WO2007132797A1 - 板ガラスのロール成形製造方法及び装置並びにその製品 - Google Patents
板ガラスのロール成形製造方法及び装置並びにその製品 Download PDFInfo
- Publication number
- WO2007132797A1 WO2007132797A1 PCT/JP2007/059827 JP2007059827W WO2007132797A1 WO 2007132797 A1 WO2007132797 A1 WO 2007132797A1 JP 2007059827 W JP2007059827 W JP 2007059827W WO 2007132797 A1 WO2007132797 A1 WO 2007132797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- gas
- roll
- plate glass
- producing
- Prior art date
Links
- 239000005357 flat glass Substances 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 29
- 239000011521 glass Substances 0.000 claims abstract description 124
- 239000000463 material Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 3
- 239000000156 glass melt Substances 0.000 abstract description 17
- 230000007547 defect Effects 0.000 abstract description 7
- 238000002844 melting Methods 0.000 abstract description 5
- 230000008018 melting Effects 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- 239000002699 waste material Substances 0.000 abstract description 4
- 238000005339 levitation Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 125
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 18
- 230000006837 decompression Effects 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 238000007599 discharging Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000006124 Pilkington process Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007500 overflow downdraw method Methods 0.000 description 3
- 238000010583 slow cooling Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B13/00—Rolling molten glass, i.e. where the molten glass is shaped by rolling
- C03B13/04—Rolling non-patterned sheets continuously
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B13/00—Rolling molten glass, i.e. where the molten glass is shaped by rolling
- C03B13/16—Construction of the glass rollers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
- C03B17/061—Forming glass sheets by lateral drawing or extrusion
- C03B17/062—Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B40/00—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
- C03B40/04—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
Definitions
- the present invention relates to a method for producing plate glass exhibiting high quality nano-level surface smoothness, a production apparatus, and a product as a plate glass produced by the production method.
- flat glass for buildings and vehicles is mostly produced by the tin float method in which molten glass is poured onto a tin bath and gradually shaped into a flat plate shape.
- laminate molding is performed while applying pressure with a metal roll in order to sandwich a net of stainless steel or the like.
- Patent Document 2 JP 2001-180949 A
- Patent Document 3 Japanese Patent Laid-Open No. 2002-47019
- the present invention relates to the disadvantages of conventionally known techniques such as the downdraw method represented by the above tin bath method and fusion method, the metal roll rolling method, and the method of impregnating water into a substrate (aqua float method).
- Unresolved and improved constraints, no surface defects ⁇ Minimize the waste of high-quality sheet glass, high-quality sheet glass with excellent macro thickness uniformity and flatness, etc.
- the challenge is to provide the ultimate technology for the glass sheet to be manufactured.
- Another challenge is to provide a glass plate manufacturing method that is simple and can significantly reduce energy, resource and environmental problems.
- the inventors of the rollout method using water vapor as a method for preventing direct contact and interaction between the glass and the roll base material which is a drawback of the conventionally known roll forming method.
- various new methods for overcoming these drawbacks in view of the fact that they include problems that are not only difficult but also logically difficult due to phenomena such as slips.
- the glass in the molten state is wound around the roll in a non-contact state with the base material by utilizing the dynamic pressure balance between the gas jetted out and the gas discharged under reduced pressure.
- the inventors have found that this is possible, and have reached the present invention that enables forming by applying tensile stress in the surface direction of the glass and / or applying compressive stress perpendicular to the surface direction of the glass.
- glass in a molten state is dynamically floated and adsorbed on a gas in which a constant pressure and a reduced pressure are balanced.
- the glass melt When the glass is in a molten state, the glass melt is sucked into the base material that discharges the gas under reduced pressure by the gas drawing action, so that a stagnation state using this is realized.
- the portion where the gas is pressurized and ejected and the portion where the gas is discharged under reduced pressure are regularly and relative to a certain portion of the glass. It is desirable to be dynamic in this sense as well.
- the dynamic pressure balance of the gas means that the pressure of the gas in a flowing state in which the pressure is ejected from a certain portion of the substrate and discharged from the other certain portion is decompressed, or the balance of the pressure is reduced. This means that the positional relationship between the pressurized jetting part and the decompression discharging part of the gas changes, and that the positional relation is not repeatedly fixed.
- Dynamic gas pressure control is an effective concept that is needed and a way to achieve this. Specifically, it is important to provide a mechanism in which gas is continuously discharged under a reduced pressure from a certain range of the base material and the reduced pressure is released at the moment when the range is exceeded.
- one of the base materials that perform gas ejection and decompression discharge has a rotating roll shape, and the corresponding base material has a roll shape, a flat plate shape, or a concave surface along the surface. is there.
- the glass melt it is also effective for the glass melt to apply a tension in the flow direction of the glass ribbon in the downstream direction, and the relative thickness for ensuring a uniform thickness in the width direction of the glass at that time. It is also effective to adjust the gap in the width direction of both surfaces of the substrate.
- carbon, iron, other metals, ceramics, etc. can be applied from the viewpoint of certain heat resistance, dimensional stability, chemical stability, etc., and the surface emissivity and internal heat transfer are applicable. It should be adopted after careful examination from the viewpoint of effects.
- the glass to be molded is a glass transition temperature having a viscosity of 10 3 boise or more and 10 6 boise or less, and at least one side of the glass is used as a base material for taking in and out gas.
- the gas is kept in a dynamic pressure equilibrium state of both the gas jetted under pressure and the gas discharged under reduced pressure, and the tensile stress and / or the glass surface is parallel to the glass surface. It is formed by applying a compressive stress in the vertical direction.
- another plate glass manufacturing method according to the present invention is characterized in that, as compared with the plate glass manufacturing method, the exhausted gas has two mode forces of normal pressure and reduced pressure.
- another plate glass manufacturing method according to the present invention is characterized in that both surfaces of the glass used for forming are placed in a gaseous environment, compared to the plate glass manufacturing method.
- another plate glass manufacturing method according to the present invention is characterized in that at least a part of a base material for taking in and out the gas is a roll or a roll shape, which is the same as the plate glass manufacturing method. .
- a glass substrate is manufactured in such a manner that a certain area of the substrate is in a flow state of a gas in which a certain area of the base material is pressurized and ejected and a gas that is sucked out of the system under reduced pressure. It is characterized by using a roll that holds the gas and has a flow state force of gas that is pressurized and ejected from other areas and gas that is discharged outside the system at normal pressure.
- another plate glass manufacturing method is based on the above plate glass manufacturing method.
- a certain area of the material holds the glass in a dynamic pressure balanced state between the gas that is pressurized and ejected and the gas that is vacuumed and sucked out of the system, and the other area is discharged at normal pressure and the gas that is pressurized and ejected outside the system. It is characterized by using a roll that expresses a dynamic pressure equilibrium state of the gas.
- another plate glass manufacturing method according to the present invention is characterized in that the gas contains air or water vapor as a main component, compared to the plate glass manufacturing method.
- another plate glass manufacturing method according to the present invention is characterized in that the base material moves at a speed different from the moving speed of the glass used for forming, as compared with the plate glass manufacturing method.
- another plate glass manufacturing method according to the present invention is ejected from small holes having an average diameter of 5 mm or less in which the gas is substantially uniformly distributed on the substrate. It is characterized by being discharged.
- the base material through which the gas is taken in and out is a bed-like shape, and extends in the glass moving direction on both sides of the bed. It is characterized by applying a force to spread both sides of the moving glass to the outside by the rotation of the gas jet / decompression roll.
- the sheet glass manufacturing apparatus is such that the glass to be molded has a glass transition temperature that is not less than 10 3 boise and has a viscosity of not less than 10 6 boise, and at least one side of the glass is a gas. It faces the base material to be put in and out, and is maintained in a dynamic pressure equilibrium state of both the gas jetted out and the gas exhausted from the system under reduced pressure. It is characterized in that it is molded by applying compressive stress in the direction perpendicular to the surface.
- another plate glass manufacturing apparatus is characterized in that the exhausted gas has two aspect forces, normal pressure and reduced pressure state, over the plate glass manufacturing apparatus.
- another plate glass manufacturing apparatus is characterized in that both surfaces of the glass to be formed are placed in a gaseous environment after the plate glass manufacturing apparatus.
- another plate glass manufacturing apparatus is characterized in that at least a part of the base material for taking in and out the gas is in a roll or a roll shape in addition to the plate glass manufacturing apparatus. .
- another plate glass manufacturing apparatus is less than the plate glass manufacturing apparatus. At least one of the glass surfaces is characterized by receiving the substrate surface under dynamic pressure balance of the gas.
- another plate glass manufacturing apparatus provides a dynamic pressure balance between a gas in which a certain area of the base material is pressurized and ejected and a gas that is vacuum-sucked out of the system. It is characterized by using a roll that holds a glass in a state and expresses a dynamic pressure equilibrium state between a gas that is pressurized and ejected from other areas and a gas that is discharged outside the system at normal pressure.
- another plate glass manufacturing apparatus is characterized in that the gas contains air or water vapor as a main component in addition to the plate glass manufacturing apparatus.
- another plate glass manufacturing apparatus is characterized in that the base material moves at a speed different from the moving speed of the glass used for forming, compared with the plate glass manufacturing apparatus.
- another plate glass manufacturing apparatus ejects from small holes having an average diameter of 5 mm or less in which the gas is substantially uniformly distributed on the substrate. It is characterized by being discharged.
- the base material through which the gas is taken in and out of the plate glass manufacturing apparatus has a bed shape, and extends on both sides of the bed in the glass moving direction. It is characterized by applying a force to spread both sides of the moving glass to the outside by the rotation of the gas jet / decompression roll.
- a product of plate glass according to the present invention is a product manufactured by shifting or squeezing the plate glass manufacturing method.
- the present invention it is possible to obtain a flat glass having a high degree of uniformity and flatness over the entire width of a product, which has smoothness in a double-sided fired state by a small-scale device, is clean and has no defects.
- a deformed defective portion generated at both ends in the width direction is minimized.
- energy glass can be produced without using a lot of resources.
- FIG. 1 is a diagram showing an overall outline of a dynamic gas pressure control roll forming method in an embodiment of the present invention.
- FIG. 2 is an enlarged cross-sectional view of a roll and a concave body portion of the same example.
- ⁇ 3] is an overall schematic diagram of dynamic gas pressure control bed molding in another embodiment of the present invention.
- ⁇ 4] is a schematic diagram of part of dynamic gas pressure control bed molding.
- the present invention produces a high-quality plate glass excellent in micro smoothness, macro thickness uniformity, flatness, etc. by minimizing the waste of high-quality plate glass without surface defects.
- the glass used for molding has a viscosity of 10 3 boise or more and a glass transition temperature that is 10 6 boise or less, and at least one side of the glass takes gas in and out. Facing the substrate to be pressed and placed in a dynamic pressure equilibrium state of both the gas jetted out and the gas discharged under reduced pressure, and the tensile stress and / or the glass surface parallel to the glass surface. Formed by applying compressive stress in the vertical direction Realized by the method.
- the glass used for forming is made of a raw material having a viscosity of 10 3 boise or more and a glass transition temperature of 10 5 boise or less, and at least one side of the glass is It faces the base material where gas is taken in and out, and is molded by being placed in a dynamic pressure equilibrium state of both the gas jetted under pressure and the gas discharged under reduced pressure outside the system.
- a technique for holding a solid object in a floating state by a dynamic pressure equilibrium state of both a gas jetted out and a gas discharged under reduced pressure is disclosed in, for example, JP 2003-507681A. It is disclosed in Table 2003-509227.
- the technology disclosed in JP-T-2003-507681 discloses fins 44 and 45 in a zigzag shape in the tube 41, and alternately from the left and right in the figure to the center of the tube 41. It is protruding.
- a vortex 46 as shown in the figure is generated between the fins, and the main air flowing between the vortices is ejected from the ejection holes 43.
- the pipe 41 having such a structure is connected to the duct 51 as shown in FIG. 5B, high-pressure air is supplied from the high-pressure reservoir 52 through the supply pipe 53, and is ejected from the ejection hole 43. Place it so as to close the hole 43, and push up the object 55.
- the opening portion of the jet hole 43 also has a predetermined height. That is, for example, in FIG. 4 (b), when it is balanced at the height H2 as shown in FIG. 4 (b-2), for example, the lower height as shown in FIG. 4 (b-2). When it is HI, push it up to the height H2 in the figure (b-2). When the height is higher than H3 as shown in Fig. 3 (b-3), it is lowered to the height H2 in Fig. 2 (b-2) and stabilized. Further, the object 55 has a characteristic of staying at the position by the stable air flow around the object at this time.
- the object 55 on the ejection hole 43 is held at a predetermined position in a state where it floats at a predetermined height from the opening. In addition, it is adjacent to the ejection hole 43 and communicates with the outside at normal pressure.
- the pipe 41 When the pipe 41 is arranged, the jet air flow and the air flow discharged from the pipe 41 are stabilized, and the object can be held more securely in a predetermined position.
- the characteristics of holding an object as described above include that, other than injecting air onto the surface on which the object is placed, the air is sucked in by a vacuum pump, as shown in the Japanese Patent Publication No. 2003-509227.
- a vacuum discharge hole having similar characteristics, it becomes possible to realize an adsorbed body at the same time that the object floats, and the retention characteristics of the object from the substrate surface are further improved.
- the present inventors have found that when the above-mentioned known technique is used for glass production, the present invention has a remarkable effect that cannot be obtained by the conventional glass production methods as described above. It has come.
- the present invention simply applying the technology of the above cited patent as it is, fluid glass cannot be obtained as a smooth 'flat product.
- the present invention has been completed by finding the importance of the dynamic relationship.
- the glass melted in the melting furnace 1 is adjusted in flow rate by the tween 2 and supplied to the molding machine as the glass melt 4 through the supply lip 3.
- the glass ribbon be supplied in a form that is approximately close to the width of the molded glass sheet in order to avoid undesirable internal stresses and potential distortions in the glass.
- the temperature of the glass ribbon to be supplied varies depending on the composition of the glass, but is approximately 10 2 to 10 5 boise, preferably 10 3 to 10 4 boise, and in the case of soda lime glass, 1000 to: L100 ° C is preferred.
- the glass ribbon that has flowed down onto the gas ejection / discharge rotating roll 5 immediately follows the dynamic gas pressure balance formed by the jet gas generated on the surface of the roll base material and the vacuum exhaust gas. It floats on the gas thin layer 11 * adsorbs and moves slidably as the roll rotates.
- the degree of sliding movement at that time can be controlled by the state of glass viscosity, temperature, etc., gas pressure, flow rate, and the ratio of ejection to decompression discharge, etc., and quantity control according to the purpose is preferred.
- the glass ribbon that floats on the discharge rotating roll 5 and slides while adsorbing is pressed from the upper surface to the surface of the rotating roll through the gas 12 by the gas ejection and discharge concave body 6. Receive power. At this time, it is possible and useful to design a gentle curved surface on the surface of the roll and the concave body so that a stress in the width direction acts on the glass ribbon.
- the material of the roll needs to withstand the temperature of the glass to be handled, and heat resistant steel, ceramics, carbon, etc. can be suitably used. At this time, it is important and effective to appropriately select the temperature and amount of the gas to be ejected, the thermal conductivity of the roll base material, the emissivity of the surface, etc. from the viewpoint of temperature control of the glass.
- the glass ribbon is slid and moved between the rotating roll and the concave body in a gas sandwiched state. After approximately half rotation, the glass ribbon is detached from the first roll 13 and installed as necessary. Move to second roll 14
- a vacuum cell 7 and a normal pressure cell 8 are incorporated inside the roll so that approximately half of the discharge from the vacuum roll discharge hole of the rotary roll is always depressurized and the other half is normal pressure.
- the sliding seal 10 provides a mechanism that always applies pressure reduction to half of the roll surface and normal pressure to the other half.
- the structure and mechanism of the cell is desirable because it can be designed and manufactured as appropriate for the desired molding and performance, ease of production, and cost. (Details will be described later)
- the glass ribbon is gradually thinned by the tensile stress of the downstream force.
- the floating / adsorption state functions to prevent shrinkage of the glass ribbon in the width direction.
- the plate glass 15 that has been formed and thinned through the above-described steps is converted into a product through a predetermined cooling zone 16.
- Fig. 2 is an enlarged cross-sectional view of a portion F in Fig. 1, and illustrates the above-described dynamic gas pressure control mechanism.
- the glass ribbon 4 moves between the gas jetting / discharging rotary roll 5 and the gas jetting / discharging concave body 6 as the gas jetting / discharging roll 5 rotates.
- the rotary roll gas decompression chamber 8 and the roll surface 28 on the central side of the discharge rotary roll 5 the rotary roll gas decompression discharge hole 6 provided in the gas jet / discharge rotary roll base 18 communicates with the gas roll. is doing.
- a rotary roll gas pressurizing cell 21 is provided in the gas jetting / discharging rotary roll base material 18 and communicated with the roll surface 28 through a rotary roll gas jetting hole 19.
- the rotary roll gas decompression discharge hole 6 and the rotary roll gas ejection hole 19 are the pipe 41 in FIG.
- the configuration is the same as that in FIG. 1, and a large number of fins are arranged in a zigzag shape.
- the pressurized gas from the rotary nozzle gas pressurization cell 21 is ejected from the roll surface 28 through the rotary roll gas gas ejection hole 19 and from the adjacent rotary roll gas decompression discharge hole 20 to the rotary roll gas decompression chamber. Discharge to 22.
- the concave body gas normal pressure hole 25 provided in the gas ejection / discharge concave body base 23 is provided between the outer pressure release space 27 and the concave surface 29.
- a concave body gas pressure cell 26 is provided in the gas jetting / discharging concave body base material 23 and communicated with the concave body surface 29 through a concave body gas ejection hole 24.
- the pressurized gas from the concave body gas pressurizing cell 26 is ejected from the concave body surface 29 through the concave body gas ejection hole 24, and from the adjacent concave body gas normal pressure hole 25 to the normal pressure release space 27. Discharge.
- the glass ribbon 4 drawn into the roll surface 28 is strongly held by the vacuum exhaust while being separated from the roll surface 28 to form the gas thin layer 11, and is also separated from the concave surface 29 to remove the gas thin film 12. Since the layer is formed and the glass ribbon 4 is held, the glass ribbon can be sent out in the gas thin layer as the roll rotates as a whole.
- the present invention can also be applied to the glass bed forming method shown in FIG.
- the glass melt ribbon 34 is poured into the gas ejection / discharge bed 35 while adjusting the flow rate from the melting furnace 31 with the twill 32 and transferred in the direction of the arrow.
- the surface side of the gas jet 'discharge bed 35 is a gas jet' normal pressure discharge portion 39 at the center and gas jet / vacuum discharge portions 38 on both sides thereof.
- a gas ejection / decompression discharge roll 4 extending in the glass transfer direction is disposed above the gas ejection / decompression portion. The gas ejection 'reduced pressure discharge roll 4 is placed above both sides of the glass melt ribbon 34 transferred below it and rotated in a direction to extend both sides of the glass melt ribbon sideways.
- the glass melt ribbon 34 flowing down from the melt supply lip 33 is transferred on the gas ejection 'exhaust bed 35', the glass melt ribbon 34 floats at the gas ejection 'atmospheric pressure exhaust portion 39 in the central portion.
- the glass melt ribbon 34 is floated on both sides of the glass melt ribbon 34 and held in a state where the glass melt ribbon 34 floats at the decompression discharge portion 38, and the gas jet at this portion
- the 'depressurizing and discharging rolls 40, 41' apply a force in the direction of spreading outward with a thin gas layer.
- the glass melt ribbon 34 is transported on the gas ejection / discharge bed 35 with a uniform thickness and sent to the slow cooling zone 42.
- both sides of the glass melt ribbon 34 are not brought into contact with a member such as a contact roll as in the conventional bed formation, no damaged portion is generated on both sides, both width portions are not wasted, and almost the entire surface.
- a flat plate glass with a uniform thickness can be formed.
- a plate-like shape is held between the gas that performs pressure jetting and vacuum suction from the microscopic holes in which both surfaces of the glass having a temperature equal to or higher than the glass temperature used for forming are uniformly dispersed.
- Glass can be molded.
- the conventional method of pouring glass onto molten tin or pulling it vertically from a special platinum cage and guide makes the device very large or expensive, and the operation is complicated.
- high-quality plate glass can be formed by a small and inexpensive apparatus.
- the present invention is within the scope of the present invention, and the technology that satisfies the basic requirements without being limited or restricted to the above embodiments.
- a gas ejection method evaporation of liquid such as water impregnated in a porous base material, fluid resistance when passing through a porous body with a small pore diameter, gas ejection using a bent tube, and discharge It is usefully available.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
表面に欠点のない、マクロな厚み均一性や平坦性等にすぐれる高品質の板ガラスを、無駄になる部分を極小にして、製造する。そのため、溶融炉1からのガラスメルト4を気体噴出・排出回転ロール5と気体噴出・排出凹面支持体6との間に供給する。気体噴出・排出回転ロール5は加圧気体を供給する内部に流体抵抗(例えば渦巻き流抵抗)を有する流路を備えた多数の気体噴出孔と、同様の流路からなる多数の気体減圧排出孔とを備える。気体噴出・排出凹面支持体6は同様の流路からなる加圧気体を供給する多数の気体噴出孔と、常圧解放空間に連通する気体常圧排出孔とを備える。ロール表面と凹面体表面との間に導かれるガラスメルト4は、ロール及び凹面体と接触することなく、かつ気体の動的圧力均衡による浮上吸着保持力によりロールと連動し、適宜ガラスの面方向に平行もしくは垂直の応力を加えられ成形され、第1ロール13及び第2ロール14によって所定の板ガラスを成形する。
Description
明 細 書
板ガラスのロール成形製造方法及び装置並びにその製品
技術分野
[0001] 本発明は高品質のナノレベルの表面平滑性を示す板状ガラスの製造方法、及び 製造装置並びに、その製造方法により製造された板ガラスとしての製品に関するもの である。
背景技術
[0002] 建築用や車両用の板状ガラスは先進国では殆どスズ浴上に溶融状態のガラスを流 出して徐々に平板状に成形するスズフロート法によって生産されて 、る。
ディスプレー用の薄板高平坦性を求められる場合には白金の樋の両側カゝら溶融ガ ラスをオーバーフローさせて白金のガイドにそって流下させた後両側からのガラスを 合わせて一枚にする!/、わゆるフュージョン法が用いられることも多!、。
また、網入りガラス等の場合には間にステンレス等の網をサンドイッチするために金 属ロールにより圧力をかけながらラミネート成形をする。
[0003] スズフロート法による板ガラスの成形は高温のスズ浴内での成形を行うので、スズの 酸化を防ぐために密閉空間内で水素等の還元性雰囲気下に保つ必要があり、水素 等のコストや安全対策が問題となり、またスズとの接触によるガラス中へのスズの侵入 やスズ浴空間に侵入する酸素とスズとの反応による酸化スズ等に起因する製品の表 面欠点が高品質を求められるディスプレー用途で特に問題となり、さらにはスズを高 温に保っために特に小規模生産では大きなエネルギーコストが掛かり、炭酸ガス排 出等の環境問題への影響も無視できな 、。
[0004] またスズフロート法の場合には高温のガラスが熱伝導性の高 ヽ金属スズと直接接触 するために、ガラスと金属スズとの間の熱流束が大きぐガラスはスズの温度の影響を 直接大きく受けるので、スズの温度制御が非常に重要な技術課題となり、またそのよ うな接触伝熱下の成形ではガラスの局部的な過剰変形部分はスズからの熱の供給 により周囲と等温に保たれるので一層異常変形が進行する恐れが大きぐこれを避け るために成形は表面張力と重力によるガラスの粘性流動を利用して平準 ·均一化を
図りながらきめ細かい温度調整を図りながら準平衡的にゆっくり行う必要がある。
[0005] フュージョン法による製品の表面は製造過程で空気にしか触れないので、上記のよ うな表面欠点の心配はない。しかし、ガラスを垂直下方に引き落とす方法で成形する ために、他のダウンドローと同様、白金ガイドの先端部分のガラスに最大荷重が掛か り、それを軽減するためのガラスの温度制御が繁雑になり、また肉厚製品の生産には 向かない。また、製品の幅や厚み等の品種変更のたびに白金製の樋を変える必要 があり、いわゆるジョブチェンジに手間取り、高価な白金製のリップのコストも無視でき ない。
[0006] 金属ロールによる圧延成形では、金属ロールとの接触の跡が皺や凹凸状に残るこ とが避け難く製品の品質はそのまま平坦な板ガラスとしての用途には堪えない。
[0007] 最近、上記のごとき既存の製法とは異なる水等の媒体を多孔質の支持体に含浸さ せ、その上に溶融ガラスを流出して板状のガラスを連続的に製造する方法が開発さ れており、この方法によれば上記のごとき既存の方法の欠点を改良もしくは解消する 可能性が示唆されている(特開平 09— 295819)。また、その一環として、水をロール 状の基材に含浸させて、対面する一対の該ロールの間に溶融ガラスを流下せしめて 板状のガラスを成形する方法が提案されている。(特開 2001— 180949)しかしなが ら、この方法では、溶融ガラスが一対のロールで形成される間隙に嚙み込まれせるこ とが難しいために、その実施は極めて困難である。また、これを改良した方法 (特開 2 002— 47019)では、上記の溶融ガラスの嚙み込みを容易にする試みが提案されて いる力 この方法でも一対のロールの接線上での嚙み込みは必ずしも容易になりえ ず、また、嚙み込みを優先するとガラス表面のロールとの直接接触が大きくなるため に表面形状に欠点の発生する恐れが増大する。
[0008] さらに、上記のロール成形以外の方法では、貴重なガラス製品の幅方向の両端部 分に、延伸等の必要性力もギヤ状の治具を掛けるために、該両端に製品として使用 出来ない変形や肉厚異常の部分を生じ、徐冷時の熱歪の原因となり、歩留まりの低 下を招く一因となっている。また、公知のロール成形では、両端の無駄な部分の発生 は抑えることができるが、ロール表面とガラスとの相互作用により、平滑な表面状態を 得難ぐ到底高品質の板ガラスの生産に適用することはできない。
特許文献 1 :特開平 9 295819号公報
特許文献 2:特開 2001— 180949号公報
特許文献 3 :特開 2002— 47019号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は上記のスズ浴法やフュージョン法に代表されるダウンドロー法、金属ロー ル圧延法並びに水を基材に含浸させる方法 (アクアフロート法)等の従来公知の技術 の欠点や制約等を解決な 、し改良し、表面の欠点のな ヽ高品質の板状ガラスを無駄 になる部分を極小にして、マクロな厚み均一性や平坦度等に優れる高品質の板ガラ スを製造する板ガラスの究極の技術を提供することを課題としている。また、併せて簡 便でエネルギー、資源および環境問題を大幅に軽減できる板ガラスの製法を提供す ることを課題としている。
課題を解決するための手段
[0010] 本発明者らは、上記のごとぐ従来公知のロール成形法の欠点であるガラスとロー ル基材の直接的な接触や相互作用を防ぐ方法としての、水蒸気を用いるロールァゥ ト法ではスリップ等の現象によって現実的に困難であるのみならず論理的にも非常に 難しい問題を含んで 、ることに鑑み、これらの欠点を克服する新たな方法を種々検 討した結果、溶融状態にあるガラスを気体で保持する際に、加圧噴出する気体と減 圧排出する気体との動的な圧力均衡を利用することによって溶融状態にあるガラスを 基材と非接触状態でロールに巻きつけることの可能なことを見出し、ガラスの面方向 に引っ張り応力あるいは/またはガラスの面方向に垂直に圧縮応力を掛けることによ つて成形を可能とする本発明に至ったものである。
[0011] 即ち、本発明の要諦をなす技術要素の一として、溶融状態にあるガラスを動的に一 定の加圧と減圧との均衡にある気体上に浮上吸着させることである。
ガラスが溶融状態にある場合には、気体の引き込み作用によって、ガラスメルトは気 体を減圧排出する基材に吸引されるので、これを利用した嚙み込み状態が実現され る。
反面、ガラスが気体を噴出、減圧排出する基材と相対的に静止関係にある場合に
は、減圧排出される気体上の低粘度ガラスは局部的な変形を余儀なくされるので、 本発明の要諦をなす技術要素の二としてガラスをこの意味での動的な圧力均衡状態 に置くことである。
そのために、両者は常に相対的な摺動状態にあることが重要かつ必要であるが、 加えて、気体を加圧噴出する部分と減圧排出する部分が繰返し規則的にガラスの一 定部分に相対することも好ましくなぐそのような意味でも動的であることが望まれる。 以上に示すように、気体の動的圧力均衡とは、基材の一定部分から加圧噴出し他 の一定部分から減圧排出される流動状態にある気体の加圧'減圧の均衡、またガラ スに対する気体の加圧噴出部分と減圧排出部分の位置関係が変化していくこと、さ らにその位置関係の変化も繰り返し固定的でないこと等を意味する。
[0012] また、ガラスを逐次条件の異なる状態において連続的に処理を進めるためには、適 宜浮上吸着状態から吸着状態を解除して、ガラスメルトの基材からの離脱を容易なら しめる方法が必要とされ、これを達成する方法としても動的な気体圧力制御が有効な コンセプトである。具体的には連続的に基材の一定範囲からは気体が減圧排出され 、その範囲を越えた瞬間に減圧が解除される仕組みを付与することが肝要である。
[0013] 一方、浮上吸着状態にあるガラスメルトを連続的に平坦な板ガラスとして成形すると ともに薄板ィ匕を図り、或いは板厚を制御することも重要かつ必要なことである。そのた めガラスに面方向と平行に引っ張り応力を掛ける力、またはガラスに面方向と垂直に 圧縮応力を掛けるか、或いはその両社の応力を掛けることが必要である。
これを促進し、ガラスの所定の浮上吸着状態と肉厚の制御を達成するためには、単 純な従来公知のロールアウトのごとき線接触では困難であって、少なくともガラス面の 一方は気体の動的圧力均衡下に基材の面保持が重要かつ効果的であって、これが 本発明の要諦をなす技術要素の三である。
[0014] そのため、気体の噴出と減圧排出を行う基材の一方は回転するロール状をなし、相 対する基材はロール状、平板状もしくはその面に沿った凹面をなすことが重要かつ 必要である。
また、その際ガラスメルトは下流力 ガラスリボンの流れ方向への張力をかけることも 有効であって、その際のガラスの幅方向の一様な厚みを担保するための上記相対す
る基材両面の幅方向へのギャップ調整等も有効である。
[0015] 力かる技術を実現する気体としては各種候補として考えられるが、その入手の容易 さ、取り扱いの容易さ、コストおよび安全性等の諸観点から、空気もしくは水蒸気が有 効かつ好ましい。
また、高温のガラス力も所定の除熱を行いながら、徐々にガラスの成形固化を進め るためには、熱工学の観点力 の用いる材料や運転条件の種々の検討や最適化が 求められることは当然である。
例えば種類としては、一定の耐熱性、寸法安定性、化学的安定性等の観点から、 カーボン、鉄、その他の金属、セラミックス、等が適用可能であり、表面の放射率や内 部の伝熱効果等の観点から吟味の上採用すべきである。
[0016] 上記のような本発明について、より具体的には次のような手法を採用する。即ち、本 発明の板ガラスの製造方法は、成形に供するガラスが粘度 103ボイズ以上 106ボイズ 以下の粘度にあるガラス転移温度以上にあって、当該ガラスの少なくとも片面が気体 を出し入れする基材に面し、加圧噴出する気体と系外に減圧排出される気体の両者 の動的圧力均衡状態に保持されて、ガラスの面と平行方向に引っ張り応力および/ま たはガラスの面に対して垂直方向に圧縮応力を掛けて成形されることを特徴とする。
[0017] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、排 出される気体が常圧および減圧状態の二つの態様力 なることを特徴とする。
[0018] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、成 形に供するガラスの両面が気体環境に置かれることを特徴とする。
[0019] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、気 体を出し入れする基材の少なくとも一部が回転するロール或いはロール状であること を特徴とする。
[0020] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、基 材の一定面積が加圧噴出する気体と系外に減圧吸引される気体の流動状態でガラ スを保持し、他の面積が加圧噴出する気体と系外に常圧で排出される気体の流動状 態力 なるロールを用いることを特徴とする。
[0021] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、基
材の一定面積が加圧噴出する気体と系外に減圧吸引される気体の動的圧力均衡状 態でガラスを保持し、他の面積が加圧噴出する気体と系外に常圧で排出される気体 の動的圧力均衡状態を発現するロールを用いることを特徴とする。
[0022] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、気 体が空気或いは水蒸気を主成分とすることを特徴とする。
[0023] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、基 材が成形に供するガラスの移動速度と異なる速度で移動することを特徴とする。
[0024] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、気 体が基材上に実質的に一様に分布した平均直径 5mm以下の小孔から噴出し、排出 されることを特徴とする。
[0025] また、本発明に係る他の板ガラス製造方法は、前記板ガラス製造方法にぉ 、て、前 記気体を出し入れする基材はベッド状であり、該ベッドの両側にガラスの移動方向に 延びる気体噴出 ·減圧ロールの回転により、移動するガラスの両側を外側に広げる力 を付与することを特徴とする。
[0026] また、本発明に係る板ガラス製造装置は、成形に供するガラスが粘度 103ボイズ以 上 106ボイズ以下の粘度にあるガラス転移温度以上にあって、当該ガラスの少なくと も片面が気体を出し入れする基材に面し、加圧噴出する気体と系外に減圧排出され る気体の両者の動的圧力均衡状態に保持されて、ガラスの面と平行方向に引っ張り 応力および Zまたはガラスの面に対して垂直方向に圧縮応力をかけて成形すること を特徴とする。
[0027] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、排 出される気体が常圧および減圧状態の二つの態様力 なることを特徴とする。
[0028] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、成 形に供するガラスの両面が気体環境に置かれることを特徴とする。
[0029] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、気 体を出し入れする基材の少なくとも一部が回転するロール或いはロール状であること を特徴とする。
[0030] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、少
なくともガラス面の一方は気体の動的圧力均衡下に基材の面保持を受けていること を特徴とする。
[0031] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、基 材の一定面積が加圧噴出する気体と系外に減圧吸引される気体の動的圧力均衡状 態でガラスを保持し、他の面積が加圧噴出する気体と系外に常圧で排出される気体 の動的圧力均衡状態を発現するロールを用いることを特徴とする。
[0032] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、気 体が空気或いは水蒸気を主成分とすることを特徴とする。
[0033] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、基 材が成形に供するガラスの移動速度と異なる速度で移動することを特徴とする。
[0034] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、気 体が基材上に実質的に一様に分布した平均直径 5mm以下の小孔から噴出し、排出 されることを特徴とする。
[0035] また、本発明に係る他の板ガラス製造装置は、前記板ガラス製造装置にぉ 、て、前 記気体を出し入れする基材はベッド状であり、該ベッドの両側にガラスの移動方向に 延びる気体噴出 ·減圧ロールの回転により、移動するガラスの両側を外側に広げる力 を付与することを特徴とする。
[0036] また本発明による板ガラスの製品は、前記板ガラス製造方法の 、ずれか〖こよって製 造された製品であることを特徴とする。
発明の効果
[0037] 本発明によって、小規模の装置によって両面火炙り状態の平滑性を有し、清浄で 欠点の無い、製品全幅に亘る高度の均一性と平坦性を有する板ガラスが得られる。 特に従来法では幅方向両端部に生じる異形不良部分が極小化される。また、エネル ギーゃ資源を多用することなく板ガラスを生産できる。
図面の簡単な説明
[0038] [図 1]本発明の実施例における動的気体圧力制御ロール成形法の全体概要を示す 図である。
[図 2]同実施例のロール及び凹面体部分の拡大断面図である。
圆 3]本発明の他の実施例における動的気体圧力制御ベッド成形全体概要図である 圆 4]動的気体圧力制御ベッド成形部分概要図である。
符号の説明
[0039] 1 溶融炉
2 トウィール
3 メルト供給リップ
4 ガラスメノレ卜
5 気体噴出 ·排出回転ロール
6 気体噴出 ·排出凹面支持体
7 減圧セル
8 加圧セル
9 隔壁
10 摺動シール
11 気体噴出.排出回転ロールとガラスリボンの間の気体薄層
12 気体噴出'排出凹面視自体とガラスリボンの間の気体薄層
13 第 1ロール
14 第 2ロール
15 成形板ガラス
16 徐冷ゾーン設備
発明を実施するための最良の形態
[0040] 本発明は、表面の欠点のない高品質の板状ガラスを無駄になる部分を極小にして 、ミクロな平滑性とマクロな厚み均一性や平坦度等に優れる高品質の板ガラスを製造 する板ガラスの究極の技術を提供すると!ヽぅ課題を、成形に供するガラスが粘度 103 ボイズ以上 106ボイズ以下の粘度にあるガラス転移温度以上にあって、当該ガラスの 少なくとも片面が気体を出し入れする基材に面し、加圧噴出する気体と系外に減圧 排出される気体の両者の動的圧力均衡状態に置かれて、ガラスの面と平行方向に 引っ張り応力および/またはガラスの面に対して垂直方向に圧縮応力を掛けて成形さ
れる方法によって実現した。
実施例 1
[0041] 以下、図面に従って、望ましい実施の態様を説明する。
本発明により板ガラスのロール成型法にぉ ヽては、成形に供するガラスの状態が粘 度 103ボイズ以上 105ボイズ以下の粘度にあるガラス転移温度以上にある原材料を 用い、ガラスの少なくとも片面が気体を出し入れする基材に面し、加圧噴出する気体 と系外に減圧排出される気体の両者の動的圧力均衡状態に置かれて成形されること を特徴とするものであるが、加圧噴出する気体と系外に減圧排出される気体の両者 の動的圧力均衡状態によって固体状物体を浮遊状態にしつつ所定の位置に把持す る技術は、例えば特表 2003— 507681号公報、特表 2003— 509227号公報等に 開示されている。
[0042] 本発明においてはこのような技術を用いるものであるため、最初にこの技術を簡単 に説明する。例えば特表 2003— 507681号公報に開示されている技術は、図 3 (a) に示すように、管 41内にジグザグ状にフィン 44、 45を、図中左右から交互に管 41の 中心迄突設している。この管に対して図中下方の入口 42から高圧空気を流すと、各 フィンの間に図示するような渦流 46が発生し、その渦の間を流れる空気主流は噴出 孔 43から噴出する。このような構造の管 41を同図(b)に示すようにダクト 51に接続し 、高圧リザーバ 52から供給管 53を介して高圧空気を供給し、噴出孔 43から噴出す ると、その噴出孔 43を塞ぐように置 、た物体 55を押し上げる。
[0043] この時の物体 55の重量と噴出孔 43からの流体の噴出圧力等の均衡により、噴出 孔 43の開孔部カも離れた所定の高さとなる。即ち、例えば図 4 (b)において、同図(b - 2)のように高さ H2にお 、て均衡するとき、例えば同図(b - 2)のようにそれよりも下 方の高さ HIのときには、同図(b— 2)の高さ H2の位置まで押し上げる。また、同図( b— 3)のようにそれよりも上方の高さ H3の位置のときには、同図(b— 2)の高さ H2の 位置に降下して安定する。また、この時の物体周囲の安定した空気流により、物体 5 5はその位置に留まろうとする特性を備えている。そのためこのような装置においては 、噴出孔 43上の物体 55は開孔から所定の高さで浮上した状態で、且つ所定の位置 に保持される。また、このような噴出孔 43に隣接して常圧の外部に連通する同様の
管 41が配置されていると、噴出空気流とこれを排出される空気流が安定し、物体をよ り確実に所定の位置に保持可能となる。
[0044] 上記のような物体を保持する特性は物体が載置されている面に空気を噴出する以 外に、前記特表 2003— 509227号公報に示されるように、逆に真空ポンプによって 吸い込む際にも同様の特性を備えた減圧排出孔を設けることによって、物体は浮上 と同時に吸着状体を実現することが可能となり、また、基板表面からの物体の保持特 性は更に向上する。
[0045] 本発明者等は前記公知技術をガラスの製造に利用すると、前記のような従来の各 種のガラス製造手法では得られない、顕著な効果を奏することを見出したことにより 本発明に至ったものである。特に溶融状態にあるガラスは単に上記引用特許の技術 をそのまま適用したのでは、流動性のあるガラスを平滑 '平坦な製品として得ることは できず、ガラスと気体を噴出'排出する基材とが動的な関係にあることの重要性を見 出して本発明を完成したものである。本発明の第 1実施例においては図 1に示すよう に、溶融炉 1で溶融されたガラスはトウィール 2で流量を調整され、供給用のリップ 3を 通ってガラスメルト 4として成形機に供給される。このとき、ガラスリボンは概ね成形の 設計板ガラス幅に近い形で供給されることが、ガラスに好ましくない内部応力や潜在 的歪を避ける意味で望まし ヽ。供給されるガラスリボンの温度はガラスの組成によつ て異なるが、概ね 102〜105ボイズ、好ましくは 103〜104ボイズを示す温度であって、 ソーダライムガラスの場合は 1000〜: L100°C位が好適である。
[0046] 気体噴出 ·排出回転ロール 5上に流下されたガラスリボンは、直ちにロール基材の 表面に発生している噴出気体と減圧排出気体が形成する動的気体圧力均衡によつ て基材上の気体薄層 11上に浮上 *吸着し、ロールの回転に従って摺動的に移動す る。
その際の摺動移動の程度はガラスの粘度、温度等の状態、気体の圧力、流量、な らびに噴出と減圧排出との割合等によって制御可能であり、目的に応じた数量制御 が好ましい。
気体噴出 ·排出回転ロール 5に浮上 ·吸着しつつ摺動移動するガラスリボンは、上 面から気体噴出 ·排出凹面体 6によって気体 12を介して回転ロール表面に向けて圧
力を受ける。この際、ガラスリボンに幅方向の応力が働くようにロールならびに凹面体 の表面になだらかな曲面を施す等の設計も可能であり、有用である。
また、ロールの材質は取り扱うガラスの温度に耐えることが必要であって、耐熱鋼、 セラミックス、カーボン等が好適に用い得る。その際ガラスの温度制御の観点力も噴 出する気体の温度、量、ロール基材の熱伝導度、表面の放射率等を適宜選択するこ とが重要であり、有効である。
[0047] ガラスリボンは回転ロールと凹面体の間を気体にサンドイッチされた状態で摺動移 動し、およそ半回転したところで、第 1ロール 13から離脱し、必要に応じて設置されて V、る第 2ロール 14に移動する。
回転ロールの減圧排出孔からの排出は常におよそその半分が減圧、残りの半分が 常圧になるように、ロール内部に減圧セル 7と常圧セル 8が組み込まれており、それら は隔壁 9と摺動シール 10によって常にロール表面の半分に減圧、 残りの半分に常 圧が作用する仕組みが施されている。セルの構造や仕組みは目的とする成形と装置 の性能、作りやすさ、およびコストの面力 適宜設計製作することが可能であり、好ま しい。(詳細後述)
[0048] ガラスリボンはこの間、川下力 の引っ張り応力によって次第に薄肉化が施される。
その際、ガラスリボンの幅方向の収縮を防ぐためにも浮上 ·吸着状態が機能する。ま た、その機能を最適にするために幅方向に減圧の程度の違いを設けることも可能で あり、有用である。以上の工程を経て成形と薄板ィ匕を施された板ガラス 15は所定の 除冷ゾーン 16を経て製品となる。
[0049] 図 2は図 1の F部分の拡大断面図であり、上記の動的気体圧力制御の仕^ &みを例 示するものである。同図において、気体噴出'排出回転ロール 5と気体噴出'排出凹 面体 6との間に、ガラスリボン 4が気体噴出 ·排出ロール 5の回転と共に移動する。気 体噴出.排出回転ロール 5の中心部側の回転ロール気体減圧室 8とロール表面 28と の間には、気体噴出 ·排出回転ロール基材 18に設けた回転ロール気体減圧排出孔 6で連通している。また、気体噴出 ·排出回転ロール基材 18内には回転ロール気体 加圧セル 21を設け、ロール表面 28との間を回転ロール気体噴出孔 19で連通してい る。回転ロール気体減圧排出孔 6及び回転ロール気体噴出孔 19は前記図 4の管 41
と同様の構成をなし、多数のフィンをジグザグ状に配置している。それにより、回転口 ール気体加圧セル 21からの加圧気体は、回転ロール気体気体噴出孔 19によりロー ル表面 28から噴出し、隣接する回転ロール気体減圧排出孔 20から回転ロール気体 減圧室 22に排出する。
[0050] 気体噴出 ·排出凹面体 6については、外側の常圧解放空間 27と凹面体表面 29と の間を、気体噴出 ·排出凹面体基材 23に設けた凹面体気体常圧孔 25で連通し、気 体噴出'排出凹面体基材 23内には凹面体気体加圧セル 26を設け、凹面体表面 29 との間を、凹面体気体噴出孔 24で連通している。それにより、凹面体気体加圧セル 2 6からの加圧気体は、凹面体気体噴出孔 24により凹面体表面 29から噴出し、隣接す る凹面体気体常圧孔 25から常圧解放空間 27に排出する。それによりロール表面 28 に引き込まれて 、るガラスリボン 4を、ロール表面 28から離して気体薄層 11を形成し つつ、減圧排気により強く保持し、また凹面体表面 29からも離して気体薄 12層を形 成し、ガラスリボン 4を保持するので、全体としてロールの回転と共にガラスリボンを気 体薄層内で送り出す作用を行うことができる。
実施例 2
[0051] 本発明は更に図 3にょうなガラスのベッド成形手法にも適用することができる。図 3 に示す例においては、溶融炉 31からトウィール 32により流量を調整しながらガラスメ ルトリボン 34を気体噴出 ·排出ベッド 35に流し込み、矢印方向に移送する。この気体 噴出'排出ベッド 35の表面側は同図 (c)のように、中心部分が気体噴出'常圧排出 部分 39となっており、その両側に気体噴出 ·減圧排出部分 38としている。また、気体 噴出 ·減圧部分の上方にはガラスの移送方向に延びる気体噴出 ·減圧排出ロール 4 を配置して 、る。気体噴出'減圧排出ロール 4はその下方で移送されるガラスメルトリ ボン 34の両側の上方にお!、て、ガラスメルトリボンの両側を側方に伸ばす方向に回 転させる。
[0052] それにより、メルト供給リップ 33から流下したガラスメルトリボン 34は、気体噴出'排 出ベッド 35上で移送されるとき、中心部分において気体噴出'常圧排出部分 39で浮 上させた状態とし、且つガラスメルトリボン 34の両側部にぉ 、て気体噴出'減圧排出 部分 38でガラスメルトリボン 34を浮上させた状態で保持し、この部分における気体噴
出'減圧排出ロール 40、 41でこのロールとは気体薄層を介した状態で外側に広げる 方向の力を付与する。その結果、ガラスメルトリボン 34は均等の厚さで気体噴出'排 出ベッド 35上を移送され、徐冷ゾーン 42に送られる。このようにして従来のベッド成 形のようにガラスメルトリボン 34の両側を接触ロールのような部材と接触させることが なくなり、両側に損傷部を生じず両幅部分の無駄をなくし、且つほぼ全面にわたって 均一な厚さで平坦な板ガラスを成形することができる。
[0053] 上記のように本発明においては、成形に供するガラス温度以上にある硝子の両面 を均一に分散したミクロの孔から加圧噴出と減圧吸引を行う気体の間に保持して板 状のガラスを成形することができる。また、従来の熔融スズの上にガラスを流し出した り、特殊な白金製の樋とガイドから垂直に引き落としたりする方法は装置が非常に大 型或いは高価なものとなり、操作も煩雑であるのに対して、本発明においては小型で 安価な装置により、高品位の板ガラスを成形することができる。また、従来より水を用 V、るアクアフロート法も提案されて 、るが、本発明では通常の空気を用いてアクアフ ロート法と同様の効果を奏することができ、幅方向の延伸を必要とせず均一な厚みや 平坦度を達成できるとともに、両幅部分の無駄もなくなる、等の種々の効果を奏する
[0054] なお、本発明は上記実施例に限定、制約されること無ぐ基本的な要件を満たす技 術は本発明の範囲内であることは当然のことである。例えば、気体の噴出方法として の多孔質基材に含浸させた水等の液体の蒸発や、微小孔径の多孔質体を通過する 際の流体抵抗や屈曲管を利用した気体の噴出'排出等も有用に利用可能である。
Claims
請求の範囲
[I] 成形に供するガラスが粘度 103ボイズ以上 106ボイズ以下の粘度にあるガラス転移 温度以上にあって、当該ガラスの少なくとも片面が気体を出し入れする基材に面し、 加圧噴出する気体と系外に減圧排出される気体の両者の動的圧力均衡状態に保持 されて、ガラスの面と平行方向に引っ張り応力および/またはガラスの面に対して垂 直方向に圧縮応力を掛けて成形されることを特徴とする板ガラスの製造方法。
[2] 排出される気体が常圧および減圧状態の二つの態様力 なることを特徴とする請 求項 1に記載の板ガラスの製造方法。
[3] 成形に供するガラスの両面が気体環境に置かれることを特徴とする請求項 1または
2に記載の板ガラスの製造方法。
[4] 気体を出し入れする基材の少なくとも一部が回転するロール或いはロール状である ことを特徴とする請求項 1〜3のいずれかに記載の板ガラスの製造方法。
[5] 少なくともガラス面の一方は気体の動的圧力均衡下に基材の面保持を受けている ことを特徴とする請求項 1〜4のいずれかに記載の板ガラスの製造方法。
[6] 基材の一定面積が加圧噴出する気体と系外に減圧吸引される気体の動的圧力均 衡状態でガラスを保持し、他の面積が加圧噴出する気体と系外に常圧で排出される 気体の動的圧力均衡状態を発現するロールを用いることを特徴とする請求項 1〜5の
V、ずれかに記載の板ガラスの製造方法。
[7] 気体が空気或いは水蒸気を主成分とすることを特徴とする請求項 1〜6の ヽずれか に記載の板ガラスの製造方法。
[8] 基材が成形に供するガラスの移動速度と異なる速度で移動することを特徴とする請 求項 1〜7のいずれかに記載の板ガラスの製造方法。
[9] 気体が基材上に実質的に一様に分布した平均直径 5mm以下の小孔力 噴出し、 排出されることを特徴とする請求項 1〜8のいずれかに記載の板ガラスの製造方法。
[10] 前記気体を出し入れする基材はベッド状であり、該ベッドの両側にガラスの移動方 向に延びる気体噴出 ·減圧排出ロールの回転により、移動するガラスの両側を外側 に広げる力を付与することを特徴とする請求項 1記載の板ガラスの製造方法。
[II] 成形に供するガラスが粘度 103ボイズ以上 106ボイズ以下の粘度にあるガラス転移
温度以上にあって、当該ガラスの少なくとも片面が気体を出し入れする基材に面し、 加圧噴出する気体と系外に減圧排出される気体の両者の動的圧力均衡状態に保持 されて、ガラスの面と平行方向に引っ張り応力および/またはガラスの面に対して垂 直方向に圧縮応力を掛けて成形することを特徴とする板ガラスの製造装置。
[12] 排出される気体が常圧および減圧状態の二つの態様力 なることを特徴とする請 求項 11に記載の板ガラスの製造装置。
[13] 成形に供するガラスの両面が気体環境に置かれることを特徴とする請求項 11また は 12に記載の板ガラスの製造装置。
[14] 気体を出し入れする基材の少なくとも一部が回転するロール或いはロール状である ことを特徴とする請求項 11〜13のいずれかに記載の板ガラスの製造装置。
[15] 少なくともガラス面の一方は気体の動的圧力均衡下に基材の面保持を受けている ことを特徴とする請求項 11〜14のいずれかに記載の板ガラスの製造装置。
[16] 基材の一定面積が加圧噴出する気体と系外に減圧吸引される気体の動的圧力均 衡状態でガラスを保持し、他の面積が加圧噴出する気体と系外に常圧で排出される 気体の動的圧力均衡状態を発現するロールを用いることを特徴とする請求項 11〜1
5の 、ずれかに記載の板ガラスの製造装置。
[17] 気体が空気或いは水蒸気を主成分とすることを特徴とする請求項 11〜 16の ヽず れかに記載の板ガラスの製造装置。
[18] 基材が成形に供するガラスの移動速度と異なる速度で移動することを特徴とする請 求項 11〜 17の 、ずれかに記載の板ガラスの製造装置。
[19] 気体が基材上に実質的に一様に分布した平均直径 5mm以下の小孔力 噴出し、 排出されることを特徴とする請求項 11〜17のいずれかに記載の板ガラスの製造装 置。
[20] 前記気体を出し入れする基材はベッド状であり、該ベッドの両側にガラスの移動方 向に延びる気体噴出 ·減圧ロールの回転により、移動するガラスの両側を外側に広 げるカを付与することを特徴とする請求項 11記載の板ガラスの製造方法。
[21] 請求項 1〜10のいずれかの板ガラスの製造方法により製造された製品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/227,381 US20090205373A1 (en) | 2006-05-16 | 2007-05-14 | Roll forming manufacturing method and apparatus of plate glass and product thereof |
EP07743262A EP2022764A1 (en) | 2006-05-16 | 2007-05-14 | Method and apparatus for manufacturing plate glass by roll forming, and plate glass product |
JP2008515541A JP5051549B2 (ja) | 2006-05-16 | 2007-05-14 | 板ガラスのロール成形製造方法及び装置並びにその製品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-136200 | 2006-05-16 | ||
JP2006136200 | 2006-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007132797A1 true WO2007132797A1 (ja) | 2007-11-22 |
Family
ID=38693888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/059827 WO2007132797A1 (ja) | 2006-05-16 | 2007-05-14 | 板ガラスのロール成形製造方法及び装置並びにその製品 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090205373A1 (ja) |
EP (1) | EP2022764A1 (ja) |
JP (1) | JP5051549B2 (ja) |
WO (1) | WO2007132797A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012099637A (ja) * | 2010-11-02 | 2012-05-24 | Kawamura Electric Inc | 冷却水配管機構を備えたサーバーラック |
KR20160065170A (ko) * | 2013-10-09 | 2016-06-08 | 코닝 인코포레이티드 | 얇은 유리 제품을 형성하기 위한 장치 및 방법 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8397539B2 (en) * | 2010-02-18 | 2013-03-19 | Corning Incorporated | Non-contact dancer mechanisms, web isolation apparatuses and methods for using the same |
US9199816B2 (en) * | 2010-11-04 | 2015-12-01 | Corning Incorporated | Methods and apparatus for guiding flexible glass ribbons |
CN114104735A (zh) * | 2016-09-13 | 2022-03-01 | 康宁股份有限公司 | 用于处理玻璃基材的设备和方法 |
KR102655544B1 (ko) * | 2017-10-31 | 2024-04-09 | 코닝 인코포레이티드 | 유리 리본 제조 방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09295819A (ja) | 1996-02-29 | 1997-11-18 | Asahi Glass Co Ltd | ガラス板の成形方法 |
JP2001180949A (ja) | 1999-12-28 | 2001-07-03 | Asahi Glass Co Ltd | 板状硝子製品のロール成形方法 |
JP2002037635A (ja) * | 2000-07-27 | 2002-02-06 | Asahi Glass Co Ltd | 幅広板硝子の製法 |
JP2002047019A (ja) | 2000-07-28 | 2002-02-12 | Asahi Glass Co Ltd | 板状ガラス製品のロールアウト成形方法及びその装置 |
JP2003507681A (ja) | 1999-08-25 | 2003-02-25 | コア フロー リミテッド | 流体注入によって力を誘導するための器械 |
JP2003509227A (ja) | 1999-08-25 | 2003-03-11 | コア フロー リミテッド | 系を握持している自動適応真空 |
JP2003313039A (ja) * | 2002-04-23 | 2003-11-06 | Central Glass Co Ltd | 加熱炉内を搬送されるガラス板の検出方法および装置 |
JP2006028008A (ja) * | 2004-07-17 | 2006-02-02 | Schott Ag | 圧延による板ガラス連続製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3468650A (en) * | 1967-05-10 | 1969-09-23 | Ford Motor Co | Process using gas inlets to laterally stretch and stabilize glass during float glass manufacturing |
US5762674A (en) * | 1995-09-27 | 1998-06-09 | Glasstech, Inc. | Apparatus for coating glass sheet ribbon |
JP4218263B2 (ja) * | 2002-06-24 | 2009-02-04 | 旭硝子株式会社 | 板硝子の製造方法 |
-
2007
- 2007-05-14 EP EP07743262A patent/EP2022764A1/en not_active Withdrawn
- 2007-05-14 JP JP2008515541A patent/JP5051549B2/ja not_active Expired - Fee Related
- 2007-05-14 US US12/227,381 patent/US20090205373A1/en not_active Abandoned
- 2007-05-14 WO PCT/JP2007/059827 patent/WO2007132797A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09295819A (ja) | 1996-02-29 | 1997-11-18 | Asahi Glass Co Ltd | ガラス板の成形方法 |
JP2003507681A (ja) | 1999-08-25 | 2003-02-25 | コア フロー リミテッド | 流体注入によって力を誘導するための器械 |
JP2003509227A (ja) | 1999-08-25 | 2003-03-11 | コア フロー リミテッド | 系を握持している自動適応真空 |
JP2001180949A (ja) | 1999-12-28 | 2001-07-03 | Asahi Glass Co Ltd | 板状硝子製品のロール成形方法 |
JP2002037635A (ja) * | 2000-07-27 | 2002-02-06 | Asahi Glass Co Ltd | 幅広板硝子の製法 |
JP2002047019A (ja) | 2000-07-28 | 2002-02-12 | Asahi Glass Co Ltd | 板状ガラス製品のロールアウト成形方法及びその装置 |
JP2003313039A (ja) * | 2002-04-23 | 2003-11-06 | Central Glass Co Ltd | 加熱炉内を搬送されるガラス板の検出方法および装置 |
JP2006028008A (ja) * | 2004-07-17 | 2006-02-02 | Schott Ag | 圧延による板ガラス連続製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012099637A (ja) * | 2010-11-02 | 2012-05-24 | Kawamura Electric Inc | 冷却水配管機構を備えたサーバーラック |
KR20160065170A (ko) * | 2013-10-09 | 2016-06-08 | 코닝 인코포레이티드 | 얇은 유리 제품을 형성하기 위한 장치 및 방법 |
JP2016532620A (ja) * | 2013-10-09 | 2016-10-20 | コーニング インコーポレイテッド | 薄いガラス製品を成形する装置及び方法 |
US10246365B2 (en) * | 2013-10-09 | 2019-04-02 | Corning Incorporated | Apparatus and method for forming thin glass articles |
KR102302717B1 (ko) | 2013-10-09 | 2021-09-16 | 코닝 인코포레이티드 | 얇은 유리 제품을 형성하기 위한 장치 및 방법 |
US11680006B2 (en) | 2013-10-09 | 2023-06-20 | Corning Incorporated | Apparatus and method for forming thin glass articles |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007132797A1 (ja) | 2009-09-24 |
JP5051549B2 (ja) | 2012-10-17 |
US20090205373A1 (en) | 2009-08-20 |
EP2022764A1 (en) | 2009-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007132797A1 (ja) | 板ガラスのロール成形製造方法及び装置並びにその製品 | |
US11952285B2 (en) | System, process and related sintered article | |
US8215944B2 (en) | Imprinting device and imprinting method | |
JP4307418B2 (ja) | 圧延による板ガラス連続製造方法 | |
WO2013071830A1 (zh) | 一种辊道式太阳电池硅片烧结炉 | |
Tomov et al. | Vacuum-sintered stainless steel porous supports for inkjet printing of functional SOFC coatings | |
JP2001180949A (ja) | 板状硝子製品のロール成形方法 | |
JP6541531B2 (ja) | 膜・触媒層接合体の製造装置および製造方法 | |
JP2016128363A (ja) | ガラス板製造装置、及びガラス板製造方法 | |
CN116274366A (zh) | 一种形性可控泡沫金属板连续铸轧成形设备及方法 | |
JP2008230904A (ja) | 多孔質体およびその製造方法 | |
CN113976886A (zh) | 多孔结构、均温板、其制作方法及应用 | |
CN209416063U (zh) | 一种承烧板及具有该承烧板的钟罩炉 | |
KR101369324B1 (ko) | 플로트 배스용 복합 내화 벽돌 및 그 제조 방법 | |
CN112546870A (zh) | 一种原位修复技术 | |
KR102722056B1 (ko) | 시스템, 프로세스 및 관련된 소결된 물품 | |
CN109654886A (zh) | 一种承烧板及具有该承烧板的钟罩炉 | |
US20220410077A1 (en) | Method for Producing a Gas Separation Membrane | |
JP2007250467A (ja) | 酸化物イオン輸送体の製造方法 | |
CN110386589B (zh) | 一种高通量甲醇水重整制氢微通道反应器 | |
WO2016175461A1 (ko) | 탄화수소 개질용 다공성 금속 지지체 제조방법 | |
CN114812241A (zh) | 应用于薄型均温板的复合式毛细结构 | |
JP2002047017A (ja) | 幅広板硝子の製法改良 | |
Ye et al. | Characteristics of liquid water transport and corner effect in microfluidic channels of PEM fuel cell | |
CN116952034A (zh) | 超薄均温板元件结构及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07743262 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007743262 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008515541 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12227381 Country of ref document: US |