WO2007129378A1 - 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム - Google Patents

風力発電装置、風力発電装置の制御方法およびコンピュータプログラム Download PDF

Info

Publication number
WO2007129378A1
WO2007129378A1 PCT/JP2006/308835 JP2006308835W WO2007129378A1 WO 2007129378 A1 WO2007129378 A1 WO 2007129378A1 JP 2006308835 W JP2006308835 W JP 2006308835W WO 2007129378 A1 WO2007129378 A1 WO 2007129378A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying object
blade
wind
wind turbine
flying
Prior art date
Application number
PCT/JP2006/308835
Other languages
English (en)
French (fr)
Inventor
Naoto Hirakata
Hideaki Tezuka
Original Assignee
The Tokyo Electric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Tokyo Electric Power Company, Incorporated filed Critical The Tokyo Electric Power Company, Incorporated
Priority to US12/298,569 priority Critical patent/US20090185900A1/en
Priority to EP06745763A priority patent/EP2017470A1/en
Priority to PCT/JP2006/308835 priority patent/WO2007129378A1/ja
Publication of WO2007129378A1 publication Critical patent/WO2007129378A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • F05B2270/8041Cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/805Radars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a technique for avoiding a situation where a flying object collides with a blade when there is a flying object (mainly a bird) approaching the wind power generator, and a technique related thereto.
  • a Doppler soda Doppler Sonic Radar oscillates a sound wave with a constant frequency of several thousand Hz at intervals of several seconds from an arbitrary point in the field to the sky. Sound waves collide with and reflect particles such as water vapor and dust contained in the wind in the atmosphere. The reflected wave is caught by a large cylindrical body, and the wind speed is calculated based on the reflected wave modulated by the Doppler effect. It is also possible to calculate the wind direction by setting the number of cylindrical bodies for receiving and transmitting sound waves to about three and varying the inclination angle and direction of each.
  • a laser doppler (light wave radar) emits laser light and receives scattered light from dust floating in the atmosphere. Since the received light is subjected to the Doppler effect due to the influence of the wind, it is a technology that analyzes the frequency shift of the light to determine the wind speed and direction.
  • Patent Document 1 there is a technique disclosed in Patent Document 1 as a technique for measuring the wind direction and wind speed at a site where a wind turbine for wind power generation is planned.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-101265
  • the wind turbine generator is designed according to the wind conditions at the installation site, but even with a wind turbine generator of V or offset, there is a limit to the durability performance against external force accompanying wind power. Therefore, in order to protect against external forces exceeding the limit due to wind power, the following “limit adjustment mechanism” is provided! In other words, if a wind speed above a certain level is predicted or detected by measuring wind speed or obtaining weather forecast information, a blade angle that reduces the rotational efficiency for that wind is selected, or the wind is It is equipped with a mechanism to select the blade angle that will escape The
  • the wind turbine generator is installed by selecting a place where the wind blows stably.
  • multiple large-scale wind power generators are installed in locations away from urban areas.
  • wind farms with several tens and hundreds are also formed.
  • Typical large wind turbines are installed in towers about 30 to 80 meters high, and the blades of such wind turbines are 20 to 50 meters, so the highest is 130 meters from the ground. Reach.
  • this height is the height of a bird that lives near the place where the wind turbine is installed or the height of a cruise flight of migratory birds. Sometimes it becomes.
  • the force provided with an anemometer and anemometer as shown in Fig. 10 is not only a post-measurement, but the flying objects blown off by the strong wind may collide with the blade and damage the blade.
  • a problem to be solved by the present invention is a blade by flying objects in a wind power generator. It is to provide technology that can reduce damage and bird strikes.
  • an object of the invention described in claims 1 to 4 is to provide a wind turbine generator that can reduce blade damage and bird strike caused by flying objects. Further, an object of the invention described in claims 5 to 7 is to provide a control process for a wind turbine generator capable of reducing blade damage and bird strike caused by flying objects.
  • an object of the invention described in claims 8 to 10 is to provide a control program for a wind turbine generator capable of reducing blade damage and bird strike caused by flying objects. .
  • the object of the invention described in claims 11 to 13 is to provide a wind turbine generator related technique capable of reducing blade damage accidents due to gusts in addition to the object of the invention described above.
  • the invention according to claim 1 is a tower erected on the ground, a nacelle fixed to the tower, a plurality of blades fixed to the nacelle via a hub, and a windward front
  • the present invention relates to a wind turbine generator including an obstacle search device capable of detecting a flying object and blade angle control means for controlling a change in blade angle including a rotation stop position.
  • the blade angle control means controls to change the blade to the rotation stop position.
  • the “flying object” includes an object flying in the wind in addition to a creature such as a bird.
  • An “obstacle search device” is a device that confirms the presence of flying objects by oscillating sound waves or electromagnetic waves and capturing the reflected waves, or confirming the presence of flying objects based on imaging and image analysis.
  • the "rotation stop position” refers to a position where the blade does not rotate even when receiving wind, and is typically used for stopping the feathering position or force blade rotation that is a sufficient deceleration of the rotation speed.
  • the brake is used as an auxiliary, it also includes the case where the brake is stopped with the brake as the main.
  • a pitch controller that changes the pitch angle of the entire blade, and a blade shape and pitch angle that loses lift, are selected, and the blade tip changes direction by 90 degrees when stopped to serve as a brake. There is a stall controller.
  • wind power generators are often configured to allow selection of positions that reduce rotational efficiency in response to strong winds. Power that takes time to resume operation if rotation is completely stopped. This is a force that can reduce power generation loss because it is easy to resume operation when the vehicle is sufficiently decelerated.
  • the wind power generator according to this claim generates power by receiving wind and rotating the blade.
  • the obstacle search device detects a flying object on the windward.
  • the blade angle control means controls to change the blade to the rotation stop position. As a result, the blade rotation stops or slows down sufficiently.
  • many blades have a thin shape with about three hubs fixed radially, even if the flying object is a simple object other than a bird, the probability of colliding with the blade can be reduced.
  • the invention according to claim 2 also includes a tower erected on the ground, a nacelle fixed to the tower, a plurality of blades fixed to the nacelle via a hub, and a windward front
  • the present invention relates to a wind turbine generator including an obstacle search device capable of detecting a flying object and blade angle control means for controlling a change in blade angle including a rotation stop position.
  • the blade angle control means controls the blade to change to the rotation stop position when it is determined that the flying object has approached based on the continuous exploration.
  • the “obstacle search device” searches continuously for flying objects”, it has a function to store the data related to flying objects for a predetermined period of time and to compare with the previous data. If the flying object is a bird, it may be faster than the wind speed.
  • the difference from the invention of claim 1 is that the change to the rotation stop position is controlled only when a flying object approaches. Since it is judged whether or not it is approaching, if it is judged that the projectile has been detected but not approached, it is not necessary to stop power generation with a low possibility of collision.
  • the invention according to claim 3 limits the wind power generator according to claim 1 or claim 2.
  • the object has an arrival time calculation means for calculating the expected arrival time of the flying object detected by the obstacle exploration device
  • the blade angle control means relates to the wind turbine generator that controls to change the blade angle to the rotation stop position before reaching the expected arrival time.
  • Arriv time calculation means means that when the obstacle exploration device uses sound waves or electromagnetic waves, it continuously explores flying objects and predicts the arrival time of flying objects from the speed of sound and distance. Is.
  • the time required for the blade angle control means to change the blade angle and stop the rotation of the blade (For example, around 5 seconds) It is necessary to search for flying objects as far away as possible.
  • the arrival time calculation means calculates the expected arrival time of the flying object detected by the obstacle exploration device. Then, the blade angle control means controls to change the blade angle to the rotation stop position before reaching the expected arrival time. As a result, it is possible to increase the probability of preventing blade damage and bird strike due to flying objects.
  • the invention according to claim 4 limits the wind power generator according to any one of claims 1 to 3.
  • the obstacle exploration device can perform a wide-angle exploration and a narrow-angle exploration, and performs a wide-angle exploration until it detects a flying object, and if it detects a flying object, it aims at the flying object
  • This is related to a wind turbine generator that has been changed to a narrow-angle exploration to determine whether or not a flying object is approaching.
  • the angle that the obstacle search device can search is preferably as large as possible. However, when the speed of flying objects with high wind speeds is high, a wide-angle exploration will increase the error in capturing the continuous movement of flying objects and calculating the estimated arrival time.
  • the invention according to claim 5 is a wind turbine comprising a tower erected on the ground, a nacelle fixed to the tower, and a plurality of blades fixed to the nacelle via a hub so as to be rotatable.
  • the present invention relates to a method for controlling a power generator.
  • a flying object detection procedure for detecting a flying object in front of the windward, and a rotation stopping procedure for controlling the blade to change to the rotation stop position when the flying object is detected by the flying object detection procedure. It is provided with.
  • the invention described in claim 6 includes a tower erected on the ground, and a NAS fixed to the tower. And a plurality of blades that are rotatably fixed to the nacelle via a hub.
  • a flying object detection procedure for continuously exploring flying objects a flying object approach detection procedure for determining whether or not a flying object has approached when a flying object is detected in the flying object detection procedure, A rotation stop procedure for changing the blade to a rotation stop position when it is determined in the projectile approach detection procedure that a flying object has approached.
  • the invention according to claim 7 limits the method for controlling the wind turbine generator according to claim 5 or claim 6.
  • a flying object when a flying object is detected in the flying object detection procedure, it has an arrival time calculation procedure that calculates the expected arrival time of the flying object.
  • the rotation stopping procedure stops the rotation of the blade before the expected arrival time is reached. It is characterized by changing to a position.
  • the invention according to claim 8 is a wind turbine comprising a tower erected on the ground, a nacelle fixed to the tower, and a plurality of blades rotatably fixed to the nacelle via a hub.
  • the present invention relates to a power generator control program.
  • the control program includes a flying object detection procedure for detecting a flying object, and a rotation stopping procedure for controlling the blade to change to a rotation stop position when a flying object is detected in the flying object detection procedure.
  • a computer program that causes the control computer of the wind turbine generator to execute the above.
  • the invention according to claim 9 also includes a wind turbine provided with a tower erected on the ground, a nacelle fixed to the tower, and a plurality of blades rotatably fixed to the nacelle via a hub.
  • the present invention relates to a power generator control program.
  • the control program detects the flying object continuously by detecting the flying object, and if the flying object is detected by the flying object detection procedure, it determines whether the flying object has approached. It is determined by the detection procedure and the flying object approach detection procedure that the flying object has approached.
  • a computer program that causes a control computer of a wind power generator to execute a rotation stop procedure for changing the blade to a rotation stop position when the blade is disconnected.
  • the invention according to claim 10 limits the computer program according to claim 8 or claim 9.
  • an arrival time calculation procedure is provided to calculate the expected arrival time of the flying object. It is characterized by changing to the rotation stop position
  • the invention according to claim 11 limits the wind power generator according to any one of claims 1 to 4.
  • the nacelle or hub is provided with a Doppler anemometer capable of measuring the wind speed in front by receiving or oscillating sound waves or electromagnetic waves.
  • the Doppler anemometer detects a wind speed exceeding a predetermined level
  • the blade angle control means the present invention relates to a wind turbine generator in which the blade angle is changed so that the blade is not damaged by the wind speed.
  • a “Doppler anemometer” oscillates sound waves or electromagnetic waves, and measures the speed difference based on the Doppler effect of the sound waves or electromagnetic waves that are reflected by colliding with a reflector such as dust contained in the wind.
  • An anemometer to calculate.
  • the mounting position can be inside the hub, above the nacelle, or left and right.
  • the wind speed of the wind power generator is measured with a Doppler anemometer that uses the Doppler effect generated by receiving or oscillating sound waves or electromagnetic waves.
  • the blade angle control means changes the blade angle. For example, when a wind speed exceeding the limit is detected, feathering is used to release the wind and reduce damage to blades and towers.
  • the blades can be detected in advance by detecting gusts without the need for an observation tower. It is possible to take measures against gusts such as changing the angle.
  • the invention according to claim 12 limits the method for controlling the wind turbine generator according to claim 5, claim 6 or claim 7.
  • the wind turbine generator is equipped with a Doppler anemometer that can measure the wind speed ahead by receiving and oscillating sound waves or electromagnetic waves,
  • the present invention relates to a method for controlling a wind turbine generator.
  • the invention according to claim 13 limits the computer program according to any one of claim 8, claim 9, or claim 10.
  • the wind turbine generator is equipped with a Doppler anemometer that can measure the wind speed ahead by receiving and oscillating sound waves or electromagnetic waves,
  • the present invention relates to a computer program that is executed by a control computer of a wind turbine generator.
  • the computer program according to claims 8 to 10 and claim 13 may be used as a blade control device of a wind turbine generator in a chip. It can also be stored in a recording medium and provided.
  • the “recording medium” is a medium that can carry a program that does not occupy space by itself, such as a flexible disk, hard disk, CD-R, MO (magneto-optical disk). DVD-R and so on.
  • FIG. 1 is a conceptual diagram showing a first embodiment.
  • FIG. 2 is a flowchart showing an example of control.
  • FIG. 3 is a graph showing wind speed and power generation amount.
  • FIG. 4 is a conceptual diagram showing a second embodiment.
  • FIG. 5 is a conceptual diagram showing imaging and image analysis.
  • FIG. 6 An image of the emitted wave and reflected wave when there is a flying object.
  • FIG. 7 It is an image diagram of the emitted wave and the reflected wave when there is no flying object.
  • FIG. 8 is a conceptual diagram showing a third embodiment.
  • FIG. 9 is a conceptual diagram showing a conventional wind power generator.
  • FIG. 10 A diagram showing a general anemometer and anemometer.
  • FIG. 1 is a conceptual diagram showing the first embodiment
  • FIG. 2 is a flowchart showing a control process
  • Figure 3 is a graph showing wind speed and power generation.
  • FIG. 4 is a conceptual diagram of the second embodiment.
  • Fig. 5 is a conceptual diagram showing imaging and image analysis.
  • Fig. 6 is an image diagram of the emitted wave and reflected wave when there is a flying object.
  • FIG. 7 is an image diagram of the emitted wave and the reflected wave when there is no flying object.
  • FIG. 8 is a conceptual diagram showing the third embodiment.
  • the first embodiment shown in Fig. 1 is a tower erected on the ground and fixed to the tower.
  • Blade including a nacelle, a plurality of blades fixed to the nacelle via a hub, an obstacle search device capable of detecting flying objects in front of the windward, and a rotation stop position
  • a blade angle control means for controlling the angle change of the wind turbine generator.
  • the obstacle search device is based on imaging and image analysis! A device that confirms the presence of flying objects by oscillating sound waves or electromagnetic waves and capturing the reflected waves was adopted.
  • a heat sensing device If a heat sensing device is used, it can only detect flying objects that are higher in temperature than the surroundings, such as birds and other creatures, but it can be detected by an obstacle exploration device that emits sound waves and electromagnetic waves in bad weather such as nighttime and snowstorms. Has the advantage that it can accurately detect flying objects.
  • the nacelle is provided with an anemometer, and an output from the anemometer is obtained so that the wind turbine generator faces the windward.
  • the obstacle exploration device is a device that confirms the presence of flying objects by oscillating sound waves or electromagnetic waves (emitted wave fl) and capturing the reflected wave (f 2). It is installed in the hub of the wind power generator and moves in synchronization with the wind power generator.
  • this obstacle exploration device confirms the presence of flying objects, it is controlled as in the flow chart shown in Fig. 2.
  • Fig. 2 shows an example of control.
  • the wind power generator generates electricity by receiving wind and rotating the blades. If the obstacle detector does not detect a flying object on the windward, it will continue to operate.
  • the control program as described above is incorporated in the blade control device.
  • the flying bird will be visible! Increases performance.
  • the probability of collision with the blades can be reduced. Since it is determined whether or not the vehicle has approached, once the flying object has been detected, but it is determined that it has not approached, it is not necessary to stop power generation with a low possibility of collision.
  • Figure 3 shows the relationship between wind speed and power generation. Adjust the blade so that it can be operated at the rated wind speed. When the wind speed exceeds the specified level (cutout wind speed), power generation is stopped by feathering. In this embodiment, the change to feathering is executed even when a flying object approaches.
  • the embodiment shown in FIG. 4 is fixed on the nacelle where the obstacle search device is not built in the hub. If the blade is rotating, it will be an obstacle to the obstacle locator, but if the timing of the sound wave or electromagnetic wave is controlled to avoid the rotating blade.
  • the blade angle control in the wind power generator is also provided. Then, it contributes to reducing the collision of the flying object with the blade and the bird strike.
  • the wind power generator considering only the bird strike of the windward force has been described, but it is naturally possible to provide a plurality of obstacle search devices around the wind power generator or the wind farm. is there. This is because flying objects need only be considered on the windward side, but birds may fly regardless of the direction of the wind.
  • the wind generator or all wind generators that are expected to collide The control is to achieve a ring or sufficient deceleration.
  • the obstacle search device by imaging and image analysis will be described in more detail based on FIG.
  • the obstacle exploration device When the obstacle exploration device catches a flying object, let Y be the vertical length in which the flying object will fit. In addition, ⁇ is half of the search angle that the obstacle search device contains the flying object. Also, the time when the projectile was first captured was T2, the search angle at this time was ⁇ 2, the arrival time to the wind turbine generator was T1, and the search angle at this time was ⁇ 1, and the arrival distance of the projectile at T1 Is X, and the flying speed of flying objects (flying speed including wind speed) is V.
  • V X (tan ⁇ 1-tan ⁇ 2) / T / tan ⁇ 2
  • the reflected wave (f2) is larger in both signal and frequency than the emitted wave (fl).
  • the reflected wave (f 2) had a higher frequency than the emitted wave (fl), but it did not change as much as the flying object.
  • the embodiment shown in FIG. 8 is based on imaging and image analysis as a device for detecting flying objects, as compared with a device that confirms the presence of flying objects by oscillating sound waves or electromagnetic waves and capturing the reflected waves.
  • a device that confirms the presence of flying objects is adopted. That is, minute particles (tracers) mixed in the fluid are irradiated with laser light, etc., and the scattered light is continuously acquired as an image, and the moving distance of the particle group is obtained to determine the flying object in the two-dimensional plane. Is detected.
  • the flying object detection device includes a laser oscillation device built in a hub, a ring-shaped camera moving body fixed around the tower near the ground, and a tower around the upper surface of the camera moving body.
  • the camera is a CCD or CMOS sensor, and is configured to shoot the sheet-like laser light oscillated by the laser oscillation device with downward force.
  • it is designed to be able to move on the camera moving body so as to face the windward in synchronization with the nacelle based on the wind direction detected by the anemometer.
  • the laser oscillator irradiates the sheet-shaped laser light by directing the wind power of the wind power generator.
  • the camera continuously acquires the tracer captured by the laser beam irradiated to the flow field as captured image data.
  • the timing of photographing by the camera is synchronized with the laser beam by the control means.
  • the captured image data obtained continuously is processed for wind condition analysis by computer image processing means.
  • the blade angle is controlled to prevent blade damage accidents due to gusts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 飛来物のブレードへの衝突やバードストライクを減らすことが可能な風力発電装置を提供する。  地上に立設させたタワーと、そのタワーに固定されたナセルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードと、風上前方の飛来物を検知可能な障害物探査装置と、回転停止ポジションを含めたブレードの角度変更を制御するブレード角度制御手段とを備えた風力発電装置である。前記障害物探査装置は、飛来物を連続的に探査することとし、その連続的な探査に基づいて飛来物が接近してきたと判断した場合に、前記ブレード角度制御手段がブレードを回転停止ポジションに変更するように制御する。

Description

明 細 書
風力発電装置、風力発電装置の制御方法およびコンピュータプログラム 技術分野
[0001] 本発明は、風力発電装置に対して近づいてくる飛来物(主に鳥類)がある場合に、 その飛来物がブレードに衝突する事態を回避する技術、およびそれに関連する技術 に関する。
背景技術
[0002] 風力発電所の設置場所にお!、ては、風況を把握するため、風速や風向を測定して いる。
たとえば、ドッブラソーダ (ドッブラ音波レーダー)は、現場における任意地点から上 空に向けて、数千 Hzの一定周波数の音波を、数秒間隔で発振する。音波は、大気 中の風に含まれる水蒸気や塵などの粒子に衝突し、反射する。その反射波を大型の 筒状体にてキャッチし、ドッブラ効果で変調した反射波に基づいて風速を算出する。 音波の受発信用の筒状体を三本程度とし、それぞれの傾き角度や方向を異ならせ ることによって風向きを算出することも可能である。
[0003] レーザードッブラ (光波レーダー)は、レーザー光を放射し、大気中に浮遊する塵か らの散乱光を受信する。受信した光は、風の影響によるドッブラ効果を受けているの で、その光の周波数変移量を分析し、風速や風向きを求める技術である。
例えば、風力発電用風車建設予定地について風向風速を計測する技術として、特 許文献 1に開示される技術がある。
[0004] 特許文献 1 :特開 2004— 101265号公報
[0005] 風力発電装置は、設置場所の風況に合わせて設計されるが、 V、ずれの風力発電 装置であっても、風力に伴う外力への耐久性能には限界がある。したがって、風力に 伴う限界以上の外力から保護するため、以下のような「限度調整機構」を備えて!/、る。 すなわち、風速を計測したり、天候の予報情報を得るなどによって所定以上の風速 が予想されたり検知された場合には、その風に対する回転効率を下げるようなブレー ド角度を選択したり、風を逃がすようなブレード角度を選択したりする機構を備えてい る。
[0006] さて、風力発電装置は、安定的に風が吹く場所を選択して設置される。都市部から 離れた場所では、大型の風力発電装置を複数台設置することも少なくない。風況条 件に優れた場所では、数十力 数百基を設置したウィンドファームも形成されている。
[0007] 近年、単機あたりの出力を向上させるため、風力発電装置は大型化している。
一般的な大型の風力発電装置は、高さ 30〜80メートル程度のタワーに設置され、 そのような風力発電装置のブレードは 20〜50メートルであるので、最高位は地上か ら 130メートルにも達する。
[0008] 図 9を用いて概念的に示しているが、このような高さは、当該風力発電装置が設置 された場所の近隣に生息する鳥類が飛行したり、渡り鳥の巡航飛行の高さになる場 合もある。
一方、飛行する鳥類は、高速で回転するブレードを視認しにくいため力、ブレード に衝突して絶命する事故 (バードストライク)が発生して 、る。
更に、図 10に示すような風速計や風向計を備えている力 これらは事後計測に過 ぎず、強風に吹き飛ばされてきた飛来物がブレードに衝突して、ブレードが破損する ことちある。
発明の開示
発明が解決しょうとする課題
[0009] 今後設置する風力発電装置に対しては、野鳥保護団体などからの情報や、環境ァ セスメントの徹底などによって、バードストライクをある程度回避できると考えられる。 しかし、既存の風力発電所においては、バードストライクを回避する手段が存在しな い。
また、生き物である鳥の動きを完全に把握し、且つ規制していくことは不可能である から、環境調査などを徹底することによるバードストライクの抑制には、自ずと限界が ある。
なお、強風に吹き飛ばされてきた飛来物がブレードに衝突して、ブレードが破損す ることち回避したい。
[0010] 本発明が解決しょうとする課題は、風力発電装置において、飛来物によるブレード の破損やバードストライクを減らすことが可能な技術を提供することである。
ここで、請求項 1から請求項 4に記載の発明の目的は、飛来物によるブレードの破 損やバードストライクを減らすことが可能な風力発電装置を提供することにある。 また、請求項 5から請求項 7に記載の発明の目的は、飛来物によるブレードの破損 やバードストライクを減らすことが可能な風力発電装置の制御プロセスを提供すること にある。
[0011] また、請求項 8から請求項 10に記載の発明の目的は、飛来物によるブレードの破 損やバードストライクを減らすことが可能な風力発電装置の制御プログラムを提供す ることにめる。
請求項 11から請求項 13に記載の発明の目的は、前述の発明の目的に加え、突風 によるブレードの破損事故を減らすことが可能な風力発電装置関連技術を提供する ことにある。
課題を解決するための手段
[0012] (請求項 1)
請求項 1記載の発明は、地上に立設させたタワーと、 そのタワーに固定されたナ セルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードと、 風上前方の飛来物を検知可能な障害物探査装置と、 回転停止ポジションを含め たブレードの角度変更を制御するブレード角度制御手段とを備えた風力発電装置に 係る。
前記障害物探査装置が飛来物を検知した場合に、前記ブレード角度制御手段が ブレードを回転停止ポジションに変更するように制御することとしたことを特徴とする。
[0013] (用語説明)
「飛来物」とは、鳥類などの生き物の他、風に飛ばされくる物体を含む。
「障害物探査装置」とは、音波または電磁波を発振し、その反射波を捉えることによ つて飛来物の存在を確認する装置、または撮像および画像解析に基づ 、て飛来物 の存在を確認する装置、熱感知により鳥類などの生き物を感知する装置などである。 風上前方における飛来物を捉えるため、風向計と組み合わせて用いられる。なお、 風力発電装置が風上を向くようにしているので、風力発電装置のハブ内に設置する など、風力発電装置と同期して動くこととしているとよい。
[0014] 「回転停止ポジション」とは、ブレードが風を受けても回転しないポジションをいい、 代表的には、フエザリングポジションまたは回転速度の十分な減速である力 ブレー ド回転を停止させるためのブレーキを補助的に用いる場合、ブレーキをメインとしてブ レードの回転を停止させる場合も含む。回転の減速制御手段としては、ブレード全体 のピッチ角を変更するピッチ制御機と、揚力を失うようなブレード形状とピッチ角とを 選択させるとともに停止時にはブレード先端が 90度向きを変えてブレーキとするスト ール制御機とがある。
なお、風力発電装置はフエザリングポジション以外にも、強風に応じて回転効率を 落とすようなポジションを選択可能に形成されていることが多い。回転を完全に停止 してしまうと運転再開に時間が掛かる力 十分な減速の場合には運転再開が容易で あるので発電ロスを減らすことができる力 である。
[0015] (作用)
本請求項に係る風力発電装置が、風を受けてブレードが回転することによって発電 する。ここで、障害物探査装置が風上に飛来物を検知したとする。すると、ブレード角 度制御手段がブレードを回転停止ポジションに変更するように制御する。その結果、 ブレードの回転は停止または十分な減速をする。
停止または十分な減速をして!/、るブレードであれば、飛来する鳥が視認しゃす 、た め、自ら回避する可能性が高まる。また、ブレードはハブカも放射状に 3枚程度固定 された細身の形状をなすものが多 、ので、飛来物が鳥以外の単なる物体である場合 でも、ブレードに衝突する確率を低めることができる。
[0016] (請求項 2)
請求項 2記載の発明もまた、地上に立設させたタワーと、 そのタワーに固定された ナセルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードと 、 風上前方の飛来物を検知可能な障害物探査装置と、 回転停止ポジションを含 めたブレードの角度変更を制御するブレード角度制御手段とを備えた風力発電装置 に係る。
そして、前記障害物探査装置は、飛来物を連続的に探査することとし、 その連続的な探査に基づいて飛来物が接近してきたと判断した場合に、前記ブレ ード角度制御手段がブレードを回転停止ポジションに変更するように制御することと したことを特徴とする。
[0017] (用語説明)
「障害物探査装置」が「飛来物を連続的に探査する」ため、飛来物に関するデータ を所定時間記憶したり、直前のデータと比較演算したりする機能を備える。飛来物が 鳥類である場合には、風速よりも速い場合がある。
[0018] (作用)
請求項 1記載の発明との相違点は、飛来物が接近してきた場合に限って回転停止 ポジションへの変更を制御するとした点である。接近したか否かを判断するので、飛 来物をー且検知したが接近しないと判断されれば、衝突の可能性が少なぐ発電を 無駄に停止させずに済む。
なお、請求項 1記載の風力発電装置では、飛来物の動きが極めて速い場合や、連 続して探査しても接近してきたか否か、衝突可能性が高 、か否かなどの予測できな い場合に有効である。
[0019] (請求項 3)
請求項 3記載の発明は、請求項 1または請求項 2のいずれかに記載の風力発電装 置を限定したものである。
すなわち、 障害物探査装置が検知した飛来物の予想到達時間を算出する到達 時間算出手段を備え、
ブレード角度制御手段は、その予想到達時間に達する前にブレードの角度を回転 停止ポジションに変更するように制御することとした風力発電装置に係る。
[0020] (用語説明)
「到達時間算出手段」とは、障害物探査装置が音波または電磁波を用いるものであ る場合には、飛来物を連続的に探査し、音速と距離とから飛来物が到達する時間を 予測するものである。
換言すれば、飛来物の接近を検知して回転停止と判断した場合に、ブレード角度 制御手段がブレード角度を変更してブレードの回転を停止するために必要な時間( たとえば 5秒前後)を確保できるだけの遠方の飛来物を探査する必要がある。
[0021] (作用)
到達時間算出手段は、障害物探査装置が検知した飛来物の予想到達時間を算出 する。そして、 ブレード角度制御手段がその予想到達時間に達する前にブレードの 角度を回転停止ポジションに変更するように制御する。その結果、飛来物によるブレ ードの破損、バードストライクを未然に防ぐ確率を高めることができる。
[0022] (請求項 4)
請求項 4に記載の発明は、請求項 1から請求項 3のいずれかに記載の風力発電装 置を限定したものである。
すなわち、 障害物探査装置は、広角な探査と狭角な探査とが可能であり、 飛来物を検知するまでは広角な探査を行うとともに、飛来物を検知した場合には、 その飛来物に照準した狭角な探査に変更し、飛来物が接近してくる力否かを判断す ることとした風力発電装置に係る。
[0023] (作用)
障害物探査装置が探査できる角度はできるだけ大きい方がよい。しかし、風速が速 ぐ飛来物の速度も速い場合には、広角な探査では、飛来物の連続的に動きを捉え たり、到達予想時間を算出するのに誤差が大きくなつてしまう。
そこで、飛来物を検知した場合には、その飛来物に照準した狭角な探査に変更し、 飛来物が接近してくるカゝ否かを判断できるような構成を採択したものである。
[0024] (請求項 5)
請求項 5記載の発明は、地上に立設させたタワーと、そのタワーに固定されたナセ ルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードとを備 えた風力発電装置の制御方法に係る。
すなわち、風上前方の飛来物を検知する飛来物検知手順と、 その飛来物検知手 順にて飛来物を検知した場合には、前記ブレードを回転停止ポジションに変更する ように制御する回転停止手順とを備えたことを特徴とする。
[0025] (請求項 6)
請求項 6記載の発明は、地上に立設させたタワーと、そのタワーに固定されたナセ ルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードとを備 えた風力発電装置の制御方法に係る。
すなわち、飛来物を連続的に探査する飛来物検知手順と、 その飛来物検知手順 にて飛来物が検知された場合に飛来物が接近したか否かを判断する飛来物接近検 知手順と、 その飛来物接近検知手順にて飛来物が接近した旨を判断した場合に、 前記ブレードを回転停止ポジションに変更する回転停止手順とを備えたことを特徴と する。
[0026] (請求項 7)
請求項 7記載の発明は、請求項 5または請求項 6のいずれかに記載の風力発電装 置の制御方法を限定したものである。
すなわち、飛来物検知手順にて飛来物が検知された場合にその飛来物の予想到達 時間を算出する到達時間算出手順を備え、 回転停止手順は、その予想到達時間 に達する前にブレードを回転停止ポジションに変更するようにしたことを特徴とする。
[0027] (請求項 8)
請求項 8記載の発明は、地上に立設させたタワーと、そのタワーに固定されたナセ ルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードとを備 えた風力発電装置の制御プログラムに係る。
その制御プログラムは、 飛来物を検知する飛来物検知手順と、 その飛来物検知 手順にて飛来物を検知した場合には、前記ブレードを回転停止ポジションに変更す るように制御する回転停止手順とを風力発電装置の制御コンピュータに実行させるこ ととしたコンピュータプログラムである。
[0028] (請求項 9)
請求項 9記載の発明もまた、地上に立設させたタワーと、そのタワーに固定された ナセルと、そのナセルに対してハブを介して回転自在に固定された複数のブレードと を備えた風力発電装置の制御プログラムに係る。
その制御プログラムは、 飛来物を連続的に探査する飛来物検知手順と、 その飛 来物検知手順にて飛来物が検知された場合に飛来物が接近したカゝ否かを判断する 飛来物接近検知手順と、 その飛来物接近検知手順にて飛来物が接近した旨を判 断した場合に、前記ブレードを回転停止ポジションに変更する回転停止手順とを風 力発電装置の制御コンピュータに実行させることとしたコンピュータプログラムである。
[0029] (請求項 10)
請求項 10記載の発明は、請求項 8または請求項 9のいずれかに記載のコンビユー タプログラムを限定したものである。
すなわち、飛来物検知手順にて飛来物が検知された場合にその飛来物の予想到 達時間を算出する到達時間算出手順を備え、 回転停止手順は、その予想到達時 間に達する前にブレードを回転停止ポジションに変更するようにしたことを特徴とする
[0030] (請求項 11)
請求項 11記載の発明は、請求項 1から請求項 4のいずれかに記載の風力発電装 置を限定したものである。
すなわち、ナセルまたはハブには、音波または電磁波の受発振によって前方の風 速を計測可能なドッブラ風速計を備え、 そのドッブラ風速計が所定以上の風速を検 知した場合には、ブレード角度制御手段が当該風速によってブレードが破損しない ようにブレードの角度を変更することとした風力発電装置に係る。
[0031] (用語説明)
「ドッブラ風速計」とは、音波または電磁波を発振し、風に含まれた塵などの反射体 へ衝突して反射してくる音波または電磁波のドッブラ効果に基づく速度差を計測する ことによって風速を算出する風速計である。取り付け位置はハブの内部、ナセルの上 部または左右などがある。
[0032] (作用)
音波または電磁波の受発振によるドッブラ効果を用いたドッブラ風速計により、風力 発電装置の風上における風速を測定する。そして、ドッブラ風速計が所定以上の風 速を検知した場合には、ブレード角度制御手段がブレードの角度を変更する。たとえ ば、限度以上の風速を検知した場合には、フエザリングとすることによって風を逃がし 、ブレードやタワーへのダメージを軽減する。
以上のような作動により、観測タワーを必要とせず、突風を事前に検知してブレード の角度変更などの突風対策をとることができる。
[0033] (請求項 12)
請求項 12に記載の発明は、請求項 5、請求項 6または請求項 7のいずれかに記載 の風力発電装置の制御方法を限定したものである。
すなわち、風力発電装置には、音波または電磁波の受発振によって前方の風速を 計測可能なドッブラ風速計とを備え、
風上前方の飛来物を検知する飛来物検知手順と、 その飛来物検知手順にて飛 来物を検知した場合には、前記ブレードを回転停止ポジションに変更するように制御 する回転停止手順とを備えたことを特徴とする風力発電装置の制御方法に係る。
[0034] (請求項 13)
請求項 13に記載の発明は、請求項 8、請求項 9または請求項 10のいずれかに記 載のコンピュータプログラムを限定したものである。
すなわち、風力発電装置には、音波または電磁波の受発振によって前方の風速を 計測可能なドッブラ風速計とを備え、
風上前方の飛来物を検知する飛来物検知手順と、 その飛来物検知手順にて飛来 物を検知した場合には、前記ブレードを回転停止ポジションに変更するように制御す る回転停止手順とを風力発電装置の制御コンピュータに実行させることとしたコンビ ユータプログラムに係る。
[0035] 請求項 8から請求項 10および請求項 13に係るコンピュータプログラムを、チップィ匕 して風力発電装置のブレード制御装置とすることもできる。また、記録媒体へ記憶さ せて提供することもできる。ここで、「記録媒体」とは、それ自身では空間を占有し得な いプログラムを担持することができる媒体であり、例えば、フレキシブルディスク、ハー ドディスク、 CD— R、 MO (光磁気ディスク)、 DVD— Rなどである。
発明の効果
[0036] 請求項 1から請求項 4に記載の発明によれば、飛来物によるブレードの破損やバード ストライクを減らすことが可能な風力発電装置を提供することができた。
また、請求項 5から請求項 7に記載の発明によれば、飛来物によるブレードの破損 やバードストライクを減らすことが可能な風力発電装置の制御プロセスを提供すること ができた。
[0037] また、請求項 8から請求項 10に記載の発明によれば、飛来物によるブレードの破損 やバードストライクを減らすことが可能な風力発電装置の制御プログラムを提供するこ とができた。
更に、請求項 11から請求項 13に記載の発明によれば、前述の発明の目的に加え 、突風によるブレードの破損事故を減らすことが可能な風力発電装置関連技術を提 供することができた。
図面の簡単な説明
[0038] [図 1]第一の実施形態を示す概念図である。
[図 2]制御の一例を示すフローチャートである。
[図 3]風速と発電量とを示すグラフである。
[図 4]第二の実施形態を示す概念図である。
[図 5]撮像および画像解析を示す概念図である。
[図 6]飛来物のある場合の発射波および反射波のイメージ図である。
[図 7]飛来物がない場合の発射波および反射波のイメージ図である。
[図 8]第三の実施形態を示す概念図である。
[図 9]従来の風力発電装置を示す概念図である。
[図 10]—般的な風向計、風速計を示す図である。
発明を実施するための最良の形態
[0039] 本願発明の実施の形態について、図面を参照させながら説明する。
ここで使用する図面は、図 1から図 7である。図 1は第一の実施形態を示す概念図で あり、図 2は制御プロセスを示すフローチャートである。図 3は、風速と発電量とを示す グラフである。図 4は、第二の実施形態の概念図である。図 5は、撮像および画像解 析を示す概念図である。図 6は、飛来物のある場合の発射波および反射波のィメー ジ図である。図 7は、飛来物がない場合の発射波および反射波のイメージ図である。 図 8は、第三の実施形態を示す概念図である。
[0040] (第一の実施形態)
図 1に示す第一の実施形態は、地上に立設させたタワーと、 そのタワーに固定さ れたナセルと、そのナセルに対してハブを介して回転自在に固定された複数のブレ ードと、 風上前方の飛来物を検知可能な障害物探査装置と、 回転停止ポジション を含めたブレードの角度変更を制御するブレード角度制御手段とを備えた風力発電 装置に係る。
[0041] 障害物探査装置としては、撮像および画像解析に基づ!ヽて飛来物の存在を確認 する装置ではなぐ音波または電磁波を発振してその反射波を捉えることによって飛 来物の存在を確認する装置を採用した。
なお、熱感知装置を採用すると、鳥類などの生き物のように、周囲よりも温度が高い 飛来物しか検知できないが、夜間や吹雪などの悪天候時には、音波や電磁波を発 信する障害物探査装置よりも飛来物の検知が正確に行えるという利点がある。
[0042] ナセルには風向計を備えており、その風向計からの出力を得て風力発電装置が風 上を向くようにしている。障害物探査装置は、音波または電磁波を発振し (発射波 fl) 、その反射波 (f 2)を捉えることによって飛来物の存在を確認する装置である。風力発 電装置のハブ内に設置しており、風力発電装置と同期して動く。
この障害物探査装置が飛来物の存在を確認した場合には、図 2に示すフローチヤ ートのように制御される。
[0043] (図 2)
図 2には、制御の一例を示す。風力発電装置が、風を受けてブレードが回転するこ とによって発電する。ここで、障害物探査装置が風上に飛来物を検知しなければ、運 転を継続する。
飛来物を検知したとする。すると、飛来物を連続的に探査することにより、飛来物に関 するデータを所定時間記憶したり、直前のデータと比較演算したりする。そして、飛来 物が接近してきた場合には、飛行速度 Vやその距離 Xから飛来物の到達予測時間を 算出し、ブレード角度制御手段がブレードを回転停止ポジション (フエザリング)に変 更するように制御する。そして、飛来物の到達予測時間前にブレードの回転を停止さ せる。
なお、以上のような制御プログラムは、ブレードの制御装置に組み込まれる。
[0044] 停止して 、るブレードであれば、飛来する鳥が視認しゃす!/、ため、自ら回避する可 能性が高まる。また、ブレードはハブカも放射状に 3枚程度固定された細身の形状を なすものが多いので、飛来物が鳥以外の単なる物体である場合でも、ブレードに衝 突する確率を低めることができる。 接近したか否かを判断するので、飛来物を一旦 検知したが接近しないと判断されれば、衝突の可能性が少なぐ発電を無駄に停止 させずに済む。
[0045] (図 3)
図 3は、風速と発電量との関係を示したものである。定格風速にて運転できるよう〖こ ブレードを調整し、所定以上の風速 (カットアウト風速)になったら、フエザリングによつ て発電を停止する。本実施形態では、飛来物が接近してきた場合にもフエザリングへ の変更を実行するのである。
[0046] (図 4)
図 4に示す実施形態は、図 1に示す実施形態と異なり、障害物探査装置をハブに 内蔵させるのではなぐナセルの上に固定している。ブレードが回転していれば障害 物探査装置にとって邪魔になるが、回転するブレードを避けるように音波または電磁 波の発振タイミングを制御すればょ 、。
[0047] 以上説明した実施形態に係る風力発電装置によれば、飛来物のブレードへの衝突 やバードストライクを減らすことが可能な風力発電装置を提供することができた。
[0048] 以上説明した障害物探査装置をウィンドファームに設置する場合には、全ての風力 発電装置に障害物探査装置を備えることが望ましい。
しかし、全てには備えられない場合において、障害物探査装置が障害物を検知した 場合には、備えて 、な 、風力発電装置におけるブレード角度制御も行えるようにする 。すると、飛来物のブレードへの衝突やバードストライクを減らすことに寄与する。
[0049] 上記した実施形態では、風上力 のバードストライクのみを考慮した風力発電装置 について説明したが、風力発電装置またはウィンドファームの周囲に複数の障害物 探査装置を備えることは、当然可能である。飛来物は風上のみを考慮すればよいが 、鳥は風向と関係なく飛行する場合もあるからである。
複数の障害物探査装置のいずれかの障害物探査装置が障害物を検知した場合に は、衝突が予想される風力発電装置あるいは全ての風力発電装置について、フエザ リングまたは十分な減速となるように制御することとするのである。
[0050] (図 5)
撮像および画像解析による障害物探査装置について、図 5に基づいて、更に詳しく 説明する。
障害物探査装置が飛来物を捉えた場合、その飛来物が収まる鉛直方向長さを Yと する。また、障害物探査装置がその飛来物を収めた探査角度の半分を Θとする。ま た、飛来物を最初に捉えた時刻を T2でこの時の探査角度が Θ 2、風力発電装置への 到達時間を T1でこのときの探査角度が Θ 1とし、 T1における飛来物の到達距離を X、 飛来物の飛行速度 (風速を含めた飛行速度)を Vとする。
[0051] すると、
tan θ 1 = Y/2X
tan Θ 2 = Y/2 (X + VXT)
V = X(tan θ 1 - tan θ 2) / T/tan θ 2
風力発電装置への到達時間 Tlは、
T1 = X/V
と予柳』でさることとなる。
[0052] (図 6)
飛来物がある場合において、発射波 (fl)と反射波 (f2)とが、信号と周波数との関 係においてどのように捉えられる力、を示している。反射波 (f2)のほうが発射波 (fl) よりも信号、周波数ともに大きくなつたという実例である。
[0053] (図 7)
飛来物がな 、場合 (すなわち風が吹 、て来るのみ)にお 、て、発射波 (f 1)と反射波 (f3)とが、信号と周波数との関係においてどのように捉えられる力、を示している。反 射波 (f 2)のほうが発射波 (fl)より周波数が大きくなつて 、るものの、飛来物があると きほどは大きく変化しな力つた。
[0054] 図 6および図 7に示したような実例に基づいてデータを蓄積しておき、蓄積したデー タとの比較を瞬時に行 、、飛来物の接近力否かを判断する制御アルゴリズムを備え ることとしてちよい。 [0055] (図 8)
図 8に示す実施形態は、飛来物を検知するための装置として、音波または電磁波を 発振してその反射波を捉えることによって飛来物の存在を確認する装置ではなぐ撮 像および画像解析に基づいて飛来物の存在を確認する装置を採用したものである。 すなわち、流体内に混入した微少な粒子(トレーサ)にレーザ光などを照射してそれ らの散乱光を画像として連続して取得し、粒子群の移動距離を求めて二次元平面内 における飛来物の接近を検知するのである。
[0056] この飛来物検知装置は、ハブに内蔵したレーザ発振装置と、タワーにおける地上付 近においてタワーを周回して固定されたリング状のカメラ移動体と、そのカメラ移動体 の上面周囲においてタワーを周回可能に固定されたカメラとを備えて構成されている カメラは、 CCDまたは C MOSセンサであり、レーザ発振装置が発振したシート状 のレーザ光を下方力も撮影する。また、風向風速計が検知する風向に基づき、ナセ ルとともに同期して風上を向くようにカメラ移動体の上を移動できるように形成されて いる。
[0057] まず、レーザ発振装置がシート状のレーザ光を風力発電装置の風上に向力つて照 射する。続いて、流動場に照射されたレーザ光が捉えるトレーサを、カメラが撮影画 像データとして連続して取得する。このとき、カメラによる撮影のタイミングは、制御手 段がレーザ光に同期させる。
連続して得られた撮影画像データは、コンピュータによる画像処理手段にて風況解 析用に処理する。すなわち、画像解析によって飛来物の接近を検知した場合にも、 ブレードの角度などを制御して突風に伴うブレードの破損事故を未然に防止する。
[0058] なお、取得した複数の撮影画像データを用いて風上における風速や風向を取得す ることもできる。その風速が所定以上である場合には、ブレードの角度などを制御して 突風に伴うブレードの破損事故を未然に防止することが可能となる。

Claims

請求の範囲
[1] 地上に立設させたタワーと、 そのタワーに固定されたナセルと、そのナセルに対し てハブを介して回転自在に固定された複数のブレードと、 風上前方の飛来物を検 知可能な障害物探査装置と、 回転停止ポジションを含めたブレードの角度変更を 制御するブレード角度制御手段とを備えた風力発電装置であって、
前記障害物探査装置が飛来物を検知した場合に、前記ブレード角度制御手段が ブレードを回転停止ポジションに変更するように制御することとした風力発電装置。
[2] 地上に立設させたタワーと、 そのタワーに固定されたナセルと、そのナセルに対し てハブを介して回転自在に固定された複数のブレードと、 風上前方の飛来物を検 知可能な障害物探査装置と、 回転停止ポジションを含めたブレードの角度変更を 制御するブレード角度制御手段とを備えた風力発電装置であって、
前記障害物探査装置は、飛来物を連続的に探査することとし、
その連続的な探査に基づいて飛来物が接近してきたと判断した場合に、前記ブレ ード角度制御手段がブレードを回転停止ポジションに変更するように制御することと した風力発電装置。
[3] 障害物探査装置が検知した飛来物の予想到達時間を算出する到達時間算出手段 を備え、
ブレード角度制御手段は、その予想到達時間に達する前にブレードの角度を回転 停止ポジションに変更するように制御することとした請求項 1または請求項 2の 、ずれ かに記載の風力発電装置。
[4] 障害物探査装置は、広角な探査と狭角な探査とが可能であり、
飛来物を検知するまでは広角な探査を行うとともに、飛来物を検知した場合には、 その飛来物に照準した狭角な探査に変更し、飛来物が接近してくる力否かを判断す ることとした請求項 1から請求項 3のいずれかに記載の風力発電装置。
[5] 地上に立設させたタワーと、そのタワーに固定されたナセルと、そのナセルに対して ハブを介して回転自在に固定された複数のブレードとを備えた風力発電装置の制御 方法であって、
風上前方の飛来物を検知する飛来物検知手順と、 その飛来物検知手順にて飛来物を検知した場合には、前記ブレードを回転停止ポ ジシヨンに変更するように制御する回転停止手順とを備えた風力発電装置の制御方 法。
[6] 地上に立設させたタワーと、そのタワーに固定されたナセルと、そのナセルに対して ハブを介して回転自在に固定された複数のブレードとを備えた風力発電装置の制御 方法であって、
飛来物を連続的に探査する飛来物検知手順と、
その飛来物検知手順にて飛来物が検知された場合に飛来物が接近した力否かを 判断する飛来物接近検知手順と、
その飛来物接近検知手順にて飛来物が接近した旨を判断した場合に、前記ブレー ドを回転停止ポジションに変更する回転停止手順とを備えた風力発電装置の制御方 法。
[7] 飛来物検知手順にて飛来物が検知された場合にその飛来物の予想到達時間を算 出する到達時間算出手順を備え、
回転停止手順は、その予想到達時間に達する前にブレードを回転停止ポジション に変更するようにした請求項 5または請求項 6の 、ずれかに記載の風力発電装置の 制御方法。
[8] 地上に立設させたタワーと、そのタワーに固定されたナセルと、そのナセルに対して ハブを介して回転自在に固定された複数のブレードとを備えた風力発電装置の制御 プログラムであって、
その制御プログラムは、 飛来物を検知する飛来物検知手順と、
その飛来物検知手順にて飛来物を検知した場合には、前記ブレードを回転停止ポ ジシヨンに変更するように制御する回転停止手順とを風力発電装置の制御コンビユー タに実行させることとしたコンピュータプログラム。
[9] 地上に立設させたタワーと、そのタワーに固定されたナセルと、そのナセルに対して ハブを介して回転自在に固定された複数のブレードとを備えた風力発電装置の制御 プログラムであって、
その制御プログラムは、 飛来物を連続的に探査する飛来物検知手順と、 その飛来物検知手順にて飛来物が検知された場合に飛来物が接近した力否かを 判断する飛来物接近検知手順と、
その飛来物接近検知手順にて飛来物が接近した旨を判断した場合に、前記ブレー ドを回転停止ポジションに変更する回転停止手順とを風力発電装置の制御コンビュ ータに実行させることとしたコンピュータプログラム。
[10] 飛来物検知手順にて飛来物が検知された場合にその飛来物の予想到達時間を算 出する到達時間算出手順を備え、
回転停止手順は、その予想到達時間に達する前にブレードを回転停止ポジション に変更するようにした請求項 8または請求項 9のいずれかに記載のコンピュータプロ グラム。
[11] ナセルまたはハブには、音波または電磁波の受発振によって前方の風速を計測可 能なドッブラ風速計を備え、 そのドッブラ風速計が所定以上の風速を検知した場合 には、ブレード角度制御手段が当該風速によってブレードが破損しないようにブレー ドの角度を変更することとした請求項 1から請求項 4のいずれかに記載の風力発電装 置。
[12] 請求項 5、請求項 6または請求項 7のいずれかに記載の風力発電装置の制御方法 において、
風力発電装置には、音波または電磁波の受発振によって前方の風速を計測可能 なドッブラ風速計とを備え、
風上前方の飛来物を検知する飛来物検知手順と、
その飛来物検知手順にて飛来物を検知した場合には、前記ブレードを回転停止ポ ジシヨンに変更するように制御する回転停止手順とを備えたことを特徴とする風力発 電装置の制御方法。
[13] 請求項 8、請求項 9または請求項 10のいずれかに記載のコンピュータプログラムに おいて、
風力発電装置には、音波または電磁波の受発振によって前方の風速を計測可能 なドッブラ風速計とを備え、
風上前方の飛来物を検知する飛来物検知手順と、 その飛来物検知手順にて飛来物を検知した場合には、前記ブレードを回転停止ポ ジシヨンに変更するように制御する回転停止手順とを風力発電装置の制御コンビユー タに実行させることとしたコンピュータプログラム。
PCT/JP2006/308835 2006-04-27 2006-04-27 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム WO2007129378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/298,569 US20090185900A1 (en) 2006-04-27 2006-04-27 Wind-driven electricity generation device, method of controlling wind-driven electricity generation device, and computer program
EP06745763A EP2017470A1 (en) 2006-04-27 2006-04-27 Wind-driven electricity generation device, method of controlling wind-driven electricity generation device, and computer program
PCT/JP2006/308835 WO2007129378A1 (ja) 2006-04-27 2006-04-27 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308835 WO2007129378A1 (ja) 2006-04-27 2006-04-27 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2007129378A1 true WO2007129378A1 (ja) 2007-11-15

Family

ID=38667500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308835 WO2007129378A1 (ja) 2006-04-27 2006-04-27 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム

Country Status (3)

Country Link
US (1) US20090185900A1 (ja)
EP (1) EP2017470A1 (ja)
WO (1) WO2007129378A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102001A1 (ja) * 2008-02-15 2009-08-20 The Tokyo Electric Power Company, Incorporated 鳥類探査システム、鳥類探査方法およびコンピュータプログラム
JP2009228554A (ja) * 2008-03-21 2009-10-08 Tokyo Electric Power Co Inc:The 飛来物検知装置、飛来物検知方法およびコンピュータプログラム
DE102008018880A1 (de) * 2008-04-14 2009-10-15 Carl Zeiss Optronics Gmbh Überwachungsverfahren und -vorrichtung für Windkraftanlagen, Gebäude mit transparenten Bereichen, Start- und Landebahnen und/oder Flugkorridore von Flughäfen
CN108700040A (zh) * 2016-02-13 2018-10-23 迈克尔·普里奇拜金 一种记录飞行动物与风力涡轮机产生碰撞并指示飞行动物坠落点的装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482613B2 (en) * 2007-09-10 2013-07-09 John Kempf Apparatus and method for photographing birds
US7934905B2 (en) * 2007-11-30 2011-05-03 General Electric Company Wind energy system having an insect sensor
CA2727238A1 (en) * 2008-10-09 2010-04-15 Mitsubishi Heavy Industries, Ltd. Off-shore wind turbine generator and off-shore wind farm
US20110135466A1 (en) * 2010-01-14 2011-06-09 General Electric Company System and method for monitoring and controlling wind turbine blade deflection
EP2369176A1 (en) * 2010-02-24 2011-09-28 Siemens Aktiengesellschaft Wind turbine and method for measuring the pitch angle of a wind turbine rotor blade
US20110204632A1 (en) * 2010-02-25 2011-08-25 Skala James A Synchronous Induced Wind Power Generation System
EP2629601B1 (en) * 2010-10-19 2017-04-12 Renewable Energy Systems Americas Inc. Systems and methods for avian mitigation for wind farms
US9416769B2 (en) * 2011-08-31 2016-08-16 Siemens Aktiengesellschaft Method to control the operation of a wind turbine
US20130050400A1 (en) 2011-08-31 2013-02-28 Henrik Stiesdal Arrangement and Method to Prevent a Collision of a Flying Animal with a Wind Turbine
EP2769091B1 (en) 2011-10-10 2018-03-14 Vestas Wind Systems A/S Radar weather detection for a wind turbine
US9115699B2 (en) 2012-02-28 2015-08-25 General Electric Company Ultrasonic sound emitting devices for wind turbines
US9775337B2 (en) 2012-11-27 2017-10-03 Elwha Llc Methods and systems for directing birds away from equipment
US9474265B2 (en) 2012-11-27 2016-10-25 Elwha Llc Methods and systems for directing birds away from equipment
US9125394B2 (en) 2013-01-30 2015-09-08 General Electric Company Ultrasonic sound emitting devices for wind turbines
US9128184B1 (en) * 2013-03-14 2015-09-08 Lockheed Martin Corporation Radar wind turbine
SG11201507832TA (en) * 2013-03-28 2015-10-29 Nec Corp Bird detection device, bird detection system, bird detection method, and program
US9706766B2 (en) 2013-06-25 2017-07-18 General Electric Company Active systems and methods for producing ultrasonic sound emissions from wind turbines
CA2958579C (en) 2014-08-21 2023-05-09 Boulder Imaging, Inc. Avian detection systems and methods
US9521830B2 (en) 2014-08-21 2016-12-20 Identiflight, Llc Bird or bat detection and identification for wind turbine risk mitigation
NO340409B1 (en) * 2015-06-08 2017-04-18 Sintef Energi As System and method for preventing collisions between wind turbine blades and flying objects
US10338202B2 (en) * 2016-01-28 2019-07-02 General Electric Company System and method for improving LIDAR sensor signal availability on a wind turbine
US9886864B1 (en) 2016-02-03 2018-02-06 X Development Llc Methods for aerial avoidance
EP3810923B1 (en) * 2018-06-21 2022-08-03 Vestas Wind Systems A/S A wind energy park comprising a wind turbine and an airborne wind energy system
WO2022003213A1 (es) * 2020-06-29 2022-01-06 3D Observer Project, S.L. Sistema y método para detectar avifauna en parques eólicos
US11278021B1 (en) * 2021-02-24 2022-03-22 Timothy Just Wildlife deterring windmill
US11672243B2 (en) 2021-02-24 2023-06-13 Timothy Just Wildlife deterring windmill
EP4296506A1 (de) * 2022-06-23 2023-12-27 Wobben Properties GmbH Verfahren zum steuern einer windenergieanlage zum schutz von vögeln und fledermäusen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680868U (ja) * 1993-04-29 1994-11-15 靖彦 鴨志田 風力発電装置
JP2003021046A (ja) * 2001-07-09 2003-01-24 Sanyo Electric Co Ltd 風力発電装置
JP2003148321A (ja) * 2001-11-16 2003-05-21 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2004101265A (ja) 2002-09-06 2004-04-02 Mitsubishi Electric Corp 風力発電用風車建設予定地の風向風速計測方法
JP2004285858A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 風力発電システムおよび風力発電機の制御方法
JP2006125266A (ja) * 2004-10-28 2006-05-18 Tokyo Electric Power Co Inc:The 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680868U (ja) * 1993-04-29 1994-11-15 靖彦 鴨志田 風力発電装置
JP2003021046A (ja) * 2001-07-09 2003-01-24 Sanyo Electric Co Ltd 風力発電装置
JP2003148321A (ja) * 2001-11-16 2003-05-21 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2004101265A (ja) 2002-09-06 2004-04-02 Mitsubishi Electric Corp 風力発電用風車建設予定地の風向風速計測方法
JP2004285858A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 風力発電システムおよび風力発電機の制御方法
JP2006125266A (ja) * 2004-10-28 2006-05-18 Tokyo Electric Power Co Inc:The 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102001A1 (ja) * 2008-02-15 2009-08-20 The Tokyo Electric Power Company, Incorporated 鳥類探査システム、鳥類探査方法およびコンピュータプログラム
JPWO2009102001A1 (ja) * 2008-02-15 2011-06-16 東京電力株式会社 鳥類探査システム、鳥類探査方法およびコンピュータプログラム
JP2009228554A (ja) * 2008-03-21 2009-10-08 Tokyo Electric Power Co Inc:The 飛来物検知装置、飛来物検知方法およびコンピュータプログラム
DE102008018880A1 (de) * 2008-04-14 2009-10-15 Carl Zeiss Optronics Gmbh Überwachungsverfahren und -vorrichtung für Windkraftanlagen, Gebäude mit transparenten Bereichen, Start- und Landebahnen und/oder Flugkorridore von Flughäfen
CN108700040A (zh) * 2016-02-13 2018-10-23 迈克尔·普里奇拜金 一种记录飞行动物与风力涡轮机产生碰撞并指示飞行动物坠落点的装置
CN108700040B (zh) * 2016-02-13 2019-11-26 迈克尔·普里奇拜金 一种记录飞行动物与风力涡轮机产生碰撞并指示飞行动物坠落点的装置

Also Published As

Publication number Publication date
US20090185900A1 (en) 2009-07-23
EP2017470A1 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
WO2007129378A1 (ja) 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム
JP4626265B2 (ja) 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム
JP4626266B2 (ja) 風力発電装置、風力発電装置の制御方法およびコンピュータプログラム
US9217415B2 (en) Estimation of wind properties using a light detection and ranging device
JP6625052B2 (ja) タービンの流体速度場測定
JP2012512352A (ja) 鳥または飛行物体の検知方法
JP2009191807A (ja) 飛来物衝突回避システム、飛来物衝突回避システムの制御方法およびコンピュータプログラム
EP1937966B1 (en) Method for operating a wind energy installation
US9217413B2 (en) Wind turbine optical wind sensor
CN112648150B (zh) 一种基于77GHz毫米波雷达的风力发电机机组叶片净空值的检测方法
US10174743B2 (en) Wind turbine with a wind sensing apparatus
JP2009257322A (ja) 飛来物衝突回避システム、風力発電装置およびコンピュータプログラム
JPWO2009102001A1 (ja) 鳥類探査システム、鳥類探査方法およびコンピュータプログラム
WO2016200270A1 (en) System and method for preventing collisions between wind turbine blades and flying objects
GB2532585A (en) Turbine fluid velocity field measurement
JP2009203873A (ja) 飛来物検知システム、風力発電装置およびコンピュータプログラム
JP5059666B2 (ja) 飛来物検知装置、飛来物検知方法およびコンピュータプログラム
JP5072053B2 (ja) 飛来物探査装置および映像取得手段の設置方法
US11415110B2 (en) Wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine
US20210262437A1 (en) A wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine
US20230417223A1 (en) Method for controlling a wind power installation so as to protect birds and bats
JP2019519777A5 (ja)
US20210262448A1 (en) A wind turbine blade, a method of controlling a wind turbine, a control system, and a wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06745763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12298569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP