WO2007138904A1 - パターン投影光源および複眼測距装置 - Google Patents

パターン投影光源および複眼測距装置 Download PDF

Info

Publication number
WO2007138904A1
WO2007138904A1 PCT/JP2007/060336 JP2007060336W WO2007138904A1 WO 2007138904 A1 WO2007138904 A1 WO 2007138904A1 JP 2007060336 W JP2007060336 W JP 2007060336W WO 2007138904 A1 WO2007138904 A1 WO 2007138904A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
light source
projection
image
mask
Prior art date
Application number
PCT/JP2007/060336
Other languages
English (en)
French (fr)
Inventor
Norihiro Imamura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/302,432 priority Critical patent/US8434874B2/en
Priority to JP2008517844A priority patent/JP4316668B2/ja
Publication of WO2007138904A1 publication Critical patent/WO2007138904A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • G01C3/085Use of electric radiation detectors with electronic parallax measurement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • G02B27/20Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective for imaging minute objects, e.g. light-pointer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Definitions

  • Pattern projection light source and compound eye distance measuring device
  • the present invention relates to a pattern projection light source that projects an image of a predetermined pattern on an object.
  • the present invention also relates to a compound eye distance measuring device that measures the distance to an object by parallax between a plurality of imaging optical systems.
  • a compound-eye distance measuring device that images a measurement object with two imaging devices installed on the left and right or top and bottom, and measures the distance to the object using the parallax between the left and right or top and bottom images. It is used for inter-vehicle distance measurement, autofocus system for cameras, 3D shape measurement system, etc.
  • This compound-eye distance measuring apparatus is provided with a compound-eye optical system that forms an image of an object on an image sensor.
  • a compound-eye distance measuring device extracts a visual difference by matching two image force patterns captured, and calculates a distance to a measurement object based on the principle of triangulation.
  • a pattern matching method will be described with reference to FIG. 91 and 92 are a pair of images obtained using a pair of left and right imaging optical systems.
  • An image obtained from the first imaging optical system (reference image) 9 1 A middle block block (small area) 9 la is set.
  • an image (reference image) 92 obtained from the second imaging optical system a block 92a having the same Y coordinate value as that of the block 91a and having the same size is set.
  • SA D Sum of Absolute Difference
  • x and y are the X coordinate value and the Y coordinate value of the imaging surface
  • 10 and II are the reference image and the reference image, respectively, and the pixel in the coordinates indicated in parentheses Luminance value.
  • Each of the blocks 91a and 92a has m (X-axis direction) Xn (Y-axis direction) pixels.
  • the SAD is calculated by changing the movement amount dx in the base line direction (X-axis direction in this example) 90 of the block 92a.
  • the dx where the SAD is the minimum is extracted as the amount of parallax for this block 91a.
  • the movement range (search range) of the small area 92a in the reference image 92 is set according to the distance measurement range.
  • the SAD can be calculated at an arbitrary coordinate in the reference image 91. it can.
  • the disparity distribution in the reference image 91 can also be obtained by dividing the reference image 91 into a plurality of blocks in a matrix and performing the pattern matching for each block.
  • Patent Document 2 A method for providing the above is generally known (Patent Document 2).
  • Patent Document 1 JP-A-4-43911
  • Patent Document 2 JP 2001-264033 A
  • the conventional auxiliary light source for ranging using the parallax as described above has a single projection optical system
  • the light emitting elements are arranged in an array in order to give sufficient illuminance to the object. Therefore, a light source with increased output and a single light source with large output are required.
  • the size of the mask having the light transmitting portion of the predetermined pattern is increased corresponding to the size of the light source, and a large lens corresponding to the mask is provided. Must be used.
  • the volume of the projection optical system that projects the pattern becomes larger than the imaging optical system of the compound eye distance measuring device, It is difficult to downsize the entire distance measurement system End up.
  • the focal length of the projection optical system of the auxiliary light source is a compound eye distance measuring device.
  • the range in which the pattern image is favorably formed becomes narrower than the depth of field of the imaging optical system.
  • the range in which the distance to the object can be accurately measured becomes narrow.
  • the illumination efficiency is lowered and the illuminance of the object is also reduced. descend. Therefore, there arises a problem that the distance measuring range on the far side is narrowed.
  • the present invention has been devised in order to solve the above-described problems, and it is desirable to form a pattern image on a target object that is wide and wide in the pattern projection direction.
  • An object of the present invention is to provide a pattern projection light source that is small and thin.
  • Another object of the present invention is to provide a compound eye distance measuring device that is small and thin, has a wide distance measurement range, and has high distance measurement accuracy.
  • the pattern projection light source of the present invention includes a light source, a plurality of mask regions each having a predetermined pattern of light-transmitting portions that transmit light from the light source, and the predetermined pattern of the light-transmitting portion. And a plurality of lenses for forming the images at a predetermined distance in this order.
  • a compound eye distance measuring device of the present invention includes a compound eye distance measuring unit that measures a distance to an object by parallax between a plurality of imaging optical systems, and the pattern projection light source of the present invention. It is a sign.
  • the pattern projection light source of the present invention has a plurality of mask regions and a plurality of lenses, it can be made smaller and thinner. In addition, by providing a plurality of lenses, the imaging range of the pattern image can be expanded. Furthermore, the pattern image of the translucent portion can be clearly formed on the object. In addition, since the compound eye distance measuring device of the present invention includes the pattern projection light source of the present invention described above, it is small and thin, has a wide distance measurement range, and has high distance measurement accuracy.
  • FIG. 1 is a perspective view showing a schematic configuration of a pattern projection light source according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view showing a schematic configuration of a pattern projection light source according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing a schematic configuration of another pattern projection light source according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of still another pattern projection light source according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram for explaining a method for enlarging the imaging range of a projection pattern in the pattern projection light source according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a pattern of a light transmitting part formed in a mask region of a pattern projection light source according to the present invention.
  • FIG. 7 is a perspective view showing a state in which the pattern projection light source according to the present invention projects the pattern shown in FIG.
  • FIG. 8 is a diagram showing another example of the pattern of the light transmitting part formed in the mask region of the pattern projection light source according to the present invention.
  • FIG. 9 is a diagram showing light rays when the pattern projection light source according to the present invention projects the pattern shown in FIG.
  • FIG. 10A is a diagram showing an image of the pattern of the translucent portion projected onto the projection plane at the distance F1 in FIG.
  • FIG. 10B is a diagram showing an image of the pattern of the translucent portion projected onto the projection plane at the distance F2 in FIG.
  • FIG. 10C is a diagram showing an image of the pattern of the translucent portion projected onto the projection plane at the distance F3 in FIG.
  • Fig. 11 is formed in the mask area of the pattern projection light source according to Embodiment 2 of the present invention. It is a figure which shows an example of the pattern of the made translucent part.
  • FIG. 12A is a diagram showing an image of the pattern of the translucent portion of FIG. 11 projected onto the projection plane at the distance F1.
  • FIG. 12B is a diagram showing an image of the pattern of the translucent portion of FIG. 11 projected onto the projection plane at the distance F2.
  • FIG. 12C is a diagram showing an image of the pattern of the translucent portion of FIG. 11 projected onto the projection plane at the distance F3.
  • FIG. 13A shows a mask in the pattern projection light source according to Embodiment 2 of the present invention.
  • FIG. 13B shows a mask in the pattern projection light source according to Embodiment 2 of the present invention.
  • FIG. 13C shows a mask in the pattern projection light source according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing an image obtained by capturing images of patterns of light transmitting portions of both D and mask E.
  • FIG. 14A is a diagram showing changes in the SAD value within the search range when pattern matching is performed using the image shown in FIG. 13A.
  • FIG. 14B is a diagram showing changes in the SAD value within the search range when pattern matching is performed using the image shown in FIG. 13B.
  • FIG. 14C is a diagram showing changes in the SAD value within the search range when pattern matching is performed using the image shown in FIG. 13C.
  • FIG. 15 is a diagram showing another example of the pattern of the translucent part formed in the mask region of the pattern projection light source according to Embodiment 2 of the present invention.
  • FIG. 16 is a diagram showing an example of the arrangement of a plurality of mask regions in the pattern projection light source according to Embodiment 2 of the present invention.
  • FIG. 17 is a cross-sectional view showing a schematic configuration of a pattern projection light source according to Embodiment 3 of the present invention.
  • FIG. 18A is a diagram showing an example of illuminance distribution on an object when only the projection optical system is used in the pattern projection light source according to Embodiment 3 of the present invention.
  • FIG. 18B shows a projection in the pattern projection light source according to Embodiment 3 of the present invention.
  • FIG. 6 is a diagram showing an example of illuminance distribution on an object when both an optical system and an illumination optical system are used.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of a compound-eye distance measuring apparatus according to Embodiment 4 of the present invention.
  • FIG. 20 is a diagram for explaining a pattern matching method in the compound-eye distance measuring apparatus.
  • the pattern projection light source according to the present invention has a plurality of projection optical systems each having a mask region and a lens, the pattern projection light source has a higher optical axis direction than a pattern projection light source having a single projection optical system force. Size (thickness) can be reduced.
  • the illuminance of the object can be improved.
  • the focal length of each lens can be shortened, and the distance range in which the pattern image is favorably formed is widened. Therefore, when the pattern projection light source of the present invention is used as an auxiliary light source for a compound-eye distance measuring device, the range in which the distance can be accurately measured is widened.
  • each lens clearly forms an image of the pattern of the translucent portion on the object. Therefore, when the pattern projection light source of the present invention is used as an auxiliary light source for a compound eye distance measuring device, the distance to the object can be measured with high accuracy.
  • a lens may be inserted between the light source and the mask region in accordance with the directivity characteristics of the light source in order to increase the light use efficiency.
  • the plurality of lenses are arranged in an array and are integrally molded.
  • the Noturn projection light source can be made thinner.
  • integrally molding a plurality of lenses the accuracy of the optical axis of each lens can be increased by the mold, so that adjustment of the optical axis of each lens is not necessary, and assemblability is improved.
  • the distance range in which the pattern image is favorably formed is further expanded.
  • the distance at which the pattern image is optimally formed is different for each lens or a plurality of lens duplications, and the distance range in which the pattern image having a certain contrast ratio or more is formed is different. It is preferable to set such that they partially overlap each other between lenses or between different lens groups. As a result, a pattern image can be favorably formed in a continuous and wider distance range.
  • the pattern projection light source of the present invention when used as an auxiliary light source for a compound-eye distance measuring device, the range in which the distance can be accurately measured is further widened.
  • the pattern projection light source can be used as an auxiliary light source.
  • the distance to the object can always be measured with high accuracy.
  • the mask area or lens position can be changed in the optical axis direction to defocus!
  • the pattern projection light source of the present invention it is preferable that at least two of the plurality of mask regions have the light transmitting portions formed in different patterns.
  • the patterns of the light transmitting portions formed in each of the plurality of mask regions also have a plurality of stripe forces parallel to each other, and the stripe patterns are the same, the object is formed by a plurality of lenses.
  • the images of the stripe pattern projected above are close to each other, sometimes separated from each other, but gradually approach each other as the distance to the object becomes far. That is, the density of the image of the stripe pattern projected on the object varies depending on the distance to the object. Therefore, depending on the distance to the object, a blank area where the pattern image on the object is not projected becomes wide.
  • the above pattern matching in which an image is divided into a plurality of blocks (small areas) and the disparity is detected for each block (see FIG. 20) is highly accurate. Block that cannot be detected.
  • the projection distance is changed by changing the pattern of the translucent part formed in the mask area between different projection optical systems or between different projection optical system groups.
  • the stripe directions are different from each other.
  • the transparency formed in the mask area It is preferable to make the pattern of the optical part periodic, random pattern, and make the random pattern different from each other.
  • the pattern projection light source of the present invention it is preferable that at least one of the plurality of mask regions is formed with a pattern having substantially the entire light transmitting portion.
  • the illuminance distribution can be raised over the entire area within the projection angle.
  • the distance to the object on which the image of the predetermined pattern in the mask area is not formed can be measured by imaging the contrast of the object itself.
  • FIG. 1 is a perspective view of a pattern projection light source 20 according to Embodiment 1 of the present invention.
  • Figure 2 is a cross-sectional view.
  • 1 is a circuit board for mounting LEDs.
  • a plurality of bullet-type LEDs 2a are arranged on the circuit board 1.
  • Reference numeral 3 denotes a scattering member that scatters light rays generated from the LED 2a.
  • Reference numeral 4 denotes a glass substrate having a plurality of mask regions 5 each having a translucent portion formed with a predetermined pattern on the surface thereof.
  • Reference numeral 7 denotes a lens that converges the light transmitted through the light transmitting part of the mask region 5 and forms an image of the pattern of the light transmitting part.
  • the light emitted from the LED 2a is irradiated onto the object through the scattering member 3, the glass substrate 4, the mask region 5, and the lens 7, and the pattern formed in the mask region 5 is projected.
  • the scattering member 3 is provided to generate a light beam directed to the pupil of the lens 7.
  • One mask area 5 and one lens 7 corresponding to this constitute one projection optical system.
  • a plurality of projection optical systems are arranged in an array in the vertical and horizontal directions. The optical axes of the plurality of projection optical systems are parallel to each other.
  • the wall 6 is provided to block light from the adjacent projection optical system.
  • reference numeral 9 denotes a lens barrel member for holding the lens 7. In FIG. 1, the illustration of the lens barrel member 9 is omitted.
  • a lens array 70 in which a plurality of lenses 7 arranged in an array is formed as shown in FIG. 3 is used. Is preferred. Thereby, the optical axis accuracy of each lens 7 can be improved by the mold. Therefore, it is possible to eliminate the need to adjust the optical axis of each lens 7 and improve the assemblability.
  • the LED 2a and the lens 7 have a one-to-one correspondence.
  • the present invention is not limited to this.
  • a plurality of lenses 7 may correspond to one LED 2a, or one lens 7 may correspond to a plurality of LEDs 2a.
  • the type of force light source that uses LED as the light source is not limited to this
  • all the mask regions 5 are formed on one glass substrate 4.
  • a plurality of glass substrates each formed with one or a plurality of mask regions 5 are arranged side by side. May be placed.
  • FIG. 4 is a cross-sectional view of the pattern projection light source 20 using the surface-mounted LED 2b as the light source, and is a modification of the pattern projection light source shown in FIGS.
  • a plurality of surface-mounted LEDs 2b are arranged on the circuit board 1.
  • Reference numeral 8 denotes a parallel lens having a function of collimating light emitted from LED2b.
  • the pattern projection light source can be made thinner and smaller than when only a single projection optical system is used. It will be possible. Furthermore, when a plurality of projection optical systems are arranged in an array, the focal length of each lens 7 can be shortened compared to the case where only a single projection optical system is used. It is possible to widen the distance range in which the image is favorably imaged.
  • FIG. 5 is a diagram for explaining a method of expanding the distance range in which the image of the projected pattern is favorably formed.
  • 71a is the projection lens of the first projection optical system
  • 72a is the optical axis of the first projection optical system
  • 71b is the projection lens of the second projection optical system
  • 72b is the light of the second projection optical system
  • the axis, 71c is the projection lens of the third projection optical system
  • 72c is the optical axis of the third projection optical system.
  • 40a is a graph showing the relationship between the projection distance of the first projection optical system and the contrast ratio
  • 40b is the projection distance of the second projection optical system.
  • 40c a graph showing the relationship between the projection distance of the third projection optical system and the contrast ratio.
  • the projection lenses 71a, 71b, 71c are the same shape lenses, and their positions in the optical axis 72a, 72b, 72c directions are different from each other. Accordingly, the projection distance at which the pattern image is relatively defocused and the pattern image is optimally formed can be made different for each projection optical system.
  • the imaging depth of the first projection optical system is Ll
  • the imaging depth of the third projection optical system is L3
  • the imaging ranges of the first to third projection optical systems are Z1 to Z1 + L1, Z2 to Z2 + L2, Z3, respectively. ⁇ Z3 + L3.
  • the imaging ranges of the first to third projection optical systems are shifted relative to each other so that they overlap each other, so that a pattern that is always well imaged in the distance range Z1 to Z3 + L3. There will be at least one of these images. Therefore, when this non-turn projection light source is used as an auxiliary light source for a compound-eye distance measuring device, it is possible to widen the distance range that can be measured with high accuracy.
  • a method of shifting the mask region 5 in the optical axis direction can be realized.
  • the basic configuration of the pattern projection light source of the second embodiment is the same as that in FIGS. 1 and 2 in the first embodiment.
  • the patterns of the light transmitting portions formed in the plurality of mask regions 5 are different from each other! /.
  • FIG. 6 shows three mask regions 50a, 50b, 50c arranged in an array.
  • the patterns of the light transmitting portions 51 in the respective mask regions 50a, 50b, 50c are the same, and they are composed of a plurality of stripes extending in the direction perpendicular to the base line direction 90 of the distance measurement.
  • the three projection optical systems including the three mask regions 50a, 50b, and 50c are in the baseline direction. 90 and arranged vertically.
  • Mask regions 50a, 50b, and 50c are referred to as mask A, mask B, and mask C, respectively.
  • Dashed lines 60a, 60b, and 60c are virtual lines indicating the outer edges of the masks A, B, and C.
  • Ev is the arrangement pitch of the projection optical system.
  • FIG. 7 is a diagram for explaining how an image is formed on a projection plane provided at a predetermined distance for each pattern of the mask ⁇ , the mask ⁇ , and the mask C.
  • reference numeral 61 denotes an image of the projected pattern of the translucent part 51.
  • the broken lines 60a, 60b, 60c are virtual lines indicating the positions at which the virtual lines 60a, 60b, 60c indicating the outer edges of the masks A, B, C are projected.
  • the pitch of the imaginary lines 60a ', 60b', 60c ' is always constant and coincides with Ev.
  • a distance measurement range may be set in an area where three pattern images 61 overlap.
  • three three projection optical systems including three mask regions 50a, 50b, and 50c (j jets are referred to as mask A, mask B, and mask C) are used for distance measurement.
  • mask A, mask B, and mask C a plurality of strip-like light transmitting portions 51 that are the same as those in FIG.
  • FIG. 9 is a diagram showing an optical path of a light beam that has passed through each light-transmitting portion 51 of mask A, mask B, and mask C.
  • Fig. 9 [This is a projection optical system equipped with Mask A, Mask B, and Mask C shown here.
  • the image of the pattern of the translucent part 51 formed on the projection plane at distances Fl, F2, and F3 is a straight line indicating the light beam that has passed through the translucent part 51 and a broken line indicating each projection plane. Formed at the intersection. Accordingly, the pattern images of the light transmitting portion 51 at the distances Fl, F2, and F3 are as shown in FIGS. 10A, 10B, and 10C in order.
  • the broken lines 60a ′, 60b ′, and 60c ′ are virtual lines that indicate the positions of the virtual lines 60a, 60b, and 60c projected by the outer edges of the masks A, B, and C, respectively.
  • 10A, 10B, and 10C show virtual lines 60a ', 60b', and 60c, although the image size of the pattern of the translucent part 51 formed on the projection surface differs depending on the projection distance to the projection surface. The magnification is adjusted so that the size of the region surrounded by 'is the same size in Fig. 10A, Fig. 10B, and Fig. 10C.
  • Eh represents the arrangement pitch of the projection optical system.
  • the pattern image of the translucent part 51 becomes larger, but the pitch of the virtual lines 60a, 60b, 60c in the base line direction 90 is always constant and matches Ev. Therefore, the longer the projection distance, the more emphasized the density of the pattern image as shown in FIG. 10C. Therefore, for example, when a distance measuring method for dividing the captured image into a plurality of blocks and acquiring distance information for each block as described in FIG. 20 is used, the distance to the object is determined. Therefore, the density of the pattern image is high, and there are almost no block and pattern images! There may be a situation in which ⁇ ⁇ ⁇ blocks are mixed. In such a case, there is almost no contrast of the object itself!
  • FIG. 11 is a diagram showing a pattern of the light transmitting portion 51 in the mask regions 50d and 50e of the present embodiment.
  • Two projection optical systems are arranged in an array parallel to the baseline direction 90 of the distance measurement.
  • a pattern of the light transmitting portion 51 having a plurality of parallel stripe forces is formed in each of the two mask regions 50d and 50e included in the two projection optical systems.
  • Mask areas 50d and 50e are designated as mask D and mask E, respectively.
  • Dashed lines 60d and 60e are virtual lines indicating the outer edges of the masks D and E.
  • Eh is the arrangement pitch of the projection optical system.
  • the mask regions 50d and 50e have such a pattern of the light transmitting portion 51, the pattern image of the light transmitting portion 51 formed on the projection plane at the distances Fl, F2, and F3 shown in FIG. As shown in Figure 12A, Figure 12B, and Figure 12C.
  • the broken lines 60 d ′ and 60 e ′ are virtual lines indicating the positions where the virtual lines 60 d and 60 e indicating the outer edges of the masks D and E are projected.
  • 12A, 12B, and 12C are similar in size to the regions surrounded by virtual lines 60d 'and 60e' in FIGS. 12A, 12B, and 12C, as in FIGS. 10A, 10B, and 10C. The magnification is adjusted so that it is correct.
  • the intersection of the stripe pattern images moves even if the projection distance changes.
  • the density of the pattern image does not change with the projection distance.
  • the number of gradations increases because the illuminance increases at the intersection of the stripe pattern images. This means that the amount of image information required for distance measurement is increased, and the distance measurement accuracy can be improved as compared with the case where the pattern of the transparent portion is the same between different mask regions.
  • the distance measurement accuracy can be improved by appropriately setting the angle formed by the stripe direction of the light transmitting portions 51 formed in the two mask regions 50d and 50e.
  • the principle of improving the ranging accuracy is explained below.
  • FIG. 13A projects only the stripe pattern of the translucent portion 51 of the mask region 50d (mask D) of FIG. 11 onto a projection surface of a predetermined distance, and the image on the projection surface is captured by a compound eye range finder. An image is shown. Using this image as a reference image, the pattern matching described in FIG. 20 is performed. The block 93 shown in FIG. 13A is moved within the search range in the direction parallel to the base line direction 90, and the SAD is calculated. Since there are multiple stripe images perpendicular to the baseline direction 90 within the search range, the SAD value changes as shown in Fig. 14A. A plurality of local minimum values of SAD appear in the search range, and since these local minimum values are almost equal, parallax may be erroneously detected.
  • FIG. 13B projects only the stripe pattern of the translucent part 51 of the mask region 50e (mask E) of FIG. 11 onto a projection surface of a predetermined distance, and the image on the projection surface is captured by a compound eye distance measuring device. An image is shown. Using this image as a reference image, the pattern matching described in FIG. 20 is performed in the same manner as described above.
  • the plurality of stripe images are inclined with respect to the baseline direction 90 so that the period of the stripe images in the baseline direction 90 is longer than the search range. Therefore, the SAD value changes as shown in Fig. 14B.
  • FIG. 13C projects the stripe pattern of the translucent portion 51 of both the mask region 50d (mask D) and the mask region 50e (mask E) of FIG. 11 onto a projection surface of a predetermined distance.
  • An image obtained by using a compound eye distance measuring device is shown. Using this image as a reference image, the pattern matching described in FIG. 20 is performed in the same manner as described above.
  • the block 93 shown in FIG. 13C is moved within the search range in the direction parallel to the base line direction 90 and the SAD is calculated, the SAD value changes as shown in FIG. 14C. That is, there are a plurality of SAD minimum values in the search range.
  • the plurality of minimum values are different from each other and are the smallest in the search range, and there is only one SAD minimum value.
  • the force the change of the SAD value before and after the minimum value is steep. Therefore, the accuracy of pattern matching is increased and the ranging accuracy is improved.
  • the pattern of the translucent part in the mask region is not limited to FIG.
  • each of the mask areas 50g, 50h, 50i] [Transparent part 51 is formed in a random pattern with a different periodicity. Don't worry! Even with such a pattern, changes in density due to the projection distance of the projected pattern image can be reduced.
  • the blackened portion is the translucent portion 51.
  • a plurality of projection optical systems may be arranged two-dimensionally in the vertical and horizontal directions.
  • the pattern of the light-transmitting parts in the mask areas A1 to A9 is a stripe pattern with different directions, or a random pattern with different periodicity, thereby reducing variations in pattern density due to the projection distance. it can.
  • this embodiment can be combined with FIG. 5 of the first embodiment.
  • the upper mask areas A1 to A3, the middle mask areas A4 to A6, and the lower mask areas A7 to A9 have different distance ranges in which these patterns are imaged. .
  • this pattern projection light source is used as an auxiliary light source for a compound-eye distance measuring device, distance measurement can be performed with high accuracy over a wide distance range.
  • the number of mask areas provided in the non-turn projection light source is 2, 3, and 9 shown in the present embodiment.
  • the number is not limited and may be other numbers.
  • almost the entire mask area of at least one projection optical system of the plurality of projection optical systems is the light transmitting portion.
  • an image of the pattern of the translucent part formed in the mask region is formed on the object. That is, on the surface of the object, light from the pattern projection light source is irradiated to a region where a non-turn image of the light transmitting portion is formed, and light from the pattern projection light source is not irradiated to other regions.
  • a pattern in which almost the entire surface is a light transmitting portion is formed in the mask area of at least one of the plurality of projection optical systems. Accordingly, it is possible to illuminate the entire object using this projection optical system, and simultaneously project an image of a predetermined pattern of the translucent portion onto the object using another projection optical system.
  • the projection optical system for illuminating the entire object as an illumination optical system as shown in FIG. 17, the illumination efficiency can be improved, and a limited number of projection optical systems.
  • FIG. 17 is a sectional view showing a schematic configuration of the auxiliary light source for distance measurement according to the present embodiment.
  • reference numeral 16 denotes a lens constituting the illumination optical system, which spreads the light beam 17 from the LED 2 a to a necessary irradiation angle. Since the lens 16 guides the light beam to a predetermined angle of view, the scattering member 3 is not necessary in this illumination optical system. Further, almost the entire region on the glass substrate 4 corresponding to this illumination optical system is a light transmitting portion.
  • is a projection angle of a projection optical system that projects an image of a predetermined pattern. Thus, by using the projection optical system and the illumination optical system in combination, it is possible to give contrast and illuminance to the object.
  • FIG. 18A is a diagram showing the illuminance distribution on the object when only the projection optical system is used in a dark place. In the dark place, the image of the pattern of the translucent part is not projected, and the illuminance in the area becomes a close.
  • the illuminance distribution on the object when the projection optical system and the illumination optical system are used together in a dark place is as shown in FIG. 18B, and in a region where the image of the pattern of the translucent part is not projected. Illuminance is also added.
  • FIG. 19 is a cross-sectional view showing a configuration of a compound eye distance measuring apparatus using the pattern projection light source of FIG.
  • the pattern projection light source 20 projects a pattern image of the translucent portion onto the measurement object 14 by a plurality of projection optical systems arranged in an array.
  • Is the projection angle of the projection optical system.
  • the measurement object 14 is arranged in the projection area of the projection optical system.
  • Reference numeral 21 denotes a distance measuring unit having a compound eye configuration.
  • 10 is a substrate
  • 11 is a solid-state imaging device mounted on the substrate 10
  • 12 is a camera barrel
  • 13a is an imaging lens of the first imaging optical system
  • 13b is an imaging lens of the second imaging optical system.
  • a straight line connecting the optical axis 3 Oa of the imaging lens 13a and the optical axis 30b of the imaging lens 13b is referred to as a “base line”.
  • a point 15 on the object 14 is a measurement point. This point is located on the optical axis 30a of the first imaging optical system.
  • the measurement point 15 is imaged at a position on the imaging surface of the solid-state imaging device 11 where the optical axis 30a intersects by the first imaging optical system, and is separated from the optical axis 30b by ⁇ in the baseline direction by the second imaging optical system.
  • An image is formed at a position on the imaging surface of the solid-state imaging device 11.
  • the parallax amount ⁇ can be extracted by pattern matching between an image obtained via the first imaging optical system and an image obtained via the second imaging optical system. Therefore, the distance z to point 15 can be extracted by transforming (Equation 2).
  • FIG. 19 shows the compound-eye distance measuring apparatus using the pattern projection light source shown in FIG. 1 as the pattern projection light source, but any pattern projection light source described above may be used.
  • the field of application of the pattern projection light source according to the present invention is not particularly limited, but is wide and has a distance range. Since it is possible to project a clear image of the pattern of the translucent portion over the auxiliary light source of the compound eye distance measuring device described above, for example, an autofocus system of an imaging device that uses the contrast of the image of the projected pattern It can be used for
  • the field of application of the compound-eye distance measuring device according to the present invention is not particularly limited, but is useful as a distance measuring device for in-vehicle use, surveillance camera use, three-dimensional shape measurement, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Focusing (AREA)

Abstract

 光源(2a)と、光源からの光が透過する透光部が所定パターンでそれぞれ形成された複数のマスク領域(5)と、透光部の所定パターンの像を所定距離においてそれぞれ結像させる複数のレンズ(7)とがこの順に配置されたパターン投影光源が開示されている。それぞれがマスク領域とレンズとを備えた複数の投影光学系を有するので小型・薄型のパターン投影光源を実現できる。また、複数のレンズを備えることにより、パターンの像の結像範囲を拡大することができる。更に、対象物上に透光部のパターンの像を鮮明に結像させることができる。

Description

パターン投影光源および複眼測距装置
技術分野
[0001] 本発明は、対象物上に所定パターンの像を投影するパターン投影光源に関する。
また、本発明は、複数の撮像光学系間の視差によって対象物までの距離を測定する 複眼測距装置に関する。
背景技術
[0002] 左右あるいは上下に設置した 2つの撮像装置により測定対象物を撮像し、左右ある いは上下の 2つの画像間の視差を利用して対象物までの距離を測定する複眼測距 装置は、自動車の車間距離測定や、カメラの自動焦点システム、 3次元形状測定シ ステム等に用いられている。この複眼測距装置には、対象物の像を撮像素子上に結 像させる複眼光学系が設けられている。
[0003] 従来、この複眼測距装置としては、左右 (又は上下)一対のレンズを用いて左右 (又 は上下)一対の撮像素子上に対象物の像をそれぞれ結像させて 2つの画像を撮像 する装置が知られて 、る (特許文献 1)。
[0004] 複眼測距装置では撮像した 2つの画像力 パターンマッチングすることによって視 差を抽出し、三角測量の原理によって測定対象物までの距離を算出する。
[0005] パターンマッチングの方法を図 20を用いて説明する。 91, 92は左右一対の撮像光 学系を用いて得た一対の画像である。第 1の撮像光学系から得た画像 (基準画像) 9 1中〖こブロック (小領域) 9 laを設定する。第 2の撮像光学系から得た画像 (参照画像 ) 92中に、ブロック 91aと同じ Y座標値を有し且つ同じサイズのブロック 92aを設定す る。基準画像中のブロック 91aを構成する画素の輝度値と参照画像中のブロック 92a を構成する画素の輝度値との差分 (絶対値)の総和を、下記 (数 1)より評価関数 SA D (Sum of Absolute Difference)として求める。
[0006] [数 1]
SAD =
Figure imgf000003_0001
[0007] (数 1)において、 x、 yは撮像面の X座標値及び Y座標値であり、 10、 IIはそれぞれ 基準画像及び参照画像にぉ ヽて、括弧内で示した座標における画素の輝度値であ る。ブロック 91a, 92aはいずれも m(X軸方向) X n (Y軸方向)の画素を有している。
[0008] 参照画像 92中においてブロック 92aの基線方向(本例では X軸方向) 90における 移動量 dxを変えて SADを演算する。 SADが極小値となる dxを、このブロック 91aに 対する視差量として抽出する。参照画像 92中での小領域 92aの移動範囲 (探索範 囲)は測距範囲に応じて設定される。ブロック 91aを基準画像 91中の任意の位置に 設定することにより、基準画像 91中の任意の座標で SADを演算できるので、撮像視 野内の全領域で視差量 (距離情報)を取得することができる。基準画像 91を複数の ブロックにマトリクス状に分割し、各ブロックごとに上記のパターンマッチングを行うこと で、基準画像 91内の視差分布を求めることもできる。
[0009] このような複眼測距装置を用いて対象物までの距離を測定する場合、夜間では補 助光源によって対象物に光を照射して撮像する必要がある。また、昼夜を問わず対 象物が低コントラストである場合には、距離測定精度の向上のために、補助光源より 所定のパターンの光を対象物に投影することによって、対象物に明暗のコントラストを 与える手法が一般的に知られている(特許文献 2)。
特許文献 1 :特開平 4— 43911号公報
特許文献 2:特開 2001 - 264033号公報
発明の開示
発明が解決しょうとする課題
[0010] 上記のような視差を利用した従来の測距用の補助光源は単一の投影光学系を備 えているので、対象物に十分な照度を与えるために、発光素子をアレイ状に配列して 出力を高めた光源や、出力の大きな単一光源が必要である。また、所定のパターン の光を測定対象物に投影するためには、所定のパターンの透光部を有するマスクの サイズを上記光源のサイズに対応して大きくし、前記マスクに対応した大きなレンズを 用いなければならない。従って、前記マスクの面積は複眼測距装置の撮像領域の面 積に比べて大きくなつてしまうため、複眼測距装置の撮像光学系に比べてパターン を投影する投影光学系の容積が大きくなり、距離測定システム全体の小型化が困難 となってしまう。
[0011] さらには、補助光源の投影光学系と複眼測距装置の撮像光学系とが F値及び画角 において等しいとした条件下では、補助光源の投影光学系の焦点距離が複眼測距 装置の撮像光学系の焦点距離に対して大きいと、パターンを対象物に投影する場合 、撮像光学系の被写界深度に対してパターンの像が良好に結像される範囲が狭くな り、その結果、対象物までの距離を精度よく測定できる範囲が狭くなつてしまうという 問題を生ずる。前記投影光学系がパターンの像を良好に結像する範囲を広げるため には、投影光学系の絞りを小さくする必要があるが、このような手法では照明効率が 低下すると同時に対象物の照度も低下する。従って、遠方側の測距範囲が狭められ てしまうという問題を生ずる。
[0012] 本発明は、以上のような問題点を解決するために考案されたものであり、パターン 投影方向にぉ 、て広 、範囲にわたって対象物上にパターンの像を良好に結像する ことができ、小型化'薄型化されたパターン投影光源を提供することを目的とする。ま た、本発明は、小型 ·薄型で、距離測定の範囲が広ぐかつ距離測定精度が高い複 眼測距装置を提供することを目的とする。
課題を解決するための手段
[0013] 本発明のパターン投影光源は、光源と、前記光源からの光が透過する透光部が所 定パターンでそれぞれ形成された複数のマスク領域と、前記透光部の前記所定バタ 一ンの像を所定距離においてそれぞれ結像させる複数のレンズとをこの順に備える ことを特徴とする。
[0014] 本発明の複眼測距装置は、複数の撮像光学系間の視差によって対象物までの距 離を測定する複眼測距部と、上記の本発明のパターン投影光源とを有することを特 徴とする。
発明の効果
[0015] 本発明のパターン投影光源は、複数のマスク領域及び複数のレンズを有するので 小型化'薄型化することができる。また、複数のレンズを備えることにより、パターンの 像の結像範囲を拡大することができる。更に、対象物上に透光部のパターンの像を 鮮明〖こ結像させることができる。 [0016] また、本発明の複眼測距装置は、上記の本発明のパターン投影光源を備えるので 、小型 ·薄型で、距離測定の範囲が広ぐかつ距離測定精度が高い。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の実施の形態 1に係るパターン投影光源の概略構成を示した斜 視図である。
[図 2]図 2は、本発明の実施の形態 1に係るパターン投影光源の概略構成を示した断 面図である。
[図 3]図 3は、本発明の実施の形態 1に係る別のパターン投影光源の概略構成を示し た斜視図である。
[図 4]図 4は、本発明の実施の形態 1に係る更に別のパターン投影光源の概略構成 を示した断面図である。
[図 5]図 5は、本発明の実施の形態 1にパターン投影光源において、投影パターンの 結像範囲を拡大する方法を説明する図である。
[図 6]図 6は、本発明に係るパターン投影光源のマスク領域に形成された透光部のパ ターンの一例を示す図である。
[図 7]図 7は、本発明に係るパターン投影光源が図 6に示したパターンを投影する様 子を示す斜視図である。
[図 8]図 8は、本発明に係るパターン投影光源のマスク領域に形成された透光部のパ ターンの別の例を示す図である。
[図 9]図 9は、本発明に係るパターン投影光源が図 8に示したパターンを投影したとき の光線を示す図である。
[図 10A]図 10Aは、図 9の距離 F1にある投影面に投影された透光部のパターンの像 を示した図である。
[図 10B]図 10Bは、図 9の距離 F2にある投影面に投影された透光部のパターンの像 を示した図である。
[図 10C]図 10Cは、図 9の距離 F3にある投影面に投影された透光部のパターンの像 を示した図である。
[図 11]図 11は、本発明の実施の形態 2に係るパターン投影光源のマスク領域に形成 された透光部のパターンの一例を示す図である。
[図 12A]図 12Aは、距離 F1にある投影面に投影された図 11の透光部のパターンの 像を示した図である。
[図 12B]図 12Bは、距離 F2にある投影面に投影された図 11の透光部のパターンの 像を示した図である。
[図 12C]図 12Cは、距離 F3にある投影面に投影された図 11の透光部のパターンの 像を示した図である。
[図 13A]図 13Aは、本発明の実施の形態 2に係るパターン投影光源において、マスク
Dの透光部のパターンの像のみを撮像した画像を示した図である。
[図 13B]図 13Bは、本発明の実施の形態 2に係るパターン投影光源において、マスク
Eの透光部のパターンの像のみを撮像した画像を示した図である。
[図 13C]図 13Cは、本発明の実施の形態 2に係るパターン投影光源において、マスク
D及びマスク Eの両方の透光部のパターンの像を撮像した画像を示した図である。
[図 14A]図 14Aは、図 13Aに示した画像を用 、てパターンマッチングを行った際の探 索範囲内での SADの値の変化を示した図である。
[図 14B]図 14Bは、図 13Bに示した画像を用 V、てパターンマッチングを行った際の探 索範囲内での SADの値の変化を示した図である。
[図 14C]図 14Cは、図 13Cに示した画像を用 、てパターンマッチングを行った際の探 索範囲内での SADの値の変化を示した図である。
[図 15]図 15は、本発明の実施の形態 2に係るパターン投影光源のマスク領域に形成 された透光部のパターンの別の例を示す図である。
[図 16]図 16は、本発明の実施の形態 2に係るパターン投影光源において、複数のマ スク領域の配置の一例を示した図である。
[図 17]図 17は、本発明の実施の形態 3に係るパターン投影光源の概略構成を示した 断面図である。
[図 18A]図 18Aは、本発明の実施の形態 3に係るパターン投影光源において、投影 光学系のみを用いた場合の対象物上での照度分布の一例を示した図である。
[図 18B]図 18Bは、本発明の実施の形態 3に係るパターン投影光源において、投影 光学系及び照明光学系の両方を用いた場合の対象物上での照度分布の一例を示 した図である。
[図 19]図 19は、本発明の実施の形態 4に係る複眼測距装置の概略構成を示した断 面図である。
[図 20]図 20は、複眼測距装置におけるパターンマッチングの方法を説明する図であ る。
発明を実施するための最良の形態
[0018] 本発明に係るパターン投影光源は、それぞれがマスク領域とレンズとを備えた複数 の投影光学系を有するので、単一の投影光学系力 なるパターン投影光源に比べ て、光軸方向の寸法 (厚み)を小さくすることができる。
[0019] また、複数のレンズを備えることにより、対象物の照度を向上させることができるので
、各レンズの焦点距離を短くでき、パターンの像が良好に結像される距離範囲が広 がる。よって、本発明のパターン投影光源を複眼測距装置の補助光源として用いた 場合には、精度良く測距できる範囲が広くなる。
[0020] 更に、光源、複数のマスク領域、複数のレンズがこの順に配置されて 、るので、各 レンズは透光部のパターンの像を対象物上に鮮明に結像する。よって、本発明のパ ターン投影光源を複眼測距装置の補助光源として用いた場合には、対象物までの 距離を精度良く測定できる。
[0021] なお、上記の本発明のパターン投影光源において、光利用効率を高めるために、 光源の指向特性に応じて前記光源とマスク領域との間にレンズを挿入してもよい。
[0022] 上記の本発明のパターン投影光源において、前記複数のレンズはアレイ状に配置 され一体成型されて 、ることが好ま 、。複数のレンズをアレイ状に配置することによ り、ノターン投影光源を薄くすることができる。また、複数のレンズを一体成型すること により、金型によって各レンズの光軸の精度を増すことができるため、各レンズの光軸 調整が不要になり、組立て性が向上する。
[0023] 上記の本発明のパターン投影光源において、前記複数のレンズのうち少なくとも 2 つは、互いに異なる距離において前記所定パターンの像をそれぞれ結像させること が好ましい。これにより、パターンの像が良好に結像される距離範囲が更に広がる。 特に、パターンの像が最適に結像される距離をレンズ毎にまたは複数のレンズダル ープ毎に異ならせ、且つ、一定以上のコントラスト比を有するパターンの像が結像さ れる距離範囲が、異なるレンズ間でまたは異なるレンズグループ間で互いに一部重 複するように設定することが好ましい。これにより、連続した更に広い距離範囲でバタ 一ンの像を良好に結像させることができる。よって、本発明のパターン投影光源を複 眼測距装置の補助光源として用いた場合には、精度良く測距できる範囲が更に広く なる。換言すれば、複眼測距装置の測距可能範囲において常に一定以上のコントラ スト比を有するパターンの像が結像されるように複数の投影光学系を設定すれば、パ ターン投影光源を補助光源として使用して常に精度良く対象物までの距離を測定す ることができる。なお、パターンの像が結像される距離を異ならせるには、マスク領域 あるいはレンズの位置を光軸方向に変化させてデフォーカスすればよ!、。
[0024] 上記の本発明のパターン投影光源において、前記複数のマスク領域のうち少なくと も 2つには、互いに異なるパターンで前記透光部が形成されていることが好ましい。 例えば、複数のマスク領域のそれぞれに形成された透光部のパターンが、いずれも 互 ヽに平行な複数のストライプ力もなり、そのストライプパターンが互 ヽに同一である 場合、複数のレンズによって対象物上に投影されたストライプパターンの像は、対象 物までの距離が近 、時には互 、に離れて 、るが、対象物までの距離が遠くになるに したがって互いに徐々に近づく。即ち、対象物上に投影されるストライプパターンの 像の粗密は、対象物までの距離によって変化する。よって、対象物までの距離によつ ては、対象物上のパターンの像が投影されない空白領域が広くなつてしまう。対象物 上にこのような広い空白領域が発生すると、例えば画像を複数のブロック (小領域)に 分割してブロック毎に視差を検出する上述のパターンマッチング(図 20参照)では、 視差を高精度に検出できないブロックが発生してしまう。
[0025] このような空白領域の拡大を回避するには、異なる投影光学系間でもしくは異なる 投影光学系グループ間でマスク領域に形成される透光部のパターンを変えて、投影 距離が変わってもパターンの像の粗密が変化しな 、ように設定すればよ!、。例えば、 マスク領域に形成される透光部のパターン力 Sストライプ状である場合には、そのストラ イブの方向を互いに異ならせることが好ましい。あるいは、マスク領域に形成される透 光部のパターンを周期性のな!、ランダムなパターンとし、そのランダムパターンを互 Vヽに異ならせることが好まし 、。
[0026] 上記の本発明のパターン投影光源において、前記複数のマスク領域のうち少なくと も 1つには、ほぼ全面が透光部であるパターンが形成されていることが好ましい。これ により、投影角内の全域にわたって照度分布を底上げすることが可能である。これに より、暗所において、マスク領域の所定のパターンの像が形成されない対象物までの 距離を、対象物自身が有するコントラストを撮像することで測定することができる。さら に照明効率を高めるには、ほぼ全面が透光部であるマスク領域を備えた投影光学系 を均一な照明を行うのに適した構成 (いわゆる照明光学系の構成)に変更するのが 好ましい。
[0027] 以下、本発明の実施形態について、図面を参照しながら説明する。
[0028] (実施の形態 1)
図 1は、本発明の実施の形態 1に係るパターン投影光源 20の斜視図である。図 2は その断面図である。図 1において、 1は LEDを実装するための回路基板である。回路 基板 1上には、複数の砲弾型 LED2aが配列されている。 3は LED2aから発生した光 線を散乱させる散乱部材である。 4はガラス基板であり、その表面に透光部が所定の ノターンで形成された複数のマスク領域 5を有する。 7はマスク領域 5の透光部を透 過した光を収束し、透光部のパターンの像を結像させるレンズである。 LED2aから発 光した光線は、散乱部材 3、ガラス基板 4、マスク領域 5、及びレンズ 7を介して対象物 に照射され、マスク領域 5に形成されたパターンが投影される。散乱部材 3はレンズ 7 の瞳に向力う光線を発生させるために設けられて 、る。 1つのマスク領域 5とこれに対 応する 1つのレンズ 7とが 1つの投影光学系を構成する。複数の投影光学系が縦横 方向にアレイ状に配置されて 、る。複数の投影光学系の光軸は互いに平行である。 壁 6は隣接する投影光学系からの光を遮光するために設けられて 、る。図 2にお 、て 、 9はレンズ 7を保持するための鏡筒部材である。図 1では鏡筒部材 9の図示を省略し ている。
[0029] このように複数の投影光学系をアレイ状に配列する構成においては、図 3のように アレイ状に配置された複数のレンズ 7がー体成型されたレンズアレイ 70を用いること が好ましい。これにより、金型によって各レンズ 7の光軸精度を向上させることが可能 となる。従って、個々のレンズ 7の光軸調整を不要とすることができ、組立て性が向上 する。
[0030] なお、図 1〜図 3では、 LED2aとレンズ 7とが 1対 1に対応している力 本発明はこれ に限定されない。例えば、 1つの LED2aに対して複数のレンズ 7 (あるいは全てのレ ンズ 7)が対応していてもよいし、複数の LED2aに対して 1つのレンズ 7が対応してい てもよい。また、光源として LEDを用いている力 光源の種類はこれに限定されない
[0031] また、図 1〜図 3では、全てのマスク領域 5が 1枚のガラス基板 4上に形成されている 力 1つ又は複数のマスク領域 5がそれぞれ形成された複数のガラス基板を並べて配 置しても良い。
[0032] 図 4は光源として表面実装型 LED2bを用いたパターン投影光源 20の断面図であ り、図 1及び図 2に示したパターン投影光源の変形例である。図 4において、回路基 板 1上には、複数の表面実装型 LED2bが配列されている。 8は LED2b力 発光した 光線を略平行ィ匕する機能を有する平行ィ匕レンズである。
[0033] 以上のように、複数の投影光学系をアレイ状に配列することにより、単一の投影光 学系のみを用いた場合に比べて、パターン投影光源を薄型化 '小型化することが可 能となる。さらに、複数の投影光学系をアレイ状に配置した場合には、単一の投影光 学系のみを用いた場合に比べて、各レンズ 7の焦点距離を短くすることができるため 、ノターンの像が良好に結像される距離範囲を広くすることができる。
[0034] 次に、パターンの像が良好に結像される距離範囲をさらに広くする構成について説 明する。
[0035] 図 5は、投影されたパターンの像が良好に結像される距離範囲を拡大する方法を 説明する図である。図 5において、 71aは第 1の投影光学系の投影レンズ、 72aは第 1の投影光学系の光軸、 71bは第 2の投影光学系の投影レンズ、 72bは第 2の投影 光学系の光軸、 71cは第 3の投影光学系の投影レンズ、 72cは第 3の投影光学系の 光軸である。また、図 5の下に示したグラフにおいて、 40aは第 1の投影光学系の投 影距離とコントラスト比との関係を示すグラフ、 40bは第 2の投影光学系の投影距離と コントラスト比との関係を示すグラフ、 40cは第 3の投影光学系の投影距離とコントラス ト比との関係を示すグラフである。
[0036] 図 5のパターン投影光源では、投影レンズ 71a、 71b、 71cを同じ形状のレンズとし て、光軸 72a, 72b, 72c方向におけるその位置を互いに異ならせている。これにより 、相対的にデフォーカスされて、パターンの像が最適に結像される投影距離を投影 光学系毎に異ならせることができる。図 5のグラフにおいて、光軸上のコントラスト比が 所定値 Pを上回る範囲を結像深度とした場合、第 1の投影光学系の結像深度は Ll、 第 2の投影光学系の結像深度は L2、第 3の投影光学系の結像深度は L3となってお り、第 1〜第 3の投影光学系の結像範囲はそれぞれ、 Z1〜Z1 +L1、 Z2〜Z2+L2、 Z3〜Z3+L3となっている。図 5のように、第 1〜第 3の投影光学系の結像範囲を相 対的にずらして互いにオーバーラップさせることで、距離範囲 Z1〜Z3+L3では常 に良好に結像されるパターンの像が少なくとも 1つ存在することになる。従って、この ノターン投影光源を複眼測距装置の補助光源として用いた場合には、高精度に測 距できる距離範囲を広げることが可能となる。
[0037] 投影光学系の結像範囲をずらすためには、上記のレンズを光軸方向にずらす方法 以外に、マスク領域 5を光軸方向にずらす方法によっても実現可能である。
[0038] 各投影光学系の結像範囲は環境温度によっても前後にシフトするため、使用温度 範囲を考慮して各投影光学系の結像範囲を設定することが望ましい。
[0039] (実施の形態 2)
本実施の形態 2のパターン投影光源の基本構成は、実施の形態 1における図 1及 び図 2と同じである。本実施の形態では、複数のマスク領域 5に形成された透光部の パターンが互 ヽに異なって!/、る。
[0040] 本実施の形態について説明する前に、まず、複数のマスク領域 5のパターンが同じ である場合にっ 、て説明する。
[0041] 図 6は、アレイ状に配列された 3つのマスク領域 50a, 50b, 50cを示している。図 6 に示すように、それぞれのマスク領域 50a, 50b, 50cの透光部 51のパターンは同じ であり、それらは測距の基線方向 90に対して垂直方向に延びる複数のストライプから なる。そして、 3つのマスク領域 50a, 50b, 50cを含む 3つの投影光学系が基線方向 90と垂直方向に配列されている。マスク領域 50a、 50b、 50cを、それぞれマスク A、 マスク B、マスク Cとする。破線 60a、 60b、 60cは、マスク A, B, Cの外縁を示す仮想 線である。 Evは投影光学系の配置ピッチである。
[0042] 図 7は、前記マスク Α、マスク Βおよびマスク Cの各パターンの像力 所定の距離に 設けた投影面上にどのように結像されるかを説明する図である。図 7において、 61は 投影された透光部 51のパターンの像を示している。ここで、破線 60a,、 60b,、 60c, は、マスク A, B, Cの外縁を示す仮想線 60a、 60b、 60cが投影された位置を示す仮 想線である。投影距離が長くなるにつれてストライプ状のパターンの像 61は大きくな る力 仮想線 60a'、 60b'、 60c'のピッチは常に一定で Evに一致する。従って、投 影距離が長いほど、マスク A, B, Cの 3つのパターンの像 61が重なる領域 (積集合領 域) 6 laの、 3つのパターンの像 61の 、ずれかが結像されて!、る領域 (和集合領域) 61bに対する比率が増す。このようなマスク構成においては、 3つのパターンの像 61 が重なる領域内に測距範囲を設定すればよい。
[0043] 次に、図 8に示すように、 3つのマスク領域 50a, 50b, 50c (j噴にマスク A、マスク B、 マスク Cとする)を含む 3つの 3つの投影光学系を測距の基線方向 90に対して平行方 向に配列した場合を考える。マスク A、マスク B、マスク Cには、図 6と同じ複数のストラ ィプ状の透光部 51が基線方向 90に対して垂直方向に形成されて!、る。
[0044] 図 9は、マスク A、マスク Bおよびマスク Cの各透光部 51を通過した光線の光路を示 す図である。図 9【こお!ヽて、 ^73a, 73b、 73ciま、川頁【こ図 8【こ示したマスク A、マスク B、マスク Cを備えた投影光学系を示す。図 9において、距離 Fl、 F2、 F3にある投影 面に結像される透光部 51のパターンの像は、透光部 51を通過した光線を示す直線 と、各投影面を示す破線との交点に形成される。従って、距離 Fl、 F2、 F3での透光 部 51のパターンの像は、順に図 10A、図 10B、図 10Cのようになる。ここで、破線 60 a'、 60b'、 60c'は、マスク A, B, Cの外縁を示す仮想線 60a、 60b、 60c力投景され た位置を示す仮想線である。投影面までの投影距離が異なれば投影面上に形成さ れる透光部 51のパターンの像の大きさも異なるが、図 10A、図 10B、図 10Cは、仮 想線 60a'、 60b'、 60c'で囲まれた領域の大きさが図 10A、図 10B、図 10C間で同 じ大きさになるようにその倍率が調整されて 、る。 [0045] 図 8、図 9、図 10A、図 10B、図 10Cにおいて Ehは投影光学系の配置ピッチを示し ている。投影距離が長くなるにつれて透光部 51のパターンの像は大きくなるが、仮想 線 60a,、 60b,、 60c,の基線方向 90のピッチは常に一定で Evに一致する。従って、 投影距離が長いほど、図 10Cに示すようにパターンの像の粗密が強調される。従つ て、例えば図 20で説明したような、撮像した画像を複数のブロックに分割して、各ブ ロック毎に距離情報を取得する測距方法を用いる場合には、対象物までの距離によ つては、パターンの像の密度が高 、ブロックとパターンの像がほとんど存在しな!ヽブ ロックとが混在する事態が発生し得る。このような場合、対象物自身のコントラストがほ とんどな!/、領域が撮像されたブロック力 パターンの像がほとんど存在しな 、ブロック と一致した場合、このブロックからは測距に必要な画像情報をほとんど取得できな!/ヽ 。その結果、精度良く距離測定ができないブロックや、測定エラーを引き起こす場合 ブロックが発生し、測距精度が低下してしまう可能性がある。
[0046] 次に、本実施の形態のマスク領域の透光部 51のパターンについて説明する。図 11 は本実施の形態のマスク領域 50d, 50eの透光部 51のパターンを示す図である。測 距の基線方向 90に対して平行に 2つの投影光学系がアレイ状に配列される。この 2 つの投影光学系に含まれる 2つのマスク領域 50d, 50eのそれぞれには、平行な複 数のストライプ力もる透光部 51のパターンが形成されている。但し、ストライプの方向 は、マスク領域 50d, 50e間で異なる。マスク領域 50d、 50eを、それぞれマスク D、マ スク Eとする。破線 60d、 60eは、マスク D, Eの外縁を示す仮想線である。 Ehは投影 光学系の配置ピッチである。マスク領域 50d, 50eがこのような透光部 51のパターン を有することによって、図 9に示す距離 Fl、 F2、 F3にある投影面に結像される透光 部 51のパターンの像は、順に図 12A、図 12B、図 12Cのようになる。ここで、破線 60 d'、 60e'はマスク D, Eの外縁を示す仮想線 60d、 60eが投影された位置を示す仮 想線である。図 12A、図 12B、図 12Cは、図 10A、図 10B、図 10Cと同様に、仮想線 60d'、 60e'で囲まれた領域の大きさが図 12A、図 12B、図 12C間で同じ大きさにな るようにその倍率が調整されて 、る。
[0047] 投影距離が長くなるにつれて透光部 51のパターンの像は大きくなる力 仮想線 60 d'、 60e'は基線方向 90に常に Ehだけずれる。従って、投影距離が長いほど、仮想 線 60d'、 60e'で囲まれた領域の大きさに対する Ehの比率が小さくなる。これは、図 10A、図 10B、図 IOCの場合と同じである。
[0048] ところが、本実施の形態では、 2つのマスク領域 50d, 50eに形成された透光部 51 のストライプパターンの方向が異なるため、投影距離が変わってもストライプパターン の像の交点が移動するのみで、図 10A、図 10B、図 IOCに示すように投影距離によ つてパターンの像の粗密が変化することがない。さらには、ストライプパターンの像の 交点では照度が大きくなるため階調数が増す。これは、測距に必要な画像情報量が 増すことを意味し、異なるマスク領域間で透光部のパターンが同一である場合に比 ベて、測距精度を向上させることができる。
[0049] また、 2つのマスク領域 50d, 50eに形成された透光部 51のストライプ方向がなす角 度を適正に設定することにより、測距精度を向上させることができる。以下にこの測距 精度の向上の原理について説明する。
[0050] 図 13Aは図 11のマスク領域 50d (マスク D)の透光部 51のストライプパターンのみを 所定距離の投影面上に投影し、前記投影面上の像を複眼測距装置で撮像した画像 を示している。この画像を参照画像として用いて、図 20で説明したパターンマツチン グを行う。図 13Aに示したブロック 93を基線方向 90と平行な方向に探索範囲内で移 動して SADを演算をする。探索範囲内に基線方向 90と垂直な複数のストライプの像 が存在するため SAD値は図 14Aのように変化する。探索範囲内に SADの極小値が 複数出現し、且つ、それらの極小値がほぼ等しいため、視差を誤検出してしまう可能 '性がある。
[0051] 図 13Bは図 11のマスク領域 50e (マスク E)の透光部 51のストライプパターンのみを 所定距離の投影面上に投影し、前記投影面上の像を複眼測距装置で撮像した画像 を示している。この画像を参照画像として用いて、図 20で説明したパターンマツチン グを上記と同様に行う。図 13Bでは、基線方向 90におけるストライプの像の周期が探 索範囲より長くなるように、複数のストライプの像が基線方向 90に対して傾斜している 。従って、 SAD値は図 14Bのように変化する。探索範囲内で極小値は一つのみであ るので視差の誤検出はないが、極小値前後の SAD値の変化が緩やかであるため、 パターンマッチングの精度が悪くなる可能性がある。 [0052] このように単一のストライプパターンのみを撮像してパターンマッチングを行うと、誤 検出や精度が悪くなるといった問題が生じる可能性がある。
[0053] 図 13Cは、図 11のマスク領域 50d (マスク D)及びマスク領域 50e (マスク E)の両方 の透光部 51のストライプパターンを所定距離の投影面上に投影し、この投影面上の 像を複眼測距装置で撮像した画像を示して 、る。この画像を参照画像として用いて、 図 20で説明したパターンマッチングを上記と同様に行う。図 13Cに示したブロック 93 を基線方向 90と平行な方向に探索範囲内で移動して SADを演算をすると、 SAD値 は図 14Cのように変化する。即ち、探索範囲内に SADの極小値は複数存在する力 複数の極小値は互いに異なり、探索範囲内で最も小さ!、SADの極小値はただ一つ のみである。し力も、極小値前後の SAD値の変化は急峻である。従って、パターンマ ツチングの精度が高くなり測距精度が向上する。
[0054] 本実施の形態において、マスク領域の透光部のパターンは図 11に限定されない。
ί列免 ίま、、図 15【こ示すよう【こ、マスク領域 50g, 50h, 50iのそれぞれ【こ、互! ヽ【こ異なる 周期性のな ヽランダムなパターンで透光部 51が形成されて!ヽても良!ヽ。このようなパ ターンでも、投影されたパターンの像の投影距離による粗密の変化を低減することが できる。図 15において、黒く塗りつぶした箇所が透光部 51である。
[0055] 上記の説明では、測距の基線方向 90に 1列に複数の投影光学系を配列した例を 示したが、本発明はこれに限定されない。例えば図 16のように縦横方向に 2次元に 複数の投影光学系を配列しても良い。この場合、マスク領域 A1〜A9の透光部のパ ターンを、互いに方向が異なるストライプパターンや、互いに異なる周期性のないラン ダムなパターンとすることによって、投影距離によるパターンの粗密の変化を低減で きる。
[0056] 更に、本実施の形態と実施の形態 1の図 5とを組み合わせることができる。例えば、 図 16の上段のマスク領域 A1〜A3と、中段のマスク領域 A4〜A6と、下段のマスク領 域 A7〜A9との間で、それらのパターンが結像される距離範囲を互いに異ならせる。 これにより、このパターン投影光源を複眼測距装置の補助光源として用いた場合に は、広い距離範囲にわたって高精度に測距することが可能となる。
[0057] ノターン投影光源が備えるマスク領域の数は、本実施の形態に示した、 2, 3, 9に 限定されず、これ以外の数であっても良い。
[0058] (実施の形態 3)
本実施の形態では、複数の投影光学系のうちの少なくとも 1つの投影光学系のマス ク領域のほぼ全面が透光部である。
[0059] 実施の形態 1, 2で説明したパターン投影光源では、マスク領域に形成された透光 部のパターンの像が対象物上に結像される。即ち、対象物の表面のうち、透光部の ノターンの像が形成された領域にはパターン投影光源による光が照射され、それ以 外の領域にはパターン投影光源による光は全く照射されない。
[0060] 一方、対象物の表面に各種形状や模様などが付与されている場合、明るい環境下 であれば、この対象物を撮像した画像にぉ ヽてその形状や模様に基づくコントラスト を利用して測距に必要な画像情報を抽出し対象物までの距離を測定することが可能 である。従って、対象物上の形状又は模様にパターン投影光源による光が全く照射 されなくても、この対象物の測距を行うことは可能である。
[0061] ところが、暗所においては、対象物の表面に付与された形状や模様を撮像すること はできない。この場合、対象物上にパターン投影光源により透光部のパターンの像 が形成されると、この像の明暗を利用して測距に必要な画像情報を抽出することがで きる。一方、対象物上にパターン投影光源による光が全く照射されないと、撮像した 画像カゝらこの対象物の画像情報を抽出することができず、撮像素子からのノイズが不 要な情報として取り込まれてしまうので、パターンマッチングによる測距精度が劣化す る。
[0062] このような問題を軽減するには、透光部のパターンの投影にカ卩えて対象物全体に 光を照射すればよい。
[0063] 本実施の形態では、複数の投影光学系のうちの少なくとも 1つの投影光学系のマス ク領域には、ほぼ全面が透光部であるパターンが形成されている。従って、この投影 光学系を用いて対象物全体を照明すると同時に、これ以外の投影光学系を用いて 対象物に透光部の所定のパターンの像を投影することができる。
[0064] 更に、対象物全体を照明するための投影光学系を図 17に示すような照明光学系と して構成することにより、照明効率を高めることができ、制限された数の投影光学系を 、対象物全体を照明するための投影光学系(照明光学系)と、所定のパターンの像を 投影するための投影光学系とに配分することが可能になる。
[0065] 図 17は、本実施の形態の測距用補助光源の概略構成を示した断面図である。図 1 7において、 16は照明光学系を構成するレンズであって、 LED2aからの光線 17を必 要な照射角度に広げる。レンズ 16が所定の画角に光線を導くため、この照明光学系 には散乱部材 3は必要ない。また、この照明光学系に対応するガラス基板 4上の領域 のほぼ全域は透光部である。 Θは所定のパターンの像を投影する投影光学系の投 影角である。このように投影光学系と照明光学系との併用により、対象物にコントラス トと照度とを与えることが可能となる。
[0066] 図 18Aは、暗所において投影光学系のみを用いた場合の対象物上の照度分布を 示した図である。暗所では透光部のパターンの像が投影されな 、領域での照度はゼ 口となる。
[0067] これに対して、暗所において投影光学系と照明光学系とを併用した場合の対象物 上の照度分布は図 18Bのようになり、透光部のパターンの像が投影されない領域に も照度が付加される。
[0068] 本実施の形態によれば、暗所においては、照明光学系によって対象物全域に照度 を与えることで対象物自身が持つコントラストからノイズの少な 、画像情報を取得する 。但し、対象物自身にコントラストがないために照度を与えても有効な画像情報を取 得することができな 、場合には、投影光学系によって透光部のパターンの像を投影 することで明暗のコントラストを付加することによって、パターンマッチングに必要な画 像情報を取得することが可能となる。これにより、周囲の明るさや対象物自身が有す るコントラストの有無にかかわらず、あらゆる対象物に対して高精度な距離測定を行う ことが可能となる。
[0069] (実施の形態 4)
本実施の形態では、実施の形態 1のパターン投影光源を用いた複眼測距装置に ついて説明する。図 19は図 1のパターン投影光源を用いた複眼測距装置の構成を 示す断面図である。図 19において、パターン投影光源 20は、アレイ状に配列された 複数の投影光学系によって測定対象物 14に透光部のパターンの像を投影する。 Θ は投影光学系の投影角である。測定対象物 14は投影光学系の投影領域内に配置 されている。 21は複眼構成の測距部である。測距部 21において、 10は基板、 11は 基板 10上に実装された固体撮像素子、 12はカメラ鏡筒、 13aは第 1の撮像光学系の 撮像レンズ、 13bは第 2の撮像光学系の撮像レンズである。撮像レンズ 13aの光軸 3 Oaと撮像レンズ 13bの光軸 30bとを結ぶ直線を「基線」と呼ぶ。
[0070] 対象物 14上の点 15を測定点とする。この点は第 1の撮像光学系の光軸 30a上に 位置する。測定点 15は、第 1の撮像光学系により光軸 30aが交差する固体撮像素子 11の撮像面上の位置に結像され、第 2の撮像光学系により光軸 30bから基線方向に Δだけ離れた固体撮像素子 11の撮像面上の位置に結像される。
[0071] 撮像レンズ 13a, 13bから点 15までの距離 (対象物距離)を zとし、 2つの撮像レンズ 13a、 13bの撮像中心間距離である基線長を Dとし、撮像レンズ 13a, 13bの焦点距 離を f (撮像レンズ 13a, 13bとも同一とする)とし、視差量を Δとすると、次の近似式( 数 2)が成立する。
[0072] [数 2]
A = D - f /z
[0073] 視差量 Δは第 1の撮像光学系を介して得られた画像と第 2の撮像光学系を介して 得られた画像とをパターンマッチングすることで抽出できる。従って、(数 2)を変形す る事により点 15までの距離 zを抽出することが可能である。
[0074] 図 19では、パターン投影光源として図 1に示したパターン投影光源を用いた複眼 測距装置を示したが、上述したいかなるパターン投影光源を用いてもよい。
[0075] 以上に説明した実施の形態は、いずれもあくまでも本発明の技術的内容を明らか にする意図のものであって、本発明はこのような具体例にのみ限定して解釈されるも のではなぐその発明の精神と請求の範囲に記載する範囲内でいろいろと変更して 実施することができ、本発明を広義に解釈すべきである。
産業上の利用可能性
[0076] 本発明に係るパターン投影光源の利用分野は特に制限はな 、が、広 、距離範囲 にわたつて透光部のパターンの鮮明な像を投影することができるので、上述した複眼 測距装置の補助光源の他、例えば投影されたパターンの像のコントラストを利用する 撮像装置のオートフォーカスシステムなどに利用することができる。
また、本発明に係る複眼測距装置の利用分野は特に制限はないが、例えば車載 用、監視カメラ用、 3次元形状測定用などの測距装置として有用である。

Claims

請求の範囲
[1] 光源と、
前記光源力ゝらの光が透過する透光部が所定パターンでそれぞれ形成された複数 のマスク領域と、
前記透光部の前記所定パターンの像を所定距離においてそれぞれ結像させる複 数のレンズと
をこの順に備えることを特徴とするパターン投影光源。
[2] 前記複数のレンズはアレイ状に配置され一体成型されて!、る請求項 1に記載のパ ターン投影光源。
[3] 前記複数のレンズのうち少なくとも 2つは、互いに異なる距離において前記所定パ ターンの像をそれぞれ結像させる請求項 1に記載のパターン投影光源。
[4] 前記複数のマスク領域のうち少なくとも 2つには、互いに異なるパターンで前記透光 部が形成されて ヽる請求項 1に記載のパターン投影光源。
[5] 前記互いに異なるパターンは、いずれもストライプ状のパターンであり、かつ、ストラ イブの方向が互 ヽに異なる請求項 4に記載のパターン投影光源。
[6] 前記互いに異なるパターンは、周期性のないランダムなパターンである請求項 4に 記載のパターン投影光源。
[7] 前記複数のマスク領域のうち少なくとも 1つには、ほぼ全面が透光部であるパターン が形成されて ヽる請求項 1に記載のパターン投影光源。
[8] 複数の撮像光学系間の視差によって対象物までの距離を測定する複眼測距部と、 請求項 1に記載のパターン投影光源と
を有する複眼測距装置。
PCT/JP2007/060336 2006-05-30 2007-05-21 パターン投影光源および複眼測距装置 WO2007138904A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/302,432 US8434874B2 (en) 2006-05-30 2007-05-21 Pattern projection light source and compound-eye distance measurement apparatus
JP2008517844A JP4316668B2 (ja) 2006-05-30 2007-05-21 パターン投影光源および複眼測距装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006149184 2006-05-30
JP2006-149184 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007138904A1 true WO2007138904A1 (ja) 2007-12-06

Family

ID=38778423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060336 WO2007138904A1 (ja) 2006-05-30 2007-05-21 パターン投影光源および複眼測距装置

Country Status (3)

Country Link
US (1) US8434874B2 (ja)
JP (1) JP4316668B2 (ja)
WO (1) WO2007138904A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117000A1 (ja) * 2017-12-11 2019-06-20 オムロン株式会社 画像処理装置および画像処理方法
WO2023007891A1 (ja) * 2021-07-29 2023-02-02 ミツミ電機株式会社 投影デバイスおよび測距システム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493496B2 (en) * 2007-04-02 2013-07-23 Primesense Ltd. Depth mapping using projected patterns
CN102472613B (zh) * 2009-07-29 2014-07-09 佳能株式会社 测量设备和测量方法
CN102859319A (zh) * 2011-04-19 2013-01-02 三洋电机株式会社 信息获取装置以及物体检测装置
US9784577B2 (en) * 2012-03-16 2017-10-10 Lg Innotek Co., Ltd. Measuring distance from object by using size of pattern projected onto object
KR20130140295A (ko) * 2012-06-14 2013-12-24 엘지이노텍 주식회사 거리측정 장치 및 방법
US9377302B2 (en) * 2012-10-16 2016-06-28 Multiwave Sensors Inc. Distance finder apparatus and system
TWI546607B (zh) * 2012-12-13 2016-08-21 鴻海精密工業股份有限公司 鐳射投影裝置
CN103869479A (zh) * 2012-12-14 2014-06-18 鸿富锦精密工业(深圳)有限公司 激光投影装置
CN103901624A (zh) * 2012-12-25 2014-07-02 鸿富锦精密工业(深圳)有限公司 激光投影装置
DE102013002399B4 (de) * 2013-02-13 2016-12-22 Chromasens Gmbh Vorrichtung zur Generierung von Lichtmustern mit einer eindimensional fokussierten Beleuchtungseinrichtung
US20160366395A1 (en) * 2015-06-12 2016-12-15 Microsoft Technology Licensing, Llc Led surface emitting structured light
JP6671977B2 (ja) * 2016-01-22 2020-03-25 キヤノン株式会社 計測装置及びその制御方法、並びにプログラム
DE102016119819B3 (de) * 2016-10-18 2017-05-04 Otto-Von-Guericke-Universität Magdeburg Vorrichtung und Verfahren zur optischen Vermessung von dreidimensionalen Oberflächen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281854A (ja) * 1993-03-29 1994-10-07 Asahi Optical Co Ltd 照明装置
JPH09281437A (ja) * 1996-04-18 1997-10-31 Moritex Corp レーザパターン投影器
JP2001091232A (ja) * 1999-09-24 2001-04-06 Sony Corp 3次元形状計測装置および方法、並びに記録媒体
JP2005534026A (ja) * 2002-07-25 2005-11-10 ソリューショニックス コーポレーション 光学式マーカーを用いた三次元測定データ自動整列装置及びその方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305047A (en) * 1988-10-11 1994-04-19 Canon Kabushiki Kaisha Pattern projector having a multi-portion projection lens and camera comprising the same
JPH0443911A (ja) 1990-06-08 1992-02-13 Mitsubishi Electric Corp 車間距離検出装置
JP2000292131A (ja) 1999-04-07 2000-10-20 Minolta Co Ltd 3次元情報入力カメラ
JP2001264033A (ja) 2000-03-17 2001-09-26 Sony Corp 三次元形状計測装置とその方法、三次元モデリング装置とその方法、およびプログラム提供媒体
DE10228103A1 (de) 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
JP2005165224A (ja) 2003-12-05 2005-06-23 Olympus Corp 画像投影表示装置
JP4551708B2 (ja) * 2004-07-21 2010-09-29 キヤノン株式会社 撮像装置
JP2006242833A (ja) * 2005-03-04 2006-09-14 Nidec Copal Corp 光学式角度検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281854A (ja) * 1993-03-29 1994-10-07 Asahi Optical Co Ltd 照明装置
JPH09281437A (ja) * 1996-04-18 1997-10-31 Moritex Corp レーザパターン投影器
JP2001091232A (ja) * 1999-09-24 2001-04-06 Sony Corp 3次元形状計測装置および方法、並びに記録媒体
JP2005534026A (ja) * 2002-07-25 2005-11-10 ソリューショニックス コーポレーション 光学式マーカーを用いた三次元測定データ自動整列装置及びその方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117000A1 (ja) * 2017-12-11 2019-06-20 オムロン株式会社 画像処理装置および画像処理方法
JP2019105480A (ja) * 2017-12-11 2019-06-27 オムロン株式会社 画像処理装置および画像処理方法
WO2023007891A1 (ja) * 2021-07-29 2023-02-02 ミツミ電機株式会社 投影デバイスおよび測距システム

Also Published As

Publication number Publication date
US20090185157A1 (en) 2009-07-23
JPWO2007138904A1 (ja) 2009-10-01
JP4316668B2 (ja) 2009-08-19
US8434874B2 (en) 2013-05-07

Similar Documents

Publication Publication Date Title
WO2007138904A1 (ja) パターン投影光源および複眼測距装置
US11310479B2 (en) Non-uniform spatial resource allocation for depth mapping
US10972716B2 (en) Calibration method and measurement tool
US9142025B2 (en) Method and apparatus for obtaining depth information using optical pattern
CN107850423A (zh) 用于测量目标对象的形状的测量装置、系统和制造方法
CN105004324A (zh) 一种具有三角测距功能的单目视觉传感器
KR100264393B1 (ko) 프리즘에 의한 스테레오 카메라 시스템
WO2016129355A1 (ja) 計測用具、校正方法、校正装置及びプログラム
WO2014074003A1 (ru) Способ контроля линейных размеров трехмерных объектов
CN110784694B (zh) 结构光投影机及三维影像感测模块
JP2019074535A (ja) 校正方法、校正装置、及びプログラム
US11692815B2 (en) Imaging system with calibration target object
WO2022050279A1 (ja) 三次元計測装置
WO2005027739A1 (ja) 距離画像計測機能を有する撮像装置及び内視鏡装置
US10016862B2 (en) Measurement apparatus, calculation method, system, and method of manufacturing article
US5572368A (en) Light projecting device with cylindrical lens
JP2010048553A (ja) 複眼測距装置の検査方法およびそれに用いるチャート
US20170307366A1 (en) Projection device, measuring apparatus, and article manufacturing method
US20050206883A1 (en) Single source, single camera inspection system
US10060733B2 (en) Measuring apparatus
AKATSUKA et al. Three-dimensional Shape Measurement Using Optimal Number of Phase-shifting Steps Based on Light-source-stepping Method
JP2021004762A (ja) 計測装置、撮像装置、計測システム、制御方法、プログラム及び記録媒体
CN110573917B (zh) 跟踪反向散射的激光斑点图案的光流
KR101088597B1 (ko) 직교 줄무늬패턴을 이용한 3차원 측정장치 및 측정방법
CN105203072A (zh) 一种信息处理方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743770

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008517844

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12302432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743770

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)