WO2007125691A1 - X-ray image diagnostic device - Google Patents

X-ray image diagnostic device Download PDF

Info

Publication number
WO2007125691A1
WO2007125691A1 PCT/JP2007/055488 JP2007055488W WO2007125691A1 WO 2007125691 A1 WO2007125691 A1 WO 2007125691A1 JP 2007055488 W JP2007055488 W JP 2007055488W WO 2007125691 A1 WO2007125691 A1 WO 2007125691A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
ray
image
data
offset
Prior art date
Application number
PCT/JP2007/055488
Other languages
French (fr)
Japanese (ja)
Inventor
Shinobu Takenouchi
Katsumi Suzuki
Fumitaka Takahashi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2008513102A priority Critical patent/JP4995193B2/en
Priority to CN2007800088650A priority patent/CN101400303B/en
Publication of WO2007125691A1 publication Critical patent/WO2007125691A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques

Definitions

  • the present invention relates to an X-ray diagnostic imaging apparatus including an X-ray flat panel detector (FPD), and more particularly to an improved technique for offset correction of FPD.
  • FPD X-ray flat panel detector
  • An X-ray image diagnostic apparatus converts and transmits transmitted X-rays of a subject to X-ray image data by FPD, and displays the output X-ray image data on a monitor.
  • a plurality of detection elements are arranged in a matrix corresponding to each pixel of the X-ray image data, and a desired pixel can be read out via the switching element.
  • This detector element is a scintillator (for example, cesium iodide) that generates light in response to the incidence of X-rays, a photodiode that converts the optical signal output from this scintillator, and charges, and stores the converted charges.
  • a capacitor that is, each pixel of the X-ray image data corresponds to the electric charge accumulated in the capacitor of the respective detection element. Therefore, by driving the switching element and reading out the electric charge corresponding to the desired pixel, the X-ray image data is read out. obtain.
  • Patent Document 1 JP 2002-159481 A
  • the offset correction data of the FPD has a large temperature dependency. Specifically, the amount of current changes due to heat generation from the circuit portion itself and a temperature change around the detector. If the amount of change in the dark current amount is greater than a predetermined threshold, the conventional offset correction There was an unresolved problem that sometimes it could not be handled.
  • An object of the present invention is to provide an X-ray diagnostic imaging apparatus capable of obtaining good image quality even when the amount of change in offset correction data in FPD is larger than a predetermined threshold.
  • the X-ray image diagnostic apparatus of the present invention includes an X-ray generation unit that irradiates a subject with X-rays, and a transmission X-ray of the subject that is disposed so as to face the X-ray generation unit and converts the X-ray image data as X-ray image data.
  • the offset correction data varies depending on the use environment of the X-ray flat panel detector based on the created offset correction data.
  • Pixel detection means for detecting pixels outside the predetermined range, and predetermined data correction for the offset correction data of the detected pixels, and output to the offset correction means.
  • a correction unit wherein the data corrected offset correction data is provided with an image display unit for displaying the image data that has been subtracted from by connexion the X-ray image data to said offset correction means.
  • FIG. 1 is a functional block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing an operation procedure in FIG.
  • FIG. 3 is a schematic explanatory diagram showing a region of 3 ⁇ 3 pixels in a photographed image, and a graph showing variations in luminance values of three pixels in the region.
  • FIG. 4 is a functional block diagram showing Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart showing an operation procedure in FIG.
  • FIG. 6 is a flowchart showing an operation procedure in the third embodiment. Explanation of symbols
  • the X-ray diagnostic imaging apparatus includes an X-ray generating unit 1, an FPD 2 disposed opposite to the X-ray generating unit 1, and an operation of the X-ray diagnostic imaging apparatus.
  • An operation panel 3 installed in the operator's operation room, an image processing device 4 connected to each component from the X-ray generation unit 1 to the operation panel unit 3, and an image connected to the image processing device 4
  • a display unit 5 is provided.
  • the X-ray generation unit 1 shields X-rays outside the irradiation range so that only the X-ray tube that generates X-rays and the irradiation range of the generated X-rays are irradiated. It has an X-ray aperture.
  • the FPD 2 is arranged opposite to the X-ray generation means 1 and converts the incident X-rays as X-ray image data by the incidence of X-rays emitted from the X-ray generation unit 1.
  • the subject ⁇ is located between the X-ray generator 1 and the FPD2, the X-rays emitted from the X-ray generator 1 pass through the subject ⁇ , and the transmitted X-ray enters the FPD2 X-ray images can be obtained.
  • the shooting conditions (tube voltage, tube current time product, etc.) necessary for this shooting are input and set by the operator from the operation panel section 3.
  • the X-ray image data converted and output from the FPD 2 is stored in the image data storage means 410 in the image processing apparatus 4.
  • the storage means 410 stores not only a photographed image of the subject eye but also an offset image described later.
  • Various image processing is performed by the image processing device 4 using the X-ray image data read from the storage means 410, and the X-ray image after the image processing is displayed on the image display unit 5 such as a display.
  • the image processing device 4 uses the X-ray image data read from the storage means 410, and the X-ray image after the image processing is displayed on the image display unit
  • the image processing apparatus 4 includes a correction data creation unit 411, a correction data storage unit 412 connected to the correction data creation unit 411, and an offset correction unit 413 connected to the correction data storage unit 412. I have.
  • the correction data creation unit 411 creates correction data for offset correction of the dark current force of the FPD2. This dark current reading is performed in the absence of the subject eye and by irradiating X-rays. This is done by acquiring multiple images (offset images) in a shining state. This offset image is acquired in a timely manner during non-shooting. An average image of the plurality of offset images is used as correction data.
  • the correction data storage unit 412 stores the correction data created by the correction data creation unit 411.
  • the correction data in the correction data storage unit 412 is updated as appropriate to reflect changes in the operating environment of the device such as temperature.
  • the offset correction unit 413 performs an offset correction process by subtracting correction data from the captured image of the subject P.
  • the image processing apparatus 4 includes a variation pixel detection unit 414 connected to the image data storage unit 410, a position information storage unit 415 connected to the variation pixel detection unit 414, an offset correction unit 413, and a position A variable pixel correction unit 416 connected to the information storage unit 415 is also provided.
  • the fluctuation pixel detection unit 414 detects a fluctuation pixel having a large fluctuation amount of the dark current amount.
  • the variation pixel is detected by comparing each pixel value of the offset image immediately before photographing with each pixel value in the average image of a plurality of offset images acquired before that time. For example, if the pixel value of the offset image immediately before photographing has a difference of 10% or more with respect to the pixel value of the average image, the pixel is determined as a variable pixel.
  • the position information storage unit 415 stores position information of pixels determined to be variable pixels. Since each pixel of the FPD2 is arranged in a plane coordinate form, the coordinates of each pixel may be stored as position information.
  • the variable pixel correction unit 416 performs the following correction on the output of the variable pixel.
  • correction is performed using the average pixel value of the non-varying pixels in the 3 ⁇ 3 pixel area centering on the varying pixels as the pixel value of the varying pixels.
  • the image processing apparatus 4 is connected to the gain correction unit 417 connected to the variable pixel correction unit 416, the defective pixel correction unit 418 connected to the gain correction unit 417, and the defective pixel correction unit 418.
  • the gain correction unit 417 corrects the relationship between the X-ray incident dose and the output value of each pixel of the FPD2 based on the sensitivity characteristic data defined in advance of the FPD2.
  • the defective pixel correction unit 418 includes the position information of the defective pixels stored in the defective pixel information storage unit 419. Based on the information, the output of the defective pixel is corrected. For example, the image data after gain correction processing is corrected using the average pixel value of non-defective pixels in the 3 ⁇ 3 pixel region centered on the defective pixel as the pixel value of the defective pixel.
  • the image processing apparatus 4 controls the entire X-ray image diagnostic apparatus.
  • the image processing apparatus 4 acquires a plurality of offset images prior to imaging of the subject P, and stores the images in the image data storage unit 410. (Step S1)
  • the variation pixel detection unit 414 detects the variation pixel using the offset image stored in the image data storage unit 410. Specifically, among the offset images, the pixel value of the offset image immediately before shooting is compared with the pixel value (threshold value) of an image obtained by averaging a plurality of offset images before that to detect a fluctuation pixel. To do. Here, if the pixel value of the offset image immediately before photographing is greater than 10% from the threshold value, it is determined that the pixel is a variable pixel. (Step S2).
  • the image processing device 4 if it is detected the defective pixel and stores the position information of the pixel in the position information storage ⁇ 41 5. (Step S3)
  • the image processing apparatus 4 captures the subject P based on the operation of the operator, acquires the captured image, and stores the captured image in the image data storage unit 410. (Step S4).
  • the image processing device 4 reads the offset correction data from the correction data storage unit 412, and performs offset correction processing by subtracting the photographic image force correction data by the offset correction means 413 (step S5).
  • the image processing device 4 causes the fluctuation pixel correction unit 416 to correct the pixel value of the fluctuation pixel of the dark current correction image subjected to the offset processing (step S6).
  • the position information storage means 415 stores the position information of the variable pixels, and the average pixel value of the non-change pixels is changed in the 3 ⁇ 3 pixel area centered on the change pixels. Correction to the pixel value of the pixel is performed.
  • the procedure of the variable pixel correction is as follows. First, the image processing apparatus 4 stores the position information. It is determined whether or not the position information of the variation pixel is stored in the unit 415. If the position information is present, variation pixel correction processing is performed on the output value of the pixel corresponding to the position information. Also, the image processing device 4 does not perform the variable pixel correction process if there is no position information! /.
  • the image processing apparatus 4 After performing this variable pixel correction processing, the image processing apparatus 4 performs gain correction processing by the gain correction unit 417 (step S7). Further, the defective pixel correction unit 418 performs a defective pixel correction process on the gain correction image after the gain correction process (step S8). Then, the image processing device 4 displays the image subjected to these correction processes on the image display unit (step S9). Steps S7 and S8 can be performed as needed, or can be omitted if they are already performed in order, and step S9 (image display) after step S6 (fluctuating pixel correction processing) can also be performed. it can.
  • a pixel with a large amount of variation in dark current is specified, and predetermined correction is performed by the variation pixel correction unit 416 on the pixel value of the pixel.
  • predetermined correction is performed by the variation pixel correction unit 416 on the pixel value of the pixel.
  • each pixel value of the offset image immediately before photographing is compared with each pixel value in the average image of a plurality of offset images acquired before that, and the variation pixel is detected.
  • a pixel having a pixel value deviated by a certain width or more from an average pixel value in a predetermined area of the photographed image may be determined as a variation pixel.
  • FIG. 3A shows an area indicated by 3 ⁇ 3 pixels in the photographed image.
  • the pixel values of either vertical, horizontal, or diagonal pixel groups are shown in Fig. 3 (B).
  • the output value is larger than other normal pixels. be able to.
  • FPD pixels are about 0.15 mm square, for example, and even if there are high and low luminance values (pixel values) in the captured image, the pixel values of adjacent pixels differ greatly. This is rare, and it is possible to detect a fluctuating pixel by comparing the pixel values of adjacent pixels.
  • FIG. 4 and FIG. 4 show an embodiment in which when a specific pixel is determined as a fluctuation pixel a predetermined number of times or more, the fluctuation pixel is determined as a defective pixel and a predetermined correction is performed on the output of the defective pixel. This will be explained based on 5.
  • the main difference is that a counter means 420 and a defective pixel adding means 421 are added to the structure of the first embodiment, and the other structures are the same as in the first embodiment. It is the same.
  • the counter means 420 is connected to the fluctuation pixel detection unit 414 and the position information storage unit 415
  • the defective pixel addition unit 421 is connected to the position information storage unit 415 and the defective pixel information storage unit 419.
  • the description will focus on the differences from the first embodiment.
  • the counter unit 420 counts the number of times each pixel is determined to be a variable pixel by the variable pixel detection unit 414.
  • the counter means 420 counts the cumulative number of times that the variation pixel detection unit 414 has determined that the pixel is a variation pixel from the start of use of the apparatus of the present invention.
  • the number of times that the variation pixel detection unit 414 determines the variation pixel within a certain period may be counted.
  • the counter unit 420 causes the position information storage unit 415 to store the count number. That is, the position information storage unit 415 of this embodiment also has a function of storing the count number of the counter unit 420.
  • the defective pixel adding unit 421 determines that a pixel whose count number in the counter unit 420 exceeds a predetermined threshold value is a defective pixel, and determines the position information of the defective pixel as a defective pixel information storage unit 41 9.
  • a pixel whose count number of the counter means 420 is 100 or more is determined as a defective pixel.
  • the second embodiment is different from the first embodiment in the method of detecting a changing pixel by the changing pixel detection unit 414.
  • the pixel value in the photographed image is compared with the average value of the pixel values in a specific area of the photographed image, and a pixel having a pixel value that deviates from the average value by a certain threshold is found.
  • a pixel having a pixel value that is 20% or more out of the average pixel value in the 3 ⁇ 3 pixel region is determined as a variation pixel.
  • the image processing device 4 acquires a captured image (step SI 1).
  • the image processing apparatus 4 compares the pixel value in the photographed image with the average value of the pixel values in the specific region of the photographed image by the varying pixel detection means 414, and detects the varying pixel (step S12).
  • the image processing device 4 stores, in the position information storage unit 415, the position information of the pixel determined to be a variation pixel and the number of times the pixel is determined to be a variation pixel (step S13).
  • the image processing apparatus 4 determines whether or not the count number by the counter unit 420 is greater than or equal to a threshold value for the pixels that are determined to be the changing pixels and the pixels that are not determined to be the changing pixels (step S14). For example, the image processing apparatus 4 determines that a pixel having a count number of 100 or more in this determination is a defective pixel, adds its position information to the defective pixel adding unit 421, and adds the added information. It is stored in the defective pixel information storage unit 419 (step S15).
  • the image processing apparatus 4 causes the offset correction unit 413 to perform offset correction on all pixels (step S16). Subsequently, in the image processing device 4, the variation pixel correction process is performed on the variation pixel by the variation pixel correction unit 416 (step S17). At that time, the image processing device 4 omits the variation pixel correction processing for the output value of the pixel determined to be the additional defective pixel among the variation pixels.
  • the contents of this variable pixel correction process are the same as those in the first embodiment.
  • gain correction processing is performed on the image data after the variation pixel correction processing (step S18). This processing content is also the same as the procedure in the first embodiment.
  • the image processing device 4 performs defective pixel correction processing on the gain processed image.
  • Step S19 Here, not only the pixels corresponding to the position information stored in the defective pixel information storage means in the initial stage, but also the defective pixel correction is applied not only to the output of the pixels that were later determined to be a variable pixel force defective pixel. Can be processed. This processing content is also the same as the procedure described in the first embodiment.
  • the image processing device 4 displays the image-processed image on the display unit 5 (step S20).
  • defective pixels that occur later are targeted by treating, as defective pixels, pixels that are frequently detected as varying pixels among the varying pixels. It can be detected accurately. Then, by performing a predetermined correction on the detected output value of the defective pixel, an appropriate image can be obtained even if there is a pixel with an unstable dark current amount.
  • a third embodiment will be described in which the image processing apparatus 4 collects a certain number of offset images when the subject is not imaged, and detects these offset image force fluctuation pixels and defective pixels.
  • the apparatus configuration of this embodiment is the same as that shown in FIG.
  • the fluctuating pixel detection means 414 here compares the pixel value in the offset image with the average value of the pixel values in the specific area of the offset image, and the average value force of the pixel value that deviates beyond a certain threshold value.
  • the fluctuating pixel is detected by finding the pixel. More specifically, a pixel indicating a pixel value having a difference of 20% or more of the average pixel value in the 3 ⁇ 3 pixel region is determined as a variation pixel.
  • the image processing device 4 acquires an offset image during a time period when shooting is not performed at night or the like (step S31).
  • the image processing apparatus 4 records the number of sheets and continues to acquire offset images until the total number reaches 100 (step S32).
  • the image processing device 4 compares the pixel value of each offset image with the average pixel value in the 3 ⁇ 3 pixel region of the same image by the motion picture element detection unit 414, and 20% from the average pixel value.
  • a pixel having a different pixel value as described above is determined to be a variable pixel (step S33).
  • the image processing device 4 stores, in the position information storage unit 415, the position information of the pixel determined to be a varying pixel and the number of times the pixel has been determined to be a varying pixel (step S34).
  • the image processing device 4 regards pixels that have changed as pixels in all 100 images as defective images for pixels that have been determined as changed pixels and pixels that have not been determined as changed pixels. Judgment is simple (step S35).
  • the image processing device 4 stores the pixel determined as the defective pixel in the defective pixel position information storage unit 419 with its position information (step S36).
  • the image processing apparatus 4 performs correction processing similar to that in the second embodiment on the variation pixels and defective pixels detected from the above operations (steps S16 to S16). S20) is applied.
  • the offset correction target is not limited to the amount of dark current in the FPD2, but the FPD2 X-ray non-irradiation, such as the operating temperature of the FPD2, the heat distribution depending on the circuit configuration, the ambient temperature and humidity, and the installation of a cooler It includes all conditions and factors related to fluctuations in noise components over time.
  • the offset image acquired in this embodiment may not be an offset image that is continuous in time series. For example, offset images collected every day may be used.
  • the X-ray image diagnostic apparatus of the present invention can be suitably used for imaging X-ray images.
  • the present invention can be used not only for X-ray apparatuses for general imaging but also for X-ray apparatuses for fluoroscopic imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

An X-ray image diagnostic device is provided with a correcting data making-out unit (411) for seeking offset correcting data by using an output from an X-ray plane detector (2) at the time when an X-ray generating unit (1) does not irradiate an X-ray, a pixel detecting unit (414) for detecting a pixel in which fluctuation of the offset correcting data due to environment in use of the X-ray plane detector is out of a prescribed range based on the made-out offset correcting data, a pixel correcting unit (416) for carrying out a predetermined data correction with respect to the offset correcting data of the detected pixel and for outputting the corrected data to an offset correcting unit (413), and an image display unit (5) for displaying image data that are the offset correcting data which are subjected to the data correction and which are subtracted from the X-ray image data by the offset correcting unit (413).

Description

明 細 書  Specification
X線画像診断装置  X-ray diagnostic imaging equipment
技術分野  Technical field
[0001] 本発明は、 X線平面検出器 (FPD: Flat Panel Detector)を備える X線画像診断装置 に係り、特に FPDのオフセット補正の改良技術に関する。  [0001] The present invention relates to an X-ray diagnostic imaging apparatus including an X-ray flat panel detector (FPD), and more particularly to an improved technique for offset correction of FPD.
背景技術  Background art
[0002] X線画像診断装置は、被検体の透過 X線を FPDにより X線画像データへ変換出力し 、その出力された X線画像データをモニタに表示する。  An X-ray image diagnostic apparatus converts and transmits transmitted X-rays of a subject to X-ray image data by FPD, and displays the output X-ray image data on a monitor.
[0003] FPDは、複数個の検出素子が X線画像データの各画素に対応してマトリクス状に配 置され、スイッチング素子を介して所望の画素が読み出せるようになつている。この検 出素子は、 X線の入射に伴い光を発生するシンチレータ (例えばヨウ化セシウム)と、 このシンチレ一タカ 出力される光信号を電荷に変換するフォトダイオードと、変換さ れた電荷を蓄積するコンデンサと、を備えている。つまり、 X線画像データの各画素は 、それぞれの検出素子のコンデンサに蓄積された電荷に対応するので、スイッチング 素子を駆動して所望の画素に対応する電荷を読み出すことにより、 X線画像データを 得る。  [0003] In the FPD, a plurality of detection elements are arranged in a matrix corresponding to each pixel of the X-ray image data, and a desired pixel can be read out via the switching element. This detector element is a scintillator (for example, cesium iodide) that generates light in response to the incidence of X-rays, a photodiode that converts the optical signal output from this scintillator, and charges, and stores the converted charges. And a capacitor. That is, each pixel of the X-ray image data corresponds to the electric charge accumulated in the capacitor of the respective detection element. Therefore, by driving the switching element and reading out the electric charge corresponding to the desired pixel, the X-ray image data is read out. obtain.
[0004] ところで、 FPDでは X線が照射されていないときでも、検出素子の回路部分に流れる 暗電流を含むオフセット補正データによってコンデンサに電荷が蓄積され、その蓄積 された電荷はノイズ成分であり、 X線画像の画質を劣化させる要因の一つとなる。  [0004] By the way, in the FPD, even when X-rays are not irradiated, charges are accumulated in the capacitor by offset correction data including dark current flowing in the circuit portion of the detection element, and the accumulated charge is a noise component. This is one of the factors that degrade the image quality of X-ray images.
[0005] この画質劣化の対策は、特許文献 1に記載されるように、 FPDから出力される撮影 画像データから、このオフセット補正データを減算して 、る。  [0005] As described in Patent Document 1, this measure for image quality deterioration is obtained by subtracting the offset correction data from the photographed image data output from the FPD.
[0006] 特許文献 1:特開 2002-159481号公報  [0006] Patent Document 1: JP 2002-159481 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、 FPDのオフセット補正データは、温度依存性が大きぐ具体的には回 路部分自体からの発熱や、検出器周辺の温度変化により、その電流量が変化する。 この暗電流量の変化量が所定の閾値より大きい場合は、従来のオフセット補正では 対応できないことがあるという未解決の問題があった。 [0007] However, the offset correction data of the FPD has a large temperature dependency. Specifically, the amount of current changes due to heat generation from the circuit portion itself and a temperature change around the detector. If the amount of change in the dark current amount is greater than a predetermined threshold, the conventional offset correction There was an unresolved problem that sometimes it could not be handled.
[0008] 本発明の目的は、 FPDにおけるオフセット補正データの変化量が所定の閾値より大 き ヽ場合でも、良好な画質が得られる X線画像診断装置を提供することにある。 課題を解決するための手段 [0008] An object of the present invention is to provide an X-ray diagnostic imaging apparatus capable of obtaining good image quality even when the amount of change in offset correction data in FPD is larger than a predetermined threshold. Means for solving the problem
[0009] 本発明の X線画像診断装置は、 X線を被検体に照射する X線発生手段と、前記 X線 発生手段と対向配置され前記被検体の透過 X線を X線画像データとして変換出力す る X線平面検出器と、前記 X線発生手段によって X線が照射されない時の前記 X線平 面検出器の出力を用いてオフセット補正データを求める補正データ作成手段と、前 記 X線画像データ力 前記オフセット補正データを減算するオフセット補正手段と、を 備えた X線画像診断装置において、前記作成されたオフセット補正データに基づき 前記 X線平面検出器の使用環境によるオフセット補正データの変動が所定の範囲外 にある画素を検出する画素検出手段と、前記検出された画素のオフセット補正デー タに対して所定のデータ補正を行い、前記オフセット補正手段に出力する画素補正 手段と、前記データ補正されたオフセット補正データが前記オフセット補正手段によ つて前記 X線画像データから減算された画像データを表示する画像表示部と、 を備えたことを特徴とする。 The X-ray image diagnostic apparatus of the present invention includes an X-ray generation unit that irradiates a subject with X-rays, and a transmission X-ray of the subject that is disposed so as to face the X-ray generation unit and converts the X-ray image data as X-ray image data. An output X-ray flat panel detector, correction data generating means for obtaining offset correction data using the output of the X-ray flat panel detector when X-ray generation is not performed by the X-ray generation means, and the X-ray Image data force In an X-ray diagnostic imaging apparatus comprising offset correction means for subtracting the offset correction data, the offset correction data varies depending on the use environment of the X-ray flat panel detector based on the created offset correction data. Pixel detection means for detecting pixels outside the predetermined range, and predetermined data correction for the offset correction data of the detected pixels, and output to the offset correction means. A correction unit, wherein the data corrected offset correction data is provided with an image display unit for displaying the image data that has been subtracted from by connexion the X-ray image data to said offset correction means.
発明の効果  The invention's effect
[0010] 本発明によれば、 FPDにおけるオフセット補正データの変化量が所定の閾値より大 き ヽ場合でも、良好な画質が得られる X線画像診断装置を提供することができる。 図面の簡単な説明  [0010] According to the present invention, it is possible to provide an X-ray diagnostic imaging apparatus capable of obtaining good image quality even when the amount of change in offset correction data in FPD is greater than a predetermined threshold. Brief Description of Drawings
[0011] [図 1]本発明の実施の形態 1を示す機能ブロック図。  FIG. 1 is a functional block diagram showing a first embodiment of the present invention.
[図 2]図 1における動作手順を示すフローチャート。  FIG. 2 is a flowchart showing an operation procedure in FIG.
[図 3]撮影画像における 3 X 3画素の領域を示す模式説明図とその領域における 3つ の画素の輝度値のばらつきを示すグラフ。  FIG. 3 is a schematic explanatory diagram showing a region of 3 × 3 pixels in a photographed image, and a graph showing variations in luminance values of three pixels in the region.
[図 4]本発明の実施の形態 2を示す機能ブロック図。  FIG. 4 is a functional block diagram showing Embodiment 2 of the present invention.
[図 5]図 4における動作手順を示すフローチャート。  FIG. 5 is a flowchart showing an operation procedure in FIG.
[図 6]実施の形態 3における動作手順を示すフローチャート。 符号の説明 FIG. 6 is a flowchart showing an operation procedure in the third embodiment. Explanation of symbols
[0012] 1· ··Χ線発生部、 2 線平面検出器^?0)、3 操作パネル部、 4· · '画像処理装置、 5…画像表示部、 Ρ…被検体。  [0012] 1 ··· Line generator, 2 line flat detector ^? 0), 3 operation panel, 4 · 'Image processing device, 5 ... image display, Ρ ... subject.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014] (実施の形態 1) [0014] (Embodiment 1)
<装置構成 >  <Device configuration>
本発明の実施の形態 1の X線画像診断装置は、図 1に示すように、 X線発生部 1と、 X線発生部 1と対向配置される FPD 2と、 X線画像診断装置の操作者の操作室に設 置される操作パネル部 3と、 X線発生部 1から操作パネル部 3までの各構成要素と接 続される画像処理装置 4と、画像処理装置 4と接続される画像表示部 5を備える。  As shown in FIG. 1, the X-ray diagnostic imaging apparatus according to Embodiment 1 of the present invention includes an X-ray generating unit 1, an FPD 2 disposed opposite to the X-ray generating unit 1, and an operation of the X-ray diagnostic imaging apparatus. An operation panel 3 installed in the operator's operation room, an image processing device 4 connected to each component from the X-ray generation unit 1 to the operation panel unit 3, and an image connected to the image processing device 4 A display unit 5 is provided.
[0015] X線発生部 1は、 X線を発生する X線管と、該発生された X線の照射範囲のみに X線 が照射されるように、その照射範囲外の X線を遮蔽する X線絞りとを有している。 FPD2 は X線発生手段 1に対向配置され、 X線発生部 1から照射された X線の入射により、そ の入射 X線を X線画像データとして変換出力する。撮影時、被検体 Ρは X線発生部 1と FPD2の間に位置され、 X線発生部 1から照射された X線が被検体 Ρを透過して、その 透過 X線が FPD2に入射されることで X線画像が得られる。この撮影に必要な撮影条 件 (管電圧や管電流時間積など)は、操作パネル部 3から操作者によって入力設定さ れる。 FPD2から変換出力された X線画像データは、ー且画像処理装置 4内の画像デ ータ記憶手段 410に記憶される。この記憶手段 410は、被検体 Ρの撮影画像はもちろ ん、後述するオフセット画像も記憶する。そして、この記憶手段 410から読み出された X線画像データを用いて画像処理装置 4により各種画像処理が施され、その画像処 理後の X線画像がディスプレイなどの画像表示部 5に表示される。  [0015] The X-ray generation unit 1 shields X-rays outside the irradiation range so that only the X-ray tube that generates X-rays and the irradiation range of the generated X-rays are irradiated. It has an X-ray aperture. The FPD 2 is arranged opposite to the X-ray generation means 1 and converts the incident X-rays as X-ray image data by the incidence of X-rays emitted from the X-ray generation unit 1. At the time of imaging, the subject Ρ is located between the X-ray generator 1 and the FPD2, the X-rays emitted from the X-ray generator 1 pass through the subject 、, and the transmitted X-ray enters the FPD2 X-ray images can be obtained. The shooting conditions (tube voltage, tube current time product, etc.) necessary for this shooting are input and set by the operator from the operation panel section 3. The X-ray image data converted and output from the FPD 2 is stored in the image data storage means 410 in the image processing apparatus 4. The storage means 410 stores not only a photographed image of the subject eye but also an offset image described later. Various image processing is performed by the image processing device 4 using the X-ray image data read from the storage means 410, and the X-ray image after the image processing is displayed on the image display unit 5 such as a display. The
[0016] この画像処理装置 4は、補正データ作成部 411と、補正データ作成部 411に接続さ れる補正データ記憶部 412と、補正データ記憶部 412に接続されるオフセット補正部 4 13と、を備えている。  The image processing apparatus 4 includes a correction data creation unit 411, a correction data storage unit 412 connected to the correction data creation unit 411, and an offset correction unit 413 connected to the correction data storage unit 412. I have.
[0017] 補正データ作成部 411は、 FPD2の暗電流量力もオフセット補正するための補正デ ータを作成する。この暗電流量の読み出しは、被検体 Ρの不存在下でかつ X線を照 射しな ヽ状態での画像 (オフセット画像)を複数枚取得することで行う。このオフセット 画像の取得は、非撮影時に適時行われる。そして、それら複数枚のオフセット画像の 平均画像を補正データとして ヽる。 [0017] The correction data creation unit 411 creates correction data for offset correction of the dark current force of the FPD2. This dark current reading is performed in the absence of the subject eye and by irradiating X-rays. This is done by acquiring multiple images (offset images) in a shining state. This offset image is acquired in a timely manner during non-shooting. An average image of the plurality of offset images is used as correction data.
[0018] 補正データ記憶部 412は、補正データ作成部 411によって作成された補正データが 記憶される。補正データ記憶部 412中の補正データは、温度などの装置の使用環境 の変化を反映させるために適宜更新される。  The correction data storage unit 412 stores the correction data created by the correction data creation unit 411. The correction data in the correction data storage unit 412 is updated as appropriate to reflect changes in the operating environment of the device such as temperature.
[0019] オフセット補正部 413は、被検体 Pの撮影画像から補正データを減算することでオフ セット補正処理を行う。  The offset correction unit 413 performs an offset correction process by subtracting correction data from the captured image of the subject P.
[0020] さらに、この画像処理装置 4は、画像データ記憶部 410に接続される変動画素検出 部 414と、変動画素検出部 414に接続される位置情報記憶部 415と、オフセット補正部 413及び位置情報記憶部 415に接続される変動画素補正部 416も備えている。  Furthermore, the image processing apparatus 4 includes a variation pixel detection unit 414 connected to the image data storage unit 410, a position information storage unit 415 connected to the variation pixel detection unit 414, an offset correction unit 413, and a position A variable pixel correction unit 416 connected to the information storage unit 415 is also provided.
[0021] 変動画素検出部 414は、暗電流量の変動量が大きい変動画素を検出する。ここで は、撮影直前のオフセット画像の各画素値と、それ以前に取得した複数枚のオフセッ ト画像の平均画像における各画素値とを比較することで変動画素の検出を行う。例え ば、撮影直前のオフセット画像の画素値が平均画像の画素値に対して 10%以上の 差異があった場合、その画素を変動画素と判定する。  The fluctuation pixel detection unit 414 detects a fluctuation pixel having a large fluctuation amount of the dark current amount. Here, the variation pixel is detected by comparing each pixel value of the offset image immediately before photographing with each pixel value in the average image of a plurality of offset images acquired before that time. For example, if the pixel value of the offset image immediately before photographing has a difference of 10% or more with respect to the pixel value of the average image, the pixel is determined as a variable pixel.
[0022] 位置情報記憶部 415は、変動画素と判定された画素の位置情報を記憶する。 FPD2 の各画素は平面座標状に配列されて 、るため、各画素の座標を位置情報として記憶 すれば良い。  [0022] The position information storage unit 415 stores position information of pixels determined to be variable pixels. Since each pixel of the FPD2 is arranged in a plane coordinate form, the coordinates of each pixel may be stored as position information.
[0023] 変動画素補正部 416は、変動画素の出力に対して次の補正を行う。ここでは、オフ セット補正の行われた暗電流補正画像において、変動画素を中心とする 3 X 3画素の 領域における非変動画素の平均画素値を変動画素の画素値とする補正を行う。  The variable pixel correction unit 416 performs the following correction on the output of the variable pixel. Here, in the dark current correction image that has been offset-corrected, correction is performed using the average pixel value of the non-varying pixels in the 3 × 3 pixel area centering on the varying pixels as the pixel value of the varying pixels.
[0024] その他、画像処理装置 4は、変動画素補正部 416に接続されるゲイン補正部 417と、 ゲイン補正部 417に接続される欠陥画素補正部 418と、欠陥画素補正部 418に接続さ れる欠陥画素情報記憶部 419と、を備えている。  In addition, the image processing apparatus 4 is connected to the gain correction unit 417 connected to the variable pixel correction unit 416, the defective pixel correction unit 418 connected to the gain correction unit 417, and the defective pixel correction unit 418. A defective pixel information storage unit 419.
[0025] ゲイン補正部 417は、 FPD2の予め規定された感度特性データに基づいて X線の入 射線量と FPD2の各画素の出力値の関係を補正する。  [0025] The gain correction unit 417 corrects the relationship between the X-ray incident dose and the output value of each pixel of the FPD2 based on the sensitivity characteristic data defined in advance of the FPD2.
[0026] 欠陥画素補正部 418は、欠陥画素情報記憶部 419に記憶された欠陥画素の位置情 報に基づいて、その欠陥画素の出力を補正する。例えば、ゲイン補正処理後の画像 データに対して、欠陥画素を中心とする 3 X 3画素の領域における非欠陥画素の平 均画素値を欠陥画素の画素値とする補正を行う。 [0026] The defective pixel correction unit 418 includes the position information of the defective pixels stored in the defective pixel information storage unit 419. Based on the information, the output of the defective pixel is corrected. For example, the image data after gain correction processing is corrected using the average pixel value of non-defective pixels in the 3 × 3 pixel region centered on the defective pixel as the pixel value of the defective pixel.
[0027] <処理手順 > [0027] <Processing procedure>
このような装置において、変動画素を検出し、その画素の出力値に適切な補正を行 う手順を図 2のフローチャートに基づいて説明する。なお、装置の各部は図 1を参照 する。なお、画像処理装置 4は、 X線画像診断装置全体を統括制御する。  A procedure for detecting a fluctuating pixel in such an apparatus and appropriately correcting the output value of the pixel will be described with reference to the flowchart of FIG. Refer to Figure 1 for each part of the equipment. The image processing apparatus 4 controls the entire X-ray image diagnostic apparatus.
[0028] 画像処理装置 4は、被検体 Pの撮影に先立って複数枚のオフセット画像を取得し、 その画像を画像データ記憶部 410に記憶する。(ステップ S1) The image processing apparatus 4 acquires a plurality of offset images prior to imaging of the subject P, and stores the images in the image data storage unit 410. (Step S1)
画像処理装置 4は、画像データ記憶部 410に記憶されたオフセット画像を用いて、 変動画素検出部 414で変動画素を検出する。具体的には、オフセット画像のうち、撮 影直前のオフセット画像の画素値を、それ以前の複数枚のオフセット画像を平均化し た画像の画素値 (しきい値)と比較して変動画素を検出する。ここでは、撮影直前の オフセット画像の画素値がしきい値から 10%以上大きければ変動画素であると判断 することとする。(ステップ S2)。  In the image processing device 4, the variation pixel detection unit 414 detects the variation pixel using the offset image stored in the image data storage unit 410. Specifically, among the offset images, the pixel value of the offset image immediately before shooting is compared with the pixel value (threshold value) of an image obtained by averaging a plurality of offset images before that to detect a fluctuation pixel. To do. Here, if the pixel value of the offset image immediately before photographing is greater than 10% from the threshold value, it is determined that the pixel is a variable pixel. (Step S2).
[0029] 画像処理装置 4は、変動画素が検出されれば、その画素の位置情報を位置情報記 憶部 415に記憶する。(ステップ S3) [0029] The image processing device 4, if it is detected the defective pixel and stores the position information of the pixel in the position information storage憶部41 5. (Step S3)
画像処理装置 4は、操作者の操作に基づいて被検体 Pが撮影され、その撮影画像 が取得され、その撮影画像は画像データ記憶部 410に記憶される。(ステップ S4)。  The image processing apparatus 4 captures the subject P based on the operation of the operator, acquires the captured image, and stores the captured image in the image data storage unit 410. (Step S4).
[0030] 画像処理装置 4は、補正データ記憶部 412からオフセット補正データを読み出し、ォ フセット補正手段 413により撮影画像力 補正データを減算してオフセット補正処理を 行う(ステップ S5)。 [0030] The image processing device 4 reads the offset correction data from the correction data storage unit 412, and performs offset correction processing by subtracting the photographic image force correction data by the offset correction means 413 (step S5).
[0031] 画像処理装置 4は、オフセット処理された暗電流補正画像の変動画素の画素値を、 変動画素補正部 416で補正させる (ステップ S6)。  [0031] The image processing device 4 causes the fluctuation pixel correction unit 416 to correct the pixel value of the fluctuation pixel of the dark current correction image subjected to the offset processing (step S6).
具体的には、位置情報記憶手段 415に記憶されて 、る変動画素の位置情報を読み 出し、その変動画素を中心とする 3 X 3画素の領域のうち、非変動画素の平均画素値 を変動画素の画素値とする補正を行う。  Specifically, the position information storage means 415 stores the position information of the variable pixels, and the average pixel value of the non-change pixels is changed in the 3 × 3 pixel area centered on the change pixels. Correction to the pixel value of the pixel is performed.
[0032] 変動画素補正の手順は次のとおりである、まず、画像処理装置 4は、位置情報記憶 部 415に変動画素の位置情報が記憶されている力否かを判断し、位置情報があれば その位置情報に対応した画素の出力値に対して変動画素補正処理を行う。また、画 像処理装置 4は、位置情報がなければ変動画素補正処理を行わな!/、。 [0032] The procedure of the variable pixel correction is as follows. First, the image processing apparatus 4 stores the position information. It is determined whether or not the position information of the variation pixel is stored in the unit 415. If the position information is present, variation pixel correction processing is performed on the output value of the pixel corresponding to the position information. Also, the image processing device 4 does not perform the variable pixel correction process if there is no position information! /.
[0033] この変動画素補正処理を行った後、画像処理装置 4は、ゲイン補正部 417によりゲイ ン補正処理を行う(ステップ S7)。さらに、ゲイン補正処理後のゲイン補正画像に対し て欠陥画素補正部 418で欠陥画素補正処理を行う(ステップ S8)。そして、画像処理 装置 4は、これらの補正処理を行った画像を画像表示部に表示する (ステップ S9)。な お、ステップ S7、 S8は必要に応じて行うものであったり、順序として既に行われている 場合は割愛でき、ステップ S6 (変動画素補正処理)後のステップ S9 (画像表示)も行う ことができる。 [0033] After performing this variable pixel correction processing, the image processing apparatus 4 performs gain correction processing by the gain correction unit 417 (step S7). Further, the defective pixel correction unit 418 performs a defective pixel correction process on the gain correction image after the gain correction process (step S8). Then, the image processing device 4 displays the image subjected to these correction processes on the image display unit (step S9). Steps S7 and S8 can be performed as needed, or can be omitted if they are already performed in order, and step S9 (image display) after step S6 (fluctuating pixel correction processing) can also be performed. it can.
[0034] 以上説明したように、本実施の形態 1によれば、暗電流の変動量が大きい画素を特 定し、その画素の画素値に対して変動画素補正部 416による所定の補正を行うことで 、 X線平面検出器 2における暗電流量の変動が大きい場合でも、良好な画質を得るこ とがでさる。  As described above, according to the first embodiment, a pixel with a large amount of variation in dark current is specified, and predetermined correction is performed by the variation pixel correction unit 416 on the pixel value of the pixel. Thus, even when the fluctuation of the dark current amount in the X-ray flat panel detector 2 is large, good image quality can be obtained.
[0035] (変形例 1)  [Modification 1]
上記実施の形態 1では、撮影直前のオフセット画像の各画素値と、それ以前に取得 した複数枚のオフセット画像の平均画像における各画素値とを比較することで変動 画素の検出を行ったが、その代わりに撮影画像の所定領域における平均画素値から 一定幅以上のずれた画素値となる画素を変動画素と判断してもよい。  In the first embodiment, each pixel value of the offset image immediately before photographing is compared with each pixel value in the average image of a plurality of offset images acquired before that, and the variation pixel is detected. Instead, a pixel having a pixel value deviated by a certain width or more from an average pixel value in a predetermined area of the photographed image may be determined as a variation pixel.
[0036] 図 3(A)は撮影画像における 3 X 3の画素で示される領域を示して 、る。この領域のう ち、縦、横、斜めのいずれかの画素群の画素値を図 3(B)に示す。これらの図に示す ように、一部の画素が変動画素(図 3(A)のクロスハッチング表示)であれば、その出力 値が他の正常画素に比べて大きくなるため、変動画素を検出することができる。例え ば、横一列に並ぶ 3つの画素の平均画素値力 20%以上の差異があるものを変動画 素と判断することが挙げられる。 FPDの画素は、例えば約 0.15mm角程度の大きさであ り、撮影画像中に輝度値 (画素値)の高い部分と低い部分とがあっても、隣接する画 素の画素値が大きく異なることは稀であり、隣接する画素の画素値を比較することで 変動画素を検知することができる。 [0037] (実施の形態 2) FIG. 3A shows an area indicated by 3 × 3 pixels in the photographed image. In this area, the pixel values of either vertical, horizontal, or diagonal pixel groups are shown in Fig. 3 (B). As shown in these figures, if some of the pixels are fluctuating pixels (cross-hatched display in Fig. 3 (A)), the output value is larger than other normal pixels. be able to. For example, it may be determined that a pixel with a difference of more than 20% in average pixel value of three pixels arranged in a horizontal row is a variation pixel. FPD pixels are about 0.15 mm square, for example, and even if there are high and low luminance values (pixel values) in the captured image, the pixel values of adjacent pixels differ greatly. This is rare, and it is possible to detect a fluctuating pixel by comparing the pixel values of adjacent pixels. [0037] (Embodiment 2)
次に、特定の画素が所定回数以上変動画素として判定された場合に、その変動画 素を欠陥画素と判断し、欠陥画素の出力に対して所定の補正を行う実施の形態を図 4、図 5に基づいて説明する。  Next, FIG. 4 and FIG. 4 show an embodiment in which when a specific pixel is determined as a fluctuation pixel a predetermined number of times or more, the fluctuation pixel is determined as a defective pixel and a predetermined correction is performed on the output of the defective pixel. This will be explained based on 5.
[0038] <装置構成 >  [0038] <Device configuration>
本実施形態では、図 4に示すように、実施の形態 1の構成に、カウンタ手段 420と、 欠陥画素追加手段 421とを付加した点が主たる相違点であり、その他の構成は実施 の形態 1と同様である。カウンタ手段 420は、変動画素検出部 414及び位置情報記憶 部 415に接続され、欠陥画素追加手段 421は位置情報記憶部 415及び欠陥画素情報 記憶部 419に接続される。以下、実施の形態 1との相違点を中心に説明する。  In the present embodiment, as shown in FIG. 4, the main difference is that a counter means 420 and a defective pixel adding means 421 are added to the structure of the first embodiment, and the other structures are the same as in the first embodiment. It is the same. The counter means 420 is connected to the fluctuation pixel detection unit 414 and the position information storage unit 415, and the defective pixel addition unit 421 is connected to the position information storage unit 415 and the defective pixel information storage unit 419. Hereinafter, the description will focus on the differences from the first embodiment.
[0039] カウンタ部 420は、変動画素検出部 414で各画素が変動画素と判断された回数を力 ゥントする。ここでは、本発明装置の利用開始時から変動画素検出部 414で変動画素 として判断された累積回数をカウンタ手段 420でカウントする。その他、一定期間内お いて変動画素検出部 414で変動画素として判断された回数をカウントするようにしても よい。  The counter unit 420 counts the number of times each pixel is determined to be a variable pixel by the variable pixel detection unit 414. In this case, the counter means 420 counts the cumulative number of times that the variation pixel detection unit 414 has determined that the pixel is a variation pixel from the start of use of the apparatus of the present invention. In addition, the number of times that the variation pixel detection unit 414 determines the variation pixel within a certain period may be counted.
そして、カウンタ部 420は、そのカウント数を位置情報記憶部 415に記憶させる。つまり 、本形態の位置情報記憶部 415は、カウンタ部 420のカウント数の記憶の機能も兼ね ている。  Then, the counter unit 420 causes the position information storage unit 415 to store the count number. That is, the position information storage unit 415 of this embodiment also has a function of storing the count number of the counter unit 420.
[0040] 一方、欠陥画素追加部 421は、カウンタ部 420でのカウント数が所定のしきい値を超 えた画素を欠陥画素と判断し、その欠陥画素の位置情報を欠陥画素情報記憶部 41 9に記憶させる。ここでは、カウンタ手段 420のカウント数が 100以上となった画素を欠 陥画素と判断する。  On the other hand, the defective pixel adding unit 421 determines that a pixel whose count number in the counter unit 420 exceeds a predetermined threshold value is a defective pixel, and determines the position information of the defective pixel as a defective pixel information storage unit 41 9. Remember me. Here, a pixel whose count number of the counter means 420 is 100 or more is determined as a defective pixel.
[0041] その他、本実施の形態 2では、変動画素検出部 414による変動画素の検出手法が 実施の形態 1とは異なる。ここでは、撮影画像における画素値を、その撮影画像の特 定領域における画素値の平均値と比較し、その平均値から一定のしき 、値以上外れ た画素値の画素を見出すことで変動画素を検出する。より具体的には、 3 X 3画素の 領域における平均画素値力 その 20%以上外れた画素値を示す画素を変動画素と 判断している。 [0042] <処理手順 > [0041] In addition, the second embodiment is different from the first embodiment in the method of detecting a changing pixel by the changing pixel detection unit 414. Here, the pixel value in the photographed image is compared with the average value of the pixel values in a specific area of the photographed image, and a pixel having a pixel value that deviates from the average value by a certain threshold is found. To detect. More specifically, a pixel having a pixel value that is 20% or more out of the average pixel value in the 3 × 3 pixel region is determined as a variation pixel. [0042] <Processing procedure>
このような装置において、変動画素を検出し、その画素の出力値に適切な補正を行 う手順を図 5のフローチャートに基づいて説明する。なお、装置の各部は図 4を参照 する。  A procedure for detecting a fluctuating pixel and appropriately correcting the output value of the pixel in such an apparatus will be described with reference to the flowchart of FIG. Refer to Fig. 4 for each part of the equipment.
[0043] まず、画像処理装置 4は、撮影画像を取得する (ステップ SI 1)。次に、画像処理装 置 4は、変動画素検出手段 414により、撮影画像における画素値を、その撮影画像の 特定領域における画素値の平均値と比較し、変動画素を検出する (ステップ S12)。  First, the image processing device 4 acquires a captured image (step SI 1). Next, the image processing apparatus 4 compares the pixel value in the photographed image with the average value of the pixel values in the specific region of the photographed image by the varying pixel detection means 414, and detects the varying pixel (step S12).
[0044] このとき、画像処理装置 4は、変動画素と判断された画素は、その画素の位置情報 と変動画素と判断された回数とを位置情報記憶部 415に記憶する (ステップ S13)。  At this time, the image processing device 4 stores, in the position information storage unit 415, the position information of the pixel determined to be a variation pixel and the number of times the pixel is determined to be a variation pixel (step S13).
[0045] 画像処理装置 4は、変動画素と判断された画素および変動画素と判断されなかつ た画素について、カウンタ部 420によるカウント数がしきい値以上か否かの判断を行う (ステップ S14)。例えば、画像処理装置 4は、この判断においてカウント数が 100回以 上となった画素は欠陥画素であると判断され、その位置情報が欠陥画素追加部 421 に追加され、その追加された情報が欠陥画素情報記憶部 419に記憶される (ステップ S15)。  [0045] The image processing apparatus 4 determines whether or not the count number by the counter unit 420 is greater than or equal to a threshold value for the pixels that are determined to be the changing pixels and the pixels that are not determined to be the changing pixels (step S14). For example, the image processing apparatus 4 determines that a pixel having a count number of 100 or more in this determination is a defective pixel, adds its position information to the defective pixel adding unit 421, and adds the added information. It is stored in the defective pixel information storage unit 419 (step S15).
[0046] 次に、画像処理装置 4は、オフセット補正部 413に全ての画素に対してオフセット補 正を行わせる (ステップ S16)。続いて、画像処理装置 4は、変動画素に対しては変動 画素補正部 416により変動画素補正処理が行われる (ステップ S17)。その際、画像処 理装置 4は、変動画素のうち、追加の欠陥画素と判断された画素の出力値には変動 画素補正処理を省略する。この変動画素補正処理の内容は、実施の形態 1における 手順と同様である。さらに、変動画素補正処理後の画像データに対してゲイン補正 処理が行われる (ステップ S18)。この処理内容も実施の形態 1における手順と同様で ある。  Next, the image processing apparatus 4 causes the offset correction unit 413 to perform offset correction on all pixels (step S16). Subsequently, in the image processing device 4, the variation pixel correction process is performed on the variation pixel by the variation pixel correction unit 416 (step S17). At that time, the image processing device 4 omits the variation pixel correction processing for the output value of the pixel determined to be the additional defective pixel among the variation pixels. The contents of this variable pixel correction process are the same as those in the first embodiment. Further, gain correction processing is performed on the image data after the variation pixel correction processing (step S18). This processing content is also the same as the procedure in the first embodiment.
[0047] その後、画像処理装置 4は、ゲイン処理画像に対して欠陥画素補正処理を行う。 ( ステップ S19)ここでは、初期に欠陥画素情報記憶手段に記憶されている位置情報に 対応した画素はもちろん、後発的に変動画素力 欠陥画素として判断された画素の 出力に対しても欠陥画素補正の処理が行える。この処理内容も実施の形態 1で述べ た手順と同様である。 [0048] そして、画像処理装置 4は、画像処理された画像を表示部 5により表示する (ステツ プ S20)。 Thereafter, the image processing device 4 performs defective pixel correction processing on the gain processed image. (Step S19) Here, not only the pixels corresponding to the position information stored in the defective pixel information storage means in the initial stage, but also the defective pixel correction is applied not only to the output of the pixels that were later determined to be a variable pixel force defective pixel. Can be processed. This processing content is also the same as the procedure described in the first embodiment. [0048] Then, the image processing device 4 displays the image-processed image on the display unit 5 (step S20).
[0049] 以上説明したように、本実施の形態 2によれば、変動画素のうち、変動画素として判 断される回数の多い画素を欠陥画素として扱うことで、後発的に生じる欠陥画素を的 確に検出することができる。そして、その検出した欠陥画素の出力値に所定の補正を 行うことで、暗電流量が不安定な画素があっても適切な画像を得ることができる。  [0049] As described above, according to the second embodiment, defective pixels that occur later are targeted by treating, as defective pixels, pixels that are frequently detected as varying pixels among the varying pixels. It can be detected accurately. Then, by performing a predetermined correction on the detected output value of the defective pixel, an appropriate image can be obtained even if there is a pixel with an unstable dark current amount.
[0050] (実施の形態 3)  [0050] (Embodiment 3)
画像処理装置 4が被検体を撮影しな ヽ際に一定数のオフセット画像を収集し、これ らのオフセット画像力 変動画素の検出及び欠陥画素の検出を行う実施形態 3を説 明する。  A third embodiment will be described in which the image processing apparatus 4 collects a certain number of offset images when the subject is not imaged, and detects these offset image force fluctuation pixels and defective pixels.
[0051] <装置構成 >  [0051] <Device configuration>
本形態の装置構成は、図 4と同様である。ただし、ここでの変動画素検出手段 414 は、オフセット画像における画素値を、そのオフセット画像の特定領域における画素 値の平均値と比較し、その平均値力 一定のしきい値以上外れた画素値の画素を見 出すことで変動画素を検出する。より具体的には、 3 X 3画素の領域における平均画 素値力 その 20%以上の差異がある画素値を示す画素を変動画素と判断している。  The apparatus configuration of this embodiment is the same as that shown in FIG. However, the fluctuating pixel detection means 414 here compares the pixel value in the offset image with the average value of the pixel values in the specific area of the offset image, and the average value force of the pixel value that deviates beyond a certain threshold value. The fluctuating pixel is detected by finding the pixel. More specifically, a pixel indicating a pixel value having a difference of 20% or more of the average pixel value in the 3 × 3 pixel region is determined as a variation pixel.
[0052] <処理手順 >  [0052] <Processing procedure>
この装置での処理手順を図 6に基づいて説明する。  A processing procedure in this apparatus will be described with reference to FIG.
[0053] まず、画像処理装置 4は、夜中などの撮影を行わな ヽ時間帯にオフセット画像を取 得する (ステップ S31)。画像処理装置 4は、その枚数を記録し、合計枚数が 100枚に なるまでオフセット画像の取得を続ける (ステップ S32)。次に、画像処理装置 4は、変 動画素検出部 414により、各オフセット画像の画素値を、同画像の 3 X 3画素の領域に おける平均画素値と比較して、平均画素値から 20%以上差異のある画素値を有する 画素を変動画素と判断する (ステップ S33)。画像処理装置 4は、変動画素と判断され た画素をその画素の位置情報と変動画素と判断された回数とを位置情報記憶部 415 に記憶する(ステップ S34)。  [0053] First, the image processing device 4 acquires an offset image during a time period when shooting is not performed at night or the like (step S31). The image processing apparatus 4 records the number of sheets and continues to acquire offset images until the total number reaches 100 (step S32). Next, the image processing device 4 compares the pixel value of each offset image with the average pixel value in the 3 × 3 pixel region of the same image by the motion picture element detection unit 414, and 20% from the average pixel value. A pixel having a different pixel value as described above is determined to be a variable pixel (step S33). The image processing device 4 stores, in the position information storage unit 415, the position information of the pixel determined to be a varying pixel and the number of times the pixel has been determined to be a varying pixel (step S34).
[0054] 次に、画像処理装置 4は、変動画素として判断された画素および変動画素として判 断されなかった画素について、 100枚全ての画像で変動画素となった画素を欠陥画 素と判断する (ステップ S35)。画像処理装置 4は、欠陥画素と判断された画素をその 位置情報が欠陥画素位置情報記憶部 419に記憶する (ステップ S36)。 [0054] Next, the image processing device 4 regards pixels that have changed as pixels in all 100 images as defective images for pixels that have been determined as changed pixels and pixels that have not been determined as changed pixels. Judgment is simple (step S35). The image processing device 4 stores the pixel determined as the defective pixel in the defective pixel position information storage unit 419 with its position information (step S36).
[0055] そして、実際に被検体を撮影する際には、画像処理装置 4は、以上の動作から検出 された変動画素、欠陥画素に対して実施の形態 2と同様の補正処理 (ステップ S16〜S 20)を施す。 [0055] When the subject is actually imaged, the image processing apparatus 4 performs correction processing similar to that in the second embodiment on the variation pixels and defective pixels detected from the above operations (steps S16 to S16). S20) is applied.
[0056] この実施形態によれば、非撮影時にオフセット画像を取得することで、効率的に変 動画素、欠陥画素の検出を行なうことができる。  [0056] According to this embodiment, it is possible to efficiently detect a moving image element and a defective pixel by acquiring an offset image at the time of non-shooting.
[0057] また、オフセット補正の対象は、 FPD2の暗電流量に限らず、 FPD2の使用温度、回 路構成による熱分布、周囲温度及び湿度、冷却器の取り付けなど、 FPD2の X線非照 射時におけるノイズ成分の変動に関連するあらゆる条件、要因を含むものである。 [0057] In addition, the offset correction target is not limited to the amount of dark current in the FPD2, but the FPD2 X-ray non-irradiation, such as the operating temperature of the FPD2, the heat distribution depending on the circuit configuration, the ambient temperature and humidity, and the installation of a cooler It includes all conditions and factors related to fluctuations in noise components over time.
[0058] なお、本形態で取得するオフセット画像は、時系列に連続するオフセット画像でなく ても良い。例えば、毎日収集したオフセット画像であってもよい。 Note that the offset image acquired in this embodiment may not be an offset image that is continuous in time series. For example, offset images collected every day may be used.
[0059] その他、本発明は前記各説明の一部構成を適宜組み合わせても構わないし、その 主旨を逸脱しな 、範囲で種々の変形が可能である。 [0059] In addition, the present invention may appropriately combine a part of the configurations described above, and various modifications can be made without departing from the spirit of the present invention.
産業上の利用可能性  Industrial applicability
[0060] 本発明の X線画像診断装置は、 X線画像の撮影に好適に利用することができる。特 に、本発明は、一般撮影用 X線装置はもちろん、透視撮影用 X線装置にも利用するこ とがでさる。 [0060] The X-ray image diagnostic apparatus of the present invention can be suitably used for imaging X-ray images. In particular, the present invention can be used not only for X-ray apparatuses for general imaging but also for X-ray apparatuses for fluoroscopic imaging.

Claims

請求の範囲 The scope of the claims
[1] X線を被検体に照射する X線発生手段と、  [1] X-ray generation means for irradiating the subject with X-rays;
前記 X線発生手段と対向配置され前記被検体の透過 X線を X線画像データとして 変換出力する X線平面検出器と、  An X-ray flat panel detector disposed opposite to the X-ray generation means for converting and transmitting transmitted X-rays of the subject as X-ray image data;
前記 X線発生手段によって X線が照射されない時の前記 X線平面検出器の出力を 用いてオフセット補正データを求める補正データ作成手段と、  Correction data creation means for obtaining offset correction data using the output of the X-ray flat panel detector when X-rays are not irradiated by the X-ray generation means;
前記 X線画像データから前記オフセット補正データを減算するオフセット補正手段 と、を備えた X線画像診断装置において、  An X-ray image diagnostic apparatus comprising: an offset correction unit that subtracts the offset correction data from the X-ray image data.
前記作成されたオフセット補正データに基づき前記 X線平面検出器の使用環境に よるオフセット補正データの変動が所定の範囲外にある画素を検出する画素検出手 段と、  A pixel detection means for detecting a pixel whose fluctuation of the offset correction data due to the use environment of the X-ray flat panel detector is outside a predetermined range based on the created offset correction data;
前記検出された画素のオフセット補正データに対して所定のデータ補正を行 、、前 記オフセット補正手段に出力する画素補正手段と、  Pixel correction means for performing predetermined data correction on the detected offset correction data of the pixel, and outputting the offset correction data to the offset correction means;
前記データ補正されたオフセット補正データが前記オフセット補正手段によって前 記 X線画像データから減算された画像データを表示する画像表示部と、  An image display unit for displaying image data obtained by subtracting the offset correction data corrected by the data from the X-ray image data by the offset correction unit;
を備えたことを特徴とする X線画像診断装置。  An X-ray diagnostic imaging apparatus characterized by comprising:
[2] 前記画素検出手段は、前記 X線平面検出器の暗電流量の変動する画素を変動画 素として検出し、 [2] The pixel detection means detects a pixel in which the dark current amount of the X-ray flat panel detector varies as a variation pixel,
前記画素補正手段は、前記検出された変動画素に対して補正を行うことを特徴と する請求項 1に記載の X線画像診断装置。  2. The X-ray image diagnostic apparatus according to claim 1, wherein the pixel correction unit corrects the detected variation pixel.
[3] 前記画素補正手段は、前記暗電流量の変動量を算出し、その変動量が所定値以 上の画素を変動画素と判断して、その画素の位置情報を出力することを特徴とする 請求項 2に記載の X線画像診断装置。 [3] The pixel correction means calculates a fluctuation amount of the dark current amount, determines a pixel whose fluctuation amount is a predetermined value or more as a fluctuation pixel, and outputs position information of the pixel. The X-ray diagnostic imaging apparatus according to claim 2.
[4] 前記画素検出手段は、撮影直前におけるオフセット補正データを示すオフセット画 像の画素値を、それよりも前に取得した複数枚のオフセット画像の加算平均画像の 画素値と比較し、オフセット補正データの変動量を検出することを特徴とする請求項 1 に記載の X線画像診断装置。 [4] The pixel detection means compares the pixel value of the offset image indicating the offset correction data immediately before photographing with the pixel value of the addition average image of a plurality of offset images acquired before that, and performs offset correction. The X-ray image diagnostic apparatus according to claim 1, wherein a variation amount of data is detected.
[5] 前記画素検出手段は、撮影直前におけるオフセット補正データを示すオフセット画 像の画素値を、そのオフセット画像における特定領域の画素値の平均値と比較し、 オフセット補正データの変動量を検出することを特徴とする請求項 1に記載の X線画 像診断装置。 [5] The pixel detection means includes an offset image indicating offset correction data immediately before shooting. 2. The X-ray image diagnostic apparatus according to claim 1, wherein the pixel value of the image is compared with an average value of pixel values of a specific area in the offset image, and a variation amount of the offset correction data is detected.
[6] 前記画素検出手段は、撮影画像における画素値を、その撮影画像の特定領域に おける画素値の平均値と比較し、暗電流量の変動量を検出することを特徴とする請 求項 1に記載の X線画像診断装置。  [6] The claim, wherein the pixel detection means detects a fluctuation amount of a dark current amount by comparing a pixel value in a captured image with an average value of pixel values in a specific region of the captured image. The X-ray diagnostic imaging apparatus according to 1.
[7] 前記画素検出手段は、前記オフセット補正手段により補正がなされた暗電流補正 画像における画素値を、その暗電流補正画像の特定領域における画素値の平均値 と比較し、オフセット補正の変動量を検出することを特徴とする請求項 1に記載の X線 画像診断装置。  [7] The pixel detection unit compares the pixel value in the dark current correction image corrected by the offset correction unit with the average value of the pixel values in the specific region of the dark current correction image, and the amount of offset correction variation The X-ray diagnostic imaging apparatus according to claim 1, wherein
[8] 前記画素検出手段は、ゲイン補正がなされたゲイン補正画像における画素値を、 そのゲイン補正画像の特定領域における画素値の平均値と比較し、暗電流量の変 動量を検出することを特徴とする請求項 1に記載の X線画像診断装置。  [8] The pixel detecting means compares the pixel value in the gain-corrected image subjected to gain correction with the average value of the pixel values in a specific region of the gain-corrected image, and detects the amount of change in the dark current amount. The X-ray image diagnostic apparatus according to claim 1, wherein
[9] 前記変動画素のオフセット補正データの変動状態が安定している力否かを判定す る安定性判定手段と、  [9] Stability determination means for determining whether or not the variation state of the offset correction data of the variation pixel is stable,
安定性判断手段により不安定であると判断された場合に、その変動画素の位置情 報を欠陥画素の位置情報として追加する欠陥画素情報追加手段と、  Defective pixel information adding means for adding the position information of the fluctuation pixel as the position information of the defective pixel when the stability determining means determines that the position is unstable;
この追加された位置情報に基づき欠陥画素の出力に対して欠陥画素としての補正 を行う欠陥画素補正手段と、をさらに備えることを特徴とする請求項 1に記載の X線画 像診断装置。  2. The X-ray image diagnostic apparatus according to claim 1, further comprising defective pixel correction means for correcting the output of the defective pixel as a defective pixel based on the added position information.
[10] 前記安定性判定手段は、前記変動画素検出手段により変動画素と判断された回 数、または変動画素補正手段により変動画素として補正が行われた回数を計測して 記録するカウンタ手段であって、  [10] The stability determination unit is a counter unit that measures and records the number of times that the variation pixel detection unit determines that the pixel is a variation pixel, or the number of times that the variation pixel correction unit corrects the variation pixel. And
前記欠陥画素情報追加手段は、カウンタ手段によって計測された回数が所定値以 上の場合に、その変動画素を欠陥画素と判断して、その位置情報を欠陥画素情報 記憶手段に記憶させることを特徴とする請求項 9に記載の X線画像診断装置。  The defective pixel information adding means, when the number of times measured by the counter means is greater than or equal to a predetermined value, determines that the fluctuation pixel is a defective pixel and stores the position information in the defective pixel information storage means. The X-ray diagnostic imaging apparatus according to claim 9.
[11] 前記画素検出手段は、被検体の撮影が行われるとき以外に、変動画素を検出する ことを特徴とする請求項 1に記載の X線画像診断装置。 [11] The X-ray diagnostic imaging apparatus according to [1], wherein the pixel detection means detects a fluctuating pixel except when the subject is imaged.
[12] X線平面検出器の暗電流量を用いてオフセット補正データを求める補正データ作 成手段と、 [12] Correction data creation means for obtaining offset correction data using the dark current amount of the X-ray flat panel detector,
前記 X線平面検出器の暗電流量の変動する画素を検出する変動画素検出手段と 前記検出された変動画素の位置情報を記憶する位置情報記憶手段と、 X線を被検体へ X線発生手段により照射し、前記 X線発生手段と対向配置され前記 被検体の透過 X線を X線画像データとして X線平面検出器により変換出力することで Fluctuating pixel detection means for detecting a pixel in which the amount of dark current of the X-ray flat panel detector fluctuates, position information storage means for storing position information of the detected fluctuation pixel, and X-rays to the subject X-ray generation means The X-ray generation means converts the transmitted X-rays of the subject placed opposite to the X-ray generation means as X-ray image data by an X-ray flat detector.
X線画像データを取得し、この取得された X線画像データを記憶する画像データ記憶 手段と、 Image data storage means for acquiring X-ray image data and storing the acquired X-ray image data;
前記記憶された X線画像データ力 前記補正データ作成手段によって作成された オフセット補正データを減算するオフセット補正手段と、  The stored X-ray image data force offset correcting means for subtracting the offset correction data created by the correction data creating means;
前記検出された変動画素に対して補正を行う変動画素補正手段と、  Fluctuating pixel correction means for correcting the detected fluctuating pixels;
前記補正された画素を X線画像データとして表示する画像表示部と、を備えたこと を特徴とする X線画像診断装置。  An X-ray image diagnostic apparatus comprising: an image display unit that displays the corrected pixel as X-ray image data.
[13] 前記変動画素の暗電流量の変動状態が安定して!/、るか否かを判定する安定性判 定手段と、 [13] Stability determination means for determining whether or not the variation state of the dark current amount of the variation pixel is stable! /
安定性判断手段により不安定であると判断された場合に、その変動画素の位置情 報を欠陥画素の位置情報として追加する欠陥画素情報追加手段と、  Defective pixel information adding means for adding the position information of the variable pixel as the position information of the defective pixel when the stability determining means determines that the position is unstable;
この追加された位置情報に基づき欠陥画素の出力に対して欠陥画素としての補正 を行う欠陥画素補正手段と、をさらに備えることを特徴とする請求項 12に記載の X線 画像診断装置。  13. The X-ray diagnostic imaging apparatus according to claim 12, further comprising defective pixel correction means that corrects the output of the defective pixel as a defective pixel based on the added position information.
[14] 前記安定性判定手段は、前記変動画素検出手段により変動画素と判断された回 数、または変動画素補正手段により変動画素として補正が行われた回数を計測して 記録するカウンタ手段であって、  [14] The stability determination unit is a counter unit that measures and records the number of times that the variation pixel detection unit determines that the pixel is a variation pixel, or the number of times that the variation pixel correction unit corrects the variation pixel. And
前記欠陥画素情報追加手段は、カウンタ手段によって計測された回数が所定値以 上の場合に、その変動画素を欠陥画素と判断して、その位置情報を欠陥画素情報 記憶手段に記憶させることを特徴とする請求項 13に記載の X線画像診断装置。  The defective pixel information adding means, when the number of times measured by the counter means is greater than or equal to a predetermined value, determines that the fluctuation pixel is a defective pixel and stores the position information in the defective pixel information storage means. The X-ray diagnostic imaging apparatus according to claim 13.
[15] 前記変動画素検出手段は、被検体の撮影が行われるとき以外に、変動画素を検出 することを特徴とする請求項 12に記載の X線画像診断装置。 [15] The fluctuating pixel detecting means detects the fluctuating pixel except when the subject is imaged. The X-ray image diagnostic apparatus according to claim 12, wherein:
PCT/JP2007/055488 2006-04-28 2007-03-19 X-ray image diagnostic device WO2007125691A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008513102A JP4995193B2 (en) 2006-04-28 2007-03-19 X-ray diagnostic imaging equipment
CN2007800088650A CN101400303B (en) 2006-04-28 2007-03-19 X-ray image diagnostic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006126805 2006-04-28
JP2006-126805 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007125691A1 true WO2007125691A1 (en) 2007-11-08

Family

ID=38655228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055488 WO2007125691A1 (en) 2006-04-28 2007-03-19 X-ray image diagnostic device

Country Status (3)

Country Link
JP (1) JP4995193B2 (en)
CN (1) CN101400303B (en)
WO (1) WO2007125691A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032497A1 (en) * 2008-09-19 2010-03-25 コニカミノルタエムジー株式会社 Defective pixel determining method, defective pixel determining program, radiological image detector, and defective pixel determining system
JP2010167117A (en) * 2009-01-23 2010-08-05 Shimadzu Corp Radiation imaging apparatus
JP2010181149A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Radiographic imaging apparatus
JP2010261828A (en) * 2009-05-08 2010-11-18 Shimadzu Corp Detection method of defective pixel in two-dimensional array x-ray detector, and detection device of the defective pixel
JP2011066631A (en) * 2009-09-16 2011-03-31 Canon Inc Image processing apparatus, image processing method, image processing system, and program
JP2011167329A (en) * 2010-02-18 2011-09-01 Shimadzu Corp Method for detecting deficient pixel in two-dimensional array x-ray detector, and device for detecting deficient pixel
JPWO2016063586A1 (en) * 2014-10-24 2017-08-03 株式会社リガク Data processing apparatus, method for determining characteristics of each pixel, and data processing method and program
JP2020534539A (en) * 2017-09-22 2020-11-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dealing with detector pixel performance fluctuations in digital positron emission tomography
JP2020537134A (en) * 2017-10-19 2020-12-17 クロメック グループ ピーエルシーKromek Group, Plc Automatic non-conforming pixel masking

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282638B2 (en) * 2009-04-15 2013-09-04 株式会社島津製作所 Radiography equipment
JP5894371B2 (en) * 2011-03-07 2016-03-30 キヤノン株式会社 Radiation imaging apparatus and control method thereof
JP5475737B2 (en) * 2011-10-04 2014-04-16 富士フイルム株式会社 Radiation imaging apparatus and image processing method
GB201119257D0 (en) * 2011-11-08 2011-12-21 Eshtech Ltd X-ray detection apparatus
US11490869B2 (en) * 2020-03-04 2022-11-08 Fujifilm Corporation Radiographic image detection device, method for operating radiographic image detection device, and program for operating radiographic image detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236093A (en) * 1994-02-21 1995-09-05 Toshiba Medical Eng Co Ltd Image pickup device
JP2004015711A (en) * 2002-06-11 2004-01-15 Fuji Photo Film Co Ltd Method and device for reading image and outputting correction information
JP2004201784A (en) * 2002-12-24 2004-07-22 Hitachi Medical Corp X-ray image diagnostic apparatus
JP2005006196A (en) * 2003-06-13 2005-01-06 Canon Inc Radiation photographing device and method, computer program, and computer readable recording medium
JP2006049939A (en) * 2004-07-30 2006-02-16 Shimadzu Corp Radiographic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118535B2 (en) * 2001-07-03 2008-07-16 株式会社日立メディコ X-ray inspection equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236093A (en) * 1994-02-21 1995-09-05 Toshiba Medical Eng Co Ltd Image pickup device
JP2004015711A (en) * 2002-06-11 2004-01-15 Fuji Photo Film Co Ltd Method and device for reading image and outputting correction information
JP2004201784A (en) * 2002-12-24 2004-07-22 Hitachi Medical Corp X-ray image diagnostic apparatus
JP2005006196A (en) * 2003-06-13 2005-01-06 Canon Inc Radiation photographing device and method, computer program, and computer readable recording medium
JP2006049939A (en) * 2004-07-30 2006-02-16 Shimadzu Corp Radiographic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032497A1 (en) * 2008-09-19 2010-03-25 コニカミノルタエムジー株式会社 Defective pixel determining method, defective pixel determining program, radiological image detector, and defective pixel determining system
JP2010167117A (en) * 2009-01-23 2010-08-05 Shimadzu Corp Radiation imaging apparatus
JP2010181149A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Radiographic imaging apparatus
JP2010261828A (en) * 2009-05-08 2010-11-18 Shimadzu Corp Detection method of defective pixel in two-dimensional array x-ray detector, and detection device of the defective pixel
JP2011066631A (en) * 2009-09-16 2011-03-31 Canon Inc Image processing apparatus, image processing method, image processing system, and program
JP2011167329A (en) * 2010-02-18 2011-09-01 Shimadzu Corp Method for detecting deficient pixel in two-dimensional array x-ray detector, and device for detecting deficient pixel
JPWO2016063586A1 (en) * 2014-10-24 2017-08-03 株式会社リガク Data processing apparatus, method for determining characteristics of each pixel, and data processing method and program
EP3211456A4 (en) * 2014-10-24 2018-07-11 Rigaku Corporation Data processing device, method for determining characteristics of pixels, data processing method, and program
US10551510B2 (en) 2014-10-24 2020-02-04 Rigaku Corporation Data processing apparatus, method of obtaining characteristic of each pixel and method of data processing, and program
JP2020534539A (en) * 2017-09-22 2020-11-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dealing with detector pixel performance fluctuations in digital positron emission tomography
JP7041252B2 (en) 2017-09-22 2022-03-23 コーニンクレッカ フィリップス エヌ ヴェ Dealing with detector pixel performance fluctuations in digital positron emission tomography
JP7041252B6 (en) 2017-09-22 2022-05-31 コーニンクレッカ フィリップス エヌ ヴェ Dealing with detector pixel performance fluctuations in digital positron emission tomography
JP2020537134A (en) * 2017-10-19 2020-12-17 クロメック グループ ピーエルシーKromek Group, Plc Automatic non-conforming pixel masking

Also Published As

Publication number Publication date
JPWO2007125691A1 (en) 2009-09-10
CN101400303B (en) 2011-08-03
JP4995193B2 (en) 2012-08-08
CN101400303A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP4995193B2 (en) X-ray diagnostic imaging equipment
JP5592962B2 (en) Radiation imaging apparatus, control method therefor, and radiation imaging system
EP1487193B1 (en) Method and apparatus for correcting defect pixels in radiation imaging, computer program and computer-readable recording medium
US7822178B2 (en) Radiographic imaging system
RU2381747C2 (en) Image forming apparatus, image forming system, method of controling thereof and data carrier containing program thereof
JP5405093B2 (en) Image processing apparatus and image processing method
JP4807846B2 (en) X-ray diagnostic imaging equipment
US20120230469A1 (en) Radiation imaging apparatus and method for controlling the same
JP2008236491A (en) Method of processing image sensor image
JP7361516B2 (en) Radiography device, radiography system, radiography device control method, and program
US20160358330A1 (en) Radiation imaging apparatus, radiation imaging method, and radiation imaging system
JP4258832B2 (en) X-ray diagnostic imaging equipment
JP2006334154A (en) Automatic exposure controller for radiography
JP2009195612A (en) Radiographic imaging apparatus
JP2009253668A (en) Imaging device and image defect correcting method
JP4305225B2 (en) Infrared image correction device
JP2004121718A (en) Radiographing apparatus
JP5188255B2 (en) Radiation imaging apparatus and image defect detection method
US7415097B2 (en) Method for recording correction frames for high energy images
JP2011167329A (en) Method for detecting deficient pixel in two-dimensional array x-ray detector, and device for detecting deficient pixel
JP2010233886A (en) Image processing method and radiation imaging apparatus
JP2010268271A (en) Imaging device
JP2019213193A (en) Infrared imaging apparatus and program used for the same
JP2015144629A (en) Information processing device, radiographic system, information processing method, and program
JP2006135748A (en) Radiation image photographing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008513102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780008865.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738933

Country of ref document: EP

Kind code of ref document: A1