WO2007142161A1 - 固形燃料及びその製造方法 - Google Patents

固形燃料及びその製造方法 Download PDF

Info

Publication number
WO2007142161A1
WO2007142161A1 PCT/JP2007/061227 JP2007061227W WO2007142161A1 WO 2007142161 A1 WO2007142161 A1 WO 2007142161A1 JP 2007061227 W JP2007061227 W JP 2007061227W WO 2007142161 A1 WO2007142161 A1 WO 2007142161A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
producing
solid
kneaded
organic
Prior art date
Application number
PCT/JP2007/061227
Other languages
English (en)
French (fr)
Inventor
Kunii Nakata
Original Assignee
Kabushiki Kaisha Nakata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Nakata filed Critical Kabushiki Kaisha Nakata
Publication of WO2007142161A1 publication Critical patent/WO2007142161A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing a solid fuel and a solid fuel produced by the method.
  • organic sludge generated when treating public sewage and industrial wastewater contains combustible components and can be burned when dehydrated to a certain extent. Focusing on this point, a method has been proposed in which waste oil is mixed with dewatered organic sludge and then pressure-molded to produce a solid fuel (see Patent Document 1).
  • the solid fuel formed from the dehydrated organic sludge and waste oil has a drawback that it is easily deformed because it is always "solid" and its shape retention is not sufficient. Therefore, handling, storage, transportation, and use in a combustion furnace were difficult.
  • Patent Document 1 JP-A-61-296 (first page)
  • Patent Document 2 Japanese Patent Laid-Open No. 09-87646 (first page)
  • an object of the present invention is to provide a solid fuel that can be easily and inexpensively manufactured from materials such as waste containing water, and a method for manufacturing the same.
  • the present invention has the following configuration.
  • a combustible material containing at least a part of an organic substance in which fungi have propagated is kneaded using the contained moisture to form a formable state. After forming into a solid, it is dried.
  • the combustible material is kneaded to form a solid form in which fungi can be propagated by applying a required pressure in a state where moldability is generated. It can be characterized by molding.
  • the combustible material raw material formed into a solid shape is crushed and dried.
  • the organic substance with which the said fungus propagated can be a waste mushroom bed of a mushroom, It can be characterized by the above-mentioned.
  • the waste mushroom bed of mushrooms after the mushrooms are harvested by the medium containing the fine material of the herbaceous material as a raw material is included. It is characterized in that it is kneaded using water to form a moldable state, molded into a solid state, and then dried.
  • a corn cob meal provided by pulverizing a corn core at least partly of the fine material of the grass material. be able to.
  • the mushroom waste fungus bed is kneaded and molded into a solid form in which fungi can propagate by applying the required pressure in a state where moldability is produced. It can be characterized by.
  • the waste fungi bed of the said mushroom It is characterized by crushing and drying what was formed into a solid.
  • a caking additive may be mixed in order to knead the raw material so as to obtain a formability.
  • the method for producing a solid fuel according to the present invention in order to knead the raw material to obtain a formable state, it is possible to adjust the moisture by water addition or dehydration. .
  • the solid fuel is manufactured by the above-described solid fuel manufacturing method.
  • FIG. 1 is a flowchart showing an example of a process of a method for producing a solid fuel according to the present invention.
  • FIG. 2 is an enlarged explanatory view showing an example of a kneaded product according to the present invention.
  • FIG. 3 is a perspective view showing a form example of a molded body according to the present invention.
  • FIG. 4 is a perspective view showing another example of the molded body according to the present invention.
  • FIG. 5 is a perspective view showing another example of a molded body according to the present invention.
  • FIG. 6 is a cross-sectional view showing an example of a molding process of a molded body according to the present invention.
  • FIG. 7 is a perspective view showing an example of a molding process of a molded body according to the present invention.
  • FIG. 8 is a flowchart showing another example of the process for producing a solid fuel according to the present invention.
  • FIG. 9 is a perspective view showing an example of a solid fuel according to the present invention.
  • FIG. 10 is a perspective view showing another example of the solid fuel according to the present invention.
  • This method for producing solid fuel is to form a combustible raw material containing at least a part of organic matter in which fungi have propagated into a state where moldability is produced by using the contained moisture, and after forming into a solid state, Drying is a basic process element.
  • a solid fuel can be preferably produced.
  • the fungus grows easily and stickiness tends to occur.
  • the waste fungus bed of mushrooms containing fine wood material oga powder
  • Combustible materials are kneaded without being dried.
  • the combustible material (mushroom waste fungus bed) itself also functions as a caking additive, and suitable moldability is produced only by kneading.
  • kneading by kneading, it becomes sticky and forms like water-containing clay. This is because the hyphae and the like are crushed by kneading strongly and uniformly, and the material force air is pushed out by the kneading pressure and moisture comes out.
  • the process of mixing the mushroom waste fungus bed and the caking additive in the process diagram of FIG. 1 can be omitted.
  • the kneading process in this invention can be said to be a process including crushing that crushes a material such as mycelia and develops the adhesiveness of the material.
  • At least a part of the fine material of the herbaceous material is corn cob meal provided by crushing the corn core, so that sufficient caking can be obtained by the mushroom waste fungus bed itself. And a solid fuel can be suitably produced.
  • the rice husks, force, etc. are often mixed as a herbaceous material to make a mixed medium for mushroom cultivation.
  • Mushroom waste generated when enoki was cultivated was kneaded with a twin-screw kneader (kneader), and it was rich in moldability in a kneaded state ( A kneaded product).
  • the kneaded material was discharged from the kneader in a granular form. Then, when the required amount of the kneaded material was put into a mold and pressed and molded, a molded product with high shape retention could be obtained.
  • a molded product with high shape retention can be obtained by using only the waste mushroom bed of mushrooms, because when the cultured mushroom mycelium itself is crushed, it becomes sticky and aggregated, This is because nutrients that tend to cause viscosity are mixed in the culture medium for mushroom cultivation. As nutrients, knead, bran, strength, etc. are appropriately blended.
  • the mushroom waste bed is a typical organic matter in which fungi have propagated, and the state in which mushroom hyphae have propagated and the state in which other fungi such as aerobic bacteria have entered and propagated There are both cases. Since the stickiness is increased by fermenting with other bacteria, it can be suitably used as a raw material for solid fuel even if it is not a waste fungus bed immediately after harvesting mushrooms.
  • Chitin and chitosan are present on the cell walls of fungi such as mushrooms, molds, and yeasts, and the cell walls are crushed and contribute as a caking agent.
  • the present invention is not limited to using mushroom waste fungi bed as a raw material, and any fungus that has propagated can be used, for example, beer lees, juice lees, okara, garbage, sludge Such waste can be used as a raw material. Even with these raw materials, if fungi are propagated, the same effect can be obtained. For example, if a product obtained by breeding fungi such as natto bacteria in okara is used as the combustible material, a solid fuel can be suitably produced by the above production method.
  • the necessary pressure at which fungi can propagate is the pressure at which the fungus can be grown at such a high pressure that the lignin of the plant material melts. In other words, it is not high pressure that kills fungi or high pressure when manufacturing pellets used in pellet stoves.
  • Fungi are more likely to propagate when the medium is pressed to an appropriate thickness, and drying can be promoted from the inside of the molded body by utilizing the heat of fermentation generated when aerobic bacteria are propagated. Normally, it is not necessary to add special aerobic bacteria, and natural aerobic bacteria will naturally propagate if they are left undisturbed.
  • size of the solid fuel produced can be freely set by the grade of crushing.
  • the grade of crushing For example, when a compact was formed into a plate block shape with a thickness of about 3 to: LOcm, the compact was crushed and dried to produce a fist-sized solid fuel. I was able to burn very well in one tube.
  • a caking additive may be mixed in order to knead the raw material to obtain a formable state. Details regarding the mixing of the binder will be described in detail in a later-described embodiment.
  • the water content may be adjusted as appropriate by water addition or dehydration.
  • the organic matter on which fungi have propagated is generally a high-moisture material and contains moderate moisture, so it is necessary to adjust the moisture!
  • what was once dried may be mixed with the raw material again to adjust the water content. According to this, it is possible to effectively use dry particles and powdery raw materials generated in the production process of solid fuel.
  • paper that has been originally dried for example, paper that has been broken by a shredder, may be used as a moisture adjusting material.
  • this method for producing solid fuel has also become an epoch-making method for drying high-moisture organic waste and the like. Drying enables long-term storage, and in addition to solid fuel, it can be a raw material for other uses such as livestock feed and plant fertilizer.
  • greenhouses for greenhouses may be used.
  • the solid fuel produced according to the present invention can be burned to a level equivalent to or higher than that of soot in a stove with a simple structure, and can be used as an alternative energy for kerosene and heavy oil as fuel for heating houses for agricultural products.
  • the kneaded material is pressed into a plate shape in a highly breathable bowl-shaped container, and the bowl-shaped containers are placed side by side on a multistage shelf with good breathability. Or may be dried by stacking. It can be efficiently dried in space.
  • Embodiment 1 of the method for producing a solid fuel according to the present invention will be described below with reference to the drawings.
  • FIG. 1 is a flowchart showing the steps of a solid fuel manufacturing method according to the following embodiment.
  • Reference numeral 10 denotes a mixing step, which is a step of mixing a waste mushroom bed of mushrooms generated in fungus bed cultivation of mushrooms and a caking additive to obtain a combustible mixture.
  • the waste mushroom bed of mushrooms functions as an organic aggregate through the kneading process and molding process described later.
  • the main ingredients of the mushroom waste bed are oga flour and Z or corn cobmeal. Mixing herbaceous corn cob meal makes it easier for aerobic bacteria to propagate in the drying process described below. Nutrients such as rice bran for growing mushrooms remain in the mushroom bed, and aerobic bacteria can propagate well using this as a nutrient source.
  • the waste mushroom bed of mushrooms and the binder can be easily mixed using, for example, a ribbon mixer.
  • the waste mushroom bed is originally a mushroom culture medium that is mainly composed of potato powder and crushed corn core (corn cob meal) and is mixed with nutrients such as rice bran. Therefore, it becomes a fine particle or a fine powder easily by a mixing process using a ribbon mixer or the like.
  • mushroom waste beds are mainly composed of oga flour, corn cob meal, mushroom hyphae and organic fiber lump.
  • the waste mushroom bed of mushrooms is generally used after being composted and has been used with great care as a fuel.
  • the waste mushroom bed is an aggregate of water-containing fines that are difficult to dry when stored in a deposited state. It rots in a short time and generates a foul odor and is difficult to handle immediately. In addition, even if it can be dried, it may be difficult to handle it as it is shattered and scattered.
  • an organic material such as okara and an inorganic material such as Z or bentonite have good adhesiveness, and a material that allows fungal growth can be selectively used as appropriate.
  • organic caking agent As an organic caking agent, okara, organic sludge, corn starch, starch starch and other components having sugar components can be used. If you can help, organic sludge is waste and can be easily obtained anywhere. Corn starch is also readily available, and a-starch contained in it has strong adhesiveness. In addition, most raw garbage from which household power is discharged also contains starch and saccharide components, so it can be used as a binder.
  • inorganic binder clay or bentonite, which are inorganic swelling materials, can be used. Bentonite has strong adhesiveness and is highly available.
  • binders may be used alone or in combination with other binders.
  • corn starch or bentonite may be used in combination with force or organic sludge.
  • corn starch or bentonite may be mixed within a range of 1% to several percent by weight with respect to the entire material.
  • the mixing ratio of those binders is not particularly limited The more you add, the harder the solid fuel you can produce.
  • corn starch and bentonite are supplied in a dry state, they can be suitably used for raw materials with a high water content. That is, it also functions as a moisture adjusting material. In addition, when the amount of these binders is large, the moisture may be insufficient. In that case, water may be mixed as one material and a kneading step described later may be performed.
  • the organic matter can be fermented and used as a binder.
  • okara originally has stickiness, but when it is fermented with fungi, high stickiness is produced.
  • the treatment for improving the stickiness of organic matter by the propagation of such fungi is not limited to okara.
  • food residues such as juice residues can be treated in the same manner even if they are organic matter such as organic sludge.
  • the mushroom waste fungus bed itself is also sticky and functions as a binder.
  • mushroom waste fungus beds as organic aggregates and caking materials are used as raw materials, but other various materials can be mixed.
  • the fungi are allowed to propagate in the drying step described later.
  • an oil material can be mixed. According to this, slipping is improved, and kneading properties and mold release properties can be improved. In addition, the caking property is improved by acid-oxidized polymerization of oil.
  • the timing of mixing the oil is not particularly limited, but it can be efficiently dispersed by impregnating the organic aggregate with the oil before mixing the waste mushroom bed (organic aggregate) and the binder.
  • [0030] 20 is a kneading step, which is composed of a mixture of mushroom waste fungus bed and caking additive, water contained in raw materials such as mushroom waste fungus bed or water introduced as part of the raw material This is a step of kneading using a water component to obtain a kneaded product having formability.
  • the force can be suitably used.
  • Adhesive action as a caking additive from okara functions suitably due to the presence of mushroom waste fungi as an organic aggregate, and a clay-like kneaded material with high moldability is produced. From okara, as mentioned above, Bacillus natto, etc. By making it ferment with, the adhesiveness can be increased.
  • corn starch or the like can be added for organic substances, and bentonite or the like can be added for inorganic substances.
  • Corn starch has the advantage of becoming a nutrient for the growth of fungi.
  • Bentonite also has the advantage of maintaining its caustic expression without being decomposed and absorbed by fungi.
  • a biaxial kneader can be used.
  • the mixing step and the kneading step described above may be performed continuously or simultaneously by an integrated device or a single device.
  • the amount of moisture and caking can be reduced so that the caking material is thinly coated on the surface of granular materials such as ogah powder constituting the mushroom waste fungus bed. Adjust the amount of material.
  • the surface of the powder 21 is covered with a thin layer of the binder 22.
  • a caking action is generated by the caking material 22, and the cauldron powders 21 are joined via the caking material 22.
  • [0033] 30 is a molding step, which is a step of obtaining a molded body from the kneaded material by applying a required pressure.
  • a molded product having a constant kneaded product force can be obtained by press molding, roll molding, or extrusion molding.
  • an existing molding method or molding apparatus can be used.
  • a method may be adopted in which the kneaded material is finely divided and supplied to a mold, and a molded body is obtained by press molding. More specifically, first, the lump formed by kneading is loosened into fine particles by a device called a blinder. Thus, the semi-fluidized kneaded material is put into the lower mold of the mold. Next, a vibration is applied and leveling is appropriately performed so that the required amount of the kneaded material enters the lower mold appropriately. Then, the upper die is operated and pressed to obtain a molded body.
  • This molded body is preferably molded with an appropriate pressure so as to be porous having an appropriate gap 23 like the kneaded material shown in FIG. In the state before drying, the space 23 is filled with moisture, and the compact is in the form of clay.
  • the protrusions may be formed on the surface of the molded body so that a portion in contact with another member is reduced.
  • grooves may be formed in the molded body. By appropriately forming the grooves, the compact can be crushed to a uniform size and with a small force in the crushing step described later.
  • Such protrusions and grooves can be easily provided by press molding as described above.
  • FIG. 3 is a perspective view showing an example of a plate-like molded body 31 having a protrusion 32 formed on the surface.
  • the shape of the molded body is not limited to a plate shape, and may be a long shape having a cylindrical shape or a U-shaped cross section (see FIG. 4). In these cases, drying can be promoted by standing.
  • a large number of through holes 35 penetrating in the thickness direction of the molded body 33 may be formed.
  • the process of opening the plurality of through holes 35 in the molded body 33 can be easily performed together with the process of molding the outer shape in press molding. This is because the mold can be manufactured with a simple mold with one direction.
  • the air permeability is improved, and drying of the molded body 33 can be promoted. Further, in the crushing step described later, the compact 33 can be easily and uniformly crushed.
  • each through-hole is not limited to the circular shape shown in FIG. 5, but may be other shapes.
  • a circle is good, but for the crushing process, stress is concentrated and breaks easily! /, A shape with corners is good! ,.
  • [0036] 40 is a drying process using aerobic bacteria, and the aerobic bacteria are propagated in the molded body! It is the process of making it dry by making it. Aerobic bacteria generate heat when fermenting, and propagate so that moisture is dispersed during the growth of the bacteria. According to this, it is possible to efficiently dry the formed body without requiring special equipment without consuming other energy.
  • aerobic bacteria there are koji bacteria, natto bacteria and actinomycetes.
  • this drying step 40 can be suitably started by mixing or adding an appropriate aerobic bacterium to the material, but it is also possible to simply mix and leave the material alone. For example, if the waste mushroom bed of mushrooms before breeding of miscellaneous bacteria and okara are mixed, aerobic bacteria will normally propagate naturally and the drying process will be performed.
  • the molded body has a very fine gap 23 and is porous.
  • the gap 23 is also a space where hyphae can grow. For this reason, aerobic bacteria can propagate suitably.
  • nutrients such as “konuka” left in the mushroom waste bed and “okara”, which is an organic caking additive, serve as a nutrient source for aerobic bacteria and promote aerobic fermentation.
  • the waste mushroom bed itself is also made of a fibrous material, and is a material that easily disperses moisture and easily dries due to capillary action or the like. For this reason, it can dry efficiently by drying by the aerobic fermentation and natural drying.
  • sterilization such as heat sterilization should be performed.
  • Reference numeral 50 denotes a crushing step, which is a step of crushing the dried molded body to obtain a solid fuel of a required size.
  • This crushing step is preferably performed before the molded body is completely dried by the drying step. That is, it is good to pulverize a molded object in a semi-dry state. According to this, the molded body is small It can be broken and split by force. Moreover, generation
  • Reference numeral 60 denotes an oil impregnation step, which is a step of impregnating an oil material into a crushed product obtained by crushing a molded body for adjusting calorie calories after the crushing step.
  • the solid fuel produced by the method according to the present invention is a porous material and can absorb a very large amount of oil. For example, it was possible to impregnate up to about 70% of the force ratio and about 1.5 times the weight ratio of the oil material. For this reason, the amount of oil impregnation can be adjusted over a wide range of V, and the amount of combustion heat can be adjusted over a wide range.
  • the solid fuel according to the present invention is crushed and formed into a required size, it tends to form a gap between them when stacked. Therefore, it is easy to dry, and air can be suitably distributed between the solid fuel particles in the combustion furnace, so that it can be burned efficiently.
  • a solid fuel that has a plate-like shape and has a molded body force in which a groove for dividing is formed
  • it may be appropriately divided and burned at the time of use. Since the form immediately before use is plate-like, it can be transported and stored in layers. This compact strength can produce a large amount of solid fuel of approximately the same shape, and can be used as an alternative to soot, for example.
  • the waste mushroom bed of mushrooms is an optimal material for propagating fungi.
  • solid fuel can be produced using other organic substances (organic aggregates and nutrient sources) as raw materials without using them.
  • waste material such as rice straw, crushed wood that has been sterilized by leaving it for a certain period of time, or crushed old wood can be used as organic bone. It can be used as a material.
  • okara can be used as a nutrient source and a caking additive. Also by this, drying by aerobic bacteria propagation is suitably performed.
  • new moth powder has a bactericidal action and is difficult to propagate bacteria. In particular, those made from needle candy have a strong bactericidal action.
  • the organic matter is used as an energy resource to the maximum extent. Can be used.
  • mushroom waste mushroom beds can be used as a binder, and all can be made into biological materials. According to this, it can be suitably used as a sustainable recycling energy source. In addition, if the raw material is specified in this way, the ash after combustion can be effectively used as a highly safe fertilizer.
  • a box-shaped lower mold is formed by setting the frame mold 72 on the plate surface of the bottom mold 71.
  • a kneaded material 25 using at least mushroom waste fungus bed and caking additive as raw materials is put.
  • the kneaded material 25 is in a state having a certain fluidity as described above.
  • a pair of leg portions 71 a is provided at the lower portion of the bottom mold 71. According to this, the nail
  • the pressing mold 73 has a plurality of protrusions 73a protruding downward. Each protrusion 73a is formed in a plate shape.
  • the bottom mold 71 has a hole 71b, and the tip of the protrusion 73a penetrates the hole 71b.
  • the kneaded material 25 is not fluid enough to flow even if the hole 71b is open. For this reason, it presses suitably except the part protruded by the projection part 73a. Further, the bottom mold 71 can be suitably pressed even if it is provided with a small hole for venting air.
  • the pressing die 73 is raised to extract the lower die force.
  • the plurality of protrusions 73a are extracted from the molded body 81.
  • the molded body 81 A plurality of through holes 82 opened in the direction are formed.
  • each protrusion 73a of this embodiment is provided in a plate shape
  • the shape of each through hole 82 is a cross-sectional elongated hole shape (see FIG. 7).
  • the through holes 82 are provided in a form divided into two rows in the length direction of the long hole shape so that the molded body 81 does not easily collapse.
  • the shape and arrangement of the through-holes 82 are not limited to this and can be set appropriately and appropriately.
  • the molded body 81 is transferred to the next step (drying step using aerobic bacteria).
  • drying step using aerobic bacteria By simply transporting the molded body 81 with a forklift without replacing it, no other work is required and it can be performed easily.
  • the through-hole 82 penetrates in the vertical direction, it can be efficiently dried using the convection phenomenon as described above. Therefore, the fixed fuel according to the present invention can be suitably mass-produced.
  • a method of tapering the mold or a method of releasing the mold by vibration using a vibrator can be employed.
  • Example 2 of the method for producing a solid fuel according to the present invention will be described below.
  • FIG. 8 is a process flowchart showing an example of a process related to a method for producing a solid fuel.
  • [0049] 10 is a mixing step, in which organic aggregates such as crushed vegetation and caking materials such as organic sludge are mixed as essential raw materials to obtain a combustible mixture.
  • organic aggregate granular, fibrous or powdery crushed vegetation can be used that is smaller than a predetermined size.
  • oga powder, wood and bamboo crushed into chips, and rice husk can be suitably used.
  • the solid component of organic sludge is composed of fine particles. Such a raw material in which small substances of a certain size or less are collected can be easily mixed using a ribbon mixer.
  • organic aggregate As organic aggregate, at least a part of it is used when mushroom waste bed generated in mushroom bed cultivation, "okara” generated when producing tofu, or coffee beverage. It can be generated coffee scum. Utilizing such industrial waste, recycling energy It can be a source of lugi.
  • At least a part of the binder may be organic sludge. More preferably, organic sludge in which a necessary viscous component is generated by the propagation of microorganisms can be used. It should be noted that general organic sludge is itself viscous and can be used as a caking additive according to the present invention even when the factory power is discharged. This is because organic sludge itself is a fermented product and is often viscous from the beginning. If the organic sludge is stored under appropriate conditions, the viscosity can be further increased by the propagation of microorganisms. The process of storing the organic sludge (storage process) can be called the fermentation process of organic sludge.
  • organic sludge for example, food sludge generated when producing soft drinks can be used. It has high viscosity and can be used suitably.
  • the storage period of the organic sludge is appropriately determined according to the components of the organic sludge, the type of bacteria to be propagated, the conditions until the formation of the organic sludge, and other conditions related to fermentation, for example, storage conditions such as temperature. Can be adjusted.
  • the propagation of microorganisms by storing organic sludge is considered to be mainly anaerobic fermentation by anaerobic bacteria. Natural fermentation can sufficiently obtain viscous components in the process of biodegradation, but of course environmental conditions can be artificially adjusted to promote fermentation.
  • the organic sludge functions as a caking agent, and an appropriate amount may be mixed according to conditions such as the type of organic aggregate.
  • the organic aggregate is a waste mushroom bed of mushrooms, the bulk ratio may be about 20 to 40% with respect to the whole material.
  • organic sludge in order to make organic sludge function as a caking additive, it is good to contain a water
  • the moisture content of the organic sludge may be appropriately adjusted in relation to other materials to be mixed. Therefore, if necessary, the water content may be adjusted by a mechanical dehydration process such as dehydration by pressure or dehydration by centrifugation. For example, if organic aggregate is mixed with 30% organic sludge in a waste mushroom bed of mushrooms, the moisture content of the organic sludge can be adjusted to about 80% without any adjustment. Needless to say, if the entire material to be mixed is deficient in water, water may be added. In the present invention, it is possible to avoid excessive energy consumption due to such a drying step, which does not require a step of drying organic sludge by heating or decompression.
  • binders those having starch-sugar components can be used for organic materials, and clay and bentonite, which are inorganic swelling materials, can be used for organic materials. These binders may be used alone or in combination with the organic sludge as the binder described above. When used in combination with organic sludge, moldability can be improved by using a small amount. For example, if corn starch or bentonite is mixed in the range of 1% to several percent by weight of the whole material.
  • corn starch and bentonite are supplied in a dry state, they can be suitably used for raw materials with a high water content. That is, it also functions as a moisture adjusting material. In addition, when the amount of these binders is large, the moisture may be insufficient. In that case, water may be mixed as one material and a kneading step described later may be performed.
  • organic aggregate and caking additive are essential materials, it is needless to say that various other materials can be mixed.
  • an oil material can be mixed as a raw material of the mixture. And that oil At least a part of the material can be used as food waste oil generated when fried.
  • waste oils such as food waste oil, can be utilized and cost does not start.
  • the oil material is not limited to waste oil for food, but it is also possible to use industrial waste oil that emits factory power.
  • the addition of the oil material may be performed by impregnating the organic aggregate prior to the mixing step of mixing the entire material. That is, as shown in FIG. 8, 50 is an oil impregnation step, and prior to the mixing step 10, the oil material is impregnated into the organic aggregate.
  • the organic aggregate can absorb the oil material quickly and uniformly, and the oil material can be mixed efficiently.
  • an oil material can be impregnated to a volume ratio of about 1 Z3. It should be noted that the oil material can be suitably absorbed even in the chip-shaped wood.
  • the combustion calories of solid fuel can be raised by mixing an oil material.
  • Organic sludge can solve the problem because it contains a relatively large amount of inorganic matter and has a weak thermal power.
  • the calorie content can be easily adjusted by adjusting the amount of oil mixed.
  • a crushed material of plastic waste or a crushed material of living waste such as garbage may be mixed.
  • a crushed material of living waste such as garbage
  • squeezed waste and food residues generated at the factory when manufacturing fruits and vegetable drinks can be used.
  • the squeezed casks include, in addition to juice casks, tea leaves that are the remaining casks of tea.
  • the thinned material or the crushed material of the pruned material can be used as a raw material.
  • crushed materials of wood and grass are used as organic aggregates.
  • Tree bark is also available. It is a combustible material with high combustion calorie and can effectively use forest resources.
  • any material can be suitably used as long as it is combustible and adjusted to a predetermined size or less.
  • the organic aggregate retains the fibers so as to entangle other raw materials such as organic sludge and oil, thereby improving the moldability of the molded product (solid fuel).
  • the fiber functions as an aggregate on the same principle as reinforced plastic, and the strength (shape retention) of the solid fuel (molded product) can be improved.
  • a biaxial crushing device In order to suitably crush thinned wood, pruned wood, etc., a biaxial crushing device can be used.
  • tea husk contains a lot of fiber and can be used as a kind of organic aggregate, and it is suitable for use as a kind of caking additive because it does not generate bad odor even if it is fermented and develops viscosity. it can.
  • fruits and vegetables such as apples and tangerines are used as raw materials
  • the solid component functions as an organic aggregate
  • the fruit juice functions as a caking additive and a water component.
  • a material having both properties of an organic aggregate and a binder can be used as described above.
  • both strength and strength are raw materials having both properties because strong viscosity is produced by fermentation.
  • organic materials containing oil are used as raw materials, the properties of both organic aggregates and oil materials can be used.
  • Reference numeral 20 denotes a kneading step, which uses a water component composed of water contained in a raw material such as organic sludge or water introduced as a part of the raw material, with a mixture of organic aggregate and caking additive. And kneading to obtain a kneaded product having formability.
  • organic sludge can be suitably used as described above.
  • the adhesive action of the organic sludge as a caking agent functions suitably due to the presence of the organic aggregate, and a clay-like kneaded material having extremely high formability is produced.
  • a clay-like kneaded material having extremely high formability is produced.
  • organic sludge generated during juice production into the mushroom waste bed it was possible to obtain a kneaded clay with high moldability. Then, by drying the molded product having the kneaded product strength, a solid fuel having high shape retention could be obtained.
  • caking materials it is not necessary to mix other caking materials. That is, as another caking agent, as described above, corn starch or the like can be used if it is organic, and bentonite or the like can be used if it is inorganic. However, even when such materials are not used, sufficient shape retention can be obtained under appropriate conditions.
  • a biaxial kneader can be used.
  • the mixing step and the kneading step described above may be continuously performed by an integrated apparatus.
  • [0064] 30 is a molding step, in which a pressure is applied to the kneaded product to obtain a molded product having a shape that creates a gap between them when stacked.
  • a molded product having a required kneaded product force can be formed by extrusion molding, press molding, or roll molding.
  • an existing molding method or molding apparatus can be used.
  • a product extruded into a rod shape or cylinder shape by an extrusion die can be cut into a cylindrical or cylindrical piece (see Fig. 9) by simply cutting it. Also, it may be molded into curled pieces (see Fig. 10)!
  • the kneading step and the molding step described above may be continuously performed by an integrated apparatus.
  • Reference numeral 40 denotes a drying step, which is a step of drying the molded product.
  • the shape of the molded product is such that a gap is generated between the molded products when stacked, it is easy to dry morphologically.
  • the organic sludge as a raw material contains a lot of water
  • the organic aggregate if the organic aggregate is dry, the water content of the mixture as a whole is averaged, which contributes to increase the drying efficiency.
  • the organic aggregate contributes to increase the efficiency of drying that facilitates the dispersion of moisture by the capillary action of the fiber.
  • the solid fuel characterized by being produced by the above production method has a high density because it is molded by being pressurized. For this reason, it is suitable as a fuel with high calorie burn. Can be used. In addition, those to which oil material is added can have even higher burned calories.
  • the solid fuel according to the present invention is formed into a required shape that creates a gap between the two when stacked, and its shape retention is high. For this reason, air can be circulated in a furnace that can be easily stored and transported, so that it can be burned efficiently.
  • this solid fuel is not specifically limited.
  • this solid fuel dried organic matter dried in a solid state
  • this solid fuel may be pulverized into a granular or powder form and fluidly supplied to a combustion furnace by a screw conveyor or the like and burned! It is.
  • the organic matter that is not biodegraded wastefully and converted into a carbon dioxide gas or the like as when composting is matured can be utilized to the maximum extent as a resource.
  • an organic combustible material composed of a fine material or an easily crushed material is kneaded together with a water component so that the cellular tissue is ground and destroyed to form a moldable state. There is one point. Then, the product having such formability is formed into a solid and dried. Furthermore, the drying can be accelerated by crushing the solid molded product during the drying.
  • the raw material is not limited to the mushroom waste bed.
  • corn cob meal itself or dried garbage can be used as an organic aggregate, and organic sludge or moisture-rich garbage can function as a binder.
  • organic sludge or moisture-rich garbage can function as a binder.
  • As corn cob meal what is pressed after crushing also functions as a moisture conditioner with high water absorption. Press By the reasoning, the tissue is crushed and destroyed, and the water absorption is improved.
  • Virgin corn cob meal which is not used for other uses such as mushroom medium, has a high combustion calorie and is suitable as a component of solid fuel.
  • “Okara” can be used as both an organic aggregate and a binder.
  • the reason that “okara” also functions as a caking agent is thought to be due to the destruction of cells and the formation of adhesive components by heat treatment. Therefore, if “Okara” is properly kneaded alone, moldability is produced.
  • the fungus bed of mushrooms was also heat-treated once to eliminate germs as a medium. In other words, the organic material that has been subjected to the heat treatment can be suitably used as a binder.
  • the present invention is one of the techniques for drying organic substances having a high water content, and the dried organic substances dried according to the present invention can be used as feedstock for livestock or raw materials for agricultural fertilizers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 水分を含んだ廃棄物等の材料からでも容易且つ安価に製造できる固形燃料及びその製造方法を提供すること。  キノコの菌床栽培において発生するキノコの廃菌床と粘結材とを混合して可燃性の混合物を得る混合工程10と、前記混合物を、水成分を利用して練ることによって、成形性の生じた混練物を得る混練工程20と、前記混練物から、所要の圧力を加えることで成形体を得る成形工程30と、前記成形体において、好気性菌を繁殖させることによって乾燥させる好気性菌による乾燥工程40と、その乾燥工程40で乾燥された前記成形体を破砕して所要サイズの固形燃料を得る破砕工程50とを選択的に実施する。

Description

明 細 書
固形燃料及びその製造方法
技術分野
[0001] 本発明は、固形燃料の製造方法と、その方法によって製造された固形燃料に関す る。
背景技術
[0002] 化石燃料の大量消費による地球温暖化の問題や、資源の枯渴によるエネルギー 問題に対応して、持続可能な循環型エネルギー源の開発が課題となって 、る。
また、大量消費社会の進展に伴って、大量の産業廃棄物や生活廃棄物が発生し、 それらを資源として再利用することが社会的な課題となっている。
これに対し、例えば、公共下水や工業排水を処理する際に発生する有機汚泥は、 可燃成分を含んでおり、ある程度まで脱水すると燃焼できる。この点に着目して、脱 水した有機汚泥に廃油を混合し、加圧成形して固形燃料を製造する方法が提案され ている (特許文献 1参照)。
[0003] しかし、この脱水した有機汚泥と廃油から成形された固形燃料では、「固形」といつ ても保形性が十分でなぐ簡単に形が崩れるという欠点があった。そのため、保管や 運搬、燃焼炉での使用について、取り扱いが難しかった。
これに対しては、乾燥した有機汚泥等と粉砕したプラスチックを混合し、成形する際 に加熱することで、そのプラスチックをバインダーとして利用する方法が提案されて ヽ る(特許文献 2参照)。この方法では、保形性を向上できるが、有機汚泥を単に脱水 するだけでなく事前に乾燥し、成形する際には加熱することを要する。
特許文献 1:特開昭 61— 296号公報 (第 1頁)
特許文献 2:特開平 09— 87646号公報 (第 1頁)
発明の開示
発明が解決しょうとする課題
[0004] 固形燃料及びその製造方法に関して解決しょうとする問題点は、従来のプラスチッ クをバインダーとして保形性を向上させる場合、水分を含んだ廃棄物等の材料を事 前に乾燥させる工程や、加熱成形工程が必要となる点にある。その乾燥工程や成形 工程では、大きな熱量を要する。また、特別な乾燥装置や加熱成形装置を要するた め、装置が複雑化'大型化してしまう。このため、製造コストを低減できない。
そこで、本発明の目的は、水分を含んだ廃棄物等の材料からでも容易且つ安価に 製造できる固形燃料及びその製造方法を提供することにある。
課題を解決するための手段
[0005] 本発明は、上記目的を達成するために次の構成を備える。
本発明に係る固形燃料の製造方法の一形態によれば、菌類の繁殖した有機物が 少なくとも一部に含まれた可燃物原料を、含まれる水分を利用して練って成形性の 生じた状態とし、固形状に成形した後、乾燥する。
[0006] また、本発明に係る固形燃料の製造方法の一形態によれば、前記可燃物原料を練 つて成形性の生じた状態で、所要の圧力を加えて菌類の繁殖可能な固形状に成形 することを特徴とすることができる。
また、本発明に係る固形燃料の製造方法の一形態によれば、前記可燃物原料を固 形状に成形したものを、破砕して乾燥することを特徴とすることができる。
また、本発明に係る固形燃料の製造方法の一形態によれば、前記菌類の繁殖した 有機物が、キノコの廃菌床であることを特徴とすることができる。
[0007] また、本発明に係る固形燃料の製造方法の一形態によれば、草質材の微細物が 原料として含まれた培地によってキノコが収穫された後のキノコの廃菌床を、含まれる 水分を利用して練って成形性の生じた状態とし、固形状に成形した後、乾燥すること を特徴とする。
また、本発明に係る固形燃料の製造方法の一形態によれば、前記草質材の微細 物の少なくとも一部力 トウモロコシの芯を破砕して設けられたコーンコブミールであ ることを特徴とすることができる。
また、本発明に係る固形燃料の製造方法の一形態によれば、前記キノコの廃菌床 を練って成形性の生じた状態で、所要の圧力を加えて菌類の繁殖可能な固形状に 成形することを特徴とすることができる。
また、本発明に係る固形燃料の製造方法の一形態によれば、前記キノコの廃菌床 を固形状に成形したものを、破砕して乾燥することを特徴とすることができる。
[0008] また、本発明に係る固形燃料の製造方法の一形態によれば、原料を練って成形性 の生じた状態とするために、粘結材を混合することを特徴とすることができる。
また、本発明に係る固形燃料の製造方法の一形態によれば、原料を練って成形性 の生じた状態とするために、加水又は脱水によって水分調整することを特徴とするこ とがでさる。
また、本発明に係る固形燃料の一形態によれば、上記の固形燃料の製造方法によ つて製造されたことを特徴とする。
発明の効果
[0009] 本発明に係る固形燃料及びその製造方法よれば、水分を含んだ廃棄物等の材料 カゝらでも、固形燃料を容易且つ安価に製造できると ヽぅ特別有利な効果を奏する。 図面の簡単な説明
[0010] [図 1]本発明に係る固形燃料の製造方法の工程例を示す流れ図である。
[図 2]本発明に係る混練物の形態例を示す拡大説明図である。
[図 3]本発明に係る成形体の形態例を示す斜視図である。
[図 4]本発明に係る成形体の他の形態例を示す斜視図である。
[図 5]本発明に係る成形体の他の形態例を示す斜視図である。
[図 6]本発明に係る成形体の成形工程の例を示す断面図である。
[図 7]本発明に係る成形体の成形工程の例を示す斜視図である。
[図 8]本発明に係る固形燃料の製造方法の他の工程例を示す流れ図である。
[図 9]本発明に係る固形燃料の形態例を示す斜視図である。
[図 10]本発明に係る固形燃料の他の形態例を示す斜視図である。
符号の説明
[0011] 10 混合工程
20 混練工程
21 ォガ粉
22 粘結材
30 成形工程 31 成形体
32 突起部
33 成形体
35 貫通孔
40 乾燥工程
50 破砕工程
60 含油工程
81 成形体
82 貫通孔
発明を実施するための最良の形態
[0012] 本発明に係る固形燃料の製造方法の最良の形態例について以下に説明する。
この固形燃料の製造方法は、菌類の繁殖した有機物が少なくとも一部に含まれた 可燃物原料を、含まれる水分を利用して練って成形性の生じた状態とし、固形状に 成形した後、乾燥することを基本的な工程要素とする。
[0013] 菌類の繁殖した有機物が、キノコの廃菌床である場合、好適に固形燃料を製造で きる。 特に、草質材の微細物が原料として含まれた培地によってキノコが収穫され た後のキノコの廃菌床を、含まれる水分を利用して練って成形性の生じた状態とし、 固形状に成形した後、乾燥することによれば、好適に固形燃料を製造できる。草質材 の場合、菌類が繁殖しやすぐ粘着性が生じ易い。但し、木質材の微細物 (ォガ粉) を含むキノコの廃菌床にあっても、同等の粘着性を得ることができた。なお、可燃物 原料 (キノコの廃菌床等)は、特別に乾燥されることなく練られる。
これによれば、可燃物原料 (キノコの廃菌床)自体が、粘結材としても機能し、練ら れることのみで好適な成形性を生じる。つまり、練ること〖こよって、粘りが出て、水を含 んだ粘土のような成形性が発生する。これは、強く均一に練ることによって、菌糸等が 擦り潰されると共に、その練りの圧力で材料力 空気が押し出されて水分が出てくる ことによる。
以上の工程による場合、図 1の工程図におけるキノコの廃菌床と粘結材とを混合す る工程を省略できる。 なお、この発明における練り工程とは、菌糸等の材料を擦り潰して、その材料の有 する粘着性を発現させる擦り潰しを含む工程ということができる。
[0014] さらに、前記草質材の微細物の少なくとも一部が、トウモロコシの芯を破砕して設け られたコーンコブミールであることで、キノコの廃菌床自体によって粘結性を十分に得 ることができ、好適に固形燃料を製造できる。
なお、草質材の微細物としてコーンコブミールの他に、もみ殻や、お力も等が混合さ れて、キノコ栽培用の配合培地が構成される場合が多い。
[0015] エノキを栽培した際に発生したキノコの廃菌床を、二軸式の練り機 (混練機)によつ て練ったところ、粘土状に捏ねられた状態の成形性に富むもの (練り状物)を得ること ができた。その練り状物は、練り機から団粒状になって排出された。そして、所要量の 練り状物を型に入れてプレスして成形したところ、保形性の高 ヽ成形体を得ることが できた。
このように、キノコの廃菌床のみによっても、保形性の高い成形体を得ることができ るのは、培養されたキノコ菌糸自体が擦り潰されると粘着性や団粒性を生じると共に、 キノコ栽培用培地に粘性を生じ易い栄養素が混合されているためである。その栄養 素としては、こねか、ふすま、お力も等が適宜に配合されている。
[0016] ここで、キノコの廃菌床とは、菌類が繁殖した有機物の代表的なものであり、キノコ の菌糸が繁殖した状態と、好気性菌等の他の菌類が入って繁殖した状態の両方の 場合がある。他の菌が入って発酵することで粘着性を増すため、キノコを収穫した直 後の廃菌床でなくとも、固形燃料の原料として好適に利用できる。
キノコ、カビ、酵母などの菌類の細胞壁にはキチンやキトサンが存在し、その細胞壁 が擦り潰されることで粘結材として寄与する。
[0017] なお、本発明は、キノコの廃菌床を原料とすることに限定されるものではなぐ菌類 が繁殖したものであれば、例えば、ビールかす、ジュースかす、おから、生ゴミ、汚泥 等の廃棄物を原料とすることができる。それらの原料によっても、菌類が繁殖すれば 、同等の効果を得ることができる。例えば、おからに納豆菌等の菌類を繁殖させたも のを、前記の可燃物原料とすれば、上記の製造方法で、好適に固形燃料を製造でき る。 [0018] また、キノコの廃菌床等の可燃物原料を練って成形性の生じた状態で、所要の圧 力を加えて菌類の繁殖可能な固形状に成形すれば、乾燥を促進させることができる ここで菌類の繁殖可能な所要の圧力とは、植物原料のリグニンが融けるような高い 圧力ではなぐ菌類が繁殖できるように押し固める程度の圧力である。つまり、菌類を 死滅させるような高圧や、ペレットストーブに利用されるペレットを製造する際のような 高圧ではない。
菌類は培地が適度の厚さに押し固められた方が繁殖し易い性質があり、好気性菌 が繁殖する際に発生する発酵熱を利用し、乾燥を成形体の内部から促進できる。な お、通常は、好気性菌等を特別に添加する必要はなぐ練って押し固めたものを放 置しておくと、天然の好気性菌が自然に繁殖する。
また、キノコの廃菌床等の可燃物原料が練られる際には、圧力を加えられて擦り付 けられることによる摩擦熱が発生し、その熱が好気性菌等の菌類の繁殖を促進させる
[0019] また、キノコの廃菌床等の可燃物原料を固形状に成形したものを、生乾き状態で破 砕すれば、乾燥を促進させることができる。これは、固形体の表面積を大きくでき、水 分の蒸発作用を高めることができるためである。また、乾燥が進むに従って成形体が 硬くなる。このため、成形体が完全に乾燥する前に破砕すれば、容易に割ることがで き、破砕エネルギーを低減できる利点がある。
なお、生産される固形燃料の大きさは、破砕の程度によって自由に設定できる。例 えば、成形体を 3〜: LOcm程度の厚さの板ブロック状に形成し、その成形体を破砕' 乾燥して、こぶし大の固形燃料を製造したところ、送風機のない構造の簡単なスト一 ブで非常に良く燃焼させることができた。
[0020] また、原料を練って成形性の生じた状態とするために、粘結材を混合しても良いの は、勿論である。粘結材の混合に関する詳細は、後述の形態例で詳しく説明する。 さらに、原料を練って成形性の生じる状態とするためには、加水又は脱水によって 適宜に水分調整すれば良い。なお、菌類が繁殖した有機物は、一般的に高水分の 材料であって適度な水分を含んでおり、水分調整を行なう必要のな!、ケースも多 ヽ。 また、一旦乾燥させたものを再度原料に混合し、水分調整をしてもよい。これによれ ば、固形燃料の製造過程で発生する乾燥した粒や粉状の原料を有効に利用できる 。なお、元々乾燥しているもの、例えば、シュレッダーで破断された紙を水分の調整 材として用いてもょ 、のは勿論である。
[0021] ところで、この固形燃料の製造方法は、高水分の有機系廃棄物等の画期的な乾燥 方法にもなつている。乾燥することによって、長期的な保存が可能となり、固形燃料の 他に、家畜の飼料や植物の肥料等、他の用途の原料にもなり得る。
また、乾燥施設としては、農作物の加温用ハウス (温室やビニールハウス等)を活用 すればよい。そして、本発明によって製造された固形燃料は、構造の簡単なストーブ で薪と同等以上に燃焼できるため、農作物の加温用ハウスの燃料等として、灯油や 重油の代替エネルギーになる。
また、成形工程と乾燥工程の一例としては、前記練り状物を、通気性の良い籠状の 容器内で板状に押し固め、その籠状の容器を通気性の良い多段の棚に並べて置く こと或は積み重ねることによって乾燥させてもよい。スペース的に、効率良く乾燥でき る。
実施例 1
[0022] 次に、本発明に係る固形燃料の製造方法の実施例 1について図面に基づいて以 下に説明する。
図 1は、以下の形態例に係る固形燃料の製造方法の工程を示す流れ図である。
[0023] 10は混合工程であり、キノコの菌床栽培において発生するキノコの廃菌床と粘結材 とを混合して可燃性の混合物を得る工程である。
キノコの廃菌床は、後述する混練工程や成形工程等を通じて有機骨材として機能 する。また、キノコの廃菌床を構成する原料の主成分は、ォガ粉及び Z又はコーンコ ブミールである。草質のコーンコブミールが配合されていることで、後述する乾燥工程 で、好気性菌が繁殖しやすくなる。また、キノコの廃菌床には、キノコを生長させるた めのこぬか等の栄養素が残留しており、これを栄養源として好気性菌が良く繁殖でき る。
なお、キノコの廃菌床に加えて、後述する乾燥工程において菌類の繁殖を妨げな い原料であれば、他の粒状や粉状の微細な原料を混合してもよい。例えば、有機骨 材及び粘結材の一例として、豆腐を製造する際に発生する「おから」を利用すること ができる。
[0024] キノコの廃菌床と粘結材とは、例えば、リボンミキサーを利用して容易に混合できる 。キノコの廃菌床は、元々、ォガ粉やトウモロコシの芯の破砕物(コーンコブミール)を 主体としてこぬか等の栄養分が配合'混合されたキノコの培養基である。従って、リボ ンミキサー等による混合工程で、容易に細粒状又は微粉状になる。
また、キノコの廃菌床は、その主要成分が、ォガ粉やコーンコブミール、キノコの収 穫後の菌糸であり、有機繊維質の塊から成る素材でもある。
[0025] ところで、このキノコの廃菌床は、堆肥化されて使用されることが一般的であり、従来 から燃料としては適切に活用されてこな力つた。
その理由は、キノコの廃菌床が水分を含んだ微細物の集合体であり、堆積させた状 態で保存した場合、乾燥しにくい点にある。短時間で腐敗して悪臭を発生しやすぐ 取り扱いが難しい。また、乾燥できたとしても、粉々になって飛散し易ぐ取り扱いが 難しいことが考えられる。
[0026] 粘結材は、おから等の有機質及び Z又はベントナイト等の無機質であればよぐ粘 着性を有し、菌類の繁殖を許容する材料を適宜選択的に利用できる。
有機物の粘結材としては、おから、有機汚泥、コーンスターチ、デンプンゃ糖類の 成分を有する物等を利用できる。お力ゝらゃ有機汚泥は廃棄物であり、どこでも簡単〖こ 入手できる。コーンスターチも入手し易ぐその中に含まれる a—デンプンに強い粘 着性がある。また、家庭力も排出されるほとんどの生ゴミにも、デンプンゃ糖類の成分 が多く含まれるため、粘結材として利用できる。
[0027] 無機物の粘結材としては、無機質膨潤材である粘土やベントナイトを使用すること ができる。ベントナイトが強い粘着性を有し、入手性も高い。
以上の粘結材は、単独で用いても良いし、他の粘結材と併用することもできる。例え ば、お力もや有機汚泥に対して、コーンスターチやベントナイトを併用すればよい。こ の場合、コーンスターチやベントナイトを材料全体に対して重量比 1%から数%の範 囲で混合すればよい。なお、それらの粘結材の混合比率は特に限定されるものでは なぐ多いほど硬い固形燃料を製造できる。
なお、コーンスターチやベントナイトは、乾燥した状態で供給されるため、水分の多 い原料に好適に対応できる。つまり、水分調整材としても機能する。また、これらの粘 結材の分量が多い場合は、水分が不足する場合もある。そのときは、水を一つの材 料として混合し、後述する混練工程を行えばよい。
[0028] また、有機物を発酵させて粘結材として利用できる。例えば、おからは、元々粘着 性を有するが、これを菌類で発酵させると、高い粘着性が生じる。
具体的には、キノコの廃菌床に、納豆菌で発酵させたおからを混合 '混練して成形 したところ、保形性の高い成形体を得ることができた。これによれば、他の粘結材を混 合することなぐ成形することができた。
このような菌類の繁殖によって有機物の粘着性を向上させる処理は、おからに限定 されるものではない。例えば、ジュース残渣等の食物残渣ゃ有機汚泥等の有機物に っ ヽても同様に処理することができる。
また、キノコの廃菌床自体にも粘着性があり、粘結材としても機能する。
[0029] また、本形態例では、有機骨材としてのキノコの廃菌床と、粘結材 (キノコの廃菌床 自体も含む)とを原料とするが、他の種々の材料を混合できることは勿論である。但し 、後述する乾燥工程において、菌類の繁殖を許容するものであるとよい。
他の材料としては、例えば、油材を混合することも可能である。これによれば、滑り が良くなり、混練性や離型性を向上させることができる。また、油の酸ィ匕重合によって 粘結性も向上する。油を混合するタイミングは特に限定されないが、キノコの廃菌床( 有機骨材)と粘結材を混合する前に、有機骨材に油材を含浸させると効率よく分散で きる。
[0030] 20は混練工程であり、キノコの廃菌床と粘結材の混合物を、キノコの廃菌床等の原 料に含まれる水分又は原料の一部として投入された水によって構成される水成分を 利用して練り、成形性の生じた混練物を得る工程である。
粘結材としては、前述したようにお力も等を好適に利用できる。おからの粘結材とし ての粘着作用が、有機骨材としてのキノコの廃菌床の存在によって好適に機能して、 成形性の高い粘土状の混練物が生成される。おからは、前述したように、納豆菌等 で発酵させておくことで、その粘着性を高めることができる。
[0031] なお、より強い保形性を得るために、有機物であればコーンスターチ等、無機物で あればベントナイト等を添加することができる。コーンスターチの場合は、菌類を繁殖 させるための栄養素ともなる利点がある。また、ベントナイトは菌類によって分解 '吸収 されることなぐその粘結性の発現を維持できる利点がある。
また、この混練工程には、例えば、二軸式の混練機を利用できる。なお、前述の混 合工程と混練工程は、一体的な装置又は一つの装置によって、連続的に或いは同 時に行われてもよい。
[0032] また、この混練工程にぉ 、ては、前記キノコの廃菌床を構成するォガ粉等の粒状 体の表面に、粘結材が薄くコーティングされるように、水分量や粘結材の量を調整す るとよ 、。
図 2に示すように、水分量等が好適に調整された混練によれば、ォガ粉 21の表面 が粘結材 22の薄 、層によって被覆される。そのォガ粉 21同士が接触した部分では 粘結材 22によって粘結作用が生じ、ォガ粉 21同士が粘結材 22を介して接合した状 態となる。
このとき、ォガ粉 21同士が接触していない部分の間には、空隙 23が生じる。このた め、混練物全体としては、多孔質の塊になる。
[0033] 30は成形工程であり、前記の混練物から、所要の圧力を加えることで成形体を得る 工程である。例えば、プレス成形、ロール成形、或いは押出し成形によって、混練物 力も一定形状の成形物を得ることができる。
この成形工程には、既存の成形方法や成形装置を用いることができる。 例えば、前記の混練物を細粒化して成形型へ供給し、プレス成形によって成形体 を得る方法を採用すればよい。さらに詳細に説明すれば、先ず、混練されることで形 成された塊を、ブラインダ一と呼ばれる装置によって細粒状にほぐす。これによつて 半流動化された混練物を、成形型の下型内へ投入する。次に、所要量の混練物が 下型へ適切に入るように、振動を加えることや、搔き均すことを適宜行う。そして、上 型を作動させてプレスすることで、成形体を得る。なお、原料や装置等の条件によつ て、混練物が大きな塊りにならず、団粒状の場合は、ブラインダーを必要としない。 この成形体は、図 2に示した混練物の如く適度な空隙 23を有する多孔質となるよう に、適度な圧力によって成形されるとよい。なお、乾燥前の状態では、空隙 23の部分 には水分が満たされている状態となっており、成形体は粘土状となっている。
[0034] また、この成形工程においては、成形体の表面に他部材との接触する部分が小さく なるように突起部を形成するようにしてもよい。さらに、この成形工程においては、成 形体に溝を形成してもよい。溝を適宜に形成することで、成形体を、後述する破砕ェ 程で均一の大きさに且つ小さな力で破砕できる。このような突起部や溝は、前述のよ うなプレス成形によって簡単に設けることができる。
図 3は、表面に突起部 32が形成された板状の成形体 31の一例を示す斜視図であ る。このように突起部 32を形成することで、複数の成形体 31を並べて置いた際に、そ の成形体 31同士の接触する部分を可及的に小さくすることができる。これによれば、 乾燥を促進させるための空気の通路を好適に確保することができる。従って、乾燥時 間を短縮でき、結果として安価に製造できる。
なお、成形体は起立させた状態で乾燥させるとよい。対流現象による上昇気流を利 用して、乾燥を促進できる。また、成形体の形状は、板状に限らず、円筒状や断面が U字状(図 4参照)の長尺形状にしてもよい。これらの場合も起立させることで乾燥を 促進できる。
[0035] また、この成形工程においては、図 5に示すように、成形体 33の厚さ方向に貫通す る貫通孔 35を多数形成してもよい。このように複数の貫通孔 35を成形体 33に開ける 工程は、プレス成形において、外形を成形する工程と共に容易に行うことができる。こ れは、型割方向が一方向の簡単な型で製造できるためである。
このような複数の貫通孔 35を設けることで、通気性がよくなり、成形体 33の乾燥を 促進できる。また、後述する破砕工程では、成形体 33を容易且つ均一に破砕できる 禾 IJ点ちある。
なお、各貫通孔の断面形状は、図 5に示した円形に限定されるものではなぐ他の 形状でもよい。型抜きのためには、円形が良いが、破砕工程のためには、応力が集 中して破断しやす!/、角部のある形状が良!、。
[0036] 40は好気性菌による乾燥工程であり、前記の成形体にお!、て、好気性菌を繁殖さ せることによって乾燥させる工程である。好気性菌は、発酵する際に熱を発生し、菌 の生長過程において水分を分散するように繁殖する。これによれば、他のエネルギ 一を消費することなぐ特別な設備も必要とすることなぐ成形体を効率よく乾燥できる 。なお、好気性菌は、代表的なものとして、こうじ菌、納豆菌ゃ放線菌がある。
ところで、この乾燥工程 40は、適当な好気性菌を材料に混合又は投入することで 好適に開始できることは勿論である力 材料を単純に混合して放置するだけでもよ ヽ 。例えば、雑菌が繁殖する前のキノコの廃菌床とおからを混合すれば、通常の場合、 好気性菌が自然に繁殖して乾燥工程が行われる。
また、この乾燥工程においては、好気性発酵によって発熱させた後、前記成形体の 保形性を向上させるベく放線菌等の菌類の菌糸を生長させるようにしてもよい。これ によれば、成形体の形状をより好適に維持しつつ、より効率よく乾燥できる。
[0037] ところで、好気性発酵は多くの酸素を必要とするため、空気を強制的に供給する手 段 (送風装置等)を用いるとよい。なお、成形体は、図 2に示すように極めて微細な空 隙 23を有し、多孔質に設けられる。その空隙 23は菌糸の生長できる空間ともなって いる。このため、好気性菌は好適に繁殖できる。
ところで、キノコの廃菌床に残された「こぬか」等の栄養素や有機質の粘結材である 「おから」は、好気性菌の栄養源となり、好気性発酵を促進させる。
また、キノコの廃菌床自体も、繊維質の材料から構成されており、毛細管現象等に よって水分を分散し易ぐ乾燥しやすい素材になっている。このため、上記の好気性 発酵による乾燥と自然乾燥によって効率良く乾燥できる。
但し、加熱や送風をすることで、強制的に乾燥することを妨げるものではない。その 場合も、以上に説明した理由から、少ないエネルギーで効率良く乾燥できる。
なお、菌類の繁殖を止めたい場合や、固形燃料ィ匕した後に菌類が繁殖することを 防止するためには、加熱殺菌等の殺菌処理を行えばょ 、。
[0038] 50は破砕工程であり、乾燥された前記の成形体を破砕して所要サイズの固形燃料 を得る工程である。
この破砕工程は、乾燥工程によって前記の成形体が完全に乾燥する前に行うとよ い。つまり、成形体が半乾きの状態で破砕するとよい。これによれば、成形体を小さな 力で破断'分割することができる。また、破断による細力な粉塵の発生を抑制できる。 そして、破砕工程によって、表面積の大きな破砕面が生じるため、乾燥を促進でき る。これにより、好気性菌による乾燥工程を引き継いで、破砕工程の後に乾燥が効率 よく進む。これ〖こより、固形燃料を低コストで製造できる。
[0039] 60は含油工程であり、破砕工程の後、燃焼カロリーを調整すベぐ成形体が破砕さ れて成る破砕物に油材を含浸させる工程である。
本発明にかかる方法で製造された固形燃料は、多孔質素材となっており、極めて 多量の油材を吸い込むことができる。例えば、力さ比では 70%程度まで、重量比で は、 1. 5倍程度までの油材を含浸させることができた。このため、油材の含浸量を広 V、範囲で調整することができ、燃焼熱量を広!、範囲で調整できる。
[0040] また、本発明に係る固形燃料は、破砕されて所要のサイズに形成されるため、積み 置きした際に相互間に空隙を生じる形態となりやすい。従って、乾燥しやすいと共に 、燃焼炉内でも固形燃料の粒同士の間を空気が好適に流通でき、効率よく燃焼でき る。
また、その保形性も高いため、保管や搬送を好適に行うことができる。
[0041] ところで、成形体のままで乾燥が十分になされる場合は、好気性菌による乾燥工程 の後の破砕工程を必要としな 、。
例えば、板状に且つ分断するための溝が形成された成形体力もなる固形燃料によ れば、使用時に適宜分割して燃やせばよい。使用する直前の形態が板状であること で、重ねて搬送'保管ができる。この成形体力 は略同一形状の固形燃料が大量に 得られ、例えば、薪の代替品として利用できる。
[0042] また、以上に説明してきたように、キノコの廃菌床は菌類を繁殖させる上で最適の 材料である。しかし、これを使用しないで他の有機物 (有機骨材や栄養源)を原料とし ても固形燃料を製造できる。
例えば、キノコの廃菌床に代えて、稲わら等の草質材、一定の期間を放置すること で殺菌作用が低下した木材の破砕物ゃォガ粉、或いは古材の破砕物を有機骨材と して利用できる。そして、例えば、おからを栄養源及び粘結材として利用できる。これ によっても、好気性菌の繁殖による乾燥が好適になされる。 これに対して、新しいォガ粉は、殺菌作用があり、細菌を繁殖させにくい。特に針葉 榭を原料とするものは殺菌作用が強い。
[0043] また、本発明によれば、堆肥を熟成する際のような有機質の多くが生分解されて炭 酸ガス等に変換される場合と比較し、その有機質をエネルギー資源として最大限〖こ 活用できる。
また、原料がキノコの廃菌床ゃ粘結材としてのお力 等であり、全てを生物素材と することができる。これによれば、持続可能な循環型エネルギー源として好適に活用 できる。また、このように原料が特定された燃料であれば、燃焼した後の灰も、安全性 の高い肥料として有効に活用できる。
[0044] 次に、図 6及び図 7に基づいて、本発明に係る固形燃料を量産するための製造方 法及びその装置について説明する。
先ず、図 6 (a)に示すように、底型 71の板面上に枠型 72が載置された状態にセット されることで、箱形の下型が形成される。その下型の中に、少なくともキノコの廃菌床 と粘結材とを原料とする混練物 25が投入される。このとき、混練物 25は、前述したよう に、一定の流動性を有する状態となっている。なお、底型 71の下部には、一対の脚 部 71aが設けられている。これによれば、フォークリフトの爪を挿入でき、搬送や保管 を好適に行うことができる。
[0045] 次に、図 6 (b)に示すように、上型である押圧型 73を下降させて、混練物 25をプレ スし、成形体 81をつくる。この押圧型 73には、突起部 73aが下方へ複数突設されて いる。各突起部 73aは、板状に形成されている。また、底型 71には孔 71bが開いて おり、突起部 73aの先端部は、その孔 71bを突っ切る。なお、混練物 25は、孔 71bが 開いていても、流れ出るほどの流動性がない。このため、突起部 73aによって突き出 される部分を除いて好適にプレスされる。また、底型 71には、空気抜きのための小孔 を設けてぉ ヽても好適にプレスできる。
なお、押圧型 73を昇降動させる駆動機構等は、周知技術を利用すればよぐ説明 を省略する。
[0046] 次に、図 6 (c)に示すように、押圧型 73を上昇させて下型力も抜き出す。この際に、 複数の突起部 73aが、成形体 81から抜き出される。これにより、成形体 81に、上下方 向に開口した貫通孔 82が複数形成される。
なお、本形態例の各突起部 73aは板状に設けられているため、各貫通孔 82の形状 は、断面長孔形状になる(図 7参照)。また、本形態例では、成形体 81が容易に崩れ ることがないように、貫通孔 82が、長孔形状の長さ方向に 2列に分割された形態に設 けられている。なお、貫通孔 82の形状や配置は、これに限定されるものではなぐ適 宜選択的に設定できるのは勿論である。
[0047] 次に、図 7に示すように、枠型 72を引き上げることで、ブロック状の成形体 81が、底 型 71上に安定的に載置された状態となる。
そして、このままの状態で、その成形体 81を次の工程 (好気性菌による乾燥工程) へ移す。成形体 81を載せ換えずにフォークリフト等で移送するだけで、他の作業を 必要とせず、簡単に行うことができる。
また、貫通孔 82が上下方向に貫通しているため、前述したように対流現象を利用し て効率よく乾燥できる。従って、本発明にかかる固定燃料を好適に量産できる。 なお、型を抜く作業を好適に行うためには、型にテーパを付ける方法や、バイブレ ータを用いて振動によって離型させる方法を採用することができる。
実施例 2
[0048] 次に、本発明に係る固形燃料の製造方法の実施例 2について以下に説明する。
図 8は、固形燃料の製造方法に係る工程例を示す工程の流れ図である。
[0049] 10は混合工程であり、草木質破砕物等の有機骨材と有機汚泥等の粘結材とを必 須原料として混合し、可燃性の混合物を得る工程である。
有機骨材としては、所定の大きさよりも小さい粒状、繊維状又は粉状の草木質破砕 物を用いることができる。例えば、ォガ粉、チップ状に粉砕された木材や竹材、もみ殻 を好適に利用できる。また、有機汚泥の固形成分は、微細な粒子によって構成され ている。このような一定サイズ以下の小物質が集まった原料によれば、リボンミキサー を利用して容易に混合できる。
[0050] 有機骨材としては、その少なくとも一部を、キノコの菌床栽培で発生するキノコの廃 菌床、豆腐を製造する際に発生する「おから」、又はコーヒー飲料を製造する際に発 生するコーヒーカスとすることができる。このような産業廃棄物を活用して循環型エネ ルギ一源とすることができる。
[0051] 粘結材としては、その少なくとも一部を、有機汚泥とすることができる。さらに好適に は、微生物の繁殖によって所要の粘性成分が生成された有機汚泥とすることができ る。なお、一般的な有機汚泥は、それ自体に粘性があり、工場力も排出されたそのま まの状態でも、本発明に係る粘結材として利用できる。これは、有機汚泥は、それ自 体が発酵物であって、初めから粘性が生じている場合も多いためである。そして、そ の有機汚泥をさらに適宜な条件で保管すれば、微生物の繁殖によってさらに粘性を 高めることが可能である。その有機汚泥を保管する工程 (保管工程)は、有機汚泥の 発酵工程ということができる。
その有機汚泥としては、例えば、清涼飲料等を製造する際に発生する食品汚泥を 利用することができる。粘性が高く好適に利用できる。
[0052] 有機汚泥の保管期間は、有機汚泥の成分や繁殖する細菌の種類、有機汚泥の生 成までの条件、その他の発酵に関与する条件、例えば温度等の保管条件に対応さ せて適宜調整することができる。
なお、有機汚泥の保管による微生物の繁殖とは、嫌気性細菌による嫌気発酵が主 体になると考えられる。自然発酵によっても生分解の過程で粘性成分を充分に得るこ とが可能であるが、発酵を促すように環境条件を人工的に調整できるのは勿論である
[0053] 有機汚泥は、粘結材として機能するものであり、有機骨材の種類等の条件に応じて 適宜な分量を混合すればよい。例えば、有機骨材がキノコの廃菌床の場合は、材料 全体に対して嵩比で 20〜40%程度を混合すればよい。
また、有機汚泥は、粘結材として機能させるため、適度に水分を含んでいるとよい。 その有機汚泥の含水率は、他の混合される材料との関係で適宜に調整すればよい 。従って、必要であれば、加圧による脱水、或いは遠心分離による脱水等の機械的 脱水工程によって含水率を調整すればよい。例えば、有機骨材がキノコの廃菌床で 有機汚泥を嵩比で 30%混合する場合、その有機汚泥の含水率は、何ら調整をしな い 80%程度とすることができる。なお、混合する材料全体で水分が不足する場合は、 水をカ卩えても良いのは勿論である。 なお、本発明においては、有機汚泥を加熱や減圧によって乾燥させる工程を必要 とするものではなぐそのような乾燥工程による余分なエネルギー消費を回避できる。
[0054] ところで、所要の粘性を有する有機汚泥によれば、水分を適宜調整すれば、有機 骨材等の他の材料と混合しなくても練ることで粘土状の成形性を得ることが可能であ る。
しかし、有機汚泥のみによる成形体の場合は、無機成分が多いため燃焼カロリーが 低ぐ燃料として適切ではない。また、有機骨材と混合して得られる成形体と比較して 乾燥しにくぐ効率的に生産できない。さらに、成形体としての強度というべき保形性 を十分には得ることができないなどの問題がある。
[0055] また、他の粘結材としては、有機物であればデンプンゃ糖類の成分を有する物、無 機物であれば無機質膨潤材である粘土やベントナイトを使用することができる。 これらの粘結材は、単独で用いても良いし、前述した粘結材としての有機汚泥と併 用することもできる。有機汚泥と併用すれば、少量を使用するだけで、成形性を向上 できる。例えば、コーンスターチやベントナイトを材料全体に対して重量比 1%から数 %の範囲で混合すればょ 、。
なお、コーンスターチやベントナイトは、乾燥した状態で供給されるため、水分の多 い原料に好適に対応できる。つまり、水分調整材としても機能する。また、これらの粘 結材の分量が多い場合は、水分が不足する場合もある。そのときは、水を一つの材 料として混合し、後述する混練工程を行えばよい。
[0056] ところで、前述した有機汚泥に限らず、有機物を発酵させて粘結材として利用でき ることは勿論である。例えば、お力 を納豆菌で発酵させると、高い粘性を生じさせる ことができる。従って、これを粘結材として利用できる。
具体的には、ォガ粉ゃキノコの廃菌床に、納豆菌で発酵させたおからを混合'混練 して成形したところ、保形性の高い成形体の固形燃料を得ることができた。つまり、他 の粘結材を混合することなぐ固形燃料を好適に成形することができた。
[0057] また、有機骨材と粘結材とを必須原料とするが、他の種々の材料を混合できること は勿論である。
例えば、前記の混合物の原料として、油材を混合することができる。そして、その油 材の少なくとも一部を、油揚げを製造する際に発生する食品廃油とすることができる。 このように本発明では、食品廃油等の廃油を利用でき、コストがかからない。なお、 この油材としては、食品廃油に限らず、工場力も排出される工業廃油を利用すること も可能である。
[0058] 油材の添カ卩は、材料全体を混合する混合工程に先立って、有機骨材に含浸させる ことで行うとよい。つまり、図 8に示すように、 50は含油工程であり、混合工程 10に先 立って、油材を有機骨材に含浸させる。
これによれば、有機骨材が油材を素早く均一に吸収することができ、油材を効率良 く混合できる。特に木材が繊維状に破砕された有機骨材によれば、油材を嵩比で 1 Z3程度まで含浸させることができる。なお、チップ状の木材においても、油材を好適 に吸収できる。
[0059] 油材を混合することで、後述する混練工程で粘りを生じさせて混練性を向上でき、 且つ、後述する成形工程で固形燃料 (成形物)を成形する際の成形性及び離型性を 向上できる。特に、離型性が良くなることで、成形物が成形型に付着してしまうことや 、成形物同士が癒着することを防止でき、生産性を向上できる。
また、油材を混合することで、固形燃料の燃焼カロリーを高めることができる。有機 汚泥は、無機物を比較的多く含んでいる場合が多ぐ火力が弱い面があるため、その 問題を解消できる。さらに、油材の混合量を調整することで、燃焼カロリーを容易に調 整できる。
[0060] さらに、前記の混合物の原料として、プラスチック廃棄物の破砕物や生ゴミ等の生 活廃棄物の破砕物を混合してもよい。大量に排出される廃棄物としては、果実や野 菜飲料等を製造する際に工場で発生する搾りカスや食品残渣も利用できる。搾りカス としては、ジュースカスの他に、お茶を煎じ出した残りカスである茶殻を含む。
また、間伐材ゃ剪定材の破砕物を原料とすることができる。このような木材や草等の 植物の破砕物は、有機骨材として利用される。木の皮も利用できる。高い燃焼カロリ 一を有する可燃材であり、森林資源を有効に活用できる。
つまり、混合物の原料としては、可燃性で、所定サイズ以下に調整された物であれ ば、いずれの材料も好適に利用できる。 [0061] 混合物の原料のうち有機骨材は、その繊維が、有機汚泥ゃ油材等の他の原料を絡 めるようにして保持するため、成形物(固形燃料)の成形性を向上させることできる。ま た、強化プラスチックと同様の原理で繊維が骨材として機能して、固形燃料 (成形物) の強度 (保形性)を向上できる。
間伐材ゃ剪定材等を好適に破砕するためには、二軸式の破砕装置を利用できる。 また、茶殻は、繊維質が多く含まれており、有機骨材の一種として利用できると共に 、発酵して粘性を発現しても悪臭を発生しないため、粘結材の一種としても好適に利 用できる。さらに、りんごやみかん等の果実や野菜そのものを原料とすれば、固形成 分が有機骨材として機能し、果汁が粘結材と水成分として機能する。このように、本 発明に係る混合物の原料としては、有機骨材と粘結材の両方の性質を有するものを 利用できる。なお、前述したようにお力もも、特に発酵することで強い粘性が生じるた め、両方の性質を有する原料である。
さらに、油分を含んだ有機材料を原料とすれば、有機骨材と油材の両方の性質を 利用できる。
[0062] 20は混練工程であり、有機骨材と粘結材の混合物を、有機汚泥等の原料に含まれ る水分又は原料の一部として投入された水によって構成される水成分を利用して練り 、成形性の生じた混練物を得る工程である。
粘結材としては、前述したように有機汚泥を好適に利用できる。有機汚泥の粘結材 としての粘着作用が、有機骨材の存在によって好適に機能して、極めて成形性の高 い粘土状の混練物が生成される。例えば、キノコの廃菌床にジュース製造の際に発 生する有機汚泥を混合することで、成形性の高 ヽ粘土状の混練物を得ることができ た。そして、その混練物力も得られた成形物を乾燥することで、保形性が高い固形燃 料を得ることができた。
[0063] 従って、本発明においては、他の粘結材を混入しなくともよい。つまり、他の粘結材 としては、前述したように、有機物であればコーンスターチ等、無機物であればベント ナイト等を使用することが可能である。しかし、そのような材料を使用しない場合でも、 適正な条件によれば、十分な保形性を得ることができる。
これは、有機汚泥のみで粘結材としての十分な機能を有し、混練することでその粘 着作用を十分に発現させることができるためである。
また、この混練工程には、例えば、二軸式の混練機を利用できる。なお、前述の混 合工程と混練工程は、一体的な装置によって連続的になされてもよい。
[0064] 30は成形工程であり、前記の混練物に圧力を加えて、積み置きした際に相互間に 空隙を生じる形状の成形物を得る工程である。例えば、押出し成形やプレス成形或 いはロール成形によって、混練物力 所要形状の成形物を成形することができる。 この成形工程には、既存の成形方法や成形装置を用いることができる。例えば、押 し出し型によって棒状や筒状に押し出した物を、単純に切断すれば円柱状や円筒状 (図 9参照)の小片に成形できる。またカール状(図 10参照)の小片に成形してもよ!/、 このような形状によれば、積み置きした際に相互間に空隙を生じ、空気の流通が可 能であるため効率良く乾燥できる。また、燃焼させる際にも空気が流入しやすぐ効 率良く燃焼できる。つまり、成形物同士の接触部分を小さくできる形状であることで、 乾燥性と燃焼性を向上できる。
なお、前述の混練工程と成形工程は、一体的な装置によって連続的になされてもよ い。
[0065] 40は乾燥工程であり、前記の成形物を乾燥する工程である。
前述したように、前記の成形物の形状は、積み置きした際に相互間に空隙を生じる ものとなっているため、形態的に乾燥し易いものとなっている。
また、原料の有機汚泥に水分が多く含まれていても、有機骨材が乾燥していれば、 その混合物の全体としての水分が平均化され、乾燥の効率を高めるように寄与する。 さらに、有機骨材は、その繊維質による毛細管現象によって水分を分散し易ぐ乾燥 の効率を高めるように寄与する。
このため、自然乾燥でも効率良く乾燥できる。但し、加熱や送風をすることで、強制 的に乾燥することを妨げるものではない。その場合も、以上に説明した形態のため、 少ないエネルギーで効率良く乾燥させることができる。
[0066] 以上の製造方法によって製造されたことを特徴とする固形燃料は、加圧されて成形 されているため、緻密度が高い。そのため、燃焼カロリーが高ぐ燃料として好適に利 用できる。また、油材が添加されたものは、さらに高い燃焼カロリーを有することがで きる。
また、本発明に係る固形燃料は、積み置きした際に相互間に空隙を生じる所要の 形状に成形され、その保形性が高い。このため、保管や搬送がし易ぐ炉内で空気を 好適に流通できるため効率よく燃焼できる。
なお、この固形燃料を燃焼させる際の形態は、特に限定されない。例えば、この固 形燃料 (固形状態で乾燥させた乾燥有機物)を、粒状或は粉状に粉砕してスクリュー コンベアなどで流動的に燃焼炉へ供給し、燃焼させてもよ!、のは勿論である。
[0067] また、本発明によれば、堆肥を熟成する際のように有機物が無駄に生分解されて炭 酸ガス等に変換されることなぐその有機物を資源として最大限に活用できる。
また、有機骨材としてのキノコの廃菌床と、粘結材としてのジュース製造の際に発生 する有機汚泥と、油材としての食品廃油とを混合して固形燃料を製造した場合、全て が天然素材である。これによれば、持続可能な循環型エネルギー源として好適に活 用できる。また、このように原料が特定された燃料であれば、燃焼した後の灰も、安全 性の高い肥料として有効に活用できる利点がある。
実施例 3
[0068] 次に、キノコの廃菌床を、有機骨材や粘結材の原料として用いな 、場合の実施例 について説明する。
本発明によれば、微細物又は破砕容易物カゝら構成される有機可燃物を、水成分と 共に、細胞組織がすり潰されて破壊されるように練り、成形性の生じた状態とすること に一つのポイントがある。そして、そのように成形性が生じたものを、固形状に成形し て乾燥させる。さらに、その乾燥中に、その固形成形物を破砕することで、その乾燥 を促進できる。
但し、本発明において、有機骨材と粘結材の原料の組み合わせは、種々考えられ 、特に限定されるものではない。つまり、原料としてキノコの廃菌床に限定されない。
[0069] 例えば、コーンコブミール自体や乾燥させた生ゴミ等を有機骨材とし、有機汚泥や 水分の多い生ゴミを粘結材として機能させることができる。コーンコブミールとしては、 破砕後にプレスされたものが、吸水性が高ぐ水分調整材としても機能する。プレス処 理がなされることで、組織が潰されて破壊され、吸水性が向上する。キノコの培地等 の他の用途に使用されていないバージンのコーンコブミールは、燃焼カロリーが高く 、固形燃料の成分として好適である。
また、「おから」を、有機骨材及び粘結材の両方として用いることができる。「おから」 が粘結材としても機能するのは、加熱処理によって細胞が破壊されると共に粘着成 分が生じるためと考えられる。従って、「おから」を単独で適切に練れば、成形性が生 じる。なお、キノコの菌床も、培地として雑菌をなくすため、一度加熱処理がなされた ものである。つまり、加熱処理がなされた有機物は、粘結材として好適に利用できる 場合が多い。
[0070] 以上、本発明にっき好適な形態例を挙げて種々説明してきたが、本発明はこの形 態例に限定されるものではなぐ発明の精神を逸脱しない範囲内で多くの改変を施し 得るのは勿論のことである。
産業上の利用可能性
[0071] 本発明は水分の多い有機物を乾燥させる技術の一つであり、本発明によって乾燥 された乾燥有機物は畜産用の飼料や農業用の肥料の原料等に用いることもできる。

Claims

請求の範囲
[I] 菌類の繁殖した有機物が少なくとも一部に含まれた可燃物原料を、含まれる水分を 利用して練って成形性の生じた状態とし、固形状に成形した後、乾燥することを特徴 とする固形燃料の製造方法。
[2] 前記可燃物原料を練って成形性の生じた状態で、所要の圧力を加えて菌類の繁 殖可能な固形状に成形することを特徴とする請求項 1記載の固形燃料の製造方法。
[3] 前記可燃物原料を固形状に成形したものを、破砕して乾燥することを特徴とする請 求項 1又は 2記載の固形燃料の製造方法。
[4] 前記菌類の繁殖した有機物が、キノコの廃菌床であることを特徴とする請求項 1、 2 又は 3記載の固形燃料の製造方法。
[5] 草質材の微細物が原料として含まれた培地によってキノコが収穫された後のキノコ の廃菌床を、含まれる水分を利用して練って成形性の生じた状態とし、固形状に成 形した後、乾燥することを特徴とする固形燃料の製造方法。
[6] 前記草質材の微細物の少なくとも一部が、トウモロコシの芯を破砕して設けられたコ 一ンコブミールであることを特徴とする請求項 5記載の固形燃料の製造方法。
[7] 前記キノコの廃菌床を練って成形性の生じた状態で、所要の圧力を加えて菌類の 繁殖可能な固形状に成形することを特徴とする請求項 5又は 6記載の固形燃料の製 造方法。
[8] 前記キノコの廃菌床を固形状に成形したものを、破砕して乾燥することを特徴とす る請求項 5、 6又は 7記載の固形燃料の製造方法。
[9] 原料を練って成形性の生じた状態とするために、粘結材を混合することを特徴とす る請求項 1、 2、 3、 4、 5、 6、 7又は 8記載の固形燃料の製造方法。
[10] 原料を練って成形性の生じた状態とするために、加水又は脱水によって水分調整 することを特徴とする請求項 1、 2、 3、 4、 5、 6、 7、 8又は 9記載の固形燃料の製造方 法。
[II] 請求項 1、 2、 3、 4、 5、 6、 7、 8、 9又は 10記載の固形燃料の製造方法によって製 造されたことを特徴とする固形燃料。
PCT/JP2007/061227 2006-06-05 2007-06-02 固形燃料及びその製造方法 WO2007142161A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-155626 2006-06-05
JP2006155626 2006-06-05
JP2006-229976 2006-08-28
JP2006229976 2006-08-28
JP2007-050427 2007-02-28
JP2007050427 2007-02-28

Publications (1)

Publication Number Publication Date
WO2007142161A1 true WO2007142161A1 (ja) 2007-12-13

Family

ID=38801416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061227 WO2007142161A1 (ja) 2006-06-05 2007-06-02 固形燃料及びその製造方法

Country Status (2)

Country Link
JP (1) JP2008239943A (ja)
WO (1) WO2007142161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017695A (ja) * 2008-07-14 2010-01-28 Shinyodo:Kk 含水有機物の乾燥固形化方法
JP2013226556A (ja) * 2007-12-31 2013-11-07 Shinyodo:Kk 含水有機物の乾燥方法
JPWO2023084572A1 (ja) * 2021-11-09 2023-05-19

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504163B2 (ja) 2008-09-18 2014-05-28 学校法人慶應義塾 がんの診断方法と治療方法
KR101071313B1 (ko) * 2009-01-20 2011-10-10 김동현 히트펌프시스템을 이용한 다목적 건조장치
JP5451368B2 (ja) * 2009-12-25 2014-03-26 豊田興産株式会社 廃培地を用いたリサイクル固形燃料製造装置
JP2012001667A (ja) * 2010-06-18 2012-01-05 S Science:Kk 固形燃料及びその製造方法
KR102006146B1 (ko) * 2017-11-21 2019-10-01 이미애 튀김부스러기를 이용한 펠릿 및 펠릿의 제조방법
JP7327679B1 (ja) * 2022-03-18 2023-08-16 中国電力株式会社 固形バイオマス燃料の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142288A (ja) * 1983-02-01 1984-08-15 Ebisuya Bokujiyou:Kk 燃料及びその製造法
JPH10130672A (ja) * 1996-10-25 1998-05-19 Hitachi Ltd 固形燃料の製造方法
JPH1180763A (ja) * 1997-09-09 1999-03-26 Ebara Corp 下水汚泥から固形燃料の製造方法
JP2007106613A (ja) * 2005-10-11 2007-04-26 Yamazaki Farm:Kk きのこ培養基を原料とする抽出液体肥料、固形燃料及び人工土壌

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142288A (ja) * 1983-02-01 1984-08-15 Ebisuya Bokujiyou:Kk 燃料及びその製造法
JPH10130672A (ja) * 1996-10-25 1998-05-19 Hitachi Ltd 固形燃料の製造方法
JPH1180763A (ja) * 1997-09-09 1999-03-26 Ebara Corp 下水汚泥から固形燃料の製造方法
JP2007106613A (ja) * 2005-10-11 2007-04-26 Yamazaki Farm:Kk きのこ培養基を原料とする抽出液体肥料、固形燃料及び人工土壌

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"-Kinoko no Saibai Ho-", 12 May 2006 (2006-05-12), XP003019777, Retrieved from the Internet <URL:http://www.jpo.org.go.jp/shiryou/s_sonota/hyoujun_gujutsu/kinoko/mokuji.htm> *
YOSHIKAWA K. ET AL.: "Kogata Haikibutsu Gas-ka Hatsuden System no Gasu-ka.Hatsuden Tokusei (Performance of Waste Gasification and Power Generation of a Small Scale Plant)", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS THERMAL ENGINEERING CONFERENCE 2004 KOEN RONBUNSHU, 2004, pages 265 - 266, XP003019776 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226556A (ja) * 2007-12-31 2013-11-07 Shinyodo:Kk 含水有機物の乾燥方法
JP2010017695A (ja) * 2008-07-14 2010-01-28 Shinyodo:Kk 含水有機物の乾燥固形化方法
JP5405774B6 (ja) 2008-07-14 2023-10-24 株式会社森羊土 含水有機物の乾燥固形化方法
JPWO2023084572A1 (ja) * 2021-11-09 2023-05-19
WO2023084572A1 (ja) * 2021-11-09 2023-05-19 中国電力株式会社 固形バイオマス燃料の製造方法及び吸水添加材

Also Published As

Publication number Publication date
JP2008239943A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
WO2007142161A1 (ja) 固形燃料及びその製造方法
US5354349A (en) Method for manufacturing of organic fertilizers
Chew et al. Densification of food waste compost: Effects of moisture content and dairy powder waste additives on pellet quality
KR101024447B1 (ko) 미생물제재를 이용한 유기성 폐기물의 고형연료 제조방법
RU2510660C2 (ru) Пеллеты и брикеты из спрессованной биомассы
JP2009062531A (ja) 乾燥有機物燃料の製造方法及びその製造装置
JP2009528393A (ja) バイオマス燃料の製造
JP2009528393A6 (ja) バイオマス燃料の製造
KR101866374B1 (ko) 미생물을 이용한 스티로폼 소멸 처리 방법
KR102037814B1 (ko) 잣 껍질을 포함하는 조성물의 압축 성형물 및 그 제조방법
GB2483426A (en) Manufacturing pellets or bricks from damp digested waste material
KR20080095219A (ko) 연작토양 방제비료
CZ2016748A3 (cs) Masa odpadních materiálů biologického původu pro výrobu paliva určeného k přímému spalování a způsob výroby paliva z odpadních materiálů biologického původu
JP5405774B6 (ja) 含水有機物の乾燥固形化方法
US11230507B2 (en) Formulations and products to replace single-use plastics and polystyrene with bio-benign materials such as agricultural wastes
CN111205114A (zh) 一种垃圾制堆肥处置系统
JP2009248077A (ja) 細菌による発酵熱を利用した下水汚泥の乾燥方法。
TW201111493A (en) Method of recycling solid waste-derived fuel
KR102596533B1 (ko) 하수 오니를 처리한 부숙 연료 및 그 처리 방법과 시스템
JP2004216786A (ja) 木質解繊物およびその製造方法、ならびに微生物資材
JP2007106613A (ja) きのこ培養基を原料とする抽出液体肥料、固形燃料及び人工土壌
KR100509990B1 (ko) 가압발포에 의한 유기질비료의 제조방법 및 제조장치
CN212093669U (zh) 一种消除厨余垃圾恶臭的粉碎机
KR102084201B1 (ko) 하수슬러지와 첨가제를 이용한 연료 제조방법
WO2010107007A1 (ja) 乾燥有機物資材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07744614

Country of ref document: EP

Kind code of ref document: A1