンダ 524がパターユングされており、サブ キャリア 513の所定の位置に光素子 522をおいてハンダ溶融温度以上に加熱するこ とにより、光素子 522の電極 523力 サブキャリア 513のフリップチップ実装用パッド 5 73に接続される。 The electrode 523 of the optical element 522 is patterned with solder 524 such as AnSu. The optical element 522 is placed at a predetermined position of the subcarrier 513 and heated to the solder melting temperature or higher. Thus, the electrode 523 force of the optical element 522 is connected to the flip chip mounting pad 573 of the subcarrier 513.
[0080] 続いて、各部材のアセンブリをおこなう。具体的には、図 9に示すように、プリント板 5 11とサブキャリア 513を筐体 512に取り付け、接着剤(例えば、エポキシ系接着剤)を 用いて固定させる。  [0080] Subsequently, each member is assembled. Specifically, as shown in FIG. 9, a printed board 511 and a subcarrier 513 are attached to a housing 512, and are fixed using an adhesive (for example, an epoxy adhesive).
[0081] 続いて、図 10に示すように、ワイヤボンディングを実施する。具体的には、ワイヤボ ンデイングによりボンディングワイヤ 531の一端を駆動 IC521に接合し、他の一端を プリント板 511上の配線に接合させる。そして、ワイヤボンディングによりボンディング ワイヤ 532の一端を駆動 IC521に接合した後、筐体 512を 90° 回転させ、ボンディ ングワイヤ 532の他の一端をサブキャリア 513に接合させる。光モジュール 500は、 サブキャリア 513がプリント板 511に対して垂直に立った構造となっているため、この ように、ワイヤボンディングの過程において筐体 512を 90° 回転させる必要がある。  Subsequently, as shown in FIG. 10, wire bonding is performed. Specifically, one end of the bonding wire 531 is bonded to the driving IC 521 by wire bonding, and the other end is bonded to the wiring on the printed board 511. Then, after one end of the bonding wire 532 is bonded to the driving IC 521 by wire bonding, the casing 512 is rotated by 90 °, and the other end of the bonding wire 532 is bonded to the subcarrier 513. Since the optical module 500 has a structure in which the subcarrier 513 stands vertically with respect to the printed board 511, it is necessary to rotate the casing 512 by 90 ° during the wire bonding process.
[0082] 続いて、榭脂封止を実施する。具体的には、図 11に示すように、光素子 522の電 極 523側と側面を榭脂封止する。同図に示すように、榭脂塗布用デイスペンサのへッ ド 600から、光素子 522の近傍に封止榭脂 580を滴下すると、封止榭脂 580が広が つて光素子 522の側面に接触し、表面張力の作用により光素子 522の側面を取り囲 むように封止榭脂が充填されて!ヽく。  [0082] Subsequently, resin sealing is performed. Specifically, as shown in FIG. 11, the electrode 523 side and the side surface of the optical element 522 are sealed with grease. As shown in the figure, when the sealing resin 580 is dropped from the head 600 of the grease application dispenser to the vicinity of the optical element 522, the sealing resin 580 expands and contacts the side surface of the optical element 522. Then, the sealing resin is filled so as to surround the side surface of the optical element 522 by the action of surface tension.
[0083] また、図 12に示すように、駆動 IC521周辺を封止榭脂 541で榭脂封止する。このと き、温度変化による剥離が生じるのを防止するため、封止榭脂 541がプリント板 511 力もはみ出さないようにする。この段階では、駆動 IC521とサブキャリア 513を接続す るボンディングワイヤ 532は、駆動 IC521との接合部付近を除いて露出した状態とな る。  In addition, as shown in FIG. 12, the periphery of the drive IC 521 is sealed with a sealing resin 541. At this time, in order to prevent the peeling due to the temperature change, the sealing resin 541 is prevented from protruding the printed board 511. At this stage, the bonding wire 532 connecting the driving IC 521 and the subcarrier 513 is exposed except for the vicinity of the junction with the driving IC 521.
[0084] この露出部分を保護するため、図 13に示すように、ボンディングワイヤ 532周辺を 封止榭脂 542で榭脂封止する。この結果、線膨張係数の異なるサブキャリア 513お よび筐体 512にも封止榭脂 542が接着することになる力 封止榭脂 542は、ヤング率 が小さいことから接着面に大きな熱応力が生じることがなぐ封止榭脂 542の剥離に よるボンディングワイヤ 532の断線が起こることはない。なお、封止榭脂 541と封止榭 脂 542の界面で両封止榭脂のずれによりボンディングワイヤ 532が断線することを避 けるため、封止榭脂 541と封止榭脂 542を十分に接着させることが必要である。 In order to protect this exposed portion, the periphery of the bonding wire 532 is sealed with a sealing grease 542 as shown in FIG. As a result, the sealing resin 542 is bonded to the subcarriers 513 and the casing 512 having different linear expansion coefficients. Since the sealing resin 542 has a small Young's modulus, a large thermal stress is applied to the bonding surface. There is no possibility of disconnection of the bonding wire 532 due to peeling of the sealing resin 542 that does not occur. It should be noted that the bonding wire 532 is prevented from being disconnected due to a deviation of both sealing resins at the interface between the sealing resin 541 and the sealing resin 542. Therefore, it is necessary to sufficiently bond the sealing resin 541 and the sealing resin 542.
[0085] 最後に、図 14に示すようにファイバブロック 560を接続させる。このとき、駆動 IC52 1を動作させ、光素子 522を受発光する状態とし、これとファイバブロック 560中の光 ファイバのコアとを調芯して、接着剤(図示せず)で固定する。固定用の接着剤は短 時間で硬化するものが必要で、数分で硬化する UV硬化性接着剤が適している。こ れに合わせて、ファイバブロック 560の材質は UV光を透過するガラス系の材料が好 適である。 [0085] Finally, the fiber block 560 is connected as shown in FIG. At this time, the driving IC 521 is operated so that the optical element 522 receives and emits light, and this and the core of the optical fiber in the fiber block 560 are aligned and fixed with an adhesive (not shown). Fixing adhesives need to be cured in a short time, and UV curable adhesives that cure in a few minutes are suitable. Accordingly, the material of the fiber block 560 is preferably a glass-based material that transmits UV light.
産業上の利用可能性  Industrial applicability
[0086] 以上のように、本発明に係る榭脂封止モジュール、光モジュールおよび榭脂封止 方法は、コンパクトな形態を実現するために線膨張率が異なる実装部材に跨って榭 脂封止をおこなう場合に有用であり、特に、温度変化による榭脂封止の剥離にともな う破損を防止した 、場合に適して 、る。 As described above, the resin sealing module, the optical module, and the resin sealing method according to the present invention provide a resin sealing across mounting members having different linear expansion coefficients in order to realize a compact form. This is useful in the case of carrying out the process, and particularly suitable for the case where the damage due to the peeling of the resin seal due to the temperature change is prevented.

Claims

請求の範囲 The scope of the claims
[1] 所定の部品を搭載する第 1の実装部材と、  [1] a first mounting member for mounting a predetermined component;
前記第 1の実装部材と異なる線膨張係数をもつ第 2の実装部材と、  A second mounting member having a linear expansion coefficient different from that of the first mounting member;
前記第 1の実装部材上の部品を前記第 2の実装部材上の部品もしくは配線と電気 的に接続させる接続部とを含む榭脂封止モジュールであって、  A grease sealing module including a connection part for electrically connecting a component on the first mounting member to a component or wiring on the second mounting member,
封止領域が前記第 2の実装部材に及ばないように前記第 1の実装部材上の部品を 榭脂封止する第 1の封止榭脂と、  A first sealing resin that seals a component on the first mounting member such that a sealing region does not reach the second mounting member;
前記第 1の封止榭脂よりもヤング率の低い素材からなり、前記接続部のうち前記第 1の封止榭脂で覆われて 、な 、部分を榭脂封止する第 2の封止榭脂と  A second seal that is made of a material having a Young's modulus lower than that of the first sealing resin, and is covered with the first sealing resin in the connection portion, and seals the portion. With fat
を含んだことを特徴とする榭脂封止モジュール。  A resin sealing module characterized by comprising:
[2] 前記第 1の封止榭脂は、前記第 2の封止榭脂よりも透湿性が低い素材力 なること を特徴とする請求項 1に記載の榭脂封止モジュール。 [2] The resin sealing module according to claim 1, wherein the first sealing resin has a material strength that is lower in moisture permeability than the second sealing resin.
[3] 前記第 2の封止榭脂は、前記第 1の封止榭脂全体を封止領域に含めて榭脂封止 することを特徴とする請求項 1に記載の榭脂封止モジュール。 [3] The resin sealing module according to claim 1, wherein the second sealing resin includes the entire first sealing resin in a sealing region and is sealed. .
[4] 前記第 2の封止榭脂は、第 2の実装部材上の部品を封止領域に含めて榭脂封止 することを特徴とする請求項 1に記載の榭脂封止モジュール。 [4] The resin sealing module according to claim 1, wherein the second sealing resin includes a component on the second mounting member in a sealing region and performs resin sealing.
[5] 前記第 2の封止榭脂は、第 2の実装部材上の部品を榭脂封止する第 3の封止榭脂 を封止領域に含めて榭脂封止することを特徴とする請求項 1に記載の榭脂封止モジ ユーノレ o [5] The second sealing resin includes a third sealing resin that seals a component on the second mounting member in a sealing region and is sealed with a resin. The oil sealing module according to claim 1
[6] 前記接続部は、ボンディングワイヤであることを特徴とする請求項 1に記載の榭脂封 止モジユーノレ。  6. The grease sealing module according to claim 1, wherein the connecting portion is a bonding wire.
[7] 駆動 ICを搭載する第 1の実装部材と、 [7] a first mounting member on which the driving IC is mounted;
前記駆動 ICに駆動される光素子を搭載する第 2の実装部材と、  A second mounting member on which an optical element driven by the driving IC is mounted;
前記駆動 ICを前記光素子と電気的に接続させる接続部とを含む光モジュールであ つて、  An optical module including a connection portion for electrically connecting the driving IC to the optical element;
封止領域が前記第 2の実装部材に及ばないように前記駆動 ICを榭脂封止する第 1 の封止榭脂と、  A first sealing resin that seals the drive IC so that a sealing region does not reach the second mounting member;
前記第 1の封止榭脂よりもヤング率の低い素材からなり、前記接続部のうち前記第 1の封止榭脂で覆われて 、な 、部分を榭脂封止する第 2の封止榭脂と を含んだことを特徴とする光モジュール。 The first sealing resin is made of a material having a Young's modulus lower than that of the first sealing resin, An optical module comprising: a second sealing resin which is covered with the first sealing resin and seals the portion.
[8] 前記第 1の封止榭脂は、前記第 2の封止榭脂よりも透湿性が低い素材力 なること を特徴とする請求項 7に記載の光モジュール。 8. The optical module according to claim 7, wherein the first sealing resin has a material strength that is lower in moisture permeability than the second sealing resin.
[9] 前記第 2の封止榭脂は、前記第 1の封止榭脂全体を封止領域に含めて榭脂封止 することを特徴とする請求項 7に記載の光モジュール。 [9] The optical module according to [7], wherein the second sealing resin is sealed by including the entire first sealing resin in a sealing region.
[10] 前記接続部は、ボンディングワイヤであることを特徴とする請求項 7に記載の光モジ ユーノレ o 10. The optical module according to claim 7, wherein the connecting portion is a bonding wire.
[11] 前記第 2の実装部材は、前記第 1の実装部材に対して垂直に配置されることを特徴 とする請求項 7に記載の光モジュール。  11. The optical module according to claim 7, wherein the second mounting member is disposed perpendicular to the first mounting member.
[12] 前記光素子は、前記第 1の実装部材からみて、前記第 2の実装部材の裏面に搭載 されることを特徴とする請求項 7または 11に記載の光モジュール。 12. The optical module according to claim 7, wherein the optical element is mounted on a back surface of the second mounting member as viewed from the first mounting member.
[13] 前記光素子は、前記第 2の実装部材に設けられたビアを介して前記接続部と接続 されることを特徴とする請求項 12に記載の光モジュール。 13. The optical module according to claim 12, wherein the optical element is connected to the connection portion via a via provided in the second mounting member.
[14] 所定の部品を搭載する第 1の実装部材と、 [14] a first mounting member for mounting a predetermined component;
前記第 1の実装部材と異なる線膨張係数をもつ第 2の実装部材と、  A second mounting member having a linear expansion coefficient different from that of the first mounting member;
前記第 1の実装部材上の部品を前記第 2の実装部材上の部品もしくは配線と電気 的に接続させる接続部とを含む榭脂封止モジュールにおいて、前記第 1の実装部材 上の部品と前記接続部を封止する榭脂封止方法であって、  In a grease sealing module including a connection part that electrically connects a component on the first mounting member to a component or wiring on the second mounting member, the component on the first mounting member and the component A resin sealing method for sealing a connection part,
封止領域が前記第 2の実装部材に及ばないように前記第 1の実装部材上の部品を 第 1の封止榭脂を用いて榭脂封止する第 1の封止工程と、  A first sealing step of sealing a component on the first mounting member with a first sealing resin so that a sealing region does not reach the second mounting member;
前記第 1の封止榭脂よりもヤング率の低い素材力 なる第 2の封止榭脂を用いて、 前記接続部のうち前記第 1の封止榭脂で覆われていない部分を榭脂封止する第 2の 封止工程と  Using a second sealing resin having a material force having a Young's modulus lower than that of the first sealing resin, a portion of the connecting portion that is not covered with the first sealing resin is greased. A second sealing step to seal and
を含んだことを特徴とする榭脂封止方法。  A resin sealing method comprising:
PCT/JP2006/312510 2006-06-22 2006-06-22 Resin-sealed module, optical module and method of resin sealing WO2007148398A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008522210A JP4681648B2 (en) 2006-06-22 2006-06-22 Resin sealing module, optical module, and resin sealing method
PCT/JP2006/312510 WO2007148398A1 (en) 2006-06-22 2006-06-22 Resin-sealed module, optical module and method of resin sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/312510 WO2007148398A1 (en) 2006-06-22 2006-06-22 Resin-sealed module, optical module and method of resin sealing

Publications (1)

Publication Number Publication Date
WO2007148398A1 true WO2007148398A1 (en) 2007-12-27

Family

ID=38833150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312510 WO2007148398A1 (en) 2006-06-22 2006-06-22 Resin-sealed module, optical module and method of resin sealing

Country Status (2)

Country Link
JP (1) JP4681648B2 (en)
WO (1) WO2007148398A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116409A (en) * 2012-12-07 2014-06-26 Denso Corp Electronic device
WO2015033633A1 (en) * 2013-09-03 2015-03-12 株式会社村田製作所 Vertical cavity surface emitting laser element, semiconductor wafer and light emitting module provided with vertical cavity surface emitting laser element, and method for manufacturing vertical cavity surface emitting laser element
KR20160093948A (en) * 2015-01-30 2016-08-09 앰코 테크놀로지 코리아 주식회사 Stacked chip package and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111581A1 (en) * 2014-10-16 2016-04-21 Semiconductor Components Industries, Llc Packaged semiconductor devices and related methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188656A (en) * 1990-11-19 1992-07-07 Fujitsu Ten Ltd Structure for sealing hybrid integrated circuit
JPH05175375A (en) * 1991-12-25 1993-07-13 Hitachi Ltd Resin-sealed semiconductor device
JPH0722576A (en) * 1993-07-05 1995-01-24 Mitsubishi Electric Corp Semiconductor power module and composite board and manufacture of semiconductor power module
JPH0829648A (en) * 1994-07-19 1996-02-02 Sumitomo Electric Ind Ltd Light emitting element module
JPH0829646A (en) * 1994-07-15 1996-02-02 Sumitomo Electric Ind Ltd Light emitting element module
JPH11354687A (en) * 1998-06-12 1999-12-24 Hitachi Ltd Semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273208A (en) * 1988-09-08 1990-03-13 Nec Corp Optical fiber packaging system
JP2970609B2 (en) * 1997-07-02 1999-11-02 サンケン電気株式会社 Resin-sealed electronic circuit device
JP3392748B2 (en) * 1998-03-13 2003-03-31 日本電信電話株式会社 Method for manufacturing semiconductor optical module
JP2002314030A (en) * 2001-04-12 2002-10-25 Mitsubishi Electric Corp Semiconductor device
JP2002373961A (en) * 2001-06-15 2002-12-26 Denso Corp Resin sealed electronic device
JP4036008B2 (en) * 2002-02-13 2008-01-23 住友電気工業株式会社 Parallel transceiver module
JP4352661B2 (en) * 2002-07-25 2009-10-28 住友電気工業株式会社 Optical module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188656A (en) * 1990-11-19 1992-07-07 Fujitsu Ten Ltd Structure for sealing hybrid integrated circuit
JPH05175375A (en) * 1991-12-25 1993-07-13 Hitachi Ltd Resin-sealed semiconductor device
JPH0722576A (en) * 1993-07-05 1995-01-24 Mitsubishi Electric Corp Semiconductor power module and composite board and manufacture of semiconductor power module
JPH0829646A (en) * 1994-07-15 1996-02-02 Sumitomo Electric Ind Ltd Light emitting element module
JPH0829648A (en) * 1994-07-19 1996-02-02 Sumitomo Electric Ind Ltd Light emitting element module
JPH11354687A (en) * 1998-06-12 1999-12-24 Hitachi Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116409A (en) * 2012-12-07 2014-06-26 Denso Corp Electronic device
WO2015033633A1 (en) * 2013-09-03 2015-03-12 株式会社村田製作所 Vertical cavity surface emitting laser element, semiconductor wafer and light emitting module provided with vertical cavity surface emitting laser element, and method for manufacturing vertical cavity surface emitting laser element
KR20160093948A (en) * 2015-01-30 2016-08-09 앰코 테크놀로지 코리아 주식회사 Stacked chip package and method for manufacturing the same
KR101654518B1 (en) * 2015-01-30 2016-09-06 앰코 테크놀로지 코리아 주식회사 Stacked chip package and method for manufacturing the same

Also Published As

Publication number Publication date
JP4681648B2 (en) 2011-05-11
JPWO2007148398A1 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
US6282352B1 (en) Optical module, method for manufacturing optical module and optical communication apparatus
JP3123477B2 (en) Mounting structure and mounting method of surface acoustic wave device
JP2008092417A (en) Semiconductor imaging element, its manufacturing method, semiconductor imaging apparatus, and semiconductor imaging module
TW200830434A (en) Electronic devices, CMOS image sensor device chip scale packages and fabrication methods thereof
JP2006332680A (en) Method for packaging image sensor, and the packaged image sensor
JP2008219854A (en) Optical device, optical device wafer, method for manufacturing them, and camera module and endoscope module equipped with optical device
US7812264B2 (en) Functional element-mounted module and a method for producing the same
US7078804B2 (en) Micro-electro-mechanical system (MEMS) package with side sealing member and method of manufacturing the same
JP4359201B2 (en) Optical semiconductor device, optical connector and electronic device
JP2005257879A (en) Optical module, method of manufacturing thereof, protecting member and protecting member with electric wiring
JP2005086044A (en) Highly reliable package
US20080185610A1 (en) Resin-sealed semiconductor light receiving element, manufacturing method thereof and electronic device using the same
US6524017B2 (en) Arrangement consisting of a photodiode and an optical fiber
JP4265757B2 (en) Display module and manufacturing method thereof
JP4166759B2 (en) Method for manufacturing package structure of optical device
CN101827208B (en) Compact camera module
WO2007148398A1 (en) Resin-sealed module, optical module and method of resin sealing
JP3729240B2 (en) Manufacturing method of optical module
WO2007037221A1 (en) Functional element package and process for producing the same
JP3380733B2 (en) Optical module and method of manufacturing the same
US20050275075A1 (en) Micro-electro-mechanical system (MEMS) package with spacer for sealing and method of manufacturing the same
JP2001343561A (en) Optical module
JP2007027559A (en) Surface-mounted electronic part, method for manufacturing the same and optical electronic device
CN110246815A (en) A kind of flexible chip encapsulating structure and method
US20080061409A1 (en) Micro electro-mechanical system module package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522210

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767168

Country of ref document: EP

Kind code of ref document: A1