WO2007125604A1 - 神経毒素の定量方法 - Google Patents
神経毒素の定量方法 Download PDFInfo
- Publication number
- WO2007125604A1 WO2007125604A1 PCT/JP2006/309040 JP2006309040W WO2007125604A1 WO 2007125604 A1 WO2007125604 A1 WO 2007125604A1 JP 2006309040 W JP2006309040 W JP 2006309040W WO 2007125604 A1 WO2007125604 A1 WO 2007125604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neurotoxin
- cmap
- neurotoxins
- muscle
- data
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/94—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
Definitions
- the present invention relates to a method for quantitatively measuring the efficacy of a neurotoxin.
- the present invention relates to a method for quantifying the effect of neurotoxins using mammalian muscle relaxation as an indicator.
- the present invention provides a method for quantifying and defining neurotoxin “titer” and / or “diffusion response” from the site of neurotoxin administration.
- Neurotoxins include neurotoxins produced by bacteria belonging to the genus Clostridium, neurotoxins produced by some fish and shellfish typified by the pufferfish tetrodotoxin, and snake venoms such as alpha-1 bungaguchi toxin.
- Clostridium toxin is a neurotoxin produced by bacteria belonging to the genus Clostridium, and the genus Clostridium is classified into more than a hundred by their form and function.
- Clostridium baratii As bacteria belonging to the genus Clostridium, Clostridium baratii, Clostridium butyricum, Clostridium botulinum, and Clostridium metetani are known.
- Botulinum toxin produced by Clostridium bollinum an anaerobic gram-positive bacterium, is the most deadly neurotoxin on the planet, and so far it has been serotype A, B, C, D, E, F and G. Seven types of neurotoxins from Clostridium botulinum and their characteristics have been clarified. Each of these is identified by a serotype specific neutralizing antibody. Depending on the serotype of borinus toxin, the animal species they can affect, the severity and duration of the induced paralysis, etc. will vary.
- the molecular weight of the active center protein of botulinum toxin is approximately 150 kDa nephrotoxin (NTX) in all seven known botulinum toxin serotypes. All botulinum toxins, when produced from B. botulinum, are constructed as a complex comprising NTX, together with the relevant non-toxic protein.
- Botulinum toxin type A is 900 kDa (LL toxin), 500 kDa (L toxin) , Produced as a molecular form of 300 kDa (M toxin). These LL toxin, L toxin, and M toxin are called botulinum toxin complex.
- NTX is a non-toxic protein and an active center protein
- the dissociated NTX binds to a nerve terminal receptor on the C-terminal side of the heavy chain, and is taken into a nerve cell via the receptor.
- the protein of the presynaptic membrane is specifically cleaved by the light chain zinc metallopeptidase activity, inhibiting calcium-dependent acetylcholine release and blocking neurotransmission at the synapse (Non-patent Document 1). ).
- Botulinum toxin is a neurotoxin that blocks neurotransmission throughout the body in botulinum poisoning and causes human death, but conversely, its activity is actively utilized to cause abnormal hypertonicity. It is used as a therapeutic agent to relieve local muscle tone by direct administration into the muscles of patients with diseases such as dystonia (Non-patent Document 2).
- type A botulinum toxin complex (BOTOX®) is used by the US Food and Drug Administration (FDA) for the treatment of blepharospasm, strabismus and hemifacial spasms, genital dystonia, and wrinkles between the eyebrows.
- FDA US Food and Drug Administration
- a botulinum toxin type B complex (MYOBLO C®) has also been approved by the FDA for the treatment of class dystonia.
- Type A botulinum toxin is said to have higher potency and a longer duration of action than serotypes other than type A botulinum toxin.
- the typical duration of action of symptom improvement from a single intramuscular injection of botulinum toxin type A averages about 3-4 months.
- 1LD is defined as LD based on intraperitoneal administration to mice. This is the amount that half of the mice tested die, and the titer unit is determined from the concentration or amount of neurotoxin when the mouse dies as a result of relaxation of the mouse respiratory muscles.
- 1LD ie, 1 unit
- a type A botulinum toxin complex Allergan, Inc., BOTOX (registered trademark), containing 100 units in one glass bottle
- BOTOX registered trademark
- Non-patent Document 3 Botulinum toxin type A
- Atsusei which determines the potency of botulinum toxin type A in mouse LD units
- Botulinum toxin type A One study planned to standardize Atsy was found to involve eleven different laboratories, with a difference of up to 10 times in the results (Non-Patent Document 4).
- this variability in mouse LD is not unique to Atssey for botulinum toxin.
- this assembly was routinely used in toxicity test LDs for many chemicals, solvents, cosmetics and pharmaceuticals, but many management agencies have given up demanding regular use of this toxicity test LD ( Non-patent document 5).
- Patent Document 1 As a prior document for measuring botulinum toxin activity, there is pinna reflex atsay (Patent Document 1).
- botulinum toxin is administered to the rat levator auris longus muscle, and there is a certain amount.
- the neurotoxin activity is quantified by an electromyograph (Electoromyograph) using the auricular nerve.
- electromyograph Electroromyograph
- the method is to analyze the head and neck of the rat to be analyzed.
- Patent Document 2 a method for determining the titer of the toxin by muscular atrophy by administering the botulinum toxin to the muscle of a mammal has been reported. This is a method in which rats administered with toxins are killed, and the muscles at the administration site are removed and analyzed. Therefore, to evaluate the effects of botulinum toxin over a long period (several days to several tens of days) Rats need to be prepared and many rats are required. Furthermore, since the rats to be measured differ depending on the number of days and conditions, the variation in individual differences is considered to be large.
- an electromyograph was used to evaluate the effect of botulinum toxin administration into the sternocleidomastoid muscle for the treatment of human cervical schizophrenia (Non-patent Document 6).
- Surface electromyogram The surface electrode is placed at a predetermined distance from the administration site, usually 1 to 3 cm from the administration site.
- the surface electrode can be utilized to measure the magnitude and area of the composite muscle action potential (CMAP) during maximum voluntary contraction of the administered muscle. It is assumed that the complex muscle action potential (CMAP) decreases when the muscle paralysis effect begins and increases as the paralysis effect gradually disappears.
- CMAP composite muscle action potential
- Non-patent Document 7 the effect of administration of botulinum toxin type A on compound muscle action potential (CMAP) has been investigated using an in vivo model.
- Non-patent Document 7 the effects on rats due to differences in the dose of neurotoxin have been studied, and quantitative determination of neurotoxins has not been made.
- Patent Document 1 US Patent Application Publication No. 2003 / 0032891A1
- Patent Document 2 Special Table 2005-509145 Publication (WO2003 / 015829)
- Non-Patent Literature l Jankovic, J. et al., Curr. Opin. Neurol., 1994, 7: p. 358-366
- Non-Patent Document 2 Oolong et al., “Dystonia and Botulinum Treatment”, Diagnosis and Treatment Company, 2005
- Non-Patent Document 3 Schantz and Kautter, J. Ass. Of Anal. Chem., 1978, 61: .96- 99
- Non-Patent Document 4 Sesardic et al., Pharacol. Toxico. 1996, 78: p.283-288
- Non-Patent Document 5 Pearce et al., Toxicol. App. Pharm., 1994, 128: p.69-77
- Non-patent document 6 Dressier et al., Electromyographic quantification of the paralyzing effect of botulinum toxin in the sternocleidomastoid muscle, Eur. Neurol. 2000; 43: p.13-16
- Non-patent document 7 Cichon, Jr., MD et al., Laryngoscope, 1995 Feb., 105 (2): p.144-148 Disclosure of the Invention
- An object of the present invention is to provide a mouse that is currently used as a titer determination method for botulinum toxin preparations. It is to provide an accurate method for quantifying botulinum toxin activity in place of LD. ⁇
- the targeted effect of the botulinum toxin product on the market is to relax the muscles to be treated. Therefore, the original amount of botulinum toxin does not cause lethality compared with LD.
- mouse LD has the above-mentioned variations.
- mouse LD uses many mice, it is regarded as a problem in terms of ethics and animal welfare.
- the present inventors administer a neurotoxin such as botulinum toxin to the hind limb muscle of a non-human mammal, monitor the composite muscle action potential (CMAP) of the hind limb muscle by electrical stimulation with an electromyograph, and in particular the amplitude
- CMAP composite muscle action potential
- the present invention includes the following operation steps:
- It provides a method for quantifying the efficacy of a neurotoxin, characterized in that it is composed.
- the CMAP analysis software used in the quantification method of the present invention includes the following means:
- (iii) means for estimating the time course of neurotoxin
- neurotoxin quantification method of the present invention unlike conventional methods, it is not necessary to surgically treat a non-human mammal for measurement.
- the neurotoxin that can be quantified by the neurotoxin quantification method of the present invention is not particularly limited as long as it has neurotoxin activity, but typical neurotoxins include Borinus bacteria. And other neurotoxins derived from bacteria belonging to the genus Clostridium.
- the method of quantifying neurotoxins of the present invention can also be used to quantitatively compare the differences in potency of these different neurotoxins by quantifying the potency of two or more different neurotoxins.
- (iii) means for estimating the time course of neurotoxin
- a program for analyzing the degree of decrease in the amplitude of the complex muscle action potential (CMAP) due to neurotoxin is provided.
- the statistical analysis performed here is not limited to force S, which includes regression analysis and digit conversion.
- the present invention provides the following means:
- a computer-readable recording medium on which a program for analyzing the degree of decrease in the amplitude of the complex muscle action potential (CMAP) due to neurotoxin is recorded.
- the statistical analysis performed here includes, but is not limited to, regression analysis and digit conversion.
- the electromyograph is not suitable for quantitative evaluation in human clinical practice.
- an experimental animal when used as a measurement control, there are relatively few individual differences, so that the accuracy is high. Results are obtained.
- surgical treatment ie, incision or killing, is not performed on non-human mammals (rats, etc.) administered with botulinum toxin.
- long-term evaluation can be performed by measuring the same non-human mammals bred continuously over time, and the accuracy with less influence of day-to-day differences and individual differences is high. It becomes a quantitative system.
- it since few non-human mammals are used, it is a preferable method from the viewpoint of ethics and animal welfare.
- the quantification method of the present invention has the following characteristics.
- the present invention relates to non-human mammals (rats, etc.) administered with a botulinum toxin by surgical treatment, that is, the same non-human mammals continuously raised without performing incision or killing. It is a highly accurate quantitative system that enables long-term evaluation and minimizes the effects of daily and individual differences. Furthermore, since less non-human mammals are used, it is a preferable method from the viewpoint of ethics and animal welfare.
- a smaller number of non-human mammals can be quantified for efficacy (titer and diffusion response) of neurotoxin, simultaneous measurement of titer and diffusion response of neurotoxin, neurotoxin and project. Quantitative comparison of neurotoxin potency by type of neurotoxin such as two-toxin and serotype neurotoxins
- FIG. 1 shows the administration site of a non-human mammal (rat) to which a neurotoxin is administered and the measurement site of complex muscle action potential (CMAP) in the quantification method of the present invention.
- a stimulation electrode (+)
- b stimulation electrode (one)
- c recording electrode (one) and administration site
- d recording electrode (+)
- e earth electrode
- f diffusion recording electrode (one)
- g Diffusion recording electrode (+)
- FIG. 2 shows a graph of the left hind limb muscle CMAP amplitude and the number of days after administration when various concentrations of neurotoxin were administered to the left hind limb muscle.
- the horizontal axis is days after administration (day); the vertical axis is CMAP amplitude (mA).
- Fig. 3 is a graph of CMAP amplitude and number of days after dosing when various concentrations of neurotoxin were administered to the left hind limb muscle. ).
- the horizontal axis is the number of days after administration (day); the vertical axis is the CMAP (mA) amplitude.
- FIG. 4 shows a calibration curve by linear regression of left hind limb muscle CMAP amplitude: quantification of neurotoxin (after 1 day).
- the horizontal axis is the dose (pg); the vertical axis is the CMAP amplitude (mA).
- Figure 5 shows a calibration curve by linear regression of left hind limb muscle CMAP amplitude: quantification of neurotoxin (4 Day).
- the horizontal axis is the dose (pg); the vertical axis is the CMAP amplitude (mA).
- Figure 6 shows the calibration curve by linear regression of the right hindlimb CMAP amplitude: quantification of diffusion response (4
- the horizontal axis is the dose (pg); the vertical axis is the CMAP amplitude (mA).
- Fig. 7 shows a calibration curve of a wide concentration range of CMAP amplitude of the left hind limb muscle using the Logit analysis method
- FIG. 8 shows a calibration curve (after 4 days) over a wide concentration range of left hind limb muscle CMAP using the Logit analysis method.
- X is dose (pg);
- Y is CMAP amplitude (mA).
- FIG. 9 shows a quantitative potency comparison of NTX and neurotoxin complex (BOTOX).
- the horizontal axis is the number of days after administration (day); the vertical axis is the CMAP (mA) amplitude.
- FIG. 10 shows a comparison of efficacy of four serotype botulinum neurotoxin conjugates.
- the horizontal axis is the number of days after administration (day); the vertical axis is the CMAP (mA) amplitude.
- Effectiveness used in the present invention is an indicator of the amount of a certain chemical (eg, neurotoxin) to cause a certain physiological or chemical effect.
- a certain chemical eg, neurotoxin
- the potency of borulin toxin refers to the extent or period of time that inhibits acetylcholine release from the target tissue.
- the potency of botulinum toxin means the extent to which a dose of neurotoxin causes a change in muscle contraction.
- the "titer" used in the present invention means a numerical value of a desired desired efficacy.
- the "diffusion reaction" used in the present invention means a value obtained by quantifying the spread of neurotoxins to muscles other than the lesion site in clinical practice.
- the neurotoxin efficacy (titer and Z or diffusion response) in the present invention is quantified by monitoring the composite muscle action potential (CMAP) of the hindlimb muscle, preferably the quadriceps by electrical stimulation, with an electromyograph. Can be done.
- CMAP composite muscle action potential
- the effectiveness of the neurotoxin can be accurately quantified by analyzing the decrease in the amplitude due to the neurotoxin, particularly focusing on the amplitude data.
- the invention encompasses a method of administering a neurotoxin to muscle of a non-human mammal and determining the efficacy of the neurotoxin from the muscle relaxant action of the injected muscle.
- Non-human mammal By administering neurotoxin to the muscle of a mammal and monitoring the relaxed muscle complex muscle action potential (CMAP) with an electromyograph, the effect of the neurotoxin can be defined according to its efficacy.
- the present invention provides a method for determining the efficacy of a neurotoxin on muscle.
- “non-human mammals” include, for example, monkeys, rats, rabbits, guinea pigs, hamsters, cats, mice and inu.
- the neurotoxin that can be quantified by the neurotoxin quantification method of the present invention is not particularly limited as long as it has neurotoxin activity.
- Clostridium verati, Clostridium butylicum, Clostridium ⁇ Choose from neurotoxins derived from bacteria of the genus Clostridium, such as Tetani and Clostridium.
- a botulinum toxin derived from Clostridium botulinum is typically a botulinum toxin type A selected from the group consisting of serotypes A, B, C, D, E, F and G, and mixtures thereof. is there.
- These neurotoxins are not limited to proteins produced by naturally occurring bacteria, but may be recombinant proteins or chimeric proteins produced by gene recombination techniques.
- Botulinum toxin can be obtained by conventional methods (Sakaguchi, G., Ohishi, I. and Kozaki, S., 1981, BIOCHE MICAL ASPECTS of botulism: Purification and oral toxicities of Clostridium botulin urn progenitor toxins, pp.21-34, Lewis. , GE (ed.), Academic Press, New York) and purified from the culture supernatant of Clostridium botulinum.
- various borinus toxins are available from Allergan Inc. (Irvine, California), Ipsen Beaufour (France), E lan Pnarmaceuticals, Ainoleland), List Biological Laboratories, Inc. Microlology and Research (Ho 1 to Tontown, UK); Wako Pure Chemical (Osaka, Japan); Metabiologics (Madison, Wisconsin) and Sigma Chemicals (St. Louis, MO); Is possible.
- Electromyography is one of the physiological tests to check for the presence of diseases from nerves to muscles. In general, it has a stimulation electrode, measurement electrode (differential electrode), and indifferent electrode (for reference potential, so-called ground). Have.
- the old machine is an analog type in which the pen moves left and right on the moving roll paper,
- an electrode is mounted on the skin surface as close as possible to the target muscle, and two stimulation electrodes are mounted as close as possible to the nerve that supports the muscle.
- electrical stimulation pulse current
- an electromyogram is obtained. Read the electromyogram and read the magnitude of the response, the delay time from the stimulus (motor nerve conduction velocity), the response to the repeated stimulus, and so on.
- the present invention relates to an electromyograph that does not undergo surgical treatment on experimental mammals with small individual differences in order to quantitatively measure the efficacy (titer and Z or diffusion response) of neurotoxins. Is used to accurately quantify the efficacy of the neurotoxin. Also, the muscle relaxant action of the muscle changes with the dose of neurotoxin. Therefore, a dose response curve may be constructed to determine the efficacy of the neurotoxin. As noted above, efficacy as determined by this method is considered more accurate and more reliable than conventional LD.
- neurotoxin is given to the rat left hind limb muscle.
- the muscle action potential of the hind limbs is electrically stimulated with a clip electrode sandwiched in the vicinity of the lumbar vertebrae of the rat, and the composite muscle action potential (CMAP) is recorded using the recording electrodes for the left and right hind limb muscles.
- Figure 1 shows the neurotoxin administration site and CMAP measurement site.
- the CMAP amplitude of the left hind limb muscle indicates the “titer” of the administered toxin
- the CMAP amplitude of the right hind limb muscle indicates its “diffusion response”. That is, since neurotoxin is injected into the left hind limb muscle, the CMAP amplitude of the left hind limb muscle represents the muscle relaxation effect of the administered muscle, and the higher the neurotoxin effect, the smaller the CMAP amplitude value obtained. Become.
- a neurotoxin was administered to the left hind limb muscle of a rat at different doses, and CMA was performed using an electromyograph. Obtaining P data gives dose-dependent CMAP data for “titer” and “diffusion response”. In addition, by measuring CMAP over time after administration of neurotoxin, CMAP data over time showing the effect of neurotoxin according to the number of days can be obtained.
- the "titer" and "diffusion response" of the administered neurotoxin can be quantified. If the neurotoxin is of the same type, the efficacy of the unknown neurotoxin can be calculated based on the formula obtained by the analysis. In addition, after administration of neurotoxin, CMAP is measured over time, and the resulting CMAP data is graphed and analyzed to show the maximum number of days to respond, the number of days to recover to the pre-dose state, and 50% recovery. Calculate the number of days indicating the rate and the number of days indicating the 50% reduction rate. Botulinum toxin is known to vary in potency and duration of action depending on the seven serotypes, but it is possible to quantitatively compare the efficacy of neurotoxins from these parameters.
- the CMAP analysis software used in the present invention is configured to have the functions of processing the enormous amount of data obtained, statistical analysis, formulating, graphing, and plotting. It is possible to graph over time and compare different data.
- the CMAP analysis software used in the quantification method of the present invention is the following means:
- (iii) means for estimating the time course of neurotoxin
- the maximum amplitude etc. that the myoelectric waveform applies to the attenuation vibration formula are extracted.
- the CMAP analysis software used in the present invention can analyze various data by combining the data summarized in (3) with any of the following means.
- this formula is compatible with one of the formulas representing physical phenomena. From this formula, it is possible to predict when the neurotoxin response will decrease by 50%, when it will recover 50%, when the neurotoxin response will be maximized, when it will recover 100%, and so on.
- Computer-readable recording media on which the above program for analyzing the degree of decrease in the complex muscle action potential (CMAP) amplitude due to neurotoxins are ordinary recordings such as floppy disks, CD-ROMs, DVDs, etc. Media can be used.
- Botulinum M toxin was dialyzed against 10 mM acetate buffer (pH 7.5) and then adsorbed on a DEAE Sepharose column equilibrated with the same buffer, followed by a 0-0.3 M NaCl concentration gradient in the same buffer. Elute and separate into neurotoxin and non-toxic protein.
- the resulting neurotoxin (NTX) is YM-30 After concentration with a membrane (Millipore) to 1 mg / mL, dialyzed against 10 mM acetate buffer (pH 7.5), the solution was stored at 80 ° C. until use.
- NTX uses the type A NTX prepared in Preparation Example 1 (1) (1 unit was approximately 25 pg when administered intraperitoneally to mice), and a group of neurotoxins were prepared by standard methods. Then, 750, 250, 75, 25, 7.5, 2.5, 0.75, 0.25, 0 (no toxin) was prepared in sterile physiological saline containing 0.5 w / v% serum albumin so as to be pg / 0.1 mL. Nine doses of O.lmL were administered to the left hind limb muscle of each SD rat and the composite muscle action potential (CMAP) in the hind limb was measured.
- CMAP composite muscle action potential
- FIG. 1 shows the neurotoxin administration site and CMAP measurement site.
- the electromyograph used was the Nicole Viking Taest series (Nicore. Biomedical Co., Ltd.), and the results were digitized and graphed using “CMAP analysis software”.
- Figures 2 and 3 show the results of neurotoxin dose and CMAP amplitude in the left and right hind limbs, respectively.
- the numerical data was subjected to regression analysis with "CMAP analysis software".
- right hind limb muscle CMAP results and neurotoxin administration Fig. 6 shows the calibration curve obtained by linear regression of the dose, and the results 4 days after administration.
- the CMAP amplitude of the right hind limb muscle on the opposite side of neurotoxin administration can also be plotted in a straight line, and by using this as a calibration curve, the diffusion reaction of sampnore whose neurotoxin amount is unknown is also possible.
- the amount of neurotoxin could be determined from the CMAP amplitude.
- Figure 7 shows the results after a day
- Figure 8 shows the results after 4 days.
- Logit analysis of left hind limb muscle CMAP amplitude and neurotoxin dose yielded a calibration curve over a wider range of neurotoxin doses than regression analysis. Using this as a calibration curve, the CMAP amplitude force neurotoxin amount of the unknown sample was determined.
- the cocoon type cocoon prepared in Preparation Example 1 (1) was used, and as the neurotoxin complex, BOTOX (registered trademark) manufactured by Allergan, Inc. was used.
- the number of units of each neurotoxin was adjusted in sterile physiological saline containing 0.5 w / v% serum albumin so that 1 LD when administered intraperitoneally to a mouse was 1 unit, and the mouse was 1 LD / O.lmL. .
- Both neurotoxins O. lmL were administered to the left hind limb muscle of each SD rat, and the composite muscle action potential (CMAP) in the hind limb was measured.
- CMAP composite muscle action potential
- FIG. 1 shows the neurotoxin administration site and CMAP measurement site.
- Quantitative potency comparison of both neurotoxins was performed by calculating the number of days showing maximum response, the number of days to recover to the pre-dose state, the number of days showing a 50% recovery rate, and the number of days showing a 50% reduction rate. ( Figure 9).
- NTX is more potent and more durable than the neurotoxin complex, as it takes longer to recover to the pre-dose state. It became clear.
- the number of units of the four types of neurotoxins is 1 LD when administered intraperitoneally to mice, and a group of neurotoxins, 125, 25, 5, 1, 0.2, 0.1, 0.04, 0 (No neurotoxin) It was prepared with sterile physiological saline containing 0.5 w / v% serum albumin so as to be LD / 0.1 mL.
- A is 1LD
- E is 1LD
- the use of the method of the present invention makes it possible to detect the efficacy of neurotoxin with a sensitivity 100 times higher than that of mouse LD.
- the method for quantifying the neurotoxin of the present invention comprises:
- the neurotoxin quantification method of the present invention it is possible to calculate a safe dose for avoiding the spread (diffusion reaction) of neurotoxins to muscles other than the lesion site in clinical practice. In addition, it will be possible to calculate the amount of neurotoxin required for patients with hypertonia.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本発明は、神経毒素の筋弛緩作用を定量的に測定する方法に関する。詳細には、クロストリジウム属に属する細菌由来の神経毒素による筋弛緩作用の程度に基づき、(a)神経毒素を非ヒト哺乳動物の一方の後肢の後肢筋に投与し、(b)当該非ヒト哺乳動物に電気刺激をかけ、(c)神経毒素を投与した当該後肢筋および/または神経毒素を投与していない他方の後肢の後肢筋の収縮による複合筋活動電位(CMAP)を筋電計で測定し、ついで(d)操作ステップ(c)で測定して得られた複合筋活動電位(CMAP)から振幅データを取り出して振幅の低下の程度を解析することにより神経毒素による筋弛緩作用の効力を定量化することを特徴とする神経毒素の効力(力価および/または拡散反応)の定量方法に関する。現在ボツリヌス毒素の力価単位として用いられているマウスLD50は数単位までしか測定できないが、本発明の神経毒素の効力定量方法は、0.01~1単位も測定することが可能であり、感度・再現性・精度の高い方法である。
Description
明 細 書
神経毒素の定量方法
技術分野
[0001] 本発明は、神経毒素の効力を定量的に測定する方法に関する。特に、本発明は、 神経毒素の効果を哺乳動物の筋弛緩を指標に定量化する方法に関する。ある実施 形態では、本発明は、神経毒素の「力価」および/または神経毒素の投与部位から の「拡散反応」を定量化し定義する方法を提供する。
背景技術
[0002] 神経毒素は、クロストリジゥム属に属する細菌が産生する神経毒素、フグ毒のテトロ ドトキシンに代表される一部の魚貝類が産生する神経毒素、アルファ一 ·ブンガ口トキ シンなどの蛇毒などが知られている。これらは、その作用点は異なるものの、神経終 末において神経伝達を遮断し、接種された哺乳動物に筋弛緩作用を示すという点が 共通している。中でも、クロストリジゥム毒素は、クロストリジゥム属に属する細菌が産 生する神経毒素であり、クロストリジゥム属はそれらの形態と機能により百を超える分 類がされている。クロストリジゥム属に属する細菌としては、クロストリジゥム ·ベラティ( Clostridium baratii)、クロストリジゥム.ブチリカム(Clostridium butyricum)、クロストリ ジゥム ·ボッリナム(Clostridium botulinum)、およびクロストリジゥム ·テタニ(Clostridiu m tetani)などが知られている。嫌気性のグラム陽性菌であるクロストリジゥム ·ボッリナ ムが産生するボツリヌス毒素は地球上で最も致死性の高い神経毒であり、これまでに 血清型 A、 B、 C、 D、 E、 Fおよび Gの 7種のボツリヌス菌由来の神経毒とその特性が 明らかにされている。これらはそれぞれ、血清型特異的中和抗体で識別される。ボッ リヌス毒素の血清型の違いにより、それらが影響しうる動物種、誘発される麻痺の重 症度および持続期間等が異なる。
[0003] ボツリヌス毒素の活性中心蛋白質の分子量は、既知のボツリヌス毒素血清型の 7つ すべてにおいて約 150kDaネ申経毒素(NTX)である。すべてのボツリヌス毒素はボッリ ヌス菌から産生される場合、関係する無毒蛋白質と共に、 NTXを含んで成る複合体 として、構成されている。 A型ボツリヌス毒素は、 900kDa (LL毒素)、 500kDa (L毒素)
、 300kDa (M毒素)の分子形態として、産生される。これら、 LL毒素、 L毒素、 M毒素 は、ボツリヌス毒素複合体などと呼ばれている。これらボツリヌス毒素は、小腸上部で 吸収された場合には、アルカリ条件下 (リンパ管内)で無毒蛋白質と活性中心蛋白質 である NTXに解離する。解離した NTXは、その重鎖 C末端側で神経終末の受容体 に結合し、受容体を介して神経細胞内に取り込まれる。その後、軽鎖亜鉛メタロェン ドぺプチダーゼ活性により神経シナプス前膜の蛋白質を特異的に切断し、カルシゥ ム依存性のアセチルコリンの放出を阻害して、シナプスでの神経伝達を遮断する(非 特許文献 1)。
[0004] ボツリヌス毒素は、ボツリヌス中毒においては全身の神経伝達を遮断してヒトを死に 至らしめる神経毒素ではあるが、逆にその活性を積極的に利用して、異常な筋緊張 性亢進を来たす疾患、例えばジストニアの患者の筋肉内に直接投与することによつ て、局所の筋緊張を緩和する治療薬として用レ、られている(非特許文献 2)。例えば、 A型ボツリヌス毒素複合体 (BOTOX (登録商標))は、眼瞼痙攣、斜視および片側顔 面痙攣、類部ジストニアの治療用、並びに眉間のしわの治療用としてアメリカ食品薬 品局(FDA)によって承認されている。また、 B型ボツリヌス毒素複合体(MYOBLO C (登録商標))も類部ジストニア治療用として FDAによって承認されている。 A型ボッ リヌス毒素は、 A型ボツリヌス毒素以外の血清型よりも、高い効力および高い作用持 続期間を有するといわれている。 A型ボツリヌス毒素の単一の筋肉内注射から症状 改善の典型的な作用持続期間は平均して約 3〜4ヶ月である。
[0005] 現在、 A型ボツリヌス毒素のようなボツリヌス毒素の治療用製剤の生物学的力価は、 マウス LD 単位によって通常表わされている。 1LD は、マウスへの腹腔内投与に基 づく LD として定義されている。これは試験に供したマウスの半数が死亡する量であ り、マウスの呼吸筋が弛緩される結果としてマウスが死亡するときの神経毒素の濃度 または量から力価単位を定量している。現在市販されている A型ボツリヌス毒素複合 体 (Allergan, Inc., BOTOX (登録商標)、 1ガラス瓶中 100単位含有)のマウスにおけ る 1LD (つまり 1単位)は、約 50ピコグラム(pg)である。
[0006] しかしながら、マウス LD 単位で A型ボツリヌス毒素の力価を決定するアツセィは、 研究所間で著しくバラつくことが報告されている (非特許文献 3)。 A型ボツリヌス毒素
アツセィを標準化するために計画されたある研究では、 11の異なる研究所が関与し、 結果に 10倍の差まであることが判明した (非特許文献 4)。し力 ながら、マウス LD に おけるこの変動は、ボツリヌス毒素に関するアツセィに特有のものではなレ、。実際、こ のアツセィは多くの化学薬品、溶剤、化粧品および医薬品のための毒性試験用 LD で常用されていたが、多くの管理機関がこの毒性試験用 LD の常用を要求すること を断念した (非特許文献 5)。
[0007] このように、ボツリヌス毒素のもつ筋弛緩活性の医学的重要性が高まるにつれて、 製造元や研究所および臨床現場などでは、ボツリヌス毒素製剤中に含まれる生物活 性の正確な定量が求められ、現在でも様々な測定方法が研究されている。
[0008] ボツリヌス毒素活性を測定する先行文献としては、耳介反射アツセィ(特許文献 1) があるが、ここではラットの耳挙長筋(levator auris longus muscle)にボツリヌス毒素を 投与し、ある一定期間経過した後に、耳介神経を用いた筋電計(Electoromyograph) による神経毒素活性の定量ィ匕を行っている。耳介神経を用いた本文献では、使用す るラットの頭頸部を切開して分析評価する方法であるため、長期間(数日〜数十日) に及ぶボツリヌス毒素の効果を評価するには同一部位を外科的に切開する必要があ り、使用する動物への負担が大きいことから、同一のラットをそのまま用いるのは現実 的ではなぐ 日数に応じたより多くのラットが必要となる。さらに、使用する筋肉部位も 小さいため、筋肉における拡散反応を定量的に評価するには部位としては適してい ないと考えられる。
[0009] 一方、毒素効果の決定方法(特許文献 2)では、ボツリヌス毒素を哺乳動物の筋肉 へ投与することによる筋萎縮により、当該毒素の力価を決定する方法を報告している が、ボツリヌス毒素を投与したラットを殺傷し、その投与部位の筋肉を取り出して分析 評価する方法であるため、長期間(数日〜数十日)に及ぶボツリヌス毒素の効果を評 価するには測定日毎にラットを準備する必要があり、多くのラットが必要となる。さらに 、 日数や条件の違いで測定するラットも異なるため、個体差のバラツキが大きいと考 られる。
[0010] また、ヒト頸失調症の処置のために胸鎖乳様突起性筋内にボツリヌス毒素を投与し た際の効果を評価するために、筋電計が利用された (非特許文献 6)。表面筋電図で
は、表面電極は投与部位から所定の距離に、通常、投与部位から 1から 3cmに配置 される。表面電極は、投与された筋肉の最大随意収縮の間に複合筋活動電位(CM AP)の大きさと領域を計測するのに利用され得る。筋肉麻痺効果が始まると複合筋 活動電位(CMAP)が減少し、麻痺効果が徐々に無くなるにつれて増加する、と想定 される。このように、個人の筋肉や筋肉群へのボツリヌス毒素などの神経毒素の効果 を判定するために筋電図法が使用されている力 これは定量的には評価されていな レ、。なぜならば、電気生理学の分野ではよく知られていることである力 患者間、また は同じ患者であっても位置や日が異なれば特定筋肉からの電気活性度が変動する 力 である。例えば、同じ患者から同時に取ったとき、反復の表面筋電図記録は、有 意の(即ち、約 7%〜約 20%の)変動を示し得る。更に、最大の随意収縮の範囲は、 表面筋電図が取られるのであるが、患者間で変動し得るためである。
[0011] さらに、 A型ボツリヌス毒素の投与が複合筋活動電位(CMAP)に及ぼす効果がィ ンビボラットモデルを用いて調べられている(非特許文献 7)。このラットモデルでは神 経毒素の投与量の違いによるラットへの影響が検討されている力 S、神経毒素の定量 ィ匕はなされていない。
特許文献 1:米国特許出願公開第 2003/0032891A1号公報
特許文献 2:特表 2005-509145号公報(WO2003/015829)
非特許文献 l : Jankovic, J.ら、 Curr. Opin. Neurol., 1994, 7: p.358-366
非特許文献 2 :梶龍兒ら、「ジストニアとボツリヌス治療」、診断と治療社、 2005年 非特許文献 3 : Schantzおよび Kautter、 J. Ass. of Anal. Chem. , 1978, 61 : .96-99 非特許文献 4 : Sesardicら、 Pharacol. Toxico. 1996, 78: p.283-288
非特許文献 5 : Pearceら、 Toxicol. App. Pharm. , 1994, 128: p.69- 77
非特許文献 6 : Dressierら、 Electromyographic quantification of the paralyzing effect o f botulinum toxin in the sternocleidomastoid muscle, Eur. Neurol. 2000; 43: p.13-16 非特許文献 7 : Cichon, Jr. , MDら、 Laryngoscope, 1995 Feb., 105(2): p.144-148 発明の開示
発明が解決しょうとする課題
[0012] 本発明の課題は、現在ボツリヌス毒素製剤の力価定量法として用いられているマウ
ス LD に代わる精度のよいボツリヌス毒素活性の定量方法を提供することである。巿
50
販されているボツリヌス毒素製剤が目的とする効果は、治療対象とする筋肉の弛緩作 用であるため、ボツリヌス毒素本来の量は LD でなぐ致死に至らない程度の筋弛緩
50
作用を定量的に評価することが望ましい。また、マウス LD では前述のようなバラつき
50
が問題とされていることから、精度のよい定量系であることが重要である。さらに、マウ ス LD は多くのマウスを使用することから、倫理面、動物愛護の面からも問題視され、
50
マウス LD に代わる新規なボツリヌス毒素製剤の定量方法が求められている。
50
課題を解決するための手段
[0013] 本発明者らは、ボツリヌス毒素などの神経毒素を非ヒト哺乳動物の後肢筋に投与し 、電気刺激による後肢筋の複合筋活動電位(CMAP)を筋電計でモニターし、特に 振幅データに着目し、神経毒素による振幅の低下の程度を解析することで神経毒素 の効力を精度よく定量ィ匕することを見出し、本発明を完成するに至った。
[0014] すなわち、本発明は、以下の操作ステップ:
(a)神経毒素を非ヒト哺乳動物の一方の後肢の後肢筋に投与し、
(b)当該非ヒト哺乳動物に電気刺激をかけ、
(c)神経毒素を投与した当該後肢筋および Zまたは神経毒素を投与してレ、なレ、他方 の後肢の後肢筋の収縮による複合筋活動電位 (CMAP)を筋電計で測定し、ついで
(d)操作ステップ (c)で測定して得られた複合筋活動電位 (CMAP)から振幅データ を取り出して振幅の低下の程度を解析することにより神経毒素による筋弛緩作用の 効力を定量化すること
力 構成されることを特徴とする神経毒素の効力の定量方法を提供するものである。
[0015] 上記操作ステップ (c)において、神経毒素を投与した後肢筋の収縮による複合筋 活動電位 (CMAP)を測定する場合は、神経毒素の効力として神経毒素の力価を定 量ィ匕すること力 Sできる。一方、上記操作ステップ(c)において、神経毒素を投与してい ない他方の後肢の筋肉の収縮による複合筋活動電位(CMAP)を測定する場合は、 神経毒素の効力として神経毒素の拡散反応を定量化することができる。さらに、上記 操作ステップ (c)において、神経毒素を投与した後肢筋および神経毒素を投与して レ、ない他方の後肢の筋肉の両者の収縮による複合筋活動電位(CMAP)を同時に
測定する場合は、神経毒素の効力として神経毒素の力価と拡散反応とを同時に定量 ィ匕すること力できる。
[0016] 上記操作ステップ (d)における当該振幅の低下の解析は CMAP解析ソフトウェア を用いて行う。
[0017] 本発明の定量方法に使用する CMAP解析ソフトウェアは、以下の手段:
( 1 )医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること により、種々のデータの解析を行う手段:
(i)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;または
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として機能する。ここで行う統計解析としては、回帰解析や口ジット変換などが挙げら れる力 これらに限られるものではない。
[0018] 本発明の神経毒素の定量方法によれば、従来の方法とは異なり、測定に際して非 ヒト哺乳動物を外科的に処置する必要がない。
[0019] 本発明の神経毒素の定量方法により定量できる神経毒素としては、神経毒素の活 性を有するものであれば特に限られるものではなレ、が、代表的な神経毒素としてはボ ッリヌス菌などのクロストリジゥム属に属する細菌由来の神経毒素が挙げられる。 本発明の神経毒素の定量方法はまた、 2以上の異なる神経毒素の効力を定量する ことにより、これら異なる神経毒素の効力の違いを定量的に比較するのに用いること あでさる。
[0020] 他の側面において、本発明は、以下の手段:
(1)医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること により、種々のデータの解析を行う手段:
(i)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;または
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として機能させるための、神経毒素による複合筋活動電位(CMAP)の振幅の低下 の程度を解析するためのプログラムを提供する。ここで行う統計解析としては、回帰 解析や口ジット変換などが挙げられる力 S、これらに限られるものではない。
[0021] さらに他の側面において、本発明は、以下の手段:
(1)医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること により、種々のデータの解析を行う手段:
(i)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;または
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として機能させるための、神経毒素による複合筋活動電位(CMAP)の振幅の低下 の程度を解析するためのプログラムを記録したコンピュータ読み取り可能な記録媒体 を提供する。ここで行う統計解析としては、回帰解析や口ジット変換などが挙げられる が、これらに限られるものではない。
[0022] 上述のように、筋電計はヒトの臨床では定量的な評価に用いるには相応しくないが 、実験動物を測定対照とする場合には、比較的個体差も少ないため、精度のよい結 果が得られる。さらに本方法では、ボツリヌス毒素を投与した非ヒト哺乳動物(ラット等 )について外科的処置、すなわち、切開や殺傷などを行わない。このため、本発明で は、連続的に飼育した同一の非ヒト哺乳動物を経時的に測定することで、長期的な 評価が可能であり、 日間差や個体差の影響も少なぐ精度のよい定量系となる。さら に、使用する非ヒト哺乳動物も少ないため、倫理面や動物愛護の面からも好ましい方 法である。
[0023] 本発明の定量方法は、以下の特徴を有する。
(1)より少数の非ヒト哺乳動物に対して、外科的処置を行わずに、筋電計を用いて神 経毒素による筋弛緩作用を測定し、特に振幅データに着目し、神経毒素による振幅 の低下の程度を解析することにより神経毒素の筋弛緩作用の強さを定量化する;
(2)神経毒素の力価を定量するのと同時または個別に拡散反応をも定量的に評価す る;
(3)従来のマウス LD では不可能であった少量の神経毒素を高感度に測定すること
50
ができ、かつ神経毒素の持続的な反応を連続的に定量的に評価する;
(4) (2)、(3)に記載の評価により、測定する神経毒素の種類の違いによる効力を定量 的に比較する;
(5) (1)から (4)を評価するに当たり生じる膨大な計測データを統計的手法を組み込ん だ独自の解析ソフトウェアを用いることにより、簡便かつ迅速に神経毒素の力価と拡 散反応を同時に測定し、解析することによる定量化や定量的な比較を可能とする。
発明の効果
[0024] 本発明は、ボツリヌス毒素を投与した非ヒト哺乳動物(ラット等)について外科的処 置、すなわち、切開や殺傷などを行わず、連続的に飼育した同一の非ヒト哺乳動物 を経時的に測定することで、長期的な評価が可能であり、 日間差や個体差の影響も 少なぐ精度のよい定量系である。さらに、使用する非ヒト哺乳動物も少ないため、倫 理面ゃ動物愛護の面からも好ましい方法である。本発明を用いることで、より小数の 非ヒト哺乳動物に対して、神経毒素の効力(力価および拡散反応)の定量化、神経毒 素の力価および拡散反応の同時測定、神経毒素とプロジェ二ター毒素や各血清型 神経毒素などの神経毒素の種類による神経毒素効力の定量的な比較が可能となる
[0025] このアツセィ系を使用することにより臨床における障害部位以外の筋への神経毒素 の波及(拡散反応)を避ける為の安全な投与量を算定することが出来、さらに、このァ ッセィ系を活用することにより筋緊張亢進症の患者に必要な神経毒素量を算定する ことが出来うると考えられる。
図面の簡単な説明
[0026] [図 1]図 1は、本発明の定量方法において神経毒素を投与する非ヒト哺乳動物(ラット )の投与部位および複合筋活動電位 (CMAP)の測定部位を示す。 a:刺激電極( + )、 b:刺激電極(一)、 c:記録電極(一)および投与部位、 d:記録電極( + )、 e:アース 電極、 f:拡散記録電極(一)、 g:拡散記録電極( + )
[0027] [図 2]図 2は、様々な濃度の神経毒素を左後肢筋に投与した際の左後肢筋の CMAP 振幅と投与後日数のグラフを示す。横軸は投与後日数(day);縦軸は CMAP振幅( mA)。
[0028] [図 3]図 3は、様々な濃度の神経毒素を左後肢筋に投与した際の右後肢筋の CMAP 振幅と投与後日数のグラフ (神経毒素非投与側:拡散反応の定量化)を示す。横軸 は投与後日数(day);縦軸は CMAP (mA)振幅。
[0029] [図 4]図 4は、左後肢筋 CMAP振幅の直線回帰による検量線:神経毒素の定量化(1 日後)を示す。横軸は投与量 (pg);縦軸は CMAP振幅 (mA)。
[0030] [図 5]図 5は、左後肢筋 CMAP振幅の直線回帰による検量線:神経毒素の定量化 (4
日後)を示す。横軸は投与量 (pg);縦軸は CMAP振幅 (mA)。
[0031] [図 6]図 6は、右後肢筋 CMAP振幅の直線回帰による検量線:拡散反応の定量化 (4
日後)を示す。横軸は投与量 (pg);縦軸は CMAP振幅 (mA)。
[0032] [図 7]図 7は、 Logit解析法を用いた左後肢筋 CMAP振幅の広い濃度範囲の検量線(
1日後)を示す。 Xは投与量 (pg); Yは CMAP振幅(mA)。
[0033] [図 8]図 8は、 Logit解析法を用いた左後肢筋 CMAPの広い濃度範囲の検量線 (4日 後)を示す。 Xは投与量 (pg); Yは CMAP振幅(mA)。
[0034] [図 9]図 9は、 NTXと神経毒素複合体 (BOTOX)の定量的な効力比較を示す。横軸 は投与後日数(day);縦軸は CMAP (mA)振幅。
[0035] [図 10]図 10は、 4種類の血清型ボツリヌス神経毒素複合体の効力比較を示す。横軸 は投与後日数(day);縦軸は CMAP (mA)振幅。
発明を実施するための最良の形態
[0036] 本発明において用いられる「効力」とは、ある程度の生理的または化学的な作用を 引き起こすための、ある化学薬品(例えば神経毒素)の量の指標である。例えば、ボ ッリヌス毒素の効力は、標的組織からのアセチルコリン放出を抑制する程度または期 間を意味する。あるいは、ボツリヌス毒素の効力は、神経毒素のある用量がある筋収 縮に変化をもたらす程度を意味する。
[0037] 本発明において用いられる「力価」とは、 目的とする望ましい効力を数値化したもの を意味する。
[0038] 本発明において用いられる「拡散反応」とは、臨床における障害部位以外の筋への 神経毒素の波及を数値化したものを意味する。
[0039] 本発明における神経毒素の効力(力価および Zまたは拡散反応)の定量は、電気 刺激による後肢筋、望ましくは大腿四頭筋の複合筋活動電位 (CMAP)を筋電計で モニターすることによって行うことができる。ここで、筋電計でモニターされた筋電図パ ラメータの中でも、特に振幅データに着目し、神経毒素による振幅の低下を解析する ことで神経毒素の効力を精度よく定量ィヒできる。
[0040] 広い実施形態では、本発明は、非ヒト哺乳動物の筋肉へ神経毒素を投与し、注入 された筋肉の筋弛緩作用から神経毒素の効力を決定する方法を包含する。非ヒト哺
乳動物の筋肉へ神経毒素を投与し、弛緩された筋肉の複合筋活動電位(CMAP)を 筋電計でモニターすることで、神経毒素の効果をその効力に応じて規定することがで きる。 1つの実施形態では、本発明は、筋肉上の神経毒素の効力を決定する方法を 提供する。ここで用いる「非ヒト哺乳動物」には例えば、サル、ラット、ゥサギ、モルモッ ト、ハムスター、ネコ、マウスおよびィヌが含まれる。
[0041] 本発明の神経毒素の定量方法により定量できる神経毒素としては、神経毒素の活 性を有するものであれば特に限られるものではなレ、が、クロストリジゥム ·ベラティ、クロ ストリジゥム 'ブチリカム、クロストリジゥム ·テタニおよびクロストリジゥム.ボッリナムなど のクロストリジゥム属の細菌由来の神経毒素から選ばれてよレ、。クロストリジゥム 'ボッリ ナムに由来するボツリヌス毒素は、血清型 A、 B、 C、 D、 E、 Fおよび G、並びにそれら の混合物よりなる群から選ばれてよぐ代表的なものは A型ボツリヌス毒素である。ま た、これらの神経毒素は、天然由来の菌が産生するタンパク質に限らず、遺伝子組 換え技術により作製される組換えタンパク質やキメラタンパク質などでもよい。
[0042] ボツリヌス毒素は、定法(Sakaguchi, G., Ohishi, I.および Kozaki, S., 1981, BIOCHE MICAL ASPECTS of botulism: Purification and oral toxicities of Clostridium botulin urn progenitor toxins, pp.21-34, Lewis, G. E. (編)、アカデミックプレス、ニューヨーク )に従い、ボツリヌス菌の培養上清から精製することにより得られる。また、各種ボッリ ヌス毒素は、 Allergan Inc. (アーヴィン、カリフォルニア)、 Ipsen Beaufour (フランス)、 E lan Pnarmaceuticals、アイノレラント)、 List Biological Laboratories, Inc. (カンべノレ、 フリ フオノレニ/ ); the Centre for Applied Microり lology and Research (ホ1 ~~トンタウン、英 国);和光純薬(大阪、 日本)、 Metabiologics (マジソン、ウィスコンシン)並びに Sigma Chemicals (セントルイス、ミズーリ)から市販されてレ、るものが入手可能である。
[0043] 筋電計は、ニコレ一'バイオメディカル社(ニコレ一バイキングタエストシリーズ)など 力 医療診断用機器として市販されてレ、るものを用いることができる。筋電計は筋電 図検查(ElectroMyoGraphy : EMG)を行うために使用される医療用検查機器である。 筋電図検查は、神経から筋にかけての疾患の有無を調べる生理学的検査のひとつ である。一般に、刺激電極と、測定電極(関電極)、不関電極 (基準電位用、いわゆる アース)を持ち、電気刺激装置と、オペアンプ等による信号増幅器、表示、記録部を
持つ。古い機械は、移動するロール紙の上をペンが左右に動くアナログ式であるが、
20世紀末からは、 ADコンバータを通し、得られた信号を電子計算機を用い、表示処 理だけではなぐ解析機能を持つ装置が主流となって来ている。一般的な使用方法 としては、対象とする筋の出来るだけ近くの皮膚表面に、電極を装着し、 その筋を支 配する神経の出来るだけ近くに、 2つの刺激電極を装着する。刺激電極に電気刺激 (パルス電流)を流し、筋の収縮が起こると、筋電図が得られる。筋電図を読み、反応 の大きさ、刺激からの遅延時間(運動神経伝導速度)、反復刺激に対する反応等を 読み取る。これら様々な検查結果が得られる。
[0044] 本発明は、神経毒素の効力(力価および Zまたは拡散反応)を定量的に測定する ために、個体差の少ない実験哺乳動物に対して外科的な処理をすることなぐ筋電 計を用いることで、神経毒素の効力を精度よく定量ィ匕するものである。また、筋肉の 筋弛緩作用は、神経毒素の用量とともに変化する。そのため、神経毒素の効力を決 定するために用量反応曲線を構築してよい。上記のように、この方法によって決定さ れるような効力は、従来の LD より正確で、かつより信頼できると考えられる。
50
[0045] ここでは、ラットを用いた場合の例を示すが、使用する動物種および神経毒素投与 •測定部位はこれに限られるものではない。まず、ラットの左後肢筋に神経毒素を投 与する。後肢の筋活動電位は、ラットの腰椎付近をクリップ電極で挟んで電気刺激を 行レ、、左右それぞれの後肢筋について記録電極を用いて複合筋活動電位(CMAP )を記録する。神経毒素投与部位および CMAP測定部位を図 1に示す。筋肉へ刺激 した際にこのように測定した場合、左後肢筋の CMAP振幅は投与毒素の「力価」を、 右後肢筋の CMAP振幅はその「拡散反応」を示す。すなわち、左後肢筋に神経毒素 を注射していることから、左後肢筋の CMAP振幅は投与した筋肉での筋弛緩効果を 表し、神経毒素の効果が高いほど、得られる CMAP振幅の値は小さくなる。一方、右 後肢筋の CMAP振幅は投与した側の後肢ではないため、神経毒素を投与した筋以 外へ神経毒素が拡散し、筋弛緩効果を表したことを表す。この場合、神経毒素の拡 散反応が高いほど、得られる CMAP振幅の値は小さくなる。 CMAP振幅の単位は、 電流または電圧などの数値パラメータが利用可能である。
[0046] 投与量を変化させてラットの左後肢筋に神経毒素を投与し、筋電計を用いて CMA
Pデータを得ると、「力価」および「拡散反応」について、投与量依存的な CMAPデー タが得られる。また、神経毒素投与後、経時的に CMAPを測定していくことで、 日数 に応じた神経毒素の効果を示す経時的な CMAPデータを得ることができる。
[0047] ある一定日数での投与量依存的なデータを直線回帰することで、投与した神経毒 素の「力価」および「拡散反応」を定量ィ匕することができる。また、同種の神経毒素で あれば、解析により得られた式をもとにして、未知の神経毒素の効力を算出すること が可能である。さらに、神経毒素投与後、経時的に CMAPを測定していき、得られた CMAPデータをグラフ化'解析することで、最大反応を示す日数、投与前の状態に 回復する日数、 50%の回復率を示す日数、 50%の減少率を示す日数を算出する。 ボツリヌス毒素は 7種の血清型により、効力および作用持続期間が異なることが知ら れているが、これらのパラメータから定量的に神経毒素の効力比較を行うこともできる
[0048] 解析をするにあたっては、ソフトウェアが必要となる。従来より医療診断用機器とし て市販されている筋電計には医療診断用のソフトウェアが付属しているが、これは神 経毒素を定量ィ匕するには不十分なものである。そこで、筋電計でモニターされた筋電 図パラメータの中でも、特に振幅データの数値を、 自動的に数値化し、平均化するた めに必要な膨大なデータを統計的に処理する解析ソフトウェアが必要となる。このソ フトウェアに統計処理やグラフ、数式化する機能を持たせることにより、簡便かつ迅速 に解析処理を行うことが可能である。
[0049] 本発明に用いる CMAP解析ソフトは、得られた膨大なデータの処理、統計解析、数 式化、グラフ化、図式化の機能を持ち合わせた構成からなっており、これにより、定量 化や経時的なグラフ化、異なるデータの比較などが可能となる。
[0050] 本発明の定量方法に使用する CMAP解析ソフトウェアは、以下の手段:
(1)医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること
により、種々のデータの解析を行う手段:
(1)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として、機能する。
[0051] (ι) 香十より した tデータから り す
医療診断用筋電計より取得した筋電計データを解析するにあたり、筋電波形が減 衰振動の式に当てはまる最大振幅等を取り出す。
[0052] (2)多数動物の CMAPデータを容易に統言+解析で るよう編隼保存する手段
一連の実験では多数動物の CMAPデータが膨大に得られるため、個別のデータを まとめ統計解析できるよう編集保存する。
[0053] (3)多数動物を用いた神経毒素量の違レ、を最もよ〈反映する CMAP振幅データを統 言 +学的手法で解析しデータの妥当件を確保する手段
(2)の個別のデータの最大値、最小値、平均、標準偏差などを統計的手法で解析 し、データが妥当かどうか判別する。
[0054] さらに、本発明に用いられる CMAP解析ソフトは、 (3)でまとめられたデータを用い て、以下のいずれかの手段と組み合わせることにより、種々のデータの解析が可能と なる。
[0055] (i)ネ申 の禾重 IIや の ぅネ Φ の!^寺 》 香 + に ィ而する丰 段
同一毒素の効力の投与量の違う場合の違いや異なる毒素間での同一用量での反 応性の経時反応を統計学的に比較、評価する。
[0056] (ii) 本の 力 量化する 段
同一毒素の用量反応性の違いを数式化し、定量ィ匕することができる。
[0057] (iii)神経毒素の経時反応を推測する手段
この神経毒素の経時反応の式として
y = a― b(log(x)) + C(log(x)log(x))
(この式は物理現象等を表す式の中の 1つ)に適合することを見出した。この公式より 、神経毒素反応が 50%減少する時期、 50%回復する時期、神経毒素反応が最大に なる時期、 100%回復する時期等を予測することができる。
[0058] (iv) (本の 力の。 する
製剤の長期保存安定性を同一条件でデータ取得し、図形表示、的確に管理し評 価すること力 Sできる。
[0059] (V)ネ中 の禾重 ¾gや ffl の;韋ぅネ中 の御寺 》 f 白勺に する
この神経毒素の経時反応の実験式 y = a + b(log(x)) + C(log(X)log(x))を算出し、得ら れた式を統計学的に比較することができる。
[0060] 神経毒素による複合筋活動電位 (CMAP)の振幅の低下の程度を解析するための 上記プログラムを記録したコンピュータ読み取り可能な記録媒体としては、フロッピー ディスク、 CD-ROM、 DVDなど通常の記録媒体が使用できる。
実施例
[0061] 本発明を下記実施例により更に詳しく説明するが、本発明はこれに限られるもので はない。
[調製例 1]
ボツリヌスネ申 の
(1)ボツリヌス A型 NTXの精製
Sakaguchi, G" Ohishi, I.,および Kozaki, S., 1981, BIOCHEMICAL ASPECTS of bo tulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins, pp 21 -34, Lewis, G. E. (編)、アカデミックプレス、ニューヨークに記載された方法に従 つて、ボツリヌス A型 M毒素を精製した。
[0062] ボツリヌス M毒素を 10mM酢酸緩衝液(pH7.5)に対して透析した後、同緩衝液で平 衡化した DEAEセファロースカラムに吸着させ、同緩衝液の 0〜0.3M NaCl濃度勾配 で溶出し、神経毒素と無毒蛋白質に分離した。得られた神経毒素(NTX)は YM-30メ
ンブラン (ミリポア社製)で lmg/mLまで濃縮し、 10mM酢酸緩衝液 (pH7.5)に対して 透析した後、使用時まで 80°Cに保存した。
[0063] (2) 3種類の血清型ボツリヌス神経毒素の精製
Sakaguchi, G" Ohishi, I.,および Kozaki, S., 1981, BIOCHEMICAL ASPECTS of bo tulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins, pp 21 - 34, Lewis, G. E. (編)、アカデミックプレス、ニューヨークに記載された方法に従 つて、ボツリヌスお E、 F型神経毒素を精製した。得られた神経毒素は YM-30メンブラ ン (ミリポア社製)で lmgZmLまで濃縮し、 50mM酢酸緩衝液 (pH6.0)に対して透析し た後、使用時まで— 80°Cに保存した。
[0064] [実施例 1]
ラット 用いたボツリヌス A型ネ申 の?農 白勺なネ φ ィ云幸の 制効
籠
NTXは、調製例 1 (1)において調製した A型 NTXを使用し (マウスに腹腔内投与し たときの 1LD では 1単位は約 25pgであった)、一群の神経毒素を標準的方法によつ て、 750、 250、 75、 25、 7.5、 2.5、 0.75、 0.25、 0 (毒素なし) pg/0.1mLとなるように、 0.5w /v%血清アルブミンを含む無菌生理食塩水で調製した。 9つの用量の O. lmLを、各 SD ラットの左後肢筋に投与し、後肢における複合筋活動電位 (CMAP)を測定した。後 肢の筋活動電位は、ラットの腰椎付近をクリップ電極で挟んで電気刺激を行い、左右 それぞれの後肢筋 (大腿四頭筋)につレ、て記録電極を用いて複合筋活動電位 (CM AP)を記録した。神経毒素投与部位および CMAP測定部位を図 1に示す。なお、筋 電計は、ニコレ一バイキングタエストシリーズ (ニコレ一.バイオメディカル社製)を使用 し、結果を「CMAP解析ソフトウェア」により数値化し、グラフ化した。神経毒素投与 量と左後肢および右後肢における CMAP振幅の結果をそれぞれ図 2、図 3に示す。
[0065] 数値化したデータを「CMAP解析ソフトウェア」により回帰解析した。左後肢筋の C MAP振幅と神経毒素投与量を直線回帰して得られた検量線、投与 1日後の結果を 図 4に、 4日後の結果を図 5に示す。神経毒素投与後のいずれの日数においても直 線でのプロットが可能であり、これを検量線として用いることで、未知サンプルの CM AP振幅から神経毒素量を決定した。また、右後肢筋の CMAP結果と神経毒素投与
量を直線回帰した検量線、投与 4日後の結果を図 6に示す。この結果、神経毒素投 与と反対側の右後肢筋の CMAP振幅についても直線でのプロットが可能であり、こ れを検量線として用いることで、神経毒素量が未知なサンプノレの拡散反応について も CMAP振幅から神経毒素量を決定できた。
[0066] さらに、数値化したデータを「CMAP解析ソフトウェア」により Logit変換した。投与 1
日後の結果を図 7に、 4日後の結果を図 8に示す。左後肢筋の CMAP振幅と神経毒 素投与量を Logit解析すると、回帰解析よりも広い神経毒素投与量の範囲での検量 線の作成が得られた。これを検量線として用いることで、未知サンプルの CMAP振幅 力 神経毒素量を決定した。
[0067] 本発明方法を用いることにより、従来のマウス LD では不可能であった数単位以下 のボツリヌス神経毒素の効力の差異を定量することができた。これより、本発明の方 法を用いれば、マウス LD よりも 100倍高感度で神経毒素の効力を検出することが可 能となる。
[0068] [実施例 2]
NTX ネ申 ネ复 ί本の な¾力比,
神経毒素は、調製例 1 (1)において調製した Α型 ΝΤΧを使用し、神経毒素複合体 は Allergan, Inc.社製 BOTOX (登録商標)を使用した。各神経毒素の単位数は、マウ スに腹腔内投与したときの 1LD を 1単位とし、マウス 1LD /O. lmLとなるように、 0.5w/ v%血清アルブミンを含む無菌生理食塩水で調製した。両神経毒素 O. lmLを、各 SDラ ットの左後肢筋に投与し、後肢における複合筋活動電位 (CMAP)を測定した。後肢 の筋活動電位は、ラットの腰椎付近をクリップ電極で挟んで電気刺激を行い、左後肢 筋 (大腿四頭筋)につレ、て記録電極を用いて複合筋活動電位 (CMAP)を記録した。 神経毒素投与部位および CMAP測定部位を図 1に示す。なお、筋電計は、ニコレ一 バイキングタエストシリーズ (ニコレ一'バイオメディカル社製)を使用し、結果を「CM AP解析ソフトウェア」により数値化し、両神経毒素の左後肢筋の CMAP結果を y=a- bLog(x)+c(Log(x)Log(x》なる式で数式化し、
最大反応を示す日数、投与前の状態に回復する日数、 50%の回復率を示す日数、 50 %の減少率を示す日数を算出することで、両神経毒素の定量的な効力比較を行った
(図 9)。その結果、両神経毒素の効力を比較すると、表 1に示したとおり、投与前の 状態に回復する日数が長いことから、 NTXの方が神経毒素複合体よりも持続性に優 れ効力が強いことが明らかとなった。
[表 1]
[0070] [実施例 3]
4種類の血清型ボツリヌス神経毒素の効力比較
Α型神経毒素複合体は Allergan, Inc.社製 BOTOX (登録商標)、調製例 1 (2)にお いて調製した 3種類の血清型ボツリヌス神経毒素(B、 E、 F)を使用した。 4種類の神 経毒素の単位数は、マウスに腹腔内投与したときの 1LD を 1単位とし、一群の神経 毒素を標準的方法によって、 125、 25、 5、 1、 0.2、 0.1、 0.04、 0 (神経毒素なし) LD /0. lmLとなるように、 0.5w/v%血清アルブミンを含む無菌生理食塩水で調製した。 8つの 用量の O.lmLを、各 SDラットの左後肢筋に投与し、後肢における複合筋活動電位(C MAP)を測定した。後肢の筋活動電位は、ラットの腰椎付近をクリップ電極で挟んで 電気刺激を行い、左後肢筋 (大腿四頭筋)について記録電極を用いて複合筋活動 電位 (CMAP)を記録した。神経毒素投与部位および CMAP測定部位を図 1に示す 。なお、筋電計は、ニコレ一バイキングタエストシリーズ(ニコレ一'バイオメディカル社 製)を使用し、結果を「CMAP解析ソフトウェア」により数値化した。ボツリヌス神経毒 素の血清型によって、本測定系で測定できる神経毒素単位の範囲に差があったもの の、用量反応性が確認できた。
[0071] ボツリヌス神経毒素の血清型による筋弛緩作用の違いを示すために、 Aは 1LD 、E
、Fは 5LD 、Bは 125LD を投与した際の結果を「CMAP解析ソフトウェア」によりダラ フ化した(図 10)。さらに、各神経毒素の左後肢筋の CMAP結果を y=a_bLog(x)+c(L og(X)L0g(x))なる式で数式化し、最大反応を示す日数、投与前の状態に回復する日 数、 50%の回復率を示す日数、 50%の減少率を示す日数を算出した。その結果、
表 2に示したとおり、 4種類の神経毒素の効力は、 A型が最も持続性に優れ効力が強 ぐその後、 E、 F、 Bと続くことが明らかになった。本発明方法を用いることにより、従 来のマウス LD では不可能であった数単位以下のボツリヌス神経毒素の効力の差異 を定量することができた。これより、本発明の方法を用いれば、マウス LD よりも 100倍 高感度で神経毒素の効力を検出することが可能となる。
[表 2]
表 2
産業上の利用可能性
[0073] 本発明の神経毒素の定量方法は、
(1)より少数の非ヒト哺乳動物に対して、外科的処置を行わずに、筋電計を用いて神 経毒素による筋弛緩作用を測定し、特に振幅データに着目し、神経毒素による振幅 の低下の程度を解析することにより神経毒素の筋弛緩作用の強さを定量化する;
(2)神経毒素の力価を定量するのと同時または個別に拡散反応をも定量的に評価す る;
(3)従来のマウス LD50では不可能であった少量の神経毒素を高感度に測定すること ができ、かつ神経毒素の持続的な反応を連続的に定量的に評価する;
(4) (2)、(3)に記載の評価により、測定する神経毒素の種類の違いによる効力を定量 的に比較する;
(5) (1)から (4)を評価するに当たり生じる膨大な計測データを統計的手法を組み込ん だ独自の解析ソフトウェアを用いることにより、簡便かつ迅速に神経毒素の力価と拡 散反応を同時に測定し、解析による定量ィヒゃ定量的な比較を可能とするものである
[0074] それゆえ、本発明の神経毒素の定量方法を使用することにより、臨床における障害 部位以外の筋への神経毒素の波及(拡散反応)を避ける為の安全な投与量を算定
することができ、さらに、筋緊張亢進症の患者に必要な神経毒素量を算定することが できるようになると考えられる。
Claims
[1] 以下の操作ステップ:
(a)神経毒素を非ヒト哺乳動物の一方の後肢の後肢筋に投与し、
(b)当該非ヒト哺乳動物に電気刺激をかけ、
(c)神経毒素を投与した当該後肢筋および Zまたは神経毒素を投与してレ、なレ、他方 の後肢の後肢筋の収縮による複合筋活動電位 (CMAP)を筋電計で測定し、ついで
(d)操作ステップ (c)で測定して得られた複合筋活動電位 (CMAP)から振幅データ を取り出して振幅の低下の程度を解析することにより神経毒素による筋弛緩作用の 効力を定量化すること
から構成されることを特徴とする神経毒素の効力の定量方法。
[2] 操作ステップ (c)において、神経毒素を投与した後肢筋の収縮による複合筋活動 電位 (CMAP)を測定する、請求項 1に記載の定量方法。
[3] 当該効力が神経毒素の力価である請求項 1または 2に記載の定量方法。
[4] 操作ステップ (c)におレ、て、神経毒素を投与してレ、なレ、他方の後肢の後肢筋の収 縮による複合筋活動電位 (CMAP)を測定する、請求項 1に記載の定量方法。
[5] 当該効力が神経毒素の拡散反応である請求項 1または 4に記載の定量方法。
[6] 操作ステップ (c)におレ、て、神経毒素を投与した後肢筋および神経毒素を投与して レ、ない他方の後肢の後肢筋の両者の収縮による複合筋活動電位(CMAP)を同時 に測定することにより、神経毒素の力価と拡散反応とを同時に定量化する、請求項 1 から 5のいずれかに記載の定量方法。
[7] 上記操作ステップ (d)における神経毒素による複合筋活動電位 (CMAP)の振幅 の低下の程度を解析することにより行う、請求項 1から 6のいずれかに記載の定量方 法。
[8] 操作ステップ(d)を CMAP解析ソフトウェアを用いて行う、請求項 1から 7のいずれ かに記載の定量方法。
[9] 当該 CMAP解析ソフトウェアが、
(1)医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること により、種々のデータの解析を行う手段:
(i)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;または
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として機能するものである、請求項 8に記載の定量方法。
[10] 当該統計解析を回帰解析または口ジット変換により行う、請求項 9に記載の定量方 法。
[11] 当該測定において非ヒト哺乳動物に対して外科的処置を必要としない請求項 1から
10のいずれかに記載の定量方法。
[12] 神経毒素が、クロストリジゥム属に属する細菌の神経毒素、魚貝類が産生する神経 毒素、または蛇毒由来の神経毒素より選択される請求項 1から 11のいずれかに記載 の定量方法。
[13] 神経毒素が、クロストリジゥム属に属する細菌であり、クロストリジゥム ·ベラティ、クロ ストリジゥム 'ブチリカム、クロストリジゥム ·ボッリナム、およびクロストリジゥム 'テタ二等 より選択される請求項 12に記載の定量方法。
[14] 神経毒素が、クロストリジゥム 'ボッリナム由来の神経毒素である請求項 13に記載の 定量方法。
[15] 2以上の異なる神経毒素の効力の違いを定量的に比較する、請求項 1から 14のい ずれかに記載の定量方法。
[16] 以下の手段:
(1)医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること により、種々のデータの解析を行う手段:
(i)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;または
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として機能させるための、神経毒素による複合筋活動電位(CMAP)の振幅の低下 の程度を解析するためのプログラム。
[17] 当該統計解析を回帰解析または口ジット変換により行う、請求項 16に記載のプログ ラム。
[18] 以下の手段:
(1)医療診断用筋電計より取得した筋電計データから最大振幅等を取り出す手段、
(2)多数動物の CMAPデータを容易に統計解析できるよう編集保存する手段、
(3)多数動物を用いた神経毒素量の違いを最もよく反映する CMAP振幅データを統 計学的手法で解析し、データの妥当性を確保する手段、および
(4) (3)でまとめられたデータを用いて、以下のいずれかの手段と組み合わせること により、種々のデータの解析を行う手段:
(i)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に評価する手 段;
(ii)検体の効力を定量化する手段;
(iii)神経毒素の経時反応を推測する手段;
(iv)検体の効力の品質を管理する手段;または
(V)神経毒素の種類や用量の違う神経毒素の経時反応を統計学的に比較する手 段
として機能させるための、神経毒素による複合筋活動電位(CMAP)の振幅の低下 の程度を解析するためのプログラムを記録したコンピュータ読み取り可能な記録媒体 当該統計解析を回帰解析または口ジット変換により行う、請求項 18に記載の記録 媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/309040 WO2007125604A1 (ja) | 2006-04-28 | 2006-04-28 | 神経毒素の定量方法 |
US12/298,908 US8949033B2 (en) | 2006-04-28 | 2006-04-28 | Method for quantification of neurotoxin |
JP2008513058A JP4979690B2 (ja) | 2006-04-28 | 2006-04-28 | 神経毒素の定量方法 |
EP06745899A EP2015065B1 (en) | 2006-04-28 | 2006-04-28 | Method of quantifying neurotoxin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/309040 WO2007125604A1 (ja) | 2006-04-28 | 2006-04-28 | 神経毒素の定量方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007125604A1 true WO2007125604A1 (ja) | 2007-11-08 |
Family
ID=38655150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/309040 WO2007125604A1 (ja) | 2006-04-28 | 2006-04-28 | 神経毒素の定量方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8949033B2 (ja) |
EP (1) | EP2015065B1 (ja) |
JP (1) | JP4979690B2 (ja) |
WO (1) | WO2007125604A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009025290A1 (ja) | 2007-08-20 | 2009-02-26 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | 神経毒素中和抗体価の定量方法 |
WO2009123174A1 (ja) | 2008-03-31 | 2009-10-08 | 財団法人化学及血清療法研究所 | A2型ボツリヌス神経毒素製剤 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2246426A4 (en) * | 2008-01-29 | 2011-08-10 | Inst Antibodies Co Ltd | COMPOSITION FOR NEUTRALIZING BOTULINUM TOXIN TYPE A AND ANTI-TOXIN BOTULINUM HUMAN ANTIBODY TYPE A |
AU2010321219B2 (en) | 2009-11-18 | 2015-04-30 | Merz Pharma Gmbh & Co. Kgaa | Assay for quantifying clostridial neurotoxin |
KR101134146B1 (ko) | 2010-05-31 | 2012-04-19 | 메덱스젠 주식회사 | 국소 근마비 효과를 갖는 비확산형 보툴리눔 독소와 그의 정제방법 |
EP2399601A1 (en) | 2010-06-24 | 2011-12-28 | Merz Pharma GmbH & Co. KGaA | Botulinum toxin therapy |
KR101640694B1 (ko) | 2011-09-29 | 2016-07-18 | 셀스냅, 엘엘씨 | 독소생산능 시험용 조성물 및 방법 |
MX360513B (es) | 2013-06-28 | 2018-11-07 | Merz Pharma Gmbh & Co Kgaa | Medios y metodos para la determinacion de la actividad biologica de polipeptidos de neurotoxina en celulas. |
US9603526B2 (en) * | 2013-11-01 | 2017-03-28 | CMAP Technology, LLC | Systems and methods for compound motor action potential monitoring with neuromodulation of the pelvis and other body regions |
US11752335B1 (en) | 2018-02-07 | 2023-09-12 | Mary Kay Inc. | Method for determining facial muscle responses |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030032891A1 (en) | 2001-07-31 | 2003-02-13 | Allergan, Inc. | Pinna reflex assay |
WO2003015829A2 (en) | 2001-08-03 | 2003-02-27 | Allergan, Inc. | Methods of determining the effects of toxins |
JP2004223092A (ja) * | 2003-01-24 | 2004-08-12 | Yasuo Kawamura | 神経筋機能解析装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69120221T2 (de) * | 1990-07-03 | 1996-11-21 | Mitsui Petrochemical Ind | Pyrimidin-verbindung und ihr pharmazeutisch annehmbares salz |
US6495654B1 (en) * | 2001-08-30 | 2002-12-17 | General Elecrric Company | Process for preparing polycarbonate |
AU2002363447A1 (en) * | 2001-11-06 | 2003-05-19 | Neurometrix, Inc. | Neuromuscular disease detection using disease specific evoked neuromuscular response analysis |
JPWO2003082315A1 (ja) * | 2002-03-29 | 2005-07-28 | 財団法人化学及血清療法研究所 | 筋緊張亢進疾患治療剤 |
JP2004016658A (ja) * | 2002-06-19 | 2004-01-22 | Ntt Docomo Inc | 生体信号測定可能な携帯型端末および測定方法 |
US20040260358A1 (en) * | 2003-06-17 | 2004-12-23 | Robin Vaughan | Triggered electromyographic test device and methods of use thereof |
EP1700121A4 (en) | 2003-12-23 | 2008-09-03 | Rinat Neuroscience Corp | AGONIST ANTI-TRKC ANTIBODIES AND METHODS OF USE |
-
2006
- 2006-04-28 US US12/298,908 patent/US8949033B2/en active Active
- 2006-04-28 EP EP06745899A patent/EP2015065B1/en not_active Revoked
- 2006-04-28 WO PCT/JP2006/309040 patent/WO2007125604A1/ja active Application Filing
- 2006-04-28 JP JP2008513058A patent/JP4979690B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030032891A1 (en) | 2001-07-31 | 2003-02-13 | Allergan, Inc. | Pinna reflex assay |
WO2003015829A2 (en) | 2001-08-03 | 2003-02-27 | Allergan, Inc. | Methods of determining the effects of toxins |
JP2005509145A (ja) | 2001-08-03 | 2005-04-07 | アラーガン、インコーポレイテッド | 毒素効果の決定方法 |
JP2004223092A (ja) * | 2003-01-24 | 2004-08-12 | Yasuo Kawamura | 神経筋機能解析装置 |
Non-Patent Citations (10)
Title |
---|
CICHON, JR., MD ET AL., LARYNGOSCOPE, vol. 5, no. 2, 10 February 1995 (1995-02-10), pages 144 - 148 |
DRESSLER ET AL.: "Electromyographic quantification of the paralyzing effect of botulinum toxin in the stemocleidomastoid muscle", EUR. NEUROL., vol. 43, 2000, pages 13 - 16 |
JANKOVIC, J. ET AL., CURR. OPIN. NEUROL., vol. 7, 1994, pages 358 - 366 |
PEARCE ET AL., TOXICOL. APP. PHARM., vol. 128, 1994, pages 69 - 77 |
RYUJI KAJI ET AL.: "Dystonia and botulinum therapy", SHINDAN-TO-CHIRYOSHA, 2005 |
SAKAGUCHI, G.; OHISHI, I.; KOZAKI, S.: "BIOCHEMICAL ASPECTS of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins", 1981, ACADEMIC PRESS, pages: 21 - 34 |
SAKAGUCHI, G.; OHISHI, I; KOZAKI, S.: "BIOCHEMICAL ASPECT S of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins", 1981, ACADEMIC PRESS, pages: 21 - 34 |
SCHANTZ; KAUTTER, J. ASS. OF ANAL. CHEM., vol. 61, 1978, pages 96 - 99 |
See also references of EP2015065A4 * |
SESARDIC ET AL., PHARACOL. TOXICO., vol. 78, 1996, pages 283 - 288 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009025290A1 (ja) | 2007-08-20 | 2009-02-26 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | 神経毒素中和抗体価の定量方法 |
WO2009123174A1 (ja) | 2008-03-31 | 2009-10-08 | 財団法人化学及血清療法研究所 | A2型ボツリヌス神経毒素製剤 |
Also Published As
Publication number | Publication date |
---|---|
EP2015065A4 (en) | 2009-05-06 |
JP4979690B2 (ja) | 2012-07-18 |
US8949033B2 (en) | 2015-02-03 |
EP2015065A1 (en) | 2009-01-14 |
JPWO2007125604A1 (ja) | 2009-09-10 |
EP2015065B1 (en) | 2011-10-05 |
US20090297452A1 (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4979690B2 (ja) | 神経毒素の定量方法 | |
US10350191B2 (en) | Methods to treat neurodegenerative diseases | |
Brodsky et al. | Diffusion of botulinum toxins | |
Truman et al. | The armadillo as a model for peripheral neuropathy in leprosy | |
Le Merrer et al. | Deletion of the δ opioid receptor gene impairs place conditioning but preserves morphine reinforcement | |
US20070140969A1 (en) | Method for comparing botulinum neurotoxins | |
Torii et al. | Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins | |
Eleopra et al. | Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting | |
Morrey et al. | Zika virus infection causes temporary paralysis in adult mice with motor neuron synaptic retraction and evidence for proximal peripheral neuropathy | |
JP4214053B2 (ja) | 毒素効果の決定方法 | |
Cho et al. | Nasal allergen challenge (NAC): Practical aspects and applications from an EU/US perspective—a Work Group Report of the AAAAI Rhinitis, Rhinosinusitis and Ocular Allergy Committee | |
Moldovan et al. | Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat | |
Arnold et al. | Nerve excitability in the rat forelimb: a technique to improve translational utility | |
US7115399B2 (en) | Pinna reflex assay | |
LaVinka et al. | Extreme tolerance to ammonia fumes in African naked mole-rats: animals that naturally lack neuropeptides from trigeminal chemosensory nerve fibers | |
Zhang et al. | Spreading of pathological TDP-43 along corticospinal tract axons induces ALS-like phenotypes in Atg5+/-mice | |
Cornet et al. | The use of the dynamic weight bearing test to assess the effects of acute, intramuscularly administered botulinum neurotoxin type A1 in rats | |
EP2189790B1 (en) | Method for quantification of titer of neurotoxin-neutralizing antibody | |
Winther et al. | Role of recovery of acetylcholine release in compromised neuromuscular junction function | |
Alvarez et al. | Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene | |
CA3011490A1 (en) | Inhibitors of alpha-tubulin acetylation for the treatment of pain | |
Fabris et al. | Local tetanus begins with a VAMP cleavage-associated neuromuscular junction paralysis around the site of tetanus neurotoxin release | |
Orr | Novel Mammalian Models for Understanding and Treating Spinal Cord Injury | |
Huang et al. | Identification of pathways required for sustained pain-associated coping behaviors | |
Cope | Amphetamine sensitization and in vivo microdialysis of the nucleus accumbens core of adult male and female rats D (2)-primed as neonates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06745899 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008513058 Country of ref document: JP Ref document number: 2006745899 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12298908 Country of ref document: US |