WO2007128494A1 - Vorrichtung zur fluidbehandlung, insbesondere wasserentkeimung, mit elektrodenloser gasentladungslampe - Google Patents
Vorrichtung zur fluidbehandlung, insbesondere wasserentkeimung, mit elektrodenloser gasentladungslampe Download PDFInfo
- Publication number
- WO2007128494A1 WO2007128494A1 PCT/EP2007/003912 EP2007003912W WO2007128494A1 WO 2007128494 A1 WO2007128494 A1 WO 2007128494A1 EP 2007003912 W EP2007003912 W EP 2007003912W WO 2007128494 A1 WO2007128494 A1 WO 2007128494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lamp
- fluid
- lamp body
- irradiated
- temperature
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 14
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 8
- 230000005855 radiation Effects 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010453 quartz Substances 0.000 claims abstract 2
- MDPXIMQTRHVGKV-UHFFFAOYSA-N [Br].[Xe] Chemical compound [Br].[Xe] MDPXIMQTRHVGKV-UHFFFAOYSA-N 0.000 claims description 9
- 238000005253 cladding Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 5
- CRCGQDIFUPCYPU-UHFFFAOYSA-N [Cl].[Kr] Chemical compound [Cl].[Kr] CRCGQDIFUPCYPU-UHFFFAOYSA-N 0.000 claims description 4
- WCOWLHLUNQFEMH-UHFFFAOYSA-N [I].[Xe] Chemical compound [I].[Xe] WCOWLHLUNQFEMH-UHFFFAOYSA-N 0.000 claims description 4
- VFQHLZMKZVVGFQ-UHFFFAOYSA-N [F].[Kr] Chemical compound [F].[Kr] VFQHLZMKZVVGFQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000000945 filler Substances 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 229910052753 mercury Inorganic materials 0.000 description 18
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 17
- 239000007789 gas Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- GYXHOXBGVROIPU-UHFFFAOYSA-N [I].[Kr] Chemical compound [I].[Kr] GYXHOXBGVROIPU-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- -1 mercury halogen Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
- C02F1/325—Irradiation devices or lamp constructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/52—Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
- H01J61/523—Heating or cooling particular parts of the lamp
Definitions
- the invention relates to systems for the treatment of fluids, in particular water, in which the fluid is treated with UV radiation, in particular sterilized, processes for the treatment of fluids, suitable arrangements of electrodeless gas discharge lamps and the use of UV light sources in air treatment plants.
- Mercury discharge lamps have a high efficiency and are therefore particularly suitable for large-scale installations, where they can be used in continuous operation.
- Mercury discharge lamps can be easily produced from a UV-transparent tube, in particular quartz glass, electrodes and a discharge filling in mass production.
- a continuous operation is unprofitable. Since mercury lamps go through a five-minute start-up period until they reach their full capacity, discontinuous operation for a single household is less attractive. Added to this is the constant danger posed by the mercury.
- EP 1 345 631 B1 discloses a suitable for continuous operation arrangement of a mercury UV lamp, which is excited with microwaves from a magnetron whose lamp body is in contact with a liquid on one side. On the other side of the lamp body is a funnel, which supplies the microwaves from the magnetron from the lamp body.
- low-pressure mercury lamps which achieve an efficiency of up to 35%, require an operating temperature between 30 ° C. and 50 ° C.
- the mercury discharge lamps are separated from the streams too much chilled, so they are not their full Can develop UV power. Therefore, for cooling fluid flows mercury lamps are used with an additional cladding tube.
- UV lamps such as Hg-filled lamps or Dielectric Barrier Discharge (DBD) lamps with coaxial tubes, lamps with elaborate ballasts and dangerous electrical structures should be avoided.
- fluid raw materials with UV radiation are converted to higher quality or new products by a fluid to be treated is brought into contact with the lamp body, that the fluid from the lamp body is irradiated with UV radiation and that the fluid directly influence takes the temperature of the lamp body, in particular the operating temperature of the lamp body cladding tube between 0 ° C and 30 0 C sets.
- simple UV lamps are used, in which an excimer filling in a UV-transparent discharge vessel, in particular a quartz glass without electrodes, is excited.
- a solution of the problem for an arrangement of an electrodeless gas discharge lamp in a fluid irradiated by the lamp, which directly influences the temperature of the lamp body, in particular its cladding tube, is that the lamp body protrudes far into the fluid, in particular with at least 80%. its surface, preferably 90% of its surface.
- the lamp body is preferably designed as a tube whose longitudinal axis is arranged in the propagation direction of the microwaves.
- a solution to the problem is an arrangement of an electrodeless gas discharge lamp with an excimer filling, which projects far into a fluid irradiated by the lamp, the direct influence on the temperature of the lamp body, in particular its cladding tube takes. This allows the cooling of the lamp body and thus extends its life.
- a lamp tube projects with more than 80%, in particular more than 90%, of its surface into the fluid when the lamp body is mounted on the front side on a microwave supply.
- the longitudinal axis of the lamp body is then arranged parallel to the propagation of the microwaves.
- Excimer fillings are mercury-free mixtures of noble gases with halides and therefore less dangerous than mercury-containing fillings.
- the excimer fillers can and should be operated at lower temperatures than the mercury-containing lamps, in particular between 0 0 C and 30 0 C.
- the excimer fillers can and should be operated at lower temperatures than the mercury-containing lamps, in particular between 0 0 C and 30 0 C.
- at low temperature control of the excimer lamps their life can be extended. For this purpose, preferably at least 80% of the surface of the lamp body is cooled by the fluid. For this purpose, it is proven to let the lamp tube protrude far into the fluid medium.
- a further solution of the problem is a discontinuous process for the treatment, in particular degermination of fluids in a fluid treatment plant, in particular water sterilization plant, in which UV radiation is used, wherein in the system a fluid is brought into contact with an electrodeless gas discharge radiator, so that the fluid from the radiator is irradiated with UV radiation and that the fluid has a direct influence on the temperature of the radiator, in particular its cladding tube takes.
- the lamp body is efficiently cooled to prolong its lifetime by the irradiated fluid when it projects far into the fluid.
- Discontinuous methods typically have operating times in the second or minute range.
- a solution to the problem is a fluid treatment plant, in particular water disinfection plant for the treatment of fluids, in particular for their sterilization, is used in the UV radiation, the plant has an electrodeless gas discharge lamp in a radiated from the lamp fluid, the direct influence on the temperature of the Strahlers, in particular its cladding tube, takes. In this case, the lamp body protrudes far into the fluid for its cooling and thus extended lifetime.
- the filling is in a simple quartz glass tube.
- the present invention allows mercury-free emitter embodiments, in particular based on a xenon-bromine filling or a krypton-chlorine filling or a xenon-iodine filling or a krypton-iodine filling.
- the UV lamp is operated without electrodes.
- excitation of an excimer gas discharge lamp by means of microwaves has proven itself.
- Microwaves can be generated in a magnetron and fed via a waveguide of the excitation lamp.
- the lamp is no longer operated with a separate coolant, but cooled directly from the fluid to be treated.
- the lamp is surrounded by only one instead of two fluids.
- the conductivity of the fluid does not matter in contrast to US 2002/089275.
- the UV lamp used in the invention also works with absolutely non-conductive fluids.
- Electrode-free discharge vessels with an excimer filling in particular with a xenon-bromine filling or a krypton-chlorine filling or a xenon-iodine filling or a krypton-fluorine filling, are used for such UV radiators.
- these emitters have lower efficiency compared to mercury lamps, they are characterized by a virtually non-existent starting time and are therefore suitable for discontinuous operation in small water treatment plants for individual households.
- UV light sources such as discharge lamps for the irradiation of air, which take direct influence on the temperature of the UV light source.
- the treatment of fluids in the sense of the present invention does not mean mere cooling, but the treatment of a raw material to a finished product, For example, the treatment of water or air, especially in sewage or fresh water treatment plants and in exhaust or fresh air treatment plants.
- the ease of handling and the simple production of the systems according to the invention are of great advantage for domestic applications, in particular the domestic water supply.
- the treatment of fluids according to the invention can also be advantageously used for example for air conditioners or the air supply in buildings or trains and the production of vitamin D as well as industrial applications.
- Fig. 1 shows a radiator arranged in a fluid flow
- Fig. 2 shows the spectrum of a low-pressure radiator and the DNA absorption curve of Escherichia coli
- germicidal lamps are lamps with an excimer gas filling for cold operation, for example, mercury-free lamps based on noble gas-halogen mixtures such as xenon-bromine filling or krypton-chlorine filling or xenon-iodine filling or krypton-fluorine filling .
- the latter lamps have the optimum operating temperature in the range between 0 0 C and 50 0 C, in particular between 5 ° C and 30 0 C.
- an electrodeless UV lamp is immersed in a fluid 6 in a channel provided for the fluid.
- the electrodeless lamp contains a xenon-bromine gas filling, which can be excited to excimer discharge.
- the excitation takes place by means of microwaves which are transmitted by a magnetron 1 via a waveguide 2.
- the waveguide 2 standing waves are generated.
- the waveguide is adjusted with a slider 4.
- the coupling of the energy from the magnetron into the waveguide and from the waveguide into the radiator takes place via the coupling pins 3.
- the waveguide 2 is a usual waveguide for microwave technology, in which standing waves can form.
- a Justierschieber 4 To adjust the standing waves is a Justierschieber 4.
- Coupling pins 3 allow the coupling of energy from the magnetron in the waveguide and from the waveguide in the radiator. The thus excited with microwaves emitter can be operated directly in the water.
- the spectrum of a low-pressure radiator with xenon-bromine filling is shown in Figure 2 next to a DNA absorption curve of E. coli. The similar spectral course indicates the good suitability of the low-pressure radiator with xenon-bromine filling for sterilization or disinfection.
- microwaves of 2.45 GHz or a wavelength of 12.2 cm in a channel through which water flows an excimer radiator with a xenon-bromine filling operated for 1000 hours discontinuously, for a life of over 3 years in one Five-person household corresponds.
- the service life of continuously operated mercury low-pressure lamps with an operating life of 5000 hours with a service life of 6 months since in continuous operation, the service life corresponds to the operating time.
- the energy ultimately consumed despite the better efficiency of the mercury halogen radiator due to the many times higher operating time in continuous operation higher.
- a 50 W mercury lamp consumes 1,200 Wh per day in continuous operation. At 30% efficiency, a 50 W lamp has a radiant power of 15 W. This radiation line is created with a 200 W electrodeless excimer lamp with a bromine-xenon fill , With a daily operating time of one hour in discontinuous operation, this lamp consumes only 200 Wh per day.
- the lifetime of a mercury lamp in continuous operation is the same as the service life and is about 6 months.
- the service life is increased many times over the operating time. With an operating time of only 1, 5 to 2 months, the service life for a discontinuous operation with an average of one hour per day is 3 to 4 years.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physical Water Treatments (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/300,231 US20090120882A1 (en) | 2006-05-10 | 2001-05-03 | Device for Treating Fluids, Especially Water Sterilization, Comprising an Electrodeless Gas Discharge Lamp |
EP07724838A EP2016028A1 (de) | 2006-05-10 | 2007-05-03 | Vorrichtung zur fluidbehandlung, insbesondere wasserentkeimung, mit elektrodenloser gasentladungslampe |
CA2651719A CA2651719C (en) | 2006-05-10 | 2007-05-03 | Fluid treatment plant, particularly a water disinfection plant |
JP2009508212A JP2009536091A (ja) | 2006-05-10 | 2007-05-03 | 無電極ガス放電ランプを有する流体処理、特に水殺菌のための装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006022004.8 | 2006-05-10 | ||
DE102006022004A DE102006022004A1 (de) | 2006-05-10 | 2006-05-10 | Fluidbehandlungsanlage, insbesondere Wasserentkeimungsanlage |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007128494A1 true WO2007128494A1 (de) | 2007-11-15 |
Family
ID=38537517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/003912 WO2007128494A1 (de) | 2006-05-10 | 2007-05-03 | Vorrichtung zur fluidbehandlung, insbesondere wasserentkeimung, mit elektrodenloser gasentladungslampe |
Country Status (7)
Country | Link |
---|---|
US (1) | US20090120882A1 (de) |
EP (1) | EP2016028A1 (de) |
JP (1) | JP2009536091A (de) |
CN (1) | CN101443280A (de) |
CA (1) | CA2651719C (de) |
DE (1) | DE102006022004A1 (de) |
WO (1) | WO2007128494A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006050276A1 (de) * | 2006-10-23 | 2008-05-15 | Wedeco Ag | Verfahren zur Überwachung einer Mehrzahl von elektrischen Leuchtkörpern und Vorrichtung zur Desinfektion einer Substanz mittels ultravioletter Strahlung |
CN101668739A (zh) * | 2007-04-24 | 2010-03-10 | 帝斯曼知识产权资产管理有限公司 | 用于制造前维生素d的光化学方法 |
JP5438833B2 (ja) * | 2009-10-20 | 2014-03-12 | エンビロ テック エーエス | 船上ポンプ室及び海上プラットフォームの爆発性雰囲気中にバラスト水処理用紫外線システムを設置するための装置 |
TWI569301B (zh) | 2010-06-04 | 2017-02-01 | 通路實業集團國際公司 | 感應耦合介電質屏障放電燈 |
WO2013136187A2 (en) * | 2012-03-12 | 2013-09-19 | Gogi Ltd. | Rf activation of uv lamp for water disinfection |
DE102014015642B4 (de) | 2014-10-23 | 2018-06-28 | Jürgen Axmann | Vorrichtung zur Entkeimung von Flüssigkeiten durch Direkteinwirkung von UVC-LED-Strahlung und deren Verwendung |
US12187626B2 (en) | 2021-09-20 | 2025-01-07 | Sudhish Madapur SWAIN | Apparatus and method for purifying water |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030206833A1 (en) * | 2002-05-06 | 2003-11-06 | Obee Timothy N. | Electrodeless ultraviolet discharge fluid remediation |
EP1394118A1 (de) * | 2002-08-27 | 2004-03-03 | UMEX Dresden GmbH | Verfahren und Vorrichtung zur UV-Bestrahlung von Flüssigkeiten |
WO2004088706A2 (en) * | 2003-04-01 | 2004-10-14 | The University Of Liverpool | Ultraviolet lamp |
GB2413005A (en) * | 2004-04-07 | 2005-10-12 | Jenact Ltd | UV light source |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3649498A (en) * | 1965-10-06 | 1972-03-14 | Victor Pretorius | Detection in chromatography |
WO1987005811A1 (en) * | 1986-03-26 | 1987-10-08 | Hoshin Kagaku Sangyosho Co., Ltd. | Sanitary device |
JPH09253451A (ja) * | 1996-03-22 | 1997-09-30 | Aqueous Res:Kk | 自動車用空気浄化方法及び装置 |
JPH1012195A (ja) * | 1996-06-17 | 1998-01-16 | Toshiba Lighting & Technol Corp | 無電極ランプ、無電極ランプ点灯装置及び紫外線照射装置 |
KR100363833B1 (ko) * | 2000-09-19 | 2002-12-06 | 주식회사 대원팝틴폼 | 마이크로웨이브를 이용한 자외선 및 오존발생장치 |
GB0120993D0 (en) * | 2001-08-30 | 2001-10-24 | Quay Technologies | Pulsed UV light source |
US6960201B2 (en) * | 2002-02-11 | 2005-11-01 | Quanticum, Llc | Method for the prevention and treatment of skin and nail infections |
EP1554551A4 (de) * | 2002-10-01 | 2008-01-23 | Next Safety Inc | Verfahren und vorrichtungen zur ultraviolettsterilisierung |
DE102006006289A1 (de) * | 2006-02-10 | 2007-08-23 | R3T Gmbh Rapid Reactive Radicals Technology | Vorrichtung und Verfahren zur Erzeugung angeregter und/oder ionisierter Teilchen in einem Plasma |
-
2001
- 2001-05-03 US US12/300,231 patent/US20090120882A1/en not_active Abandoned
-
2006
- 2006-05-10 DE DE102006022004A patent/DE102006022004A1/de not_active Withdrawn
-
2007
- 2007-05-03 CN CNA2007800168585A patent/CN101443280A/zh active Pending
- 2007-05-03 WO PCT/EP2007/003912 patent/WO2007128494A1/de active Application Filing
- 2007-05-03 JP JP2009508212A patent/JP2009536091A/ja active Pending
- 2007-05-03 CA CA2651719A patent/CA2651719C/en active Active
- 2007-05-03 EP EP07724838A patent/EP2016028A1/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030206833A1 (en) * | 2002-05-06 | 2003-11-06 | Obee Timothy N. | Electrodeless ultraviolet discharge fluid remediation |
EP1394118A1 (de) * | 2002-08-27 | 2004-03-03 | UMEX Dresden GmbH | Verfahren und Vorrichtung zur UV-Bestrahlung von Flüssigkeiten |
WO2004088706A2 (en) * | 2003-04-01 | 2004-10-14 | The University Of Liverpool | Ultraviolet lamp |
GB2413005A (en) * | 2004-04-07 | 2005-10-12 | Jenact Ltd | UV light source |
Also Published As
Publication number | Publication date |
---|---|
CA2651719A1 (en) | 2007-11-15 |
US20090120882A1 (en) | 2009-05-14 |
CN101443280A (zh) | 2009-05-27 |
DE102006022004A1 (de) | 2007-11-15 |
EP2016028A1 (de) | 2009-01-21 |
CA2651719C (en) | 2012-07-10 |
JP2009536091A (ja) | 2009-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007128494A1 (de) | Vorrichtung zur fluidbehandlung, insbesondere wasserentkeimung, mit elektrodenloser gasentladungslampe | |
EP2567713B1 (de) | Vorrichtung zur Entkeimung von Gasen oder Flüssigkeiten mittel UV | |
EP1144314B1 (de) | Uv-bestrahlungsvorrichtung, insbesondere zur desinfektion von flüssigkeiten mit verminderter uv-transmission | |
EP1048620B1 (de) | Vorrichtung zur Desinfektion von Wasser mit einer UV-C-Gasentladungslampe | |
DE69906792T2 (de) | Durch mikrowellen betätigte ultraviolett-lichtquelle | |
DE60310947T2 (de) | Vorrichtung zur erzeugung von strahlung | |
RU2581864C2 (ru) | Уф-излучающие люминофоры | |
DE3232802A1 (de) | Verfahren und vorrichtung zum erzeugen ultravioletter strahlung | |
DE102010042670B4 (de) | Vorrichtung zur UV-Bestrahlung | |
DE69610561T2 (de) | Verfahren zur erzeugung einer optischen strahlung und dafür geeignete entladungslampe | |
EP2909856B1 (de) | Uv-lichtquelle mit kombinierter ionisation und bildung von excimern | |
DE102005003041A1 (de) | Blitzlichtlampe mit hoher Strahlungsdichte | |
TW570816B (en) | Ultraviolet ray irradiation device and operation method thereof | |
JP2001052653A (ja) | 紫外線発生装置 | |
EP1394118B1 (de) | Verfahren und Vorrichtung zur UV-Bestrahlung von Flüssigkeiten | |
EP2420257A1 (de) | Reaktor zur Entkeimung oder Aufbereitung einer Flüssigkeit durch den kombinierten Einsatz von UVC-Strahlung und Ozon sowie Quecksilberdampflampe zum Einsatz in dem Reaktor | |
DE590906C (de) | Elektrische Glimmentladungsroehre mit positiver Saeule, einem fuer ultraviolette Strahlen durchlaessigen Glasgefaess und einer Fuellung aus verduennten Gasen fuer Bestrahlungszwecke | |
DE10236717B4 (de) | Vorrichtung zur Durchführung von photoreaktiven Prozessen bei einem Fluid | |
EP3699951B1 (de) | Quecksilberniederdruckstrahler, verfahren zum betreiben sowie verwendung von quecksilber-halogenid im entladungsraum desselben | |
DE102009038719B4 (de) | Vorrichtung zur UV-Bestrahlung kleiner Probenmengen | |
DE7736037U1 (de) | Einrichtung zur erzeugung ultravioletter strahlung | |
DD266965A1 (de) | Vorrichtung zur uv-bestrahlung stroemender fluessigkeiten und gase | |
DE756885C (de) | Einrichtung zur Bestrahlung | |
DE19911948A1 (de) | Verfahren und Vorrichtung zur Behandlung von wässrigen Flüssigkeiten mittels Mikrowellenenergie, insbesondere zum Zweck der Reduzierung der bakteriologischen Belastung der Flüssigkeiten sowie zur Erzeugung von Kristallisationskeimen | |
DE112019002952T5 (de) | Ultraviolettlampe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07724838 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007724838 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2651719 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12300231 Country of ref document: US Ref document number: 200780016858.5 Country of ref document: CN Ref document number: 2009508212 Country of ref document: JP |