WO2007142200A1 - トンネル用防水シート - Google Patents

トンネル用防水シート Download PDF

Info

Publication number
WO2007142200A1
WO2007142200A1 PCT/JP2007/061307 JP2007061307W WO2007142200A1 WO 2007142200 A1 WO2007142200 A1 WO 2007142200A1 JP 2007061307 W JP2007061307 W JP 2007061307W WO 2007142200 A1 WO2007142200 A1 WO 2007142200A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
waterproof sheet
tunnel
sheet
surface layer
Prior art date
Application number
PCT/JP2007/061307
Other languages
English (en)
French (fr)
Inventor
Tomokazu Ise
Kazumasa Kusudo
Masakazu Nishiyama
Hidekazu Taniguchi
Naoyuki Yaguchi
Masaru Tateyama
Shogo Mamada
Original Assignee
Kuraray Co., Ltd.
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd., Railway Technical Research Institute filed Critical Kuraray Co., Ltd.
Priority to EP07744666.4A priority Critical patent/EP2042687B1/en
Priority to JP2008520565A priority patent/JP5209472B2/ja
Priority to EP17184026.7A priority patent/EP3263833B1/en
Priority to US12/303,744 priority patent/US20100167047A1/en
Publication of WO2007142200A1 publication Critical patent/WO2007142200A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • E21D11/383Waterproofing; Heat insulating; Soundproofing; Electric insulating by applying waterproof flexible sheets; Means for fixing the sheets to the tunnel or cavity wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a waterproof sheet for tunnel made of synthetic resin. More specifically, during tunnel construction by the mountain tunnel (NATM) method, urban shield method and open tunnel method, etc., it is installed between the natural ground or the ground and the concrete tunnel structure.
  • the present invention relates to a waterproof sheet for a tunnel for preventing exuded water from leaking into the tunnel.
  • a waterproof sheet As a waterproof sheet, a waterproof sheet in which a fluorocarbon resin cross-linked foam is laminated on at least one surface of a thermoplastic resin or vulcanized synthetic resin sheet (see Patent Document 1), a propylene homopolymer block, or ethylene content
  • Patent Document 2 A waterproof sheet (see Patent Document 2) having a propylene-ethylene random copolymer block A of 5 wt% or less and an ethylene-propylene random copolymer block B having a propylene content of 10 wt% or more (see Patent Document 2).
  • a waterproof sheet (see Patent Document 3) containing a mixture of two or more different ethylene acetate butyl copolymers as a main component is known.
  • the waterproof sheet of Patent Document 4 developed by the present inventors is more adhesive to hydraulic materials such as concrete than the conventional waterproof sheets described in Patent Documents 1 to 3. Excellent water-blocking effect that makes it difficult to peel off the hydraulic material.
  • the present inventors have further studied based on the water shielding sheet of Patent Document 4. In order to more effectively prevent water that has exuded natural ground and ground strength from entering the concrete tunnel structure, it is necessary to further improve the adhesive properties of the waterproof sheet to the concrete structure. It turned out to be.
  • a waterproof sheet for a tunnel a waterproof sheet used for a mountain tunnel method or a shield tunnel method and a waterproof sheet used for an open-cut tunnel method differ in the stress on the waterproof sheet and in the construction method of the waterproof sheet. From the above, it has been found that it is necessary to provide different tensile elongation at break and tensile strength at break.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-329228
  • Patent Document 2 JP-A-9 52330
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-115791
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-294015
  • the present invention is firmly bonded and integrated with a concrete tunnel structure, so that even when a long time has elapsed after construction, large unevenness of the installation surface, land subsidence, or earthquake occurs, No gaps are created between the concrete and concrete, and damage such as breakage does not occur during and after construction in the tunnel, preventing smooth leakage of ground and ground forces into the tunnel.
  • An object of the present invention is to provide a tunnel waterproof sheet.
  • the present inventors have made various studies in order to achieve the above object.
  • the tunnel waterproof sheet for the mountain tunnel method or shield method and the ton for the open-cut tunnel method are used.
  • Nel waterproof sheet has a predetermined tensile breaking strength and tensile breaking elongation, and can also be firmly bonded to a hydraulic material such as concrete or mortar to integrate them together.
  • a resin waterproof sheet for tunnels was produced.
  • Such a waterproof sheet for tunnels is described as follows: “If a silica-containing surface layer containing silica having a silicon dioxide content of 90% by mass at a specific concentration or more is provided from the surface layer of the waterproof sheet to a specific depth or more, The silica force contained in the silica-containing surface layer located on the surface layer of the sheet reacts with the components in the cement during the hydraulic reaction of the concrete. This was developed based on the knowledge found by the present inventors.
  • the inventors of the present invention have the ability to make the silica content in the silica-containing surface layer 30 to 200 mg Zcm 3, and the depth of the silica-containing surface layer is 5 to 30 ⁇ m.
  • the BET specific surface area of the silica present in the silica-containing surface layer is 80 m 2 / g or more, the adhesion with the concrete is improved, and the waterproof sheet for tunnel is formed.
  • the synthetic resin to be formed is preferably an ethylene acetate butyl copolymer or a composition thereof, and the silica-containing surface layer has an ethylene-vinyl acetate copolymer strength in which the content of structural units derived from butyl acetate is 30% by mass or more.
  • the silica-containing surface layer is formed by applying a liquid in which a silica force is dispersed in an organic solvent capable of dissolving the surface of the base sheet to the surface of the base sheet made of a synthetic resin, and drying by heating. Can be formed smoothly Headings and that, the present invention has been completed based on these various findings.
  • the present invention provides:
  • the silica-containing surface layer is formed from the surface of the waterproof sheet to a depth of 5 to 30 / ⁇ ⁇ , and has a tensile breaking strength of lOMpa or more and a mortar adhesive force of 15 NZcm or more.
  • Tunnel tarpaulin
  • the synthetic resin constituting the silica-containing surface layer is an ethylene vinyl acetate copolymer in which the content ratio of the structural unit derived from vinyl acetate is 30% by mass or more, according to any one of the above (1) to (6) Tunnel tarpaulin,
  • FIG. 1 is a diagram showing a method for measuring the mortar adhesive strength of a waterproof sheet.
  • FIG. 2 A diagram schematically showing a tunnel structure with waterproof sheets.
  • FIG. 3 (a) A diagram schematically showing a cross section of the waterproof sheet obtained in Example 1, and (b) A diagram schematically showing a cross section of the waterproof sheet obtained in Comparative Example 2.
  • FIG. 5 is an explanatory view of a sample for measuring water tightness of a waterproof sheet, with (a) a side view and (b) a top view.
  • FIG. 6 is an explanatory diagram of a non-land water tightness measuring device.
  • Example 8 is an electron micrograph of a cross section of a silica-containing surface layer of the waterproof sheet of Example 4, and (b) an electron micrograph of the top surface of the same silicic force-containing surface layer.
  • FIG. 9 is an explanatory diagram of the excavation tunnel.
  • the tunnel waterproof sheet of the present invention has a surface layer portion of a synthetic resin waterproof sheet having a silica dioxide content of 30 to 200 mg / cm 3 over a depth of 5 to 30 ⁇ m from the surface and having a silicon dioxide content of 90% by mass or more. It is formed from a silica-containing surface layer that is contained in a proportion (concentration), and has a tensile breaking strength of lOMpa or higher and a mortar adhesive strength of 15 NZcm or higher.
  • Silica having a silicon dioxide content of 90% by mass or more in the surface layer part from the surface of the waterproof sheet to a depth of 5 to 30 ⁇ m is contained in a proportion (concentration) of 30 to 200 mgZcm 3 , so that the silica of the waterproof sheet
  • Silica having a silicon content of 90% by mass or more reacts to form a strong tobermorite, whereby the waterproof sheet and the concrete can be firmly and completely integrated.
  • silica having a silicon dioxide content of 90% by mass or more [hereinafter sometimes referred to as "silica (SiO ⁇ 90%)"] in the silica-containing surface layer of the waterproof sheet is as described above.
  • Yogu 40 it is more preferably a more preferred instrument 45 ⁇ 80mg / cm 3 LOOmgZcm 3.
  • the content (concentration) of silica (SiO ⁇ 90%) in the silica-containing surface layer is less than 30 mg / cm 3
  • the thickness of the silica-containing surface layer containing silica (SiO ⁇ 90%) at a concentration of 30 to 200 mgZcm 3
  • the depth is preferably 5 to 30 ⁇ m, more preferably 6 to 20 ⁇ m, and even more preferably 7 to 18 ⁇ m.
  • silica contains subcomponents such as aluminum oxide, iron oxide, and black lead in addition to silicon dioxide, which is a main component. Therefore, if these subcomponents are contained in the silica in an amount of 10% by mass or more, the mortar adhesive force necessary for the present invention cannot be obtained.
  • a silicon-based mineral containing graphite called silica black or black silica is laid under the floor of a house using its deodorizing, antibacterial, and dehumidifying effects, but its silicon dioxide content is 80 mass. Even if such a material is included in the surface layer of the waterproof sheet, a waterproof sheet having a mortar adhesive strength of 15 N / cm or more cannot be obtained.
  • silica to be contained in the silica-containing surface layer of the waterproof sheet silica having a silicon dioxide content of 92% by mass or more, particularly 95% by mass or more is preferably used because higher purity is more preferable. .
  • the tunnel waterproof sheet of the present invention has a mortar adhesive strength of 15 NZcm or more.
  • the adhesive strength of mortar is preferably 17 NZcm or more, more preferably 18 NZcm or more.
  • the upper limit of mortar adhesive strength is not particularly limited, but it should be 30NZcm or less from the viewpoint of manufacturing cost.
  • the tunnel waterproof sheet according to the present invention has a mortar adhesive strength of 15 NZcm or more, and thus firmly adheres to the concrete structure constructed on the waterproof sheet over the entire surface. In the meantime, there is no void that becomes a flow path of water that has exuded force, such as natural ground and ground, and it can exhibit good waterproofness for a long time. If the mortar adhesive strength of the tunnel tarpaulin is less than 15 NZcm, voids will be generated between the tarpaulin and the concrete structure due to the water pressure of the ground and ground, and the water that has exuded, etc. Water tends to enter inside.
  • the "mortar adhesive strength" of! / ⁇ ⁇ waterproof sheet in this specification is a mortar prepared by thoroughly mixing 100 parts by weight of ordinary Portland cement, 200 parts by weight of standard sand and 50 parts by weight of water. The mortar was cured by pouring the liquid into a thickness (depth) of 4 cm on the concrete adhesive surface of the waterproof sheet cut to the specified dimensions, curing it at 20 ° C for 28 days in a sealed state, and waterproofing. This is the average peel strength (N) per lcm width of the waterproof sheet when the sheet is peeled 2cm from one end at an angle of 180 ° with a measure of lOmmZ.
  • N average peel strength
  • the waterproof sheet for tunnels of the present invention requires a bow I tension breaking strength of lOMPa or more because of the mechanical strength required at the time of construction and when used integrally with concrete.
  • the tunnel waterproof sheet of the present invention may be used as a tunnel waterproof sheet for use in a mountain tunnel method or a shield tunnel (hereinafter referred to as "waterproof sheet (I)").
  • Is made of synthetic resin and requires a tensile strength at break of lOMPa or higher and a tensile elongation at break of 300% or higher.
  • the tensile strength at break is preferably 15 MPa or more, more preferably 18 MPa or more.
  • the tensile elongation at break is preferably 500% or more, more preferably 750% or more.
  • the upper limit values of the tensile strength at break and tensile elongation at break are not particularly limited, but the tensile strength at break is preferably 50 MPa or less from the viewpoint of the cost of the resin used.
  • the tensile elongation at break is preferably 1000% or less from the viewpoint of workability.
  • the “tensile rupture strength” and “tensile rupture elongation” of the waterproof sheet (I) in this specification are both the tensile rupture strength (tensile strength) and the tensile rupture elongation measured according to JIS K 6773. It means (tensile strain).
  • the tunnel ground and ground including the primary lining surface, etc. which are formed in mountainous areas and underground areas of urban areas, are used.
  • a method is generally employed in which a waterproof sheet (I) is constructed and a material for forming a concrete structure is placed on the waterproof sheet (I).
  • the waterproof sheet (I) for tunnels of the present invention is suitably used for the NATM construction method, especially for tunnels with improved airtightness and water-imperviousness called water tight, in which case the tunnel is surrounded by 360 °.
  • a waterproof sheet is laid down to prevent intrusion of groundwater from outside the tunnel.
  • the waterproof sheet to be laid on the ground and the ground of the tunnel including the primary lining surface is cast from the inside of the waterproof sheet as a concrete structure that becomes the tunnel body after the waterproof sheet is laid.
  • the waterproof sheet (I) of the present invention has a high tensile fracture strength of lOMPa or higher and a tensile strength of 300% or higher, it is broken by the pressure of the cast concrete during construction. Even if the waterproofing sheet is stretched by the concave part of the ground and the waterproofing sheet is locally stressed, no damage will occur. Moreover, the waterproof sheet (I) of the present invention has a high tensile breaking strength and a high tensile breaking elongation as described above, thereby forming a tunnel. Even if stress is applied to the waterproof sheet after it has been built, it is difficult to cause damage, and good waterproof performance can be maintained for a long time.
  • the waterproof sheet (I) does not satisfy both the requirements of "tensile rupture strength of lOMPa or more" and “tensile rupture elongation of 300% or more". Even if there is not, troubles such as breakage of the waterproof sheet may occur due to the stress applied to the waterproof sheet during concrete placement during tunnel construction or local stress due to the concave part, or due to the stress applied to the waterproof sheet after tunnel construction. It becomes easy.
  • the thickness of the waterproof sheet (I) of the present invention is not particularly limited, but the thickness of the waterproof sheet is 1.5 mm in order to maintain sufficient water shielding even when stretched to 300% or more. It is preferable that the thickness is 2 mm or more. On the other hand, even if the waterproof sheet is too thick, the handleability and workability during construction will be poor.
  • the waterproof sheet (I) of the present invention has a fabric layer such as woven or knitted fabric or nonwoven fabric on the inside of the waterproof sheet or on the other surface (the surface opposite to the silica-containing surface layer) as necessary. If it has a fabric layer, the tensile strength at break of the waterproof sheet tends to be smaller than 300%, and the waterproof sheet of the present invention is often not obtained. If the tensile elongation at break of the tarpaulin is less than 300%, it may be due to the stress applied to the tarpaulin or the local stress due to the recesses when placing concrete during tunnel construction, and further due to the stress on the tarpaulin after tunnel construction. In addition, troubles such as breakage of the waterproof sheet may occur, and water leakage into the tunnel is likely to occur.
  • a fabric layer such as woven or knitted fabric or nonwoven fabric on the inside of the waterproof sheet or on the other surface (the surface opposite to the silica-containing surface layer) as necessary. If it has a
  • the waterproof sheet for tunnels of the present invention may be a waterproof sheet when used in a tunnel by the open-cut tunnel method (hereinafter referred to as "waterproof sheet (11)").
  • waterproof sheet (11) Mainly applies to excavated tunnels in urban areas. As shown in Figure 9, open-cut tunnels in urban areas (concrete structures in Figure 9) are laid with waterproof sheets at the bottom and sides of the tunnel, which are lower than the groundwater level, and, if necessary, at the zenith. The structure is designed to prevent groundwater from entering groundwater, and the waterproof sheet used here is strong enough to withstand the pouring pressure of concrete, and has a mortar wall (hereinafter referred to as “SMW”).
  • SSW mortar wall
  • the tensile breaking strength is 20 MPa or more, the tensile breaking elongation is 10 to 50%, and the tear strength is 50 N or more. If the waterproof breaking sheet has a tensile breaking strength of 20 MPa or more, a tensile breaking elongation of 10 to 50%, and a tearing strength of 50 N or more, the concrete structure that will be the tunnel body is placed when the concrete structure is placed from the inside of the sheet.
  • the sheet is torn due to the pressure of the concrete, or the sheet is stretched by a concave portion of the ground and stress is applied to the sheet locally, or the sheet is torn by hitting a protruding part in the ground to the thinned part. Such a problem does not occur.
  • the thickness of the sheet is not particularly limited. However, it is preferable that the thickness of the sheet is not less than 0.5 mm, even if it hits a protrusion in the ground. Preferably it is lmm or more. On the other hand, even if the thickness is too large, there is a problem with the workability.
  • the waterproof sheet for tunnel (II) of the present invention comprises a waterproof sheet affixed to the ground including an underground continuous retaining wall such as SMW and a concrete structure built inside the waterproof sheet. It is water-resistant by sticking firmly. Its waterproofness is expressed by uneven water tightness. As shown in Fig. 5, a tarpaulin sample 10 having a diameter of 34 cm was cut out and a mortar column 20 having a diameter of 10 cm was formed in the center (details will be described later). It is essential that the non-land water tightness expressed by the water leakage measured by the land water tightness test equipment (details will be described later) is less than lOmlZ days. If the inland water tightness exceeds 10m 1 / day, water may enter the bonding surface between the waterproof sheet and the concrete structure due to water pressure, and may leak into the interior.
  • the method for producing the sheet is not particularly limited. In general, there are a method of melt extrusion and forming into a sheet shape with a T-die, or a method of sheeting with a calender roll.
  • the waterproof sheet may contain an inorganic filler such as calcium carbonate, a pigment, a flame retardant, a plasticizer, and the like. In order to obtain the required mechanical strength, it is desirable that the fiber is reinforced with fibers.
  • Use base fabrics such as woven fabrics, non-woven fabrics, knitted fabrics, nets, and mesh sheets made from one or more of natural fibers such as cotton, hemp and wool, and inorganic fibers such as glass fibers and carbon fibers.
  • it includes fabrics such as woven fabrics, knitted fabrics, nonwoven fabrics, mesh sheets, and the like made using one or more of polyester fibers, polyamide fibers, polypropylene fibers, polyvinyl alcohol fibers, etc. I prefer that.
  • the tunnel waterproof sheet (II) of the present invention may have a drain layer on the back surface for smoothly performing a draining action, if necessary.
  • a drain layer fiber fabrics such as woven fabrics, knitted fabrics, and non-woven fabrics are preferably employed because they have a great drainage effect.
  • the waterproof performance of the obtained waterproof sheet for tunnel (II) can be measured and evaluated with a watertight test device.
  • This is the watertightness of the adhesive waterproof sheet as described in “Railway Structure Design Standards, Commentary (open tunnel): edited by railway Research Institute, published by Maruzen Co., Ltd. March 30, 2001”
  • This is a method to measure the water flow rate, and the water flow rate is measured by infiltrating pressurized water into the interface between the mortar or concrete laid on the sheet and the waterproof sheet.
  • the tarpaulin In the basic watertight test, the tarpaulin is measured in a flat state, but the actual SMW wall has unevenness, so as a more realistic measurement method, a ceramic ball (diameter 10 mm) is placed under the tarpaulin.
  • An inland watertight test will be conducted. In this test, if the amount of water leakage is less than or equal to lOmlZ days, it is said that sufficient waterproof performance can be secured, and the waterproof performance of the waterproof sheet (II) of the present invention is also the amount of water leakage in the inland watertight test is lOmlZ days. If it is less than or equal to 10ml / day, it will be judged as rejected.
  • the silica contained in the silica-containing surface layer of the waterproof sheet preferably has a BET specific surface area of 80 m 2 / g or more, more preferably 90 m 2 / g or more. If the BET specific surface area of silica is less than 80 m 2 / g, when the concrete raw material is applied to the silica-containing surface layer of the waterproof sheet, the contact area between silica and concrete and reaction points will be reduced, resulting in sufficient adhesive strength. It becomes difficult to get. It is known that the BET specific surface area is inversely proportional to the primary particle diameter of the particles, and the BET specific surface area of 80 m 2 / g or more is generally equivalent to the primary particle diameter of S40 nm or less.
  • Examples of the silica production method include a wet method, a dry method, and an electric arc method. From the viewpoint of the balance between particle agglomeration and water adsorption, silica produced by a wet process and having a silicon dioxide content of 90% by mass or more is preferably used. Furthermore, the wet method has a precipitation method and a gel method. The number of silanol groups that react with concrete to form tobermorite is larger in the silica obtained by the precipitation method than in the silica obtained by the gel method. Silica having a silicon dioxide content of 90% by mass or more obtained by a precipitation method is preferably used. The number of silanol groups is about 8 Z nm 2 about silica obtained by precipitation is generally gel method
  • Silica is generally about 5 Znm 2 about by, Ru.
  • an ethylene-vinyl acetate copolymer having a content ratio of structural units derived from vinyl acetate (hereinafter referred to as “vinyl acetate units”) of 30% by mass or more. More preferred is an ethylene vinyl acetate copolymer with a vinyl acetate unit content of 32 to 40% by weight, more preferably an ethylene vinyl acetate copolymer with a vinyl acetate unit content of 32% by weight or more. preferable.
  • An ethylene vinyl acetate copolymer containing vinyl acetate units in a proportion of 30% by mass or more has excellent adhesion to concrete and is suitable as a resin for a waterproof sheet for tunnels.
  • An ethylene vinyl acetate copolymer having a vinyl acetate unit content of 30% by mass or more, more preferably 32% by mass or more, and particularly 32 to 40% by mass is excellent in solubility in an organic solvent.
  • a silica dispersion in which silica is dispersed, or a silica dispersion in which silica is dispersed in an organic solvent and further added with a thickener is applied onto the base material sheet constituting the waterproof sheet, heated and dried, and then the silica is applied to the waterproof sheet.
  • the surface layer portion of the base sheet is swollen and Z or dissolved by the organic solvent used in the silica dispersion, and the silica is uniformly dispersed in the surface layer portion of the swollen and Z or dissolved base sheet. Heating and drying is performed in the attached state.
  • the silica-containing surface layer which is uniformly dispersed throughout the outermost surface force of the surface layer portion made of the ethylene-vinyl acetate copolymer and firmly held in the resin forming the surface layer portion, is formed on the base sheet. It is formed.
  • the thickener when a polymer that dissolves in the organic solvent forming the silica dispersion is used as the thickener, the polymer also deposits and adheres to the surface layer portion of the base sheet after heat drying. For this reason, the silica is more firmly held in the silica-containing surface layer.
  • the type of the synthetic resin that forms the sheet main body (base material sheet) located under the silica-containing surface layer in the waterproof sheet of the present invention is not particularly limited, and includes ethylene-vinyl acetate copolymer, polychlorinated butyl, One or more thermoplastic synthetic resins such as ECB (ethylene “copolymer” bitumen), thermoplastic polyurethane, and olefinic polymer can be formed.
  • ECB ethylene “copolymer” bitumen
  • thermoplastic polyurethane thermoplastic polyurethane
  • olefinic polymer olefinic polymer
  • the sheet body (base material sheet) located at the lower part of the silica-containing surface layer also has high affinity with the ethylene-vinyl acetate copolymer constituting the silica-containing surface layer. It is preferred to be formed from a polymer! Ethylene vinyl acetate copolymer has high tensile strength, tear strength, etc., high elongation rate, easy molding with extrusion molding and calender roll, etc., and excellent chemical resistance, as well as vinyl acetate.
  • the mountain tunnel method or shield tunnel method of the present invention having a tensile strength at break of lOMPa or higher and a tensile elongation at break of 300% or higher. It is suitable as a synthetic resin constituting the waterproof sheet (I) for use.
  • the ethylene acetate acetate copolymer constituting the sheet body of the waterproof sheet includes ethylene vinyl acetate having a content ratio of 5 to 50 mass%, more preferably 7 to 30 mass%, especially 10 to 20 mass o / o of the acetic acid bulule unit.
  • Copolymer strength The strength of maintaining physical properties at low temperatures is preferably used.
  • the synthetic resin constituting the sheet main body of the waterproof sheet of the present invention contains one or more of inorganic fillers such as carbonated carbon, pigments, flame retardants, and plasticizers as necessary. It may be.
  • the method for producing the waterproof sheet of the present invention is not particularly limited, and the tensile breaking strength is lOMPa or more, the tensile breaking elongation is 300% or more, or the tensile breaking elongation is 10 to 50%, and the mortar adhesive strength is. Any method can be adopted as long as it is a method capable of producing a waterproof sheet of 15 NZcm or more.
  • Silica dispersion further containing a thickener that is compatible with the synthetic resin that constitutes (a)
  • the silica-containing surface layer containing silica (SiO ⁇ 90%) in the base sheet is dried by heating.
  • Synthetic resin (b) is coextruded or cocalendered into two layers and does not contain silica
  • a waterproof sheet having a layer containing silica (SiO ⁇ 90%) as a surface layer on the sheet body
  • silica (SiO ⁇ 90%) is placed on the surface layer of the sheet.
  • a constant high concentration (preferably a concentration of 30 to 200 mgZcm 3 ) is preferably employed because it can be localized uniformly, firmly and reliably.
  • silica (SiO ⁇ 90%) is added in an amount of 30 to 200 mgZcm 3
  • Process passability may be poor.
  • the silica content in the silica dispersion liquid (a) or (a) is determined from the standpoint of the standing stability of the liquid.
  • the silica dispersion (a) for forming the silica-containing surface layer further contains a thickener.
  • silica-containing surface layer using the dispersed silica dispersion (a).
  • silica with a surface strength of silica SiO ⁇ 90% may fall off
  • a waterproof sheet with even greater adhesive strength can be obtained.
  • the base sheet is formed from an ethylene vinyl acetate copolymer (particularly, an ethylene vinyl acetate copolymer having a content ratio of butyl acetate units of 30% by mass or more)
  • an ethylene vinyl acetate copolymer having a content ratio of butyl acetate units of 30 to 90% by mass, particularly 30 to 70% by mass is preferably used.
  • the amount of thickener added is 20% of the mass of the organic solvent forming the silica dispersion (a).
  • the amount is preferably 2% by mass or less, more preferably 2 to 10% by mass. If too much thickener is added, the swelling action of the silica dispersion (a) on the surface of the base sheet will be reduced.
  • silica (SiO ⁇ 90%) should be firmly adhered and contained in the surface layer portion of the base sheet.
  • the organic solvent used for the preparation of the silica dispersion (a) is a base sheet made of vinyl acetate units.
  • ethylene-vinyl acetate copolymer strength 30% by mass or more
  • toluene, xylene, ethyl acetate, tetrahydrofuran, methyl ethyl ketone, and the like can be used.
  • an aqueous silica dispersion in which silica is dispersed in water, or a thickening thereof instead of a silica dispersion in which silica is dispersed in an organic solvent that has a dissolving action on the synthetic resin forming the base sheet, an aqueous silica dispersion in which silica is dispersed in water, or a thickening thereof.
  • an aqueous silica dispersion further added with a polymer for coating is applied onto a base sheet and dried by heating, the silica is firmly held on the surface layer of the base sheet, and a mortar adhesion of 15 NZcm or more is achieved. It is difficult to obtain a waterproof sheet having strength.
  • the coating amount of the 1 2 fat made substrate sheet generally, 2 to 50 g / m 2, especially to Rukoto about 5 to 30 g / m 2, a point force of processability and silica-containing surface layer strength is preferable.
  • drying temperature after applying the silica dispersion (a) or the silica dispersion (a) is generally
  • the boiling point of the organic solvent must also be within the range of the boiling point + 20 ° C, silica (SiO ⁇ 90%
  • silica (SiO ⁇ 90%) is contained in a proportion of 30 to 200 mgZcm 3
  • the silica-containing surface layer is formed over a depth of 5 to 30 m from the surface of a synthetic resin waterproof sheet, the tensile breaking strength is lOMPa or more, the tensile breaking elongation is 300% or more, and the mortal adhesive strength is 15 NZcm or more.
  • the waterproof sheet for tunnel according to the present invention is manufactured smoothly.
  • the work may be performed using one waterproof sheet, or a plurality of waterproof sheets may be used. You may use it for construction.
  • the ends of the waterproof sheets of the present invention may be joined together, or the ends of the waterproof sheet of the present invention and the ends of other sheets may be joined. May be.
  • the joining of the end portions can be performed by, for example, a heat fusion method using high frequency dielectric heating, high frequency induction heating, or a method using an adhesive.
  • the waterproof sheet for tunnels of the present invention is firmly bonded and integrated with a concrete tunnel structure, a gap is generated between the waterproof sheet and the concrete structure even after a long time has elapsed after construction. Therefore, the waterproof sheet completely shields the water that has exuded natural ground and ground force, and can smoothly prevent the exuded water from entering the concrete structure.
  • the waterproof sheet for tunnels of the present invention has a predetermined tensile breaking strength and tensile breaking elongation, even if the waterproof sheet is stressed during or after the waterproof sheet is applied, damage or other problems are caused. It is possible to maintain the excellent waterproof effect for a long time.
  • the content of silicon dioxide in silica the BET specific surface area of silica, the tensile strength at break of the waterproof sheet, the tensile elongation at break, the thickness of the silica-containing surface layer in the waterproof sheet, and the silica-containing surface layer
  • the measurement of the silica content and the mortar adhesive strength of the waterproof sheet and the determination of the presence or absence of water leakage inside the tunnel were performed as follows. Note that some items are judged separately for the waterproof sheet (I) and the waterproof sheet (II). It was.
  • C is the content of Al 2 O in silica (mass%)
  • C is the content of Fe 2 O in silica (%
  • the silica contains 0.20% by mass of impurities (Ti 2 O, CaO, MgO and SO 2).
  • the BET specific surface area of silica was measured by the BE T method using an automatic specific surface area measuring device “Diemi-2375” manufactured by Shimadzu Corporation.
  • the tensile strength at break and elongation at break of the waterproof sheet (I) were both measured according to JIS K6773.
  • the tensile strength at break of a waterproof sheet is determined using the Instron 5566 tester according to the method described in Section 7 of JIS K6773 under the conditions of a temperature of 20 ° C and a humidity of 65% (RH). I went there.
  • the tensile elongation at break of the waterproof sheet was measured at a temperature of 20 ° C and humidity of 65% (RH) using an Instron 5566 tester according to the method described in Section 7.6 of JIS K6773. It was done under conditions.
  • the tensile strength at break, tensile elongation at break, and tear strength of the waterproof sheet (II) were measured in an environment of 20 ° C. and 65% RH using an Instron 5566 type measuring instrument according to JIS L1096.
  • the tensile breaking strength was obtained by dividing the tensile breaking strength by the cross-sectional area of the measurement sample.
  • the waterproof sheets obtained in the following examples or comparative examples are cut with a microtome in the width direction, and the cut surfaces are photographed at an interval of 50 cm with an electron microscope (1000 times magnification).
  • the width of the photographed width 0.1 mm), and the thickness (depth) of the silica-containing surface layer at each photographing location was measured, and the average value of the three power points was taken as the thickness of the silica-containing surface layer.
  • a watertight tunnel was constructed using the NATM method at 20m underground using the waterproof sheet (I). Specifically, as shown in Figure 2, a horizontal hole with an elliptical cross section (major axis approximately 15m, minor axis approximately 10m) is drilled at a point 20m underground, and concrete is sprayed on the upper half of the horizontal hole, and the lower half. After placing concrete, place the silica-containing layer of tarpaulin 1 facing the atmosphere (place the surface without the silica-containing layer in contact with the concrete) and cover it with concrete 2. (The cover concrete thickness is about 20cm), and a rock bolt 3 was driven into the tunnel. After the completion of the construction, the groundwater level was restored, and the presence of water leakage inside the tunnel was observed after 28 days.
  • the sample sheet made of waterproof sheet (II) was cut into a circle with a diameter of 34 cm and a hole with a diameter of 1 cm was drilled in the center. If there is a silica-containing layer on the sample sheet, the top layer is the top, and an iron cylinder mold with an inner diameter of 10 cm and a height of 20 cm (divided into two vertically and the mold is broken after the contents are cured, And fix the center so that it is aligned with the opening of the sheet, and seal the contact surface with the clay with clay to leak the mortar liquid.
  • the inland water tightness measuring device shown in Fig. 6 divides the circular water tank 70 installed inside the gantry into upper and lower sections with a measurement sample consisting of a tarpaulin sample 10 and a mortar column 20, with the bottom side Porous stone 50 is filled, and a ceramic ball 60 having a diameter of 1 cm is laid on the upper part, and the lower surface side of the waterproof sheet sample is brought into contact with the ceramic ball 60 to make a quasi-unlanded state.
  • water 80 was injected into the upper part of the circular water tank 70 as described above, and compressed air of 0.3 MPa was fed from the air supply pipe 90. If the sample strength for measurement was also leaking, it was measured with a measuring pipette 100.
  • Ethylene vinyl acetate copolymer (I) 50 parts by mass of ethylene vinyl acetate copolymer (II) is mixed and melt kneaded at 170 ° C, then extruded and cut into a rod at 170 ° C. Then, pellets of the ethylene vinyl acetate copolymer composition for the A base material layer were produced.
  • Fig. 4 shows a photograph of the cross section of the waterproof sheet obtained in Example 1 (upper part of the base material layer A) taken with an electron microscope ("S-2600N type” manufactured by Hitachi High-Technologies Corporation, magnification 1000 times)
  • S-2600N type manufactured by Hitachi High-Technologies Corporation, magnification 1000 times
  • Silica was slightly contained below the silica-containing surface layer, but all was contained within a depth of 0.1 mm from the outermost surface of the waterproof sheet, and was not contained deeper than that.
  • silica (ii) 5 parts by mass of silica (ii), 90 parts by mass of toluene and 5 parts by mass of ethylene-vinyl acetate copolymer (I) were mixed and sufficiently stirred to prepare a silica dispersion.
  • Example 2 In Example 1, in place of the silica dispersion prepared in (1) of Example 1, the same silica dispersion prepared in (1) above as in Example 1 was used. Do the operation A waterproof sheet having a silica-containing surface layer in the surface layer portion of the A base material layer was produced.
  • the sheet for the B base material layer obtained in the above (4) is charged from the lower side of the same calendar roll as above, and the upper force is also used for the pellet for the A base material layer manufactured in the above (1).
  • the same force is melted with a render roll, discharged into a 0.4 mm thick sheet (A base material layer), and bonded onto the B base material layer sheet.
  • a laminated sheet (base material sheet) having a thickness of 2 mm (A base material layer 0.4 mm, B base material layer 1.6 mm) was produced.
  • Example 1 (3) when preparing the silica dispersion, the amount of silica added was changed to 1 part by mass.
  • Example 1 (4) the number of times the silica dispersion was applied on the gravure roll was A waterproof sheet was produced in the same manner as in Example 1 except that it was changed once.
  • Example 1 the same silica (i) as that used in the silica dispersion of Example 1 was used at the time of manufacturing the pellet for the A base material layer, and a pellet added at a ratio of 1% by mass was used. As shown in Fig. 3 (b), the silica was dispersed throughout the A base material layer in the same manner as in Example 1, except that the A base material layer was formed and the silica dispersion liquid was not applied. A waterproof sheet was produced.
  • a waterproof sheet having a silica-containing surface layer in the surface layer portion of the A base material layer was produced in the same manner as in Example 1 except that silica (iii) was used instead of silica (i).
  • Example 1 In the same manner as in Example 1 except that the organic solvent used for preparing the silica dispersion in Example 1 (3) was changed from toluene to methanol, the surface layer of the A base material layer contained silica. A waterproof sheet having a surface layer was produced.
  • Example 1 The same as used in Example 1, using a T-die extruder (manufactured by Hitachi Zosen Co., Ltd.) using pellets of ethylene acetate butyl copolymer composition for the base material layer A, Extruded at a temperature (die temperature) of 200 ° C to make a sheet for A base material layer with a width of 220cm and a thickness of 0.4mm.
  • a T-die extruder manufactured by Hitachi Zosen Co., Ltd.
  • Example 2 The same process as (3) and (4) of Example 1 is performed on the surface of the A base material layer of the laminated sheet produced in (3) above, and the silica-containing surface layer is formed on the surface layer portion of the A base material layer A waterproof sheet having the above was manufactured. Thereafter, silica was applied in the same manner as in Example 1.
  • the waterproof sheets (I) of Examples 1 to 3 were silica (SiO ⁇ 90
  • the waterproof sheet of Comparative Example 6 has a woven fabric layer with a mortar adhesive strength of lONZcm or more, so the tensile rupture elongation is as low as 24%. Damage due to such factors as post-construction stress and water leakage in the tunnel.
  • a 9 mm B substrate layer sheet was obtained. Furthermore, 60 parts of ethylene-vinyl acetate copolymer (I) and 40 parts of ethylene vinyl acetate copolymer (VI) were mixed with 10 parts of calcium carbonate and 1 part of a silicone lubricant (LBT-100 made by Sakai Chemical). A 0.4 mm thick A base material layer sheet was laminated and the thickness of 1.3 mm was obtained by kneading the added resin (compound A: average vinyl acetate group content 33%) A sheet was obtained.
  • a silicone lubricant LBT-100 made by Sakai Chemical
  • a waterproof sheet (II) having a silica-containing surface layer containing a shear force of 49 mg / cm 3 at a depth of 13 m from the surface layer of the sheet.
  • the water-proof sheet ( ⁇ ) obtained had the structure shown in FIG. 7 (a), and the physical properties were a tensile breaking strength of 28.3 MPa, a tensile breaking elongation of 17.2%, and a tear strength of 138N.
  • This sheet had a mortar adhesion of 18.4 NZcm and an inland water tightness of 2.3 mlZ days.
  • the silica coating solution was blended into an ethylene-vinyl acetate copolymer (5 parts of silicon dioxide content of 93%, BET specific surface area of 140m 2 / g (ii), vinyl acetate group content of 46% as a thickener) (1 )
  • a waterproof sheet was prepared in the same manner as in Example 4 except that 5 parts and 90 parts of toluene were used.
  • the silica content was 15 m at a depth of surface force and the silica content was 53 mgZcm 3 .
  • the waterproof sheet had a mortar adhesive strength of 19.5 N / cm and an inland watertightness of 3. lml / day.
  • a waterproof sheet was prepared in the same manner as in Example 4 except that the silica coating solution was mixed with 1 part of silica, 5 parts of thickener, and 94 parts of toluene.
  • the silica content was a depth of 2.
  • the silica content was 37 mgZcm 3 .
  • the mortar adhesive strength of this waterproof sheet was 5. lN / cm, and the inland water tightness was ll, OOOmlZ days or more.
  • a waterproof sheet was produced in the same manner as in Example 4 except that silica having a BET specific surface area of 45 m 2 Zg (Tosohichi 'Silica-Popseal E75) was used.
  • the silica content was 14 / zm at a depth of surface force and the silica content was 43 mgZcm 3 .
  • the adhesive strength of this tarpaulin was 5.3 NZcm, and the water tightness was ll, OOmlZ days or more.
  • Comparative Example 9 The same procedure as in Example 4 was conducted except that the silica-containing layer (compound A) was made of an ethylene acetate vinyl copolymer (Evaflex P2505 manufactured by Mitsui DuPont Polychemicals) with a vinyl acetate group content of 25%. A waterproof sheet was prepared. The silica-containing surface layer had a depth of 14 / zm from the surface layer and a silica content of 51 mg / cm 3 . In addition, the mortar adhesion strength of this waterproof sheet was 2.2 NZcm, and the inland water tightness was ll, OOOmlZ days or more.
  • the thickness (depth from the surface) of the silica-containing surface layer was 400 m because silica was contained in the entire formulation A sheet, and the silica content was lOmgZcm 3 .
  • the structure of the obtained waterproof sheet is shown in Fig. 7 (b).
  • the mortar adhesion strength of this tarpaulin was 1.4NZcm, and the inland water tightness was ll, OOOmlZ days or more.
  • a sheet was prepared in the same manner as in Example 4 except that the number of times of applying the silica liquid with the gravure roll was set to 10.
  • the silica content the depth from the surface layer was 32 ⁇ m, and the silica content was 253 mgZcm 3 .
  • the mortar adhesion strength of this sheet was 2.5 NZcm, and the inland water tightness was ll, OOOmlZ days or more.
  • the waterproof sheets (II) of Examples 4 and 5 are silica (SiO ⁇ 90
  • the waterproof sheet of the present invention is firmly bonded and integrated with a concrete tunnel structure, and even when a long time has elapsed after construction, no gap is formed between the waterproof sheet and the concrete structure.
  • the waterproof sheet 0) can be effectively used as a waterproof sheet for tunnels by the mountain tunnel method or shield method.
  • the waterproof sheet (II) for tunnels by the open-cut tunneling method of the present invention has a predetermined strength and high adhesiveness to concrete, so that the present invention can be used between the ground and the concrete tunnel structure.
  • the concrete structure after the installation and the waterproof sheet are bonded and integrated, and the installation surface is not flat, even in the event of drought, ground subsidence, or earthquake. Because it can prevent the intrusion of strong rainwater and groundwater into the concrete structure, it can be used effectively as a waterproof sheet for tunnels by the open tunnel method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

 本発明は、合成樹脂製の基材シートの表面に、二酸化珪素の含有量が90質量%以上のシリカを30~200mg/cm3で含有するシリカ含有表層を、防水シートの表面から5~30μmの深さにわたって形成されており、且つ、引張強度が10Mpa以上、モルタル接着力が15N/cm以上であるトンネル用防水シートであり、施工後の長い時間の経過、設置面の大きな不陸、地盤沈下及び地震が発生した場合でも、シートとコンクリートの間に空隙を生じさせず、更にトンネル内への施工時や施工後に破損等の不具合が生じず、地山や地盤から滲み出した水のトンネル内への漏水を円滑に防止できるトンネル用防水シートを提供する。

Description

明 細 書
トンネル用防水シート
技術分野
[0001] 本発明は合成樹脂製のトンネル用防水シートに関する。より詳細には、山岳トンネ ル (NATM)工法、都市部のシールド工法及び開削トンネル工法などによるトンネル 工事の際に、地山や地盤とコンクリート製トンネル構造物との間に設置して、地山や 地盤力 滲み出た水がトンネル内部に漏水するのを防止するためのトンネル用防水 シートに関する。
背景技術
[0002] 山岳トンネルや都市部の地下トンネルなどのトンネル工事では、従来、山岳トンネル 工法 (NATM工法)、シールド工法及び開削トンネル工法などが採用されており、い ずれの場合も、地山や地盤からトンネル内部への漏水を防止するために防水シート が用いられてきた。
防水シートとしては、熱可塑性榭脂又は加硫系合成樹脂のシートの少なくとも片面 に、フッ素系榭脂架橋発泡体を積層した防水シート (特許文献 1参照)、プロピレン単 独重合体ブロック又はエチレン含量 5重量%以下のプロピレン エチレンランダム共 重合体ブロック Aと、プロピレン含量 10重量%以上のエチレン プロピレンランダム 共重合体ブロック Bを有するブロック共重合体力 なる防水シート(特許文献 2参照) 、酢酸ビュル含量の異なる 2種以上のエチレン 酢酸ビュル共重合体の混合物を主 成分とする防水シート (特許文献 3参照)などが知られて 、る。
[0003] し力しながら、特許文献 1〜3に記載されている従来の防水シートは、いずれも、トン ネル内部に構築されるコンクリート構造物との接着性や密着性に劣るため、防水シー トの配設後に時間が経過すると、地山や地盤力も滲み出した水が防水シートとコンク リート構造物との間の空隙を伝って防水シートの接合不良部や破れ部から流入して コンクリート構造物の亀裂力 コンクリート構造物内に浸入して漏水するという問題を 生じやすい。
[0004] 上記した従来の防水シートにおける問題を解消して、コンクリートとの接着性に優れ る防水シートを得るために、本発明者らは、酢酸ビュル含量が 80〜99質量%のェチ レン 酢酸ビュル共重合体 (A)と酢酸ビュル含量が 50〜70質量0 /0のエチレン 酢 酸ビニル共重合体 (B)を (A)Z(B) =0. 2〜5の質量比で含有するエチレン 酢酸 ビュル共重合体組成物よりなる表面を有する土木工事用遮水シートを開発して出願 した (特許文献 4参照)。
[0005] 本発明者らの開発した特許文献 4の遮水シートは、特許文献 1〜3に記載されてい るような従来の防水シートに比べて、コンクリートなどの水硬性材料との接着性に優れ 、水硬性材料カゝら剥離しにくぐ遮水効果に優れている。本発明者らは、この特許文 献 4の遮水シートをベースにして更に検討を重ねてきた。そして、地山や地盤力も滲 み出した水がコンクリート製のトンネル構造物の内部に浸入するのを一層効果的に 防ぐためには、防水シートのコンクリート構造物への接着特性を一層向上させる必要 があることが判明した。
[0006] また、トンネル用防水シートとしては、山岳トンネル工法やシールドトンネル工法に 用いる防水シートと、開削トンネル工法に用いる防水シートとは、防水シートへの応力 の違いや防水シートの施工方法の違いなどから、それぞれ異なる引張破断伸度、引 張破断強度等を備える必要があることが判明した。
[0007] 特許文献 1 :特開平 7— 329228号
特許文献 2:特開平 9 52330号
特許文献 3:特開 2001 _ 115791号
特許文献 4:特開 2002— 294015号
発明の開示
[0008] 本発明は、コンクリート製のトンネル構築物と強固に接着し一体ィ匕して、施工後の長 い時間の経過、設置面の大きな不陸、地盤沈下及び地震が発生した場合でも、シー トとコンクリートの間に空隙を生じさせず、更にトンネル内への施工時や施工後に破 損等の不具合が生じず、地山や地盤力 滲み出した水のトンネル内への漏水を円滑 に防止できるトンネル用防水シートを提供することを目的とする。
本発明者らは、上記の目的を達成すべく種々研究を重ねてきた。その結果、山岳ト ンネル工法又はシールド工法用のトンネル防水シートと、開削トンネル工法用のトン ネル防水シートにおいて、それぞれ所定の引張破断強力と引張破断伸度を有し、し カゝもコンクリートやモルタルなどの水硬性材料に対して強固に接着して一体ィ匕し得る 、従来にない合成樹脂製のトンネル用防水シートを作製することができた。
かかるトンネル用防水シートは、「二酸ィ匕珪素含量が 90質量%のシリカを特定以上 の濃度で含有するシリカ含有表層を、防水シートの表層から特定以上の深さにわた つて設けると、防水シートの表層部に位置するシリカ含有表層中に含まれているシリ 力がコンクリートの水硬反応の過程でセメント中の成分と反応.一体ィ匕してコンクリート と強固に接着 ·一体ィ匕する」という、本発明者らが見出した知見に基づいて開発され たものである。
[0009] そして、本発明者らは、その際に、前記シリカ含有表層におけるシリカの含有割合 は 30〜200mgZcm3にするの力 Sょ 、こと、シリカ含有表層の深さが 5〜30 μ mにす るのがよ 、こと、シリカ含有表層に存在させるシリカの BET比表面積が 80m2/g以上 であるとコンクリートとの接着'一体ィ匕が良好になること、該トンネル用防水シートを形 成する合成樹脂はエチレン 酢酸ビュル共重合体又はその組成物であることが好ま しいこと、シリカ含有表層は酢酸ビュル由来の構造単位の含有割合が 30質量%以 上のエチレン—酢酸ビニル共重合体力も形成するのがよいこと、シリカ含有表層は、 合成樹脂製の基体シートの表面に、基体シートの表面を溶解し得る有機溶媒にシリ 力を分散させた液を塗布し、加熱乾燥することによって円滑に形成できることなどを見 出し、それらの種々の知見に基づいて本発明を完成した。
[0010] すなわち、本発明は、
(1)合成樹脂製の基材シートの表面に、二酸化珪素の含有量が 90質量%以上のシ リカを 30〜200mgZcm3の割合で含有するシリカ含有表層を有する合成樹脂製の 防水シートであって、該シリカ含有表層が、防水シートの表面から 5〜30 /ζ πιの深さ にわたつて形成されており、且つ、引張破断強力が lOMpa以上、モルタル接着力が 15NZcm以上であることを特徴とするトンネル用防水シート、
(2)防水シートの引張破断伸度が 300%以上であり、山岳トンネル工法又はシールド 工法によるトンネルに使用される前記(1)記載のトンネル用防水シート、
(3)防水シートの引張破断強度 20MPa以上、引張破断伸度 10%〜50%、引裂強 力 50N以上で、且つ不陸水密性が lOmlZ日以下であり、開削トンネル工法によるト ンネルに使用される前記(1)記載のトンネル用防水シート、
(4)基布をその内部又は表面に含有している前記(3)記載のトンネル用防水シート、
(5)シリカ含有表層に含まれるシリカの BET比表面積が 80m2/g以上である前記(1 )〜(4)のいずれかに記載のトンネル用防水シート、
(6)基材シートの主構成成分が、エチレン 酢酸ビニル共重合体又はその組成物か ら形成されて 、る前記(1)〜(5)の 、ずれかに記載のトンネル用防水シート、及び
(7)シリカ含有表層を構成する合成樹脂が、酢酸ビニル由来の構造単位の含有割合 が 30質量%以上のエチレン 酢酸ビニル共重合体である前記(1)〜(6)のいずれ かに記載のトンネル用防水シート、
を提供するものである。
図面の簡単な説明
[0011] [図 1]防水シートのモルタル接着力の測定方法を示した図である。
[図 2]防水シートを施工したトンネル構造を模式的に示した図である。
[図 3] (a)実施例 1で得られた防水シートの断面を模式的に示した図、 (b)比較例 2で 得られた防水シートの断面を模式的に示した図である。
圆 4]実施例 1で得られた防水シート (I)の断面 (A基材層及びシリカ含有表層部分) を撮影した電子顕微鏡写真である。
[図 5]防水シートの水密性測定用試料の (a)側面図及び (b)上面図による説明図で ある。
[図 6]不陸水密性測定装置の説明図である。
[図 7] (a)実施例 4の防水シートの構成説明図、(b)比較例 10の防水シートの構成説 明図である。
[図 8] (a)実施例 4の防水シートのシリカ含有表層断面の電子顕微鏡写真、 (b)同シリ 力含有表層上面の電子顕微鏡写真である。
[図 9]開削トンネルの説明図である。
符号の説明
[0012] 1 防水シート(I) 2 覆ェコンクリート
3 ロックボル卜
10 防水シートサンプル
20 モルタル柱
30 穴
40 架台
50 ポーラスストーン
60 セラミックボーノレ
70 円形水槽
80 水
90 気 *
100 計量ピペット
110 シリカ含有表層
120 A基材層
130 β基材層
140 基布
200 実施例 4の防水シート
300 比較例 10の防水シート
発明を実施するための最良の形態
以下に本発明につ 、て詳細に説明する。
本発明のトンネル用防水シートは、合成樹脂製防水シートの表層部を、表面から 5 〜30 μ mの深さにわたって、二酸化珪素含量が 90質量%以上のシリカを 30〜200 mg/cm3の割合 (濃度)で含有するシリカ含有表層から形成して、且つ、引張破断強 力が lOMpa以上、モルタル接着力が 15NZcm以上であるようにする。
防水シートの表面から 5〜30 μ mの深さまでの表層部中に二酸化珪素含量が 90 質量%以上のシリカを 30〜200mgZcm3の割合 (濃度)で含有させておくことにより 、防水シートのシリカ含有表層上にコンクリート形成用のセメント材料を施工したとき に、その水硬化反応過程でセメント中のカルシウム成分とシリカ含有表層中の二酸ィ匕 珪素含量 90質量%以上のシリカが反応して、強固なトバモライトを形成することで、 防水シートとコンクリートを強固に且つ完全に一体ィ匕させることができる。
[0014] 防水シートのシリカ含有表層における、二酸化珪素含量が 90質量%以上のシリカ [ 以下「シリカ(SiO≥ 90%)」と 、うことがある]の含有量 (濃度)は、前記したように 30
2
〜200mgZcm3であるのがよぐ 40〜: LOOmgZcm3であることがより好ましぐ 45〜 80mg/cm3であることがさらに好ましい。
シリカ含有表層におけるシリカ(SiO≥ 90%)の含有量 (濃度)が 30mg/cm3未満
2
であると、モルタル接着力が 15NZcm以上の防水シートを得ることが困難になる。一 方、シリカ含有表層におけるシリカ(SiO≥ 90%)の含有量 (濃度)が高すぎると、シリ
2
力含有表層自体の強度の低下、シリカ含有表層とその下の層との結合力の低下、シ リカ含有表層内での亀裂発生などにより、防水シートのモルタル接着力の低下、シー ト表面のひび割れなどが生じ易くなる。
[0015] シリカ(SiO≥ 90%)を 30〜200mgZcm3の濃度で含有するシリカ含有表層の厚
2
さ(表面からの深さ)は、前記したように 5〜30 μ mであるのがよぐ 6〜20 μ mである ことがより好ましぐ 7〜18 μ mであることが更に好ましい。
シリカ(SiO≥ 90%)を 30〜200mgZcm3の濃度で含有するシリカ含有表層の厚
2
さ(表面からの深さ)が 5 μ m未満であると、モルタル接着力が 15NZcm以上の防水 シートを得ることが困難になる。一方、シリカ(SiO≥90%)を 30〜200mgZcm3
2
濃度で含有するシリカ含有表層の厚さ (表面力 の深さ)が大きすぎると、シリカ含有 表層内でのひび割れが生じ易!、。
[0016] 通常、シリカには主成分である二酸ィ匕珪素の他に、酸ィ匕アルミニウム、酸化鉄、黒 鉛などの副成分が含まれて 、るが、これらの副成分はセメントと反応して結合する能 力を有して 、な 、ため、これらの副成分がシリカ中に 10質量%以上含まれて 、ると、 本発明に必要なモルタル接着力が得られない。例えば、シリカブラックあるいはブラッ クシリカと呼ばれる黒鉛を含む珪素系鉱物は、その脱臭、抗菌、除湿作用を利用して 住宅の床下に敷設されたりしているが、二酸ィ匕珪素含有量は 80質量%程度であり、 このようなものを防水シートの表層部に含有させても、モルタル接着力が 15N/cm 以上の防水シートは得られない。 防水シートのシリカ含有表層中に含有させるシリカとしては、純度のより高いものが より好ましぐかかる点から、二酸化珪素の含有量が 92質量%以上、特に 95質量% 以上のシリカが好ましく用いられる。
[0017] 本発明のトンネル用防水シートは、 15NZcm以上のモルタル接着力を有している 。本発明のトンネル用防水シートでは、モルタル接着力が 17NZcm以上であること が好ましぐ 18NZcm以上であることがより好ましい。モルタル接着力の上限値は特 に制限されないが、製造コストの点からは、 30NZcm以下にするのがよい。
本発明のトンネル用防水シートは、 15NZcm以上のモルタル接着力を有している ことにより、防水シート上に構築されるコンクリート構造物と全面にわたって強固に接 着して、防水シートとコンクリート構造物との間に、地山や地盤など力も滲み出た水の 流路となる空隙が発生せず、長期にわたって良好な防水性を発揮することができる。 トンネル用防水シートのモルタル接着力が 15NZcmよりも小さいと、地山や地盤な ど力 滲み出た水の水圧などによって防水シートとコンクリート構造物との間に空隙 が発生して、コンクリート構造物の内部への水の浸入が生じ易くなる。
[0018] ここで、本明細書で!/ヽぅ防水シートの「モルタル接着力」とは、普通ポルトランドセメ ント 100質量部、標準砂 200質量部及び水 50質量部をよく混合して調製したモルタ ル液を、所定寸法に切断した防水シートのコンクリート接着面上に厚さ (深さ) 4cmに 流し込んで密閉状態で 20°Cにて 28日間養生してモルタルを硬化させたものについ て、防水シートを一方の端部から 180° の角度で lOmmZ分の測度で 2cm剥離さ せたときの、防水シート幅 lcm当りの平均剥離強力(N)をいう。「モルタル接着力」の 詳細な測定法は以下の実施例の項に記載するとおりである。
また、本発明のトンネル用防水シートには、施工時及びコンクリートと一体ィ匕されて の使用時に要求される機械的強度から、 lOMPa以上の弓 I張破断強力が必要である
[0019] 本発明のトンネル用防水シートにおいて、山岳トンネル工法又はシールド工法トン ネルに使用する場合のトンネル用防水シート〔以下、「防水シート (I)」と 、うことがある 。〕は、合成樹脂製であって、 lOMPa以上の引張破断強力及び 300%以上の引張 破断伸度を要する。 本発明のトンネル用防水シート (I)では、その引張破断強力は 15MPa以上である ことが好ましぐ 18MPa以上であることがより好ましい。また、本発明のトンネル用防 水シート (I)では、その引張破断伸度は 500%以上であることが好ましぐ 750%以上 であることがより好ましい。
本発明のトンネル用防水シート (I)では、引張破断強力及び引張破断伸度の上限 値は特に制限されないが、引張破断強力は用いる榭脂のコストの点から 50MPa以 下にすることが好ましぐまた引張破断伸度は施工性の点から 1000%以下であるの が好ましい。
ここで、本明細書でいう防水シート (I)の「引張破断強力」及び「引張破断伸度」は、 いずれも、 JIS K 6773に従って測定した引張破断強力 (引張強さ)及び引張破断伸 度 (引張ひずみ)を意味する。
[0020] 本発明のトンネル用防水シート(I)を用いてトンネル工事を行うに当たっては、山岳 部や都市部の地下などに形成した、一次覆工面などを含むトンネルの地山や地盤部 分に防水シート (I)を施工し、その防水シート (I)上にコンクリート構造物を形成するた めの材料を打設する方法が一般に採用される。特に、本発明のトンネル用防水シー ト(I)は、都巿 NATM工法、中でもウォータータイトと呼ばれる気密性 ·遮水性を高め たトンネルに好適に用いられ、その場合にはトンネルの周囲 360°にわたつて防水シ ートを敷設し、トンネル外部力もの地下水の浸入を防ぐ構造となって 、る。
[0021] 前記した工法では、一次覆工面を含むトンネルの地山や地盤に敷設される防水シ ートは、防水シートの敷設後にトンネル本体となるコンクリート構造物を防水シートの 内側から打設したときに、打設コンクリートの圧力によって防水シートが破れたり、地 盤の凹部で防水シートが突っ張って防水シートに局部的に応力が力かって破れたり するなどの不具合が生じな 、ようにする必要がある。
本発明の防水シート(I)は、 lOMPa以上の高い引張破断強力を有し、し力も 300 %以上の高い引張破断伸度を有しているため、工事の際に打設コンクリートの圧力 によって破れることがなぐし力も地盤の凹部で防水シートが突っ張って防水シートに 局部的に応力が力かっても破損が生じない。その上、本発明の防水シート(I)は、前 記した高い引張破断強力と高い引張破断伸度を有していることにより、トンネルを構 築した後に防水シートに応力などが力かっても破損が生じにくぐ長期にわたって良 好な防水性能を維持することができる。
[0022] 防水シート (I)が、「引張破断強力が lOMPa以上」及び「引張破断伸度が 300%以 上」という要件の両方を満たさない場合は勿論のこと、いずれか一方の要件を満たさ ない場合にも、トンネル工事中のコンクリート打設時に防水シートにかかる圧力や凹 部などによる局部的な応力によって、またトンネル構築後に防水シートにかかる応力 などによって、防水シートに破損などのトラブルが生じ易くなる。
本発明の防水シート(I)の厚さは特に限定されないが、 300%以上に伸ばされたと きにも十分な遮水性を保ち得るようにするためには、防水シートの厚さが 1. 5mm以 上であることが好ましぐ 2mm以上であることがより好ましい。一方、防水シートは、厚 すぎても施工時の取り扱い性、施工性が不良になるので、 5mm以下であることが好 ましい。
[0023] 本発明の防水シート(I)は、必要に応じて、織編物、不織布など布帛層を、防水シ ートの内部やもう一方の表面 (シリカ含有表層とは反対側の表面)に有していてもよい 力 布帛層を有していると防水シートの引張破断伸度が 300%よりも小さくなり易ぐ 本発明の防水シートが得られなくなることが多い。防水シートの引張破断伸度が 300 %よりも小さいと、トンネル工事中のコンクリート打設時に防水シートにかかる圧力や 凹部などによる局部的な応力によって、更にはトンネル構築後に防水シートにかかる 応力などによって、防水シートに破損などのトラブルを生じ、トンネル内への漏水が生 じ易い。
[0024] 本発明のトンネル用防水シートにおいて、開削トンネル工法によるトンネルに使用さ れる場合の防水シート〔以下、「防水シート (11)」ということがある。〕は、主に都市部の 開削トンネルに適用されるものである。図 9に示すように、都市部の開削トンネル(図 9 のコンクリート構造物)は、地下水位より低い位置となるトンネルの底部と側部、及び 必要に応じて天頂部に防水シートを敷設して地盤力 の地下水の浸入を防ぐ構造と なっており、ここで使用される防水シートは、コンクリートの打設圧力に耐えるだけの 強力と、ソィルモルタル壁(以下、「SMW」という。)等の地中連続土留め壁を含む地 盤の不陸に追随するだけの伸度と、逆巻き工法等で壁から出た鉄骨等の突起物に 当たっても破れないだけの引裂強力が必要となる。そのためには、引張破断強度 20 MPa以上、引張破断伸度が 10〜50%、引裂強力 50N以上である必要がある。防水 シートの引張破断強度が 20MPa以上、引張破断伸度が 10〜50%、引裂強力が 50 N以上であれば、トンネル本体となるコンクリート構造物をシートの内側から打設した ときに、打設コンクリートの圧力によってシートが破れたり、地盤の凹部でシートが突 つ張って局所的にシートに応力が力かって破れたり、伸びて薄くなった部位に地中の 突起物等が当たってシートが裂けるといった不具合が発生することがない。
シートの厚さにつ ヽては特に限定されな ヽが、地中の突起物に当たった場合でも 裂けずに十分な遮水性を保つという意味力も 0. 5mm以上であることが好ましぐより 好ましくは lmm以上である。一方、厚みが大き過ぎても施工性に問題があるため、 3 mm以下であることが好まし 、。
[0025] また、本発明のトンネル用防水シート (II)は、 SMW等の地中連続土留め壁を含む 地盤に貼った防水シートと、防水シートの内側に構築したコンクリート構造物とが全面 にわたつて強固に接着することで防水性を発揮するものである。その防水性は、不陸 水密性で表される。図 5に示すように、防水シートサンプル 10を直径 34cmに切り出 し、その中央部に直径 10cmのモルタル柱 20を形成(詳細は後述)した防水シート試 料を作製し、図 6に示す不陸水密性試験装置 (詳細は後述)により測定した漏水量で 表される不陸水密性が、 lOmlZ日以下であることを必須とする。不陸水密性が 10m 1/日を超える場合、水圧により防水シートとコンクリート構造物との間の接着面に水 が浸入し、内部へ漏水する恐れがある。
[0026] 本発明のトンネル用防水シート (II)において、シートを製造する方法は特に限定さ れない。一般的には、溶融押出しして Tダイでシート状にする方法やカレンダーロー ルでシートィ匕する方法がある。防水シートは、主たる合成樹脂以外にも、炭酸カルシ ゥム等の無機充填物、顔料、難燃剤、可塑剤等が含まれていてもよい。また、必要な 力学的強度を得るためには、繊維で補強されていることが望ましぐその際の補強繊 維としては、ポリエステル系繊維、ポリアミド系繊維、ァラミド系繊維、ポリオレフイン系 繊維、ポリビュルアルコール系繊維、アクリル繊維、ポリプロピレン繊維などの合成繊 維、ビスコース繊維、キュブラ繊維、アセテート繊維などの半合成繊維 (人造繊維)、 綿、麻、羊毛などの天然繊維、ガラス繊維、炭素繊維などの無機繊維の 1種又は 2種 以上を用いて作製した織布、不織布、編布、網状体、メッシュシートなどの基布を用 いることができ、特にポリエステル繊維、ポリアミド繊維、ポリプロピレン繊維、ポリビ- ルアルコール繊維などの 1種以上を用いて作製した織物や編物、不織布、メッシュシ 一ト等カもなる基布を含んで 、ることが好まし 、。
[0027] また、本発明のトンネル用防水シート (II)は、必要に応じて、排水作用を円滑に行う ためのドレーン層を裏面に有していてもよい。ドレーン層としては、織布、編布、不織 布などの繊維布帛が排水効果が大きい点から好ましく採用される。
[0028] 得られたトンネル用防水シート (II)の防水性能は、水密試験装置にて測定'評価で きる。これは「鉄道構造物等設計標準,同解説(開削トンネル):財団法人鉄道総合 技術研究所編集、平成 13年 3月 30日丸善株式会社発行」に記載されている接着性 先防水シートの水密性を測定する方法であるが、シート上に後打ちしたモルタル又 はコンクリートと防水シートの界面に加圧水を浸透させ、その通水量を測定するもの である。
基本水密試験では、防水シートを平坦な状態で測定するが、実際の現場の SMW 壁では不陸があるため、より現実に即した測定法として、防水シートの下側にセラミツ クボール (直径 10mm)を敷き詰めて試験を行なう不陸水密試験が行なわれる。 この試験において漏水量が lOmlZ日以下であれば十分な防水性能が確保できて いるとされており、本発明の防水シート (II)の防水性能も、不陸水密試験での漏水量 が lOmlZ日以下なら合格、 10ml/日を超える場合は不合格と判定される。
[0029] 防水シートのシリカ含有表層に含まれるシリカは、その BET比表面積が 80m2/g 以上であることが好ましぐ 90m2/g以上であることがより好ましい。シリカの BET比 表面積が 80m2/g未満であると、防水シートのシリカ含有表層面にコンクリート用原 料を施工したときに、シリカとコンクリートとの接触面積、反応地点が減り、十分な接着 力を得ることが難しくなる。 BET比表面積は粒子の一次粒子径に反比例することが 知られており、 BET比表面積が 80m2/g以上であるということは、一般に一次粒子径 力 S40nm以下であることと同等である。
[0030] シリカの製造法としては、湿式法、乾式法、電弧法などが挙げられるが、本発明で は、粒子の凝集性と水分吸着性のバランスの点から、湿式法で製造された、二酸ィ匕 珪素含有量が 90質量%以上のシリカが好ましく用いられる。さらに、湿式法には沈殿 法とゲル法がある力 コンクリートと反応してトバモライトを形成するシラノール基の数 は、沈殿法により得られるシリカの方がゲル法により得られるシリカに比べて多いこと から、沈殿法により得られる、二酸ィ匕珪素含量が 90質量%以上のシリカが好ましく用 いられる。なお、シラノール基の数は、沈殿法により得られるシリカが一般に約 8個 Z nm2程度、ゲル法
によるシリカが一般に約 5個 Znm2程度とされて 、る。
本発明の防水シートにおけるシリカ含有表層を構成する榭脂としては、酢酸ビニル に由来する構造単位 (以下これを「酢酸ビニル単位」という)の含有割合が 30質量% 以上のエチレン 酢酸ビニル共重合体が好ましぐ酢酸ビニル単位の含有割合が 3 2質量%以上のエチレン 酢酸ビニル共重合体がより好ましぐ酢酸ビニル単位の含 有割合が 32〜40質量%のエチレン 酢酸ビュル共重合体が更に好ましい。
酢酸ビニル単位を 30質量%以上の割合で含有するエチレン 酢酸ビニル共重合 体は、コンクリートとの密着性に優れ、トンネル用の防水シート用榭脂として適してい る。酢酸ビニル単位の含有割合が 30質量%以上、更には 32質量%以上、特に 32 〜40質量%のエチレン 酢酸ビニル共重合体は、有機溶媒への溶解性に優れて ヽ て、有機溶媒にシリカを分散させたシリカ分散液、又は有機溶媒にシリカを分散させ 更に増粘剤を加えたシリカ分散液を、防水シートを構成する基材シート上に塗布し加 熱乾燥して、防水シートにシリカ含有表層を形成させる際に、シリカ分散液に用いた 有機溶媒によって基材シートの表層部分が膨潤及び Z又は溶解し、その膨潤及び Z又は溶解した基材シート表層部分にシリカが均一に分散し付着した状態で加熱乾 燥が行われる。その結果、エチレン 酢酸ビニル共重合体よりなる表層部の最表面 力 内部にわたってシリカが均一に分散すると共に表層部を形成している榭脂中に 強固に保持されたシリカ含有表層が基材シートに形成される。また、その際に増粘剤 として、シリカ分散液を形成している有機溶媒に溶解する重合体を用いた場合には、 加熱乾燥後の基材シートの表層部に該重合体も堆積付着するために、シリカが一層 強固にシリカ含有表層中に保持される。 基材シートとしてエチレン—酢酸ビュル共重合体製のシートを用いた場合であって も、エチレン 酢酸ビニル共重合体中の酢酸ビュル単位の含有割合が 30質量%未 満であると、基材シートの表層部分での有機溶媒による膨潤が低くなり、最表面から 内部までシリカが均一に分散し且つ表層部榭脂中に強固に保持されたシリカ含有表 層が形成されにくくなる。
[0032] 本発明の防水シートにおけるシリカ含有表層の下部に位置するシート本体 (基材シ ート)を形成する合成樹脂の種類は特に限定されず、エチレン 酢酸ビニル共重合 体、ポリ塩化ビュル、 ECB (エチレン'コポリマ一'ビチューメン)、熱可塑性ポリウレタ ン、ォレフィン系重合体などの熱可塑性合成樹脂の 1種又は 2種以上力 形成するこ とがでさる。
そのうちでも、本発明の防水シートでは、シリカ含有表層の下部に位置するシート 本体 (基材シート)もシリカ含有表層を構成するエチレン 酢酸ビニル共重合体との 親和性の高 、エチレン―酢酸ビニル共重合体から形成されて!、ることが好ま 、。ェ チレン 酢酸ビニル共重合体は、引張強度や引裂強度などが大きぐ且つ伸長率が 大きぐしかも押出成形やカレンダーロールなどでの成形加工が容易で、耐薬品性 にも優れ、その上酢酸ビニル単位の共重合比率量を変えることで重合体の物性の調 整が可能であるため、引張破断強力が lOMPa以上及び引張破断伸度が 300%以 上の本発明の山岳トンネル工法又はシールドトンネル工法用の防水シート(I)を構成 する合成樹脂として好適である。
防水シートのシート本体を構成するエチレン 酢酸ビュル共重合体としては、酢酸 ビュル単位の含有割合が 5〜 50質量%、更には 7〜30質量%、特に 10〜20質量 o/oのエチレン 酢酸ビニル共重合体力 低温時の物性保持の点力 好ましく用いら れる。
[0033] 本発明の防水シートのシート本体を構成する合成樹脂は、必要に応じて、炭酸力 ルシゥムなどの無機充填物、顔料、難燃剤、可塑剤などの 1種又は 2種以上を含有し ていてもよい。
[0034] 本発明の防水シートの製法は特に制限されず、引張破断強力が lOMPa以上、引 張破断伸度が 300%以上又は引張破断伸度が 10〜50%、及びモルタル接着力が 15NZcm以上の防水シートを製造し得る方法であればいずれの方法も採用できる 本発明の防水シートの製造方法としては、
(A)合成樹脂製の基材シートの表面に、基材シートを構成する合成樹脂に対して溶 解作用を示す有機溶媒に二酸ィ匕珪素の含有量が 90質量%以上であるシリカ(SiO
2
≥ 90%)を分散させたシリカ分散液 (a )、又は前記シリカ分散液 (a )中に基材シート
1 1
を構成する合成樹脂と親和性の増粘剤を更に含有させたシリカ分散液 (a )
2を塗布し た後、加熱乾燥して、基材シートにシリカ(SiO≥ 90%)を含有するシリカ含有表層
2
を形成した防水シートを製造する方法;
(B)シリカ(SiO≥90%)を含有する表層用の合成樹脂 (b )とシート本体形成用の
2 1
合成樹脂 (b )を、 2層に共押出成形又は共カレンダー成形して、シリカを含有しない
2
シート本体上にシリカ(SiO≥90%)を含有する層を表層として有する防水シートを
2
製造する方法;
などを挙げることができる。
[0035] そのうちでも、上記 (A)の製造方法は、シートの表層部にシリカ(SiO≥90%)を所
2
定の高濃度 (好ましくは 30〜200mgZcm3の濃度)で、均一に、強固に且つ確実に 局在させることができる点から好ましく採用される。
上記(B)の製造方法による場合は、シリカ(SiO≥90%)を 30〜200mgZcm3
2
濃度で含有する表層部を形成させるためには、表層用の合成樹脂 (b )
1 中にシリカ(S iO≥ 90%)を多量に添加する必要があり、それによつて防水シートを製造する際の
2
工程通過性が不良になることがある。
[0036] 上記 (A)の製造方法によって本発明の防水シートを製造するに当っては、シリカ分 散液 (a )又は (a )におけるシリカの含有量は、液の放置安定性の点から、シリカ分散
1 2
液 (a )又は (a )の質量に対して、 1〜20質量%であることが好ましぐ 2〜: L0質量%
1 2
であることがより好ましい。
[0037] また、上記 (A)の製造方法を採用して本発明の防水シートを製造するに当たって は、シリカ含有表層を形成させるためのシリカ分散液 (a )中に、増粘剤を更に含有さ
1
せたシリカ分散液 (a )を用いてシリカ含有表層を形成させることが好ましぐそれによ つてシリカ含有表層力ものシリカ(SiO≥ 90%)の脱落などが生じに《なり、モルタ
2
ル接着力の一層大きな防水シートが得られる。
その際の増粘剤としては、基材シートがエチレン 酢酸ビニル共重合体 (特に酢酸 ビュル単位の含有割合が 30質量%以上のエチレン 酢酸ビニル共重合体)から形 成されている場合には、基材シートを構成するエチレン 酢酸ビニル共重合体との 親和性の点から、酢酸ビュル単位の含有割合が 30〜90質量%、特に 30〜70質量 %のエチレン 酢酸ビニル共重合体が好ましく用いられる。シリカ分散液 (a )におけ
2 る増粘剤の添加量は、シリカ分散液 (a )を形成する有機溶媒の質量に対して 20質
2
量%以下であることが好ましぐ 2〜10質量%であることがより好ましい。増粘剤の添 加量が多すぎると、シリカ分散液 (a )の基材シートの表面に対する膨潤作用が低下
2
して、基材シートの表層部分にシリカ(SiO≥90%)を強固に付着、含有させに《な
2
る。
[0038] 合成樹脂製基材シートにシリカ含有表層を形成するためのシリカ分散液 (a )及び
1 シリカ分散液 (a )の調製に用いる有機溶媒としては、基材シートが酢酸ビニル単位
2
の含有割合が 30質量%以上のエチレン—酢酸ビニル共重合体力 形成されている 場合には、トルエン、キシレン、酢酸ェチル、テトラヒドロフラン、メチルェチルケトンな どを用いることができる。
シリカを、基材シートを形成している合成樹脂に対して溶解作用を示す有機溶媒に 分散させたシリカ分散液の代わりに、シリカを水に分散させた水性のシリカ分散液又 はそれに増粘用の重合体を更に添加した水性のシリカ分散液を基材シート上に塗布 し加熱乾燥した場合には、シリカが基材シートの表層部に強固に保持されに《なり、 15NZcm以上のモルタル接着力を有する防水シートを得ることは困難である。
[0039] シリカ含有表層を形成するためのシリカ分散液 (a )又はシリカ分散液 (a )の合成榭
1 2 脂製基材シートへの塗布量は、一般に、 2〜50g/m2、特に 5〜30g/m2程度にす ることが、加工性及びシリカ含有表層の強度の点力も好ましい。
更に、シリカ分散液 (a )又はシリカ分散液 (a )を塗布した後の乾燥温度は、一般に
1 2
有機溶媒の沸点カも該沸点 + 20°Cの範囲の温度であることが、シリカ(SiO≥90%
2
)を表層部に強固に付着 '含有させ得る点、熱劣化防止などの点から好ましい。 [0040] 上記した方法により、シリカ(SiO≥ 90%)を 30〜200mgZcm3の割合で含有する
2
シリカ含有表層が合成樹脂製の防水シートの表面から 5〜30 mの深さにわたって 形成されている、引張破断強力が lOMPa以上、引張破断伸度が 300%以上及びモ ルタル接着力が 15NZcm以上の本発明のトンネル用防水シートが円滑に製造され る。
[0041] 本発明の防水シートを用いてトンネル内の防水工事を行うに当たっては、工事内容 などに応じて、 1枚の防水シートを用いて工事を行ってもよいし、複数枚の防水シート を用いて工事を行ってもよい。複数枚の防水シートを用いて工事を行う場合は、本発 明の防水シート同士の端部を接合してもよいし、又は本発明の防水シートの端部と他 のシートの端部を接合してもよい。端部の接合は、例えば、高周波誘電加熱、高周波 誘導加熱などによる熱融着法、接着剤を用いる方法などにより行うことができる。
[0042] 本発明のトンネル用防水シートは、コンクリート製のトンネル構築物と強固に接着し 一体ィヒするため、施工後に長い時間が経過しても、防水シートとコンクリート構築物と の間に空隙が生じず、それによつて地山や地盤力 滲み出した水を防水シートが完 全に遮蔽して、滲み出した水がコンクリート構造物の内部に浸入するのを円滑に防ぐ ことができる。
さらに、本発明のトンネル用防水シートは、所定の引張破断強力及び引張破断伸 度を有しているため、防水シートの施工時や施工後に防水シートに応力がかかって も、破損やその他の不具合が生じず、その優れた防水効果を長期にわたって維持す ることがでさる。
実施例
[0043] 以下に、本発明について実施例などにより具体的に説明するが、本発明は以下の 例に何ら限定されるものではな 、。
以下の例において、シリカ中の二酸ィ匕珪素の含有量、シリカの BET比表面積、防 水シートの引張破断強力、引張破断伸度、防水シートにおけるシリカ含有表層の厚 み、シリカ含有表層におけるシリカの含有割合及び防水シートのモルタル接着力の 測定並びにトンネル内部の漏水の有無の判定は次のようにして行った。なお、一部 の項目については、防水シート (I)及び防水シート (II)において別個の方法で判定し た。
[0044] (1)シリカ中の二酸ィ匕珪素の含有量:
下記の数式 (i)力もシリカ中の二酸ィ匕珪素(SiO )の含有量を求めた。
2
SiOの含有量 (質量%)=99·80 (質量%)— (C +C +C +D) (i)
2 A B C
[式中、 Cはシリカ中の Al Oの含有量(質量%)、 Cはシリカ中の Fe Oの含有量(
A 2 3 B 2 3
質量%)、 Cはシリカ中の Na Oの含有量(質量%)、 Dはシリカを 105°Cで 2時間加
C 2
熱した後に更に 1000°Cで 1時間加熱したときの加熱前のシリカの質量に対する減量 率(質量%)を示す。なお、シリカ中の Al O、 Fe O及び Na Oの含有量は、蛍光 X
2 3 2 3 2
線を用いて測定した。また、上記の数式 (i)において、 SiOの含有量を求める際の固
2
定値を 100質量%とせずに 99. 80質量%とした理由は、シリカ中に微量不純物 (Ti O、 CaO、 MgO及び SO )が 0. 20質量%含まれているので、その微量不純物の含
2 4
有量を差し引いた値を固定値として採用したことによる。 ]
[0045] (2)シリカの BET比表面積:
株式会社島津製作所製の自動比表面積測定装置「ジエミ- 2375」を使用して、 BE T法にてシリカの BET比表面積を測定した。
[0046] (3)防水シート (I)の引張破断強力及び引張破断伸度:
防水シート (I)の引張破断強力及び引張破断伸度は、いずれも JIS K6773に従つ て測定した。
具体的には、防水シートの引張破断強力は、 JIS K6773の 7の項に記載されてい る方法に従って、インストロン 5566の試験機を用いて、温度 20°C、湿度 65% (RH) の条件で行った。
また、防水シートの引張破断伸度は、 JIS K6773の 7. 6の項に記載されている方 法に従って、インストロン 5566の試験機を用いて、温度 20°C、湿度 65% (RH)の条 件で行った。
[0047] (4)防水シート (II)の引張破断強度、引張破断伸度、引裂強力
防水シート (II)の引張破断強度、引張破断伸度、引裂強力は、 JIS L1096に従い 、インストロン社製 5566型測定器を使用して 20°C、 65%RHの環境下で測定した。 なお、引張破断強度は、引張破断強さを測定サンプルの断面積で除して求めた。 [0048] (5)防水シートにおけるシリカ含有表層の厚み:
以下の実施例又は比較例で得られた防水シートを幅方向にミクロトームで切断し、 その切断面を 50cm間隔で電子顕微鏡 (倍率 1000倍)にて 3力所を写真撮影し (各 箇所の写真撮影した幅の長さ =0. 1mm)、各撮影箇所のシリカ含有表層の厚さ (深 さ)を測定して、 3力所の平均値を採ってシリカ含有表層の厚みとした。
[0049] (6)防水シートのシリカ含有表層におけるシリカの含有割合:
上記(5)で電子顕微鏡にて写真撮影した防水シートから、縦 X横 = 3cm X 3cm) の試験片を切り出し、その試験片をるつぼに入れて電気炉で 800°Cに加熱し、有機 物をすベて気化させ、残った灰分に塩酸とモリブデン酸アンモニゥムを加えて発色さ せ、濃度既知の試料カゝら作製した検量線に照合して試験片中に含まれて ヽたシリカ の含有量を測定し (モリブデン青法)、下記の数式 (ii)から防水シートのシリカ含有表 層中のシリカの含有割合を求めた。なお、防水シートでは、シリカ含有表層よりも下の 部分にシリカがふくまれていることがある力 その量は極めて僅かであるため、シリカ 含有表層よりも下方に含まれて 、たシリカもシリカ含有表層中に含まれて 、たものとし て取り扱った。
シリカ含有表層中のシリカの含有割合 (mgZcm3) = (W/V) X 100 (ii)
[式中、 W=試験片に含まれていたシリカの含有量 (mg)、 V=試験片におけるシリ 力含有表層の体積 =シリカ含有表層の厚さ(cm) X試験片の縦寸法 (cm) X試験片 の横寸法 (cm)を示す。]
[0050] (7)防水シートのモルタル接着力:
(i)普通ポルトランドセメント〔太平洋セメント社製の普通ポルトランドセメント〕と、乾燥 させた豊浦標準砂を、砂:セメント = 2: 1 (質量比)の割合でよく混合し、それに水 0. 5質量部を加えてよく撹拌してモルタル液を調製した。
(ii)防水シートから、長さ方向に沿って幅 X長さ =4cm X 16cmの長方形の試験片 を切断'採取し、この試験片を、幅 X長さ X深さ =4cm X 16cm X 4cmの金型の底 に、モルタルを接着させる面を上に向けて敷設し、その上から上記 (i)で調製したモ ルタル液を流し込み、撹拌 ·振動によりモルタル中の気泡を抜いた後、水分が蒸発し ないように金型ごと密閉容器内に入れて、 20°Cにて 28日間養生した。 (iii)養生完了後、防水シートの接着したモルタル片を金型から取り出して、防水シー トの接着した面を上にし、防水シートの長さ方向の一方の端部をモルタル片から 2cm 剥がし、その剥がした端部の幅方向に沿ってポリエステル製帆布 (株式会社クラレ製 「E5基布」よりなる片片(幅 X長さ =4cm X 20cm)をホッチキスで外れな!/、ように強 固に接続し、図 1に示すように、 180° の角度で、 lOmmZminの速度で、シートの 長さ方向に 2cm剥離が進むまで剥がし (但しポリエステル製帆布片を接続するため に剥離した長さ部分は除く)、その際に応力を継続して測定し、 2cmの剥離が終了し た後に平均剥離強力 (N)をチャートから算出し、試験片の幅が 4cmなので前記で算 出した値を 4で除して幅 lcm当たりの剥離時の応力(NZcm)を求めた。 1つの防水 シートにつき 3枚の試験片を切断'採取して、上記と同じ試験を行って、 3枚の試験片 の平均値をモルタル接着力とした。
[0051] (8)防水シート(I)のトンネル内部の漏水の有無の判定:
防水シート(I)を用いて地下 20m地点で、 NATM工法によるウォータータイトトンネ ルを施工した。具体的には、図 2に示すように、地下 20mの地点に断面楕円形 (長径 約 15m、短径約 10m)の横穴を掘削し、その横穴のほぼ上半分にコンクリートを吹き 付け、下半分にはコンクリートを打設し、そこに防水シート 1のシリカ含有層を大気に 向けて設置 (シリカ含有層のない面をコンクリートに接触させて配置)し、その上をコン クリート 2で覆った後(覆ェコンクリートの厚さ約 20cm)、ロックボルト 3を打ち込んでト ンネルを建設した。工事完了後に、地下水位を復元し、 28日後にトンネル内部への 漏水の有無を観察した。
[0052] (9)防水シート (II)の不陸水密性測定方法
普通ポルトランドセメントと乾燥させた豊浦標準砂を、砂:セメント = 2部: 1部の比率 でよく混合し、ここへ水 0. 5部をカロえてよく撹拌してモルタル液を調整した。防水シー ト(II)による試料シートは、直径 34cmの円形に切断し中心部に直径 lcmの穴をドリ ルで開けた。試料シートを、シリカ含有層がある場合はその表層を上とし、その上に 内径 10cm、高さ 20cmの鉄製円柱型枠 (タテに二つ割りとなっており内容物が硬化 後に型を割って型枠を取り外せるようになっているもの)を設置し、中心がシートの開 口部と一致するように固定してシートとの接触面は粘土でシールしてモルタル液が漏 れ出ないようにした。この上カゝら調整したモルタル液を型枠内に流し込み、撹拌 '振 動等によりモルタル中の気泡を抜 、た後、水分が蒸発しな 、ように型枠上部をビニー ルシートで覆って密閉状態として 20°C、相対湿度 65%で 28日間養生した。養生完 了後に型枠を外し、図 5に示す測定用試料 10を作製した。この試料を図 6の不陸水 密性測定装置に設置し、 0. 3MPaの水圧をかけて、 20°Cで 28日間放置後、水圧を かけたまま、装置下部からの漏水量 (mlZ日)を、装着された計量ピペットを用いて測 定した。なお、 28日経過を待たずに装置内の水全量(l l,OOOml)が流出してしまつ た場合は、測定値を l l,OOOmlとしその時点で測定を終了した。なお、図 6の不陸水 密性測定装置は、架台内部に設置された円形水槽 70を、防水シートサンプル 10と モルタル柱 20で構成される測定用試料で、上下区分し、下側にはポーラスストーン 5 0を充填し、その上部には直径 lcmのセラミックボール 60を敷き詰め、防水シートサ ンプルの下面側をセラミックボール 60と接触させて、擬不陸状態としたものである。ま た、円形水槽 70の上部には、前記の様に水 80を注入し、送気管 90から 0. 3Mpaの 圧縮空気を送入した。測定用試料力も水漏れがある場合は、計量ピペット 100により 測定した。
また、以下の実施例又は比較例で用いたエチレン 酢酸ビニル共重合体及びシリ 力の種類及び内容は下記に示すとおりである。
[エチレン 酢酸ビニル共重合体]
oヱチレン i¾酸ビュル 合体 m:
三井デュポンポリケミカル社製「エバフレックス EV45LX」(酢酸ビュル単位の含有 割合 =46質量0 /0、エチレン単位含有割合 = 54質量0 /0、 MFR= 2. 5gZlO分) 〇エチレン 酢酸ビュル共重合体(II);
東ソー株式会社製「ウルトラセン 631」(酢酸ビニル単位の含有割合 = 20質量%、 エチレン単位含有割合 =80質量0 /0、 MFR= 1. 5gZlO分)
〇エチレン 酢酸ビュル共重合体(III);
東ソー株式会社製「ウルトラセン 6M51A」(酢酸ビニル単位の含有割合 = 15質量 o/0、エチレン単位含有割合 =85質量0 /0、 MFR=0. 6gZlO分)
〇エチレン 酢酸ビュル共重合体(IV): 大日本インキ株式会社製「エバフレックス 420P」(酢酸ビュル単位の含有割合 =6 0質量0 /0、エチレン単位含有割合 =40質量0 /0、 MFR= 15gZlO分)
〇エチレン 酢酸ビュル共重合体 (V):
三井デュポンポリケミカル社製「エバフレックス P 1905」(酢酸ビュル単位の含有割 合 = 19質量0 /0、エチレン単位含有割合 =81質量0 /0、 MFR= 2. 5gZlO分) 〇エチレン 酢酸ビュル共重合体 (VI):
三井デュポンポリケミカル社製「エバフレックス P2505」(酢酸ビュル単位の含有割 合 = 25質量0 /0、エチレン単位含有割合 = 75質量0 /0、 MFR= 2. OgZlO分)
[0054] [シリカ]
Oシリカ ω :
東ソー ·シリカ株式会社製「-ッブシール LP」(二酸ィ匕珪素の含有量 = 93質量%、 BET比表面積 = 200m2Zg)
Oシリカ (ii) :
東ソー ·シリカ株式会社製「二ップシール E200A」(二酸ィ匕珪素の含有量 = 94質量 %、 BET比表面積 = 140m2Zg)
〇シリカ(m) :
東ソー ·シリカ株式会社製「エップシール E75」(二酸ィ匕珪素の含有量 = 94質量% 、 BET比表面積 =45m2Zg)
[0055] 先ず、山岳トンネル工法又はシールド工法によるトンネルに用いられる防水シート〔 防水シート (I)〕の実施例 1〜3、及び比較例 1〜6について以下に示す。
実施例 1
(1)エチレン 酢酸ビニル共重合体(I) 50質量部にエチレン 酢酸ビニル共重合体 (II) 50質量部を混合し、 170°Cで溶融混練した後、 170°Cで棒状に押し出し切断し て、 A基材層用のエチレン 酢酸ビニル共重合体組成物のペレットを製造した。
(2)二層押出式の押出成形機 (日立造船株式会社製)の一方の溶融混練装置に上 記(1)で製造した A基材層用のペレットを供給して一方の Tダイ (ダイリップ幅 220cm 、ダイ温度 200°C)からでシート状に溶融押し出す (A基材層)と共に、もう一方の Tダ ィ(ダイリップ幅 220cm、ダイ温度 200°C)力 エチレン 酢酸ビュル共重合体(III) をシート状に溶融押し出し (B基材層)、押し出し後に直ちに両者を積層して、幅が 2 20cm、 A基材層の厚さが 0. 4mm、 B基材層の厚さが 1. 6mmの積層シート(基材シ ート)(シート全体の厚さ 2mm)を製造した。なお、 A基材層を構成するエチレン—酢 酸ビュル共重合体組成物における酢酸ビニル単位の含有割合 (平均値)は 33質量 %であった。
[0056] (3)シリカ(i) 5質量部、トルエン 85質量部及びエチレン 酢酸ビニル共重合体の 50 %メタノール溶液(日本合成化学工業社製「コーポニール 9484」、溶液中のエチレン 酢酸ビュル共重合体における酢酸ビニル単位の含有割合 80質量%) 10質量部を 混合し、十分に撹拌して、シリカ分散液を調製した。
(4)上記 (2)で製造した積層シート (基材シート)の A基材層側の表面に、上記 (3)で 調製したシリカ分散液を 10g/m2の割合でグラビアロールにて塗布した後、 130°Cで 1分間加熱して乾燥した。この塗布 ·乾燥操作を 3回繰り返し、 A基材層の表層部に シリカ含有表層を有する、図 3の (a)に示す防水シートを作製した。
(5)上記 (4)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 1に示すとおりであった。
図 4は、この実施例 1で得られた防水シートの断面 (A基材層の上部)を電子顕微鏡 (日立ハイテクノロジース社製「S— 2600N型」、倍率 1000倍)にて撮影した写真で あり、図 4にみるように、防水シートの表層部に厚さ(深さ)が 13 mのシリカ含有表層 が形成されていた。また、シリカはシリカ含有表層より下方に僅かに含まれていたが、 防水シートの最表面から深さ 0. 1mm内にすべてが含まれており、それよりも深部に は含まれていなかった。
[0057] 実施例 2
(1)シリカ(ii) 5質量部、トルエン 90質量部及びエチレン 酢酸ビニル共重合体 (I) 5 質量部を混合し、十分に撹拌して、シリカ分散液を調製した。
(2)実施例 1において、実施例 1の(3)で調製したシリカ分散液の代わりに、本実施 例の上記(1)で調製したシリカ分散液を用いた以外は、実施例 1と同じ操作を行って 、 A基材層の表層部にシリカ含有表層を有する防水シートを作製した。
(3)上記 (2)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 1に示すとおりであった。
[0058] 実施例 3
(1)エチレン 酢酸ビニル共重合体(IV) 60質量部、エチレン 酢酸ビニル共重合 体 (VI) 40質量部、炭酸カルシウム(白石カルシウム社製「白艷草 0」) 10質量部及び シリコン系滑剤 (堺化学株式会社製「LBT— 100」) 1質量部を 170°Cで溶融混練し た後、棒状に押し出し、切断して A基材層用のペレットを製造した。
(2)エチレン 酢酸ビニル共重合体(IV) 25質量部、エチレン 酢酸ビニル共重合 体 (V) 75質量部、炭酸カルシウム(白石カルシウム社製「白艷草 0」) 10質量部及び シリコン系滑剤 (堺化学株式会社製「LBT— 100」) 1質量部を 170°Cで溶融混練し た後、棒状に押し出し、切断して B基材層用のペレットを製造した。
[0059] (3)上記(2)で製造した B基材層用のペレットを用いて、カレンダーロール(日本ロー ル社、逆 L4本型、径 56cm、幅 152cm)にて 170。Cで混練成形して幅 150cm、厚さ 0. 4mmのシートとした。
(4)上記(3)で製造したシートを上記のカレンダーロールの下側から仕込み、その上 力も上記(2)と同様にして溶融してカレンダーで出した幅 150cm、厚さ 0. 4mmの同 じエチレン 酢酸ビニル共重合体組成物からなるシートを重ねて貼り合わせて幅 15 Ocm、厚さ 0. 8mmのシートを得た。この操作を更に 2回繰り返し、最終的に幅 150c m、厚さ 1. 6mmの B基材層用のシートを製造した。
(5)上記 (4)で得られた B基材層用のシートを、上記と同じカレンダーロールの下側 から仕込み、その上力も上記(1)で製造した A基材層用のペレットを用いて、同じ力 レンダーロールにて溶融して厚さ 0. 4mmのシート (A基材層)に排出して B基材層シ ートの上に貼り合わせて、幅が 150cm、全体の厚さが 2mm (A基材層 0. 4mm、 B基 材層 1. 6mm)の積層シート (基材シート)を製造した。
[0060] (6)上記(5)で製造した積層シート (基材シート)の A基材層の表面に、実施例 1の(3 )で調製したのと同じシリカ分散液を 10g/m2の割合でグラビアロールにて塗布した 後、 130°Cで 1分間加熱して乾燥した。この塗布 ·乾燥操作を 3回繰り返し、 A基材層 の表層部にシリカ含有表層を有する防水シートを作製した。
(7)上記 (6)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 1に示すとおりであった。
[0061] 比較例 1
(1)実施例 1の(3)において、シリカ分散液を調製する際にシリカの添加量を 1質量 部に変え、実施例 1の(4)においてシリカ分散液のグラビアロールでの塗布回数を 1 回に変えた以外は、実施例 1と同様にして防水シートを製造した。
(2)上記(1)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 2に示すとおりであった。
[0062] 比較例 2
(1)実施例 1にお 、て、 A基材層用のペレットの製造時に実施例 1のシリカ分散液で 用いたのと同じシリカ(i)を 1質量%の割合で添加したペレットを用いて A基材層を形 成し、またシリカ分散液の塗布を行わな力つた以外は、実施例 1と同様にして、 A基 材層全体にシリカが分散した図 3の (b)に示す防水シートを製造した。
(2)上記(1)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 2に示すとおりであった。
[0063] 比較例 3
(1)シリカ(i)の代わりにシリカ(iii)を用いた以外は、実施例 1と同様にして、 A基材層 の表層部にシリカ含有表層を有する防水シートを製造した。
(2)上記(1)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 2に示すとおりであった。
[0064] 比較例 4
( 1) A基材層用のエチレン 酢酸ビニル共重合体組成物のペレットにおける配合組 成をエチレン 酢酸ビニル共重合体(I):エチレン 酢酸ビニル共重合体(II) = 30 : 70 (質量比)に変えた以外は、実施例 1と同様にして、 A基材層の表層部にシリカ含 有表層を有する防水シートを製造した。
(2)上記(1)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 2に示すとおりであった。
[0065] 比較例 5
(1)実施例 1の(3)においてシリカ分散液の調製に用いた有機溶媒をトルエンからメ タノールに変えた以外は、実施例 1と同様にして、 A基材層の表層部にシリカ含有表 層を有する防水シートを製造した。
(2)上記(1)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 2に示すとおりであった。
[0066] 比較例 6
(1)実施例 1で用いたのと同じ A基材層用のエチレン 酢酸ビュル共重合体組成物 のペレットを用いて Tダイ型押出成形機 (日立造船株式会社製」 )を使用して、温度( ダイ温度) 200°Cで押出成形して、幅 220cm、厚さ 0. 4mmの A基材層用シートを製 •laし 7こ。
( 2)実施例 1で B基材層用として用!ヽたのと同じエチレン 酢酸ビニル共重合体 (III) のペレットシートを用いて、上記(1)と同様にして押出成形を行って、幅 220cm、厚さ 1. 6mmの B基材層用シートを製造した。 (3)上記(1)で製造した A基材層用シートと上記(2)で製造した B基材層用シートの 間にポリエステル繊維製織物(経糸繊度 550dtex、打込み密度 19本 Z2. 54cm, 緯糸繊度 550dtex、打込み密度 20本 Z2. 54cm)を挟んで、温度 170°Cで熱プレ スして中間に織物層を有する積層シートを製造した。
(4)上記(3)で製造した積層シートの A基材層の表面に、実施例 1の(3)及び (4)と 同じ工程を行って、 A基材層の表層部にシリカ含有表層を有する防水シートを製造し た。その後実施例 1と同様の方法でシリカを塗布した。
(5)上記 (4)で得られた防水シートの引張破断強力、引張破断伸度、シリカ含有表 層の A基材層表面からの厚み (深さ)、シリカ含有表層におけるシリカの含有量、モル タル接着力、トンネル内部に設置したときの漏水の有無を上記した方法で測定又は 評価したところ、下記の表 2に示すとおりであった。
[0067] [表 1]
Figure imgf000028_0001
1 )シリカ含有層 (シリカ含有表層)の表面からの厚み
2)シリカ含有層(シリカ含有表層)におけるシリカの含有割合
3)シリカ含有層 (シリカ含有表層)を構成するエチレン一齚酸ビニル共重合体の 種 配合割合
4)シリカ含有層(シリカ含有表層)を榷成するエチレン一 K酸ビニル共重合体
(組成物)に おける酢酸ビニル単位の平均含有割合
[0068] [表 2]
Figure imgf000029_0001
2)シリカ含有層 (シリカ含有表 fi)におけるシリカの含有割合
3)シリカ含有層 (シリカ含有表 )を構成するエチレン一齚酸ビニル共重合体の種類と配合割合
4)シリカ含有層 (シリカ含有表層)を構成するエチレン-齚酸ビニル共重合体 (組成物)における齚酸ビ ニル単位の平均含有割合
5)防水シート中に織物層を有していることにより、引張破断伸度が低い
[0069] 上記の表 1の結果にみるように、実施例 1〜3の防水シート(I)は、シリカ(SiO≥90
2
%)を 30〜200mgZcm3の範囲内の濃度で含有するシリカ含有表層を、防水シート の表面から 5 m以上 30 m以下の深さにわたって形成されていて、 lOMPa以上( 特に 19MPa以上)の高い引張破断強力、 300%以上(特に 825%以上)の高い引 張破断伸度を有し、し力もモルタル接着力が 187N/cm以上と高ぐコンクリートに 対する接着性に優れ、トンネル内に施工したときに漏水を生じない。
[0070] それに対して、比較例 1〜5の防水シートは、いずれもモルタル接着力が lONZc m未満であってコンクリートとの接着性に劣っており、トンネル内に施工したときに漏 水が生じた。
また、比較例 6の防水シートは、モルタル接着力は lONZcm以上である力 織布 層を有していることにより、引張破断伸度が 24%と低くて伸びないために、トンネルへ の施工時などや施工後の応力などによって破損が生じ、トンネル内に漏水が生じた。
[0071] 次いで、開削トンネル工法によるトンネルに用いられる防水シート〔防水シート (Π)〕 の実施例 4、 5及び比較例 7〜: L 1を以下に示す。
実施例 4
(1)カレンダーロール(日本ロール製逆 L型カレンダーロール、直径 22インチ、幅 60 インチ)にて、エチレン 酢酸ビュル共重合体 (VI)50部とエチレン 酢酸ビュル共重 合体 (V)50部に、炭酸カルシウム 10部、シリコン系滑剤 (堺ィ匕学製 LBT— 100) 1部 を加えた榭脂(配合 B :平均酢酸ビニル基含有量 22%)を混練して厚さ 0. 4mm,幅 lmのシートを出し、ここへポリエステル製基布(経糸繊度 550dtex、密度 19本 Z2. 54cm、緯糸繊度 550dtex、密度 20本 Z2. 54cm、幅 lm)を張り合わせて厚さ 0. 5 mmのシートを得た。
(2)このシートをカレンダーロールの下側から仕込み、その上から同様にしてカレンダ 一で出した厚さ 0. 4mmの同榭脂シートを基布のある側に重ねて貼り合わせて圧さ 0
. 9mmの B基材層シートを得た。更にその上に、エチレン—酢酸ビニル共重合体 (I) 60部とエチレン 酢酸ビニル共重合体 (VI)40部に、炭酸カルシウム 10部、シリコン 系滑剤 (堺化学製 LBT— 100) 1部を加えた榭脂 (配合 A:平均酢酸ビニル基含有量 33%)を混練して出した厚さ 0. 4mmの A基材層シートを貼り合わせ厚さ 1. 3mmの シートを得た。
[0072] (3)次に、シリカ(i) 5部にトルエン 90部と増粘剤として酢酸ビュル基含有量 80%の エチレン—酢酸ビュル共重合樹脂の 50%メタノール溶液 (日本合成化学製コーポ- ール 9484) 5部を加えて十分に撹拌した液を、上記で作製した榭脂シートの配合 A 榭脂層側の表面に、グラビアロール(130メッシュ)にて 10g/m2の割合で塗布し、 1 30°Cで 1分間乾燥した。この操作を 2回繰り返し、シートの表層から深さ 13 mにシリ 力を 49mg/cm3含んだシリカ含有表層を有する防水シート (II)を得た。得られた防 水シート (Π)は、図 7 (a)に示す構成で、その物性は、引張破断強度 28. 3MPa、引張 破断伸度 17. 2%、引裂き強力 138Nであった。また、このシートのモルタル接着力 は 18. 4NZcm、不陸水密性は 2. 3mlZ日であった。
[0073] 実施例 5
シリカ塗布液の配合を、二酸化珪素含有量 93%、 BET比表面積 140m2/gのシリ 力(ii) 5部、増粘剤として酢酸ビニル基含有量 46%のエチレン 酢酸ビニル共重合 体 (1) 5部、トルエン 90部、とした以外は、実施例 4と同様の方法で防水シートを作製 した。シリカ含有は表層力ゝらの深さ 15 mでシリカ含有量は 53mgZcm3であった。 また、この防水シートのモルタル接着力は 19. 5N/cm,不陸水密性は、 3. lml/ 日であった。
[0074] 比較例 7
シリカ塗布液の配合をシリカ 1部、増粘剤 5部、トルエン 94部とした以外は実施例 4 と同様にして防水シートを作製した。シリカ含有は表層力もの深さ 2. でシリカ含 有量は 37mgZcm3であった。また、この防水シートのモルタル接着力は 5. lN/cm 、不陸水密性は ll,OOOmlZ日以上であった。
[0075] 比較例 8
BET比表面積が 45m2Zgのシリカ(東ソ一'シリカ製-ップシール E75)を用いた以 外は、実施例 4と同様の方法で防水シートを作製した。シリカ含有量は表層力もの深 さ 14 /z mでシリカ含有量は 43mgZcm3であった。また、この防水シートのモルタル 接着力は 5. 3NZcm、不陸水密性は ll,OOOmlZ日以上であった。
[0076] 比較例 9 シリカ含有層(配合 A)の榭脂を、酢酸ビニル基含有量 25%のエチレン 酢酸ビ- ル共重合体 (三井デュポンポリケミカル製エバフレックス P2505)とした以外は実施例 4と同様の方法で防水シートを作製した。シリカ含有表層は、表層からの深さ 14 /z m でシリカ含有量は 51mg/cm3であった。また、この防水シートのモルタル接着力は 2 . 2NZcm、不陸水密性は l l,OOOmlZ日以上であった。
[0077] 比較例 10
実施例 4と同様の手順で防水シートを作製する際、配合 Aの榭脂をカレンダーロー ルで混練するときにシリカ(エップシール LP)を 1質量%添カ卩して厚さ 0. 4mmのシー トを作製した。その際シリカを 1質量%以上入れようとするとシートが混練中にロール に貼りつ 、てシート製造ができな力つた。次にグラビアロールでのシリカ液の塗布を 行なわず、配合 Bの榭脂シートと貼り合わせて厚み 1. 3mmの防水シートを作製した 。シリカ含有表層の厚さ(表面からの深さ)は配合 Aシート全体にシリカが含まれてい るので 400 mとなり、シリカ含有量は lOmgZcm3であった。得られた防水シートの 構成を図 7 (b)に示す。この防水シートのモルタル接着力は 1. 4NZcm、不陸水密 性は ll,OOOmlZ日以上であった。
[0078] 比較例 11
シート作製手順にぉ 、て、グラビアロールでのシリカ液の塗布回数を 10回とした以 外は実施例 4と同様の方法でシートを作製した。シリカ含有量は、表層からの深さが 3 2 μ mでシリカ含有量は 253mgZcm3であった。また、このシートのモルタル接着力 は 2. 5NZcm、不陸水密性は ll,OOOmlZ日以上であった。
[0079] [表 3]
Figure imgf000033_0001
上記の表 3の結果にみるように、実施例 4、 5の防水シート(II)は、シリカ(SiO≥90
2
%)を 30〜200mgZcm3の範囲内の濃度で含有するシリカ含有表層を、防水シート の表面から 5〜30 μ m以下の深さ(厚み)にわたつて形成されていて、 20MPa以上 の高い引張破断強度、 10〜50%の引張破断伸度を有し、モルタル接着力が 15N Zcm以上と高ぐコンクリートに対する接着性に優れ、 lOmlZ日以下の不陸水密性 を有している。シリカ含有表層が、モルタル接着力に寄与していることは、図 8 (a)の 実施例 4による防水シート (II)のシリカ含有表層断面の電子顕微鏡写真、及び (b)同 シリカ含有表層上面の電子顕微鏡写真からも理解できる。
[0081] それに対して、比較例 7〜: L1の防水シートは、いずれもモルタル接着力が 6NZc m未満であってコンクリートとの接着性に劣っており、 ll,OOOml/日以上の不陸水 密性を示しており、開削トンネル用防水シートとしては使用できない。
産業上の利用可能性
[0082] 本発明の防水シートは、コンクリート製のトンネル構築物と強固に接着'一体ィ匕し、 施工後に長い時間が経過しても、防水シートとコンクリート構築物との間に空隙が生 じず、しかもトンネル内への施工時や施工後に防水シートに応力が力かっても、破損 やその他の不具合が生じず、地山や地盤力 滲み出した水がトンネル構築物内に漏 れるのを円滑に防止することができるので、特に、防水シート 0)は、山岳トンネル工法 又はシールド工法によるトンネル用の防水シートとして有効に使用することができる。 また、本発明の開削トンネル工法によるトンネル用の防水シート (II)は、所定の強度 とコンクリートとの高接着性を有しているので、地盤とコンクリート製トンネル構造物と の間に本発明の防水シート (II)を設置施工することで、施工後のコンクリート構造物と 防水シートが接着 ·一体化し、設置面の不陸が大き!ヽ場合や地盤沈下や地震が発 生した場合でも、地盤力 の雨水や地下水のコンクリート構造物内部への浸入を防ぐ ことができるので、特に開削トンネル工法によるトンネル用防水シートとして有効に利 用できる。

Claims

請求の範囲
[1] 合成樹脂製の基材シートの表面に、二酸化珪素の含有量が 90質量%以上のシリ 力を 30〜200mg/cm3の割合で含有するシリカ含有表層を有する合成樹脂製の防 水シートであって、該シリカ含有表層が、防水シートの表面から 5〜30 mの深さに わたって形成されており、且つ、引張破断強力が lOMpa以上、モルタル接着力が 1
5NZcm以上であることを特徴とするトンネル用防水シート。
[2] 防水シートの引張破断伸度が 300%以上であり、山岳トンネル工法又はシールドエ 法によるトンネルに使用される請求項 1記載のトンネル用防水シート。
[3] 防水シートの引張破断強度 20MPa以上、引張破断伸度 10〜50%、引裂強力 50
N以上で、且つ不陸水密性が lOmlZ日以下であり、開削トンネル工法によるトンネ ルに使用される請求項 1記載のトンネル用防水シート。
[4] 基布をその内部又は表面に含有している請求項 3記載のトンネル用防水シート。
[5] シリカ含有表層に含まれるシリカの BET比表面積が 80m2/g以上である請求項 1
〜4のいずれかに記載のトンネル用防水シート。
[6] 基材シートの主構成成分が、エチレン—酢酸ビュル共重合体又はその組成物から 形成されている請求項 1〜5のいずれかに記載のトンネル用防水シート。
[7] シリカ含有表層を構成する合成樹脂が、酢酸ビニル由来の構造単位の含有割合が
30質量%以上のエチレン 酢酸ビニル共重合体である請求項 1〜6のいずれかに 記載のトンネル用防水シート。
PCT/JP2007/061307 2006-06-07 2007-06-04 トンネル用防水シート WO2007142200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07744666.4A EP2042687B1 (en) 2006-06-07 2007-06-04 Method for producing a waterproof sheet for tunnel and its use
JP2008520565A JP5209472B2 (ja) 2006-06-09 2007-06-04 トンネル用防水シート
EP17184026.7A EP3263833B1 (en) 2006-06-07 2007-06-04 Method of producing a waterproof sheet for a tunnel and its use
US12/303,744 US20100167047A1 (en) 2006-06-07 2007-06-04 Waterproof sheet for tunnel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-158321 2006-06-07
JP2006158321 2006-06-07
JP2006160865 2006-06-09
JP2006-160865 2006-06-09

Publications (1)

Publication Number Publication Date
WO2007142200A1 true WO2007142200A1 (ja) 2007-12-13

Family

ID=38801451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061307 WO2007142200A1 (ja) 2006-06-07 2007-06-04 トンネル用防水シート

Country Status (4)

Country Link
US (1) US20100167047A1 (ja)
EP (2) EP2042687B1 (ja)
TW (1) TWI390103B (ja)
WO (1) WO2007142200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220143658A (ko) 2020-02-27 2022-10-25 주식회사 쿠라레 토목용 방수 시트

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141306A1 (de) * 2008-05-19 2009-11-26 Neumueller Walter Betonsanierung von tübbingen
TWI581965B (zh) * 2011-10-25 2017-05-11 Gcp應用技術有限公司 防水膜
JP6060610B2 (ja) 2012-10-15 2017-01-18 信越化学工業株式会社 屋外タンクの防水施工方法
WO2014139853A2 (de) * 2013-03-12 2014-09-18 Sika Technology Ag Verfahren zur herstellung eines tübbing mit thermoplastischer schottschicht
JP2016061074A (ja) * 2014-09-18 2016-04-25 大成建設株式会社 防水シート
JP6580824B2 (ja) * 2014-12-03 2019-09-25 ダイワボウホールディングス株式会社 防水シート及びその施工方法
US10781835B2 (en) 2015-03-31 2020-09-22 Tremco Incorporated Mechanically detachable membrane for pre-applied waterproofing
EP3393792B1 (en) * 2015-12-23 2023-07-05 Sika Technology AG Waterproofing membrane with a solid filler component
CN110662726A (zh) * 2017-05-17 2020-01-07 赢创运营有限公司 具有硬化表面的芯疏水性隔热片材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329228A (ja) 1994-06-13 1995-12-19 Toray Ind Inc トンネル内装用断熱防水シート
JPH0952330A (ja) 1995-08-11 1997-02-25 Dainippon Printing Co Ltd トンネル用防水シート
JP2000080894A (ja) * 1998-06-24 2000-03-21 Kuraray Co Ltd 遮水シ―トおよび遮水工法
JP2001115791A (ja) 1999-10-18 2001-04-24 Fujimori Kogyo Co Ltd トンネル用防水シート
JP2002070495A (ja) * 2000-08-31 2002-03-08 Shimizu Corp 湾曲面を有するコンクリート構造物の補強構造体
JP2002294015A (ja) 2001-04-02 2002-10-09 Kuraray Co Ltd 土木用遮水シート

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110890B2 (ja) * 1990-06-29 1995-11-29 ダイキン工業株式会社 含フッ素共重合体およびそれを用いた塗料用組成物
AU2002366292B2 (en) * 2001-12-14 2006-06-22 Hiraoka & Co., Ltd. Antifouling waterproof sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329228A (ja) 1994-06-13 1995-12-19 Toray Ind Inc トンネル内装用断熱防水シート
JPH0952330A (ja) 1995-08-11 1997-02-25 Dainippon Printing Co Ltd トンネル用防水シート
JP2000080894A (ja) * 1998-06-24 2000-03-21 Kuraray Co Ltd 遮水シ―トおよび遮水工法
JP2001115791A (ja) 1999-10-18 2001-04-24 Fujimori Kogyo Co Ltd トンネル用防水シート
JP2002070495A (ja) * 2000-08-31 2002-03-08 Shimizu Corp 湾曲面を有するコンクリート構造物の補強構造体
JP2002294015A (ja) 2001-04-02 2002-10-09 Kuraray Co Ltd 土木用遮水シート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Tetsudo Kozobutu tou Sekkei Hyojun, dou Kaisetu (Kaisaku Tunnel", 30 March 2001, MARUZEN CO., LTD., pages: 13
See also references of EP2042687A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220143658A (ko) 2020-02-27 2022-10-25 주식회사 쿠라레 토목용 방수 시트

Also Published As

Publication number Publication date
TW200809075A (en) 2008-02-16
EP2042687A1 (en) 2009-04-01
US20100167047A1 (en) 2010-07-01
EP2042687B1 (en) 2018-02-21
EP3263833B1 (en) 2019-04-03
EP2042687A4 (en) 2015-03-11
EP3263833A1 (en) 2018-01-03
TWI390103B (zh) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2007142200A1 (ja) トンネル用防水シート
CN109952414B (zh) 防水体系
CN101545285B (zh) 自粘橡胶防水卷材及其制备方法
CN1163567C (zh) 沥青砂胶铺展膜和板的双层防水材料及其施工方法
KR101173181B1 (ko) 분리방지용 부직포와 이를 구비한 방수시트 및 복합방수공법
KR102190385B1 (ko) 단차홀 방지용 복합방수시트 및 이를 이용한 방수 시공방법
CN108454193A (zh) 一种新型外露复合防水卷材
KR100957621B1 (ko) 방수 방근 구조 및 이를 이용한 방수 방근 공법
KR101998820B1 (ko) 콘크리트 슬래브의 복합방수구조물 및 그 시공방법
JP5209472B2 (ja) トンネル用防水シート
JP5165280B2 (ja) トンネル用防水シートの製造方法
EP2425060A1 (en) Channel and water storage liner
JP4511758B2 (ja) 土木用遮水シート
CN201809865U (zh) 复合钠基膨润土防水毯
KR101837462B1 (ko) 이성분계 차수용 뿜칠 멤브레인 조성물을 이용한 지하 구조물의 방수 시공방법
KR101819638B1 (ko) 속경형 폴리머 시멘트 고화제, 섬유시트 및 메쉬망을 이용한 다층구조 매트 및 이를 이용한 시공방법
KR102460723B1 (ko) 아스팔트씰 도막방수재 및 이를 이용한 복합방수공법
KR101381084B1 (ko) 단열 및 방수용 시공 방법
CN212446615U (zh) 一种防水卷材
KR102376886B1 (ko) 통기성 코팅제의 제조방법 및 통기성 코팅제가 코팅된 복합방수용 보강재
CN209482514U (zh) 一种雨季地区的防水外墙
KR102360174B1 (ko) 하이브리드 복합방수시트를 이용한 cip, 토류벽 등의 합벽 역방수 시공방법
CN218558216U (zh) 一种具有三道防水设防的sfj三层盾复合防水卷材
JP4551149B2 (ja) 地中構造物外壁用止水材
CN212737383U (zh) 一种多功能复合防水卷材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520565

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007744666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12303744

Country of ref document: US