WO2009123174A1 - A2型ボツリヌス神経毒素製剤 - Google Patents

A2型ボツリヌス神経毒素製剤 Download PDF

Info

Publication number
WO2009123174A1
WO2009123174A1 PCT/JP2009/056613 JP2009056613W WO2009123174A1 WO 2009123174 A1 WO2009123174 A1 WO 2009123174A1 JP 2009056613 W JP2009056613 W JP 2009056613W WO 2009123174 A1 WO2009123174 A1 WO 2009123174A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
botulinum toxin
botulinum
toxin
ntx
Prior art date
Application number
PCT/JP2009/056613
Other languages
English (en)
French (fr)
Inventor
伸二 中平
恭司 鳥居
剛孝 後藤
美穂 進村
里美 棟近
祥士 奥田
俊司 小崎
Original Assignee
財団法人化学及血清療法研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人化学及血清療法研究所 filed Critical 財団法人化学及血清療法研究所
Priority to JP2010505929A priority Critical patent/JPWO2009123174A1/ja
Priority to EP09726893.2A priority patent/EP2283849B1/en
Priority to US12/935,769 priority patent/US20110033431A1/en
Priority to ES09726893T priority patent/ES2571792T3/es
Publication of WO2009123174A1 publication Critical patent/WO2009123174A1/ja
Priority to US13/903,731 priority patent/US9623075B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • A61K38/4893Botulinum neurotoxin (3.4.24.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention solves the reduced clinical response caused by neutralizing antibodies to botulinum toxin type A1 that occurs when a patient is treated with a pharmaceutical preparation containing a botulinum toxin derived from botulinum type A1 (bottom toxin type A1) Therefore, a therapeutically effective amount of a 150 kDa A-type neurotoxin (A2XNTX) obtained from a hemagglutinin (HA) -negative A2 botulinum strain isolated as a causative agent of infant botulism was administered to patients with hypertonia
  • the present invention relates to a pharmaceutical preparation to be treated and a method for treating a patient having a neutralizing antibody against botulinum toxin type A1 using the pharmaceutical preparation.
  • Botulinum toxin produced by Clostridium botulinum is the most deadly neurotoxin (NTX) on the planet, and so far, serotypes A, B, C, D, Seven types of E. F and G neurotoxins from Clostridium botulinum and their properties have been elucidated. These are each identified by neutralizing antibodies specific for the serotype. Different botulinum toxin serotypes vary in the animals they affect, the severity and duration of the induced paralysis, and the like. The molecular weight of the active center protein of botulinum toxin is about 150 kDa NTX in all seven known botulinum toxin serotypes.
  • Botulinum toxin type A is produced from Clostridium botulinum as a molecular form of 900 kDa (LL toxin), 500 kDa (L toxin), or 300 kDa (M toxin) (FIG. 1). These LL toxin, L toxin, and M toxin are called botulinum toxin complex, progenitor toxin and the like.
  • NTX and NTNH non-toxic non-HA protein
  • NTNH non-toxic non-HA protein
  • NTNH non-toxic non-HA protein
  • 150 kDa NTX neutraloxin has activity
  • S toxin central protein
  • Botulinum toxin when absorbed in the upper small intestine, dissociates into nontoxic proteins and neurotoxins in the lymphatic vessels.
  • the dissociated neurotoxin binds to a receptor at the nerve terminal on the C-terminal side of the heavy chain and is taken in via the receptor. Thereafter, the protein of the neural presynaptic membrane is specifically cleaved by the zinc metalloendopeptidase activity possessed by the light chain, thereby inhibiting the release of calcium-dependent acetylcholine and blocking neurotransmission at the synapse (Non-patent Document 1). ).
  • Botulinum toxin is a toxin that blocks systemic neurotransmission and causes human death in botulism, but conversely, its activity is actively used, and it is used as a useful neuromuscular transmission inhibitor .
  • it is used as a therapeutic agent to relieve local muscle tone by direct administration into the muscles of patients with abnormal hypertonicity, for example, dystonia (Non-patent Document 2).
  • type A botulinum toxin complex (Allergan Inc., BOTOX®) has been used by the US Food and Drug Administration (FDA) for the treatment of eyelid cramps, strabismus and unilateral facial cramps, cervical dystonia, and wrinkles between the eyebrows. ).
  • Botulinum toxin type B (Elan Pharmaceuticals, MYOBLOC®) has also been approved by the FDA for the treatment of cervical dystonia.
  • Non-type A botulinum toxin is said to have a slightly lower potency and a shorter activity period compared to type A botulinum toxin.
  • the typical period from a single intramuscular injection of botulinum toxin type A to symptom improvement is on average about 3-4 months.
  • Botulinum toxin preparations for treatment are available from Allergan Inc. (USA), Ipsen Limited (UK), Elan Pharmaceuticals (Ireland). These commercially available therapeutic botulinum preparations are preparations obtained by purifying only a neurotoxin complex (LL toxin) in a molecular form bound to a related non-toxic protein.
  • LL toxin neurotoxin complex
  • currently marketed botulinum toxin type A namely BOTOX® and Ipsen Limited Dysport®, have HA17, HA34, and HA70 HA proteins as components of the toxin complex LL toxin.
  • botulinum toxin isolated from a patient with infantile botulism in 1990 is type A
  • a type botulinum bacterium producing botulinum toxin not containing HA protein was first identified in Japan in 1986 from a patient related to infantile botulism (Non-patent Document 3). This clinical isolate is Kyoto-F, Chiba-H, Y-8036, 7I03-H, 7I05-H and KZl828.
  • botulinum toxin from botulism that causes infant botulism is a unique neurotoxin that differs from these toxin-type molecules.
  • botulinum toxins typified by conventional botulinum toxin type A have been found as neurotoxin complexes having Haemagglutinin (HA) protein as a component of the complex.
  • HA proteins such as HA17, HA34, and HA70 are included in the A, B, C, D, and G type botulinum neurotoxin genes, but in the botulinum-derived botulinum genes It is completely missing.
  • genes of the botulinum group derived from infant botulism include regulatory genes such as p47 (Non-patent Document 4).
  • the NTNH protein sequence of botulinum toxin produced by botulism derived from infant botulism is a mosaic type of non-non-HA protein NTNH gene of type C and non-toxic non-HA protein NTNH gene of type A, that is, mosaic type (Non-Patent Document 5 and Non-Patent Document 6).
  • the heavy chain of the conventional botulinum toxin type A is 93 kDa, but the botulinum toxin derived from botulism that causes infant botulism is 101 kDa and has a different molecular weight.
  • different protease reactivity is shown (nonpatent literature 7).
  • the amino acid sequences of these two botulinum toxin isotypes differ by 10.1% overall, only 13% in the heavy chain region and 4.9% in the light chain region (Non-patent Document 8).
  • BOTOX registered trademark
  • Xeomin registered trademark
  • Dysport registered trademark
  • NCTC2916 strains used for the production of commercially available botulinum toxin type A preparations.
  • Non-Patent Documents 9 and 10 these are classified into botulinum toxin type A containing HA protein, that is, botulinum toxin type A1.
  • botulinum toxin derived from botulism causing causal botulism is classified as botulinum toxin type A2.
  • Non-patent Document 13 WO1996 / 11699
  • Patent Document 1 a description example (p6, Reports on line 9-p7, line 2) and drug composition (p11, Table 2) have been made.
  • Patent Document 1 WO1996 / 11699 Jankovic J. et al., Curr. Opin. Neurol. (7): p.358-366, 1994 Oolong, et al., “Dystonia and Botulinum Treatment”, Diagnosis and Treatment Company, 2005 Sakaguchi G. et al., Int. J. Food Microbiol.
  • Botulinum toxin is known as a drug that exerts a therapeutic effect by relaxing the muscles of patients with hypertonia.
  • repeated administration of botulinum toxin reduces the effectiveness of the patient. This phenomenon is thought to depend on antibody production against the toxin.
  • HA hemagglutinin component
  • the currently marketed therapeutic botulinum type A botulinum preparation is a preparation obtained by purifying only the LL toxin in a molecular form combined with a related non-toxic protein.
  • BOTOX registered trademark
  • Dysport registered trademark
  • NCTC2916 strain Non-patent Document 9
  • the present inventors paid attention to a botulinum toxin of a subtype different from the A1 type botulinum toxin among the type A botulinum toxins.
  • This is a type A botulinum toxin isolated from a patient with infantile botulism in 1990, and is classified as a type A2 botulinum toxin that produces only an M toxin containing no HA protein.
  • the amino acid sequences of the two A1 and A2 botulinum toxin isotypes differ by 10.1% overall, only 13% in the heavy chain region and 4.9% in the light chain region.
  • A2-type botulinum toxin is a type A botulinum toxin isolated from a patient with infantile botulism in 1990, which removes non-toxic components from the M toxin without HA protein and highly purifies the NTX part.
  • the present inventors have immunized a conventionally known A1 type botulinum toxin multiple times subcutaneously in the rat, have a neutralizing antibody, and have reduced the effectiveness against the immunized toxin, a “botulinum toxin response-reduced model rat "created.
  • this model rat was administered highly purified A2-type botulinum toxin (A2 NTX), and its neuromuscular transmission inhibition inhibitory effect was tested using an electromyograph, that is, the compound muscle action potential (CMAP) of the rat gastrocnemius muscle. Confirmed using the rat CMAP test to be measured.
  • A2 NTX A2-type botulinum toxin
  • CMAP compound muscle action potential
  • reaction mixture of human serum containing anti-A1 botulinum toxin antibody and A2 NTX was confirmed to inhibit neuromuscular transmission by rat CMAP test. This proved the possibility of a new therapeutic method using highly purified botulinum toxin type A2.
  • the present invention includes the following inventions (1) to (6).
  • a method for treating a hypertonic disorder patient having a neutralizing antibody against A1 type botulinum toxin comprising administering A2 NTX.
  • the highly purified botulinum toxin (A2 NTX) derived from HA-negative botulinum isolated from the infant botulism-causing bacteria of the present invention has a therapeutic effect on patients who have neutralizing antibodies against A1 type botulinum toxin.
  • A2 NTX does not contain HA, so it is difficult to induce antibody production.
  • A2 NTX is useful as a pharmaceutical preparation to resolve the clinical response reduction caused by neutralizing antibodies to botulinum toxin type A1 that occurs when patients are treated with pharmaceutical preparations containing botulinum toxin type A1. Therefore, strabismus, blepharospasm, unilateral facial convulsions, spastic torticollis, post-stroke paralysis, childhood cerebral palsy, spastic vocal dysfunction, migraine headaches, chronic pain such as low back pain, stiff shoulders, Parkinson's disease and multiple sclerosis As a therapeutic agent for diseases caused by increased muscle tone such as muscle relaxation disorder, fascial pain syndrome, masticatory muscle spasm, chronic anal fissure, urinary incontinence, bruxism, facial myokemia, tics, local dystonia, and wrinkles It is particularly useful.
  • the horizontal axis indicates the type of toxin administered (NTX), and the vertical axis indicates CMAP amplitude (mV).
  • the abscissa represents the patient serum number reacted with A1XNTX and A2 NTX, and the ordinate represents the toxin dose (U) showing the reaction.
  • the A2 NTX of the present invention is a highly purified type A botulinum toxin obtained by removing the non-toxic component of M toxin obtained from HA-negative type A2 botulinum strain isolated as a causative bacterium of infant botulism, that is, NTX as an active ingredient . Since NTX exerts a therapeutic effect immediately after administration as compared with LL toxin and M toxin, the therapeutic agent of the present invention can be used as a therapeutic agent with more rapid action. Moreover, since it has less diffusibility, it has a wide safety range and is optimal for use as a therapeutic agent for reducing local hypertonia in hypertonic diseases.
  • A2 NTX is a pharmaceutical preparation for solving a decrease in clinical response caused by a neutralizing antibody against botulinum toxin type A1 that occurs when a patient is treated with a pharmaceutical preparation containing a botulinum toxin derived from botulinum type A1. As useful.
  • botulinum toxin isolated from a patient with infantile botulism although it is type A, produces only M toxin that does not contain HA protein.
  • the botulinum type A bacterium that produces botulinum toxin not containing HA protein is selected from Kyoto-F, Chiba-H, Y-8036, 7I03-H, 7I05-H and KZ1828.
  • the therapeutic agent of the present invention is preferably a pharmaceutical composition comprising a highly purified type A botulinum toxin derived from an infant botulism-causing bacterium and a botulinum toxin stabilizing substance.
  • the botulinum toxin stabilizing substance may be any substance that can stabilize the botulinum neurotoxin under the conditions in which the above composition is preserved and does not impair the therapeutic effect of the botulinum toxin on myotonia.
  • a botulinum toxin stabilizing substance is human serum albumin.
  • a preferred pharmaceutical composition in the present invention can be produced by a step of mixing highly purified botulinum toxin type A derived from an infant botulism-causing bacterium with human serum albumin.
  • the highly purified type A botulinum toxin can be purified by appropriately combining ion exchange chromatography, gel filtration, hydrophobic chromatography, and the like. Specifically, the culture supernatant of Clostridium botulinum is sterilized by filtration, and the resulting M toxin is concentrated by a method such as UF membrane. Separation of M toxin into neurotoxin (NTX) and non-toxic protein (NTNH) by adjusting the pH to 7 or higher. Thereafter, it can be roughly purified by, for example, cation exchange chromatography, and the fractions having toxin activity can be collected and further purified by gel filtration. Toxin activity is measured by, for example, the intraperitoneal injection method of mouse (method of determining toxin activity from LD 50 by intraperitoneal injection of mouse), and mouse 1LD 50 is taken as one unit.
  • NTX neurotoxin
  • NTNH non-toxic protein
  • the purification step is not particularly limited as long as it includes a step of mixing botulinum toxin with human serum albumin.
  • botulinum toxin and botulinum toxin stabilizing substance are dissolved in a solvent and then sterile filtered, ampules, vials, etc.
  • the composition of the present invention can be produced by filling the composition.
  • the botulinum toxin can be dissolved in a solvent in which the botulinum toxin stabilizing substance is previously dissolved, and then sterile filtered and filled into an ampoule or the like.
  • the solvent distilled water for injection, physiological saline, 0.01 M to 0.1 M phosphate buffer and the like can be used, and ethanol, glycerin and the like can be mixed as necessary.
  • botulinum toxin and the botulinum toxin stabilizing substance can be dissolved in a solvent, aseptically filtered, filled into a vial, etc., and freeze-dried to produce the pharmaceutical composition of the present invention.
  • the botulinum toxin and the botulinum toxin can be produced. After mixing the stabilizing substance, it can be aseptically filled into vials or the like to produce the pharmaceutical composition of the present invention.
  • the purified botulinum toxin is converted into a botulinum toxin stabilizing substance, preferably human serum albumin, more preferably therapeutic human serum albumin that is safe for humans, with a final concentration of 0.1 to 5 mg / ml.
  • a botulinum toxin stabilizing substance preferably human serum albumin, more preferably therapeutic human serum albumin that is safe for humans, with a final concentration of 0.1 to 5 mg / ml.
  • it is preferably added to 0.5 to 2 mg / ml, and can be refrigerated, frozen or lyophilized.
  • the therapeutic agent of the present invention can be further mixed with sugars such as mannitol, glucose and lactose, salts such as sodium phosphate and sodium phosphate as additives as necessary.
  • sugars such as mannitol, glucose and lactose
  • salts such as sodium phosphate and sodium phosphate as additives as necessary.
  • the pH of the pharmaceutical composition according to the present invention in a dissolved state is usually 3 to 8, preferably 4 to 7, and more preferably 5 to 7.
  • the botulinum toxin only needs to contain an effective amount for the purpose of use of the present invention.
  • the botulinum toxin stabilizing substance only needs to be included in an amount sufficient to stabilize the botulinum neurotoxin.
  • the therapeutic agent of the present invention is most suitable for use as a therapeutic agent for reducing local hypertonia in a hypertonic patient having a neutralizing antibody against A1 type botulinum toxin.
  • Treatment disorders that reduce hypersensitivity include strabismus, blepharospasm, unilateral facial convulsions, spastic torticollis, post-stroke paralysis, childhood cerebral palsy, spastic vocal disturbances, headaches such as migraine, chronic pain such as back pain, Stiff shoulder, Parkinson's disease, multiple sclerosis, etc.
  • Muscle relaxation failure fascial pain syndrome, masticatory muscle spasm, chronic anal fissure, urinary incontinence, bruxism, facial myokia, tics, topical dystonia, sputum.
  • Fascial pain syndrome is a disease in which a hard lump-like tension band is formed in the muscle due to acute muscle damage or repetitive overloading (overuse) of the muscle, and it causes strong pain, after a stroke or in children
  • muscle tone of hands and feet is excessively increased with the onset of congenital cerebral palsy, Parkinson's disease or multiple sclerosis.
  • abnormally increased muscle tension in the neck and shoulders causes headaches such as chronic migraine, and muscle tension increases abnormally due to muscle fatigue and poor posture.
  • chronic pain such as low back pain, neck pain or back pain and stiff shoulders are induced.
  • the hypertonic disease treated with the therapeutic agent of the present invention is preferably a disease requiring immediate suppression of hypertonicity, that is, a disease requiring treatment with a fast-acting therapeutic agent.
  • hypertonic diseases include hypertonic diseases that are administered while adjusting the dosage until an effective dose is determined, and generalized hypertonic diseases that are treated with cumulative effects.
  • systemic hypertonia include generalized dystonia / systemic spasticity, post-stroke paralysis, infantile cerebral palsy, Parkinson's disease and multiple sclerosis.
  • the therapeutic agent of the present invention is administered in a therapeutically effective amount.
  • the dosage form is preferably local administration, more preferably intramuscular injection.
  • the administration timing and dose thereof are not particularly limited, and vary depending on the degree of symptoms.
  • the dose varies depending on the degree of symptom, age, sex, body weight, administration site and form. For example, for adults, 0.01 to 2000 units, preferably 0.5 to 600 units, are injected once intramuscularly. Here, 1 unit is the amount of toxin (1LD 50 ) at which half of mice die when administered intraperitoneally to mice. Total doses for patients range from about 0.01 to 2000 units.
  • the present invention also provides a pharmaceutical preparation containing, as an active ingredient, a highly purified type A botulinum toxin derived from an HA-negative type A botulinum strain isolated as a causative agent of infant botulism, and the pharmaceutical preparation is used locally in hypertonic diseases.
  • a therapeutic method is provided that is used as a therapeutic agent that reduces hypertonic muscle tone.
  • the highly purified botulinum toxin, muscle hypertonic disease, administration method, production method and the like are as described above.
  • Example 1 Purification of NTX derived from A2-type Clostridium botulinum As the Clostridium botulinum used, Chiba-H strain, which is a type A Clostridium botulinum isolated from an infant botulism patient, is used, and Sakaguchi G., Biochemical aspects of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins. , 21-34, Lewis GE., 1981, Academic Press, New York, and purified botulinum type A M toxin.
  • Botulinum M toxin is dialyzed against 10 mM phosphate buffer (pH 7.5) and adsorbed on a DEAE Sepharose column equilibrated with the same buffer, and the 0 to 0.3 mol / L NaCl concentration gradient of the same buffer is used. And separated into neurotoxin (NTX) and non-toxic protein (NTNH). The resulting highly purified NTX (A2 NTX) was concentrated to 1 mg / mL with YM-10 membrane (Amicon), dialyzed against 50 mM phosphate buffer (pH 7.5), and then used until it was used. Stored at ° C. This was designated as A2 NTX.
  • Example 2 Purification of LL toxin derived from A1-type Clostridium botulinum and NTX >>
  • the Clostridium botulinum used is the HA-positive A1-type Clostridium botulinum 62A strain, and in the same manner as in Example 1, the toxin is cultured and purified according to the method described in Sakaguchi et al. Obtained.
  • NTX was purified from M toxin, and this was designated as A1 NTX.
  • Example 3 Preparation of a model rat with decreased response to botulinum toxin >> LL toxin derived from 62A strain was diluted to 0.3 mg / mL with 0.1 mol / L phosphate buffer, pH 6.4, and placed in a dialysis machine. Dialysis (30 ° C., 7 days) was carried out with a buffer for toxoid formation 100 times the diluted toxin. After completion of dialysis, it was stored at 4 ° C and administered to mice to confirm detoxification.
  • Rats (S / D system, 6 weeks old, female) were toxoidally administered at 10 ⁇ g / head three times at 2-week intervals. Blood was collected 6 to 10 weeks after the first administration. After confirming an increase in neutralizing antibody titer due to A1 NTX, the same type of A1 NTX as toxoid was administered to the gastrocnemius muscle of 2 ⁇ 10 6 U / head left hind limb. It was confirmed that there was no change. CMAP measurement was performed according to the method described in WO2007 / 125604. Table 1 shows neutralizing antibody titers in rat serum 10 weeks after immunization.
  • Example 4 Administration of NTX to botulinum toxin response-reduced model rat >> As shown in Table 2, the rats were divided into two groups so that the average neutralizing antibody titers in the botulinum toxin-reduced model rats administered with 62A strain LL toxin toxoid were almost the same, and each group was divided into A1 NTX and A2 NTX.
  • Each group was divided into A1 NTX and A2 NTX.
  • Example 5 Reaction of human serum with anti-A1 toxin antibody and NTX >> Blood was collected from 6 humans inoculated with the botulinum toxoid for research, and the antibody titer against botulinum toxin type A1 in the serum was measured.
  • the type A toxoid contained in this toxoid is derived from the 97A strain and is classified into the A1 type like the 62A strain. These sera were diluted to 10 mIU / mL, which is assumed to be the antibody titer contained in the serum of patients with reduced botulinum toxin response.
  • Equal amounts of diluted serum and each test toxin were mixed and allowed to react at room temperature for 1 hour, and then 0.1 mL of the reaction solution was administered to the rat hind limb gastrocnemius muscle, and the CMAP amplitude value was measured one day after administration.
  • each toxin was administered to rats at 0.5 U / head and measured in the same manner.
  • A2 NTX Highly purified botulinum toxin derived from HA-negative botulinum isolated from the infant botulism-causing bacteria of the present invention does not contain HA, so it is difficult to induce antibody production. Less attenuation. Further, A2 NTX does not cause the adverse effect of clinical response reduction caused by neutralizing antibodies against botulinum toxin type A1, which occurs when a patient is treated with a pharmaceutical preparation containing botulinum toxin type A1. Therefore, the pharmaceutical composition of the present invention containing A2 NTX is particularly useful as a therapeutic agent for various diseases caused by increased muscle tone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 A2型ボツリヌス菌由来の150kDaのA型神経毒素(A2 NTX)を有効成分として含有することを特徴とする、A1型ボツリヌス菌由来のボツリヌス毒素(A1型ボツリヌス毒素)に対する中和抗体保有患者用医薬製剤、当該A2 NTXを有効成分として含有することを特徴とする、A1型ボツリヌス毒素に対する中和抗体保有患者用筋緊張亢進疾患治療剤、当該A2 NTXを投与することを特徴とするA1型ボツリヌス毒素に対して中和抗体を有する患者の治療方法、および当該中和抗体保有患者に対するA2 NTXの使用方法を提供する。本発明によれば、A1型ボツリヌス菌由来のボツリヌス毒素を含有する医薬製剤で患者を処置した場合に生じる、A1型ボツリヌス毒素に対する中和抗体に起因する臨床的応答低下の問題を解決することができる。

Description

A2型ボツリヌス神経毒素製剤
 本発明は、A1型ボツリヌス菌由来のボツリヌス毒素(A1型ボツリヌス毒素)を含有する医薬製剤で患者を処置した場合に生じる、A1型ボツリヌス毒素に対する中和抗体に起因する臨床的応答低下を解決するために、乳児ボツリヌス症の原因菌として分離された赤血球凝集素(HA)陰性のA2型ボツリヌス菌株より得られる150kDaのA型神経毒素(A2 NTX)の処置有効量を筋緊張亢進疾患患者に投与する医薬製剤および該医薬製剤を用いたA1型ボツリヌス毒素に対して中和抗体を有する患者の治療方法に関する。
 嫌気性のグラム陽性菌であるクロストリジウム・ボツリナム(Clostridium botulinum)が産生するボツリヌス毒素は地球上で最も致死性の高い神経毒素(NTX)であり、これまでに血清型A、B、C、D、E、FおよびGの7種のボツリヌス菌由来の神経毒素とその特性が明らかにされている。これらはそれぞれ血清型に特異的な中和抗体で識別される。ボツリヌス毒素の血清型の違いにより、それらが影響する動物類、誘発される麻痺の重症度および持続期間等が異なる。ボツリヌス毒素の活性中心蛋白質の分子量は、既知のボツリヌス毒素血清型の7つすべてにおいて約150kDaのNTXである。
 すべてのボツリヌス毒素はボツリヌス菌から産生される場合、関係する無毒蛋白質と結合した複合体の分子形態をとる。A型ボツリヌス毒素は、900kDa(LL毒素)、500kDa(L毒素)、または300kDa(M毒素)の分子形態として、ボツリヌス菌から産生される(図1)。これら、LL毒素、L毒素、M毒素は、ボツリヌス毒素複合体、プロジェニター毒素などと呼ばれている。ボツリヌス毒素は、アルカリ条件下(pH7.2以上)でNTXとNTNHの部分(無毒非HAである蛋白質)が解離するため、この性質を利用することで、150kDaのNTX(神経毒素が活性を有する中心の蛋白質;S毒素とも呼ばれる)のみを単離することができる。
 ボツリヌス毒素は、小腸上部で吸収された場合には、リンパ管内で無毒蛋白質と神経毒素に解離する。解離した神経毒素は、その重鎖C末端側で神経終末の受容体に結合し、受容体を介して取り込まれる。その後、軽鎖のもつ亜鉛メタロエンドペプチダーゼ活性により神経シナプス前膜の蛋白質を特異的に切断し、カルシウム依存性のアセチルコリンの放出を阻害して、シナプスでの神経伝達を遮断する(非特許文献1)。
 ボツリヌス毒素は、ボツリヌス中毒においては全身の神経伝達を遮断してヒトを死に至らしめる毒素ではあるが、逆にその活性を積極的に利用して、有用な神経筋伝達阻害剤として利用されている。特に、異常な筋緊張性亢進を来たす疾患、例えばジストニアの患者の筋肉内に直接投与することによって、局所の筋緊張を緩和する治療薬として用いられている(非特許文献2)。例えば、A型ボツリヌス毒素複合体(Allergan Inc., BOTOX(登録商標))は、眼瞼痙攣、斜視および片側顔面痙攣、頚部ジストニアの治療用、並びに眉間のしわの治療用としてアメリカ食品医薬品局(FDA)によって承認されている。また、B型ボツリヌス毒素(Elan Pharmaceuticals, MYOBLOC(登録商標))も頚部ジストニア治療用としてFDAによって承認されている。非A型ボツリヌス毒素は、A型ボツリヌス毒素と比較して、やや低い効力およびやや短い活性期間を有するといわれている。A型ボツリヌス毒素1回の筋肉内注射から症状の改善までの典型的な期間は平均して約3~4ヶ月である。
 治療用ボツリヌス毒素製剤は、Allergan Inc. (米国)、Ipsen Limited (英国)、Elan Pharmaceuticals(アイルランド)から入手可能である。これら市販されている治療用ボツリヌス製剤は、関係する無毒蛋白質と結合した分子形態を取った神経毒素複合体(LL毒素)のみを精製した製剤である。例えば、現在市販されているA型ボツリヌス毒素製剤、すなわち、BOTOX(登録商標)とIpsen LimitedのDysport(登録商標)は、その毒素複合体の成分として、HA17、HA34、およびHA70のHA蛋白を持つLL毒素である。
 近年では、2005年に無毒蛋白を含まないA型NTX製剤(Merz Pharma, Xeomin(登録商標)、ドイツ)が発売され、また米国でも同様な別製剤の臨床試験も実施されており、次世代製剤の開発も積極的に行われている。
 一方、1990年に乳児ボツリヌス症の患者から単離されたタイプのボツリヌス毒素はA型ではあるものの、HA蛋白を含まないM毒素のみを産生する(HA陰性体)。HA蛋白を含まないボツリヌス毒素を産生するA型ボツリヌス菌は、1986年に日本で最初に乳児ボツリヌス症に関する患者から同定されている(非特許文献3)。この臨床分離株は、Kyoto-F、Chiba-H、Y-8036、7I03-H、7I05-HとKZl828である。他のボツリヌス毒素A~Gと比較した場合、乳児ボツリヌス症原因ボツリヌス菌由来ボツリヌス毒素は、これらの毒素型分子とは異なる特異な神経毒素である。
 遺伝的見地から、乳児ボツリヌス症由来ボツリヌス菌群の遺伝子機構は、他のすべてのボツリヌス毒素の血清型と異なっている。従来のA型ボツリヌス毒素に代表される多くのボツリヌス毒素は、複合体の成分として、Haemagglutinin(HA)タンパク質を持つ神経毒素複合体として見出されている。HA17、HA34、およびHA70などのHAタンパク質をコードする遺伝子は、A、B、C、DおよびG型ボツリヌス菌の神経毒素遺伝子群に含まれているが、乳児ボツリヌス症由来ボツリヌス菌群の遺伝子では完全に欠損している。また、乳児ボツリヌス症由来ボツリヌス菌群の遺伝子は、p47などの調節遺伝子を含んでいる(非特許文献4)。さらに、乳児ボツリヌス症由来ボツリヌス菌の産生するボツリヌス毒素のNTNHタンパク質の配列は、C型菌の無毒非HA蛋白質NTNH遺伝子とA型菌の無毒非HA蛋白質NTNH遺伝子の寄せ集め、すなわちモザイク型であることが示された(非特許文献5および非特許文献6)。
 また、NTX分子自体については、従来のA型ボツリヌス毒素の重鎖は93kDaであるが、乳児ボツリヌス症原因ボツリヌス菌由来のボツリヌス毒素では101kDaであり、分子量が異なる。また、異なるプロテアーゼ反応性を示す(非特許文献7)。これら2つのボツリヌス毒素アイソタイプのアミノ酸配列は、全体では10.1%異なり、重鎖領域で13%、軽鎖領域では4.9%が異なるにすぎない(非特許文献8)。
 市販のA型ボツリヌス毒素製剤の製造に使用されている菌株については、BOTOX(登録商標)およびXeomin(登録商標)はHALL株であり、Dysport(登録商標)はNCTC2916株であることが報告されており(非特許文献9、10)、これらはHA蛋白質を含むA型ボツリヌス毒素、つまりA1型ボツリヌス毒素に分類される。一方で、乳児ボツリヌス症原因ボツリヌス菌由来のボツリヌス毒素は、A2型ボツリヌス毒素に分類される。
 近年、ボツリヌス毒素を繰り返し投与することにより、抗ボツリヌス毒素抗体が産生され、ボツリヌス毒素の有効性が減弱してくるという問題点が指摘されている。例えば、BOTOX(登録商標)における抗体誘導率は3~10%と報告されている(非特許文献11)。この原因の一つとしては、製剤中に含まれるHAに、抗体産生に関するアジュバンド作用があることが指摘されており(非特許文献12)、このアジュバント作用により、NTXに対する中和抗体が生じやすくなっていると考えられる。
 また、高度精製ボツリヌス毒素は、古くはTse CK. et al.らの文献(非特許文献13)に報告があり、さらに、WO1996/11699(特許文献1)で、精製方法の記載例(p6, line 9-p7, line 2)や薬剤組成(p11, Table 2)に関する報告がなされている。
WO1996/11699 Jankovic J. et al., Curr. Opin. Neurol. (7): p.358-366, 1994 梶龍兒ら,「ジストニアとボツリヌス治療」, 診断と治療社, 2005年 Sakaguchi G. et al., Int. J. Food Microbiol. 11:  p.231-242, 1990 Kubota T. et al. ,FEMS Microbiology letters, 158: p.215-221, 1998 Kubota T. et al., Biochem. Biophys. Res. Commun., 224(3): p.843-848, 1996 Sakaguchi G. et al., Int. J. Food Microbiol. 11: p.231-242, 1990 Kozaki S. et al., Microbiol. Immunol. 39(10): p.767-774, 1995 Cordoba J. et al., System. Appl. Microbiol. 18: p.13-22, 1995 梶龍兒ら, 「ジストニアとボツリヌス治療」, 診断と治療社, :23,1996年 Dressler D. et al., Disabil Rehabil. 29(23): p.1761-1768, 2007 Brin MF., Muscle Nerve Suppl., 6:p.146-168, 1997 Arimitsu H. et al., Infect. Immun., 71(3): p.1599-1603, 2003 Tse CK. et al., Eur. J. Biochem., 122(3): p.493-500, 1982
 ボツリヌス毒素は、筋緊張亢進疾患患者の筋肉を弛緩させて治療効果を発揮する薬剤として知られているが、ボツリヌス毒素を繰り返し投与することにより、患者への有効性が減弱してくるという問題点が指摘されており、この現象は毒素に対する抗体産生に依存していると考えられている。この原因の一つとしては、製剤中に含まれる血球凝集素成分(HA)に、抗体産生に関するアジュバンド作用があることが指摘されている。したがって、繰り返し投与による中和抗体に起因する臨床的応答低下を解決することが必要である。
 現在市販されている治療用A型ボツリヌス製剤は、関係する無毒蛋白質と結合した分子形態を取ったLL毒素のみを精製した製剤である。市販のA型ボツリヌス毒素製剤の製造に使用されている菌株については、BOTOX(登録商標)はHALL株であり、Dysport(登録商標)はNCTC2916株であることが報告されており(非特許文献9)、これらはHA蛋白質を含むA型ボツリヌス毒素、つまりA1型ボツリヌス毒素に分類される。
 今回の発明に先立ち、本発明者らはA型ボツリヌス毒素の中でも市販されているA1型ボツリヌス毒素とは異なる亜型のボツリヌス毒素に着目した。これは、1990年に乳児ボツリヌス症の患者から単離されたタイプのA型ボツリヌス毒素であり、HA蛋白を含まないM毒素のみを産生するA2型ボツリヌス毒素に分類される。A1型およびA2型の2つのボツリヌス毒素アイソタイプのアミノ酸配列は、全体では10.1%異なり、重鎖領域で13%、軽鎖領域では4.9%が異なるにすぎない。このように、これら2つのボツリヌス毒素アイソタイプのアミノ酸配列は非常に類似しているため、従来のA1型ボツリヌス毒素を繰り返し投与することにより、中和抗体が生じた患者への有効性が減弱してくるという、治療上の問題点を解決するために、A2型ボツリヌス毒素を使用するという治療法の発想は従来考えられてはこなかった。
 さらに本発明者らは、A2型ボツリヌス毒素を高度に精製することに成功した。これは、1990年に乳児ボツリヌス症の患者から単離されたタイプのA型ボツリヌス毒素であり、HA蛋白を含まないM毒素から無毒成分を除去し、NTX部分を高度に精製したものである。
 今回本発明者らは、従来知られているA1型ボツリヌス毒素をラット皮下に複数回免疫投与し、中和抗体を有し、免疫した毒素に対する有効性を低下させた「ボツリヌス毒素応答低下モデルラット」を作成した。さらに、このモデルラットに高度精製A2型ボツリヌス毒素(A2 NTX)を投与し、その神経筋伝達阻害抑制効果を筋電計を用いた試験系、すなわちラットの腓腹筋の複合筋活動電位(CMAP)を測定するラットCMAP試験を用いて確認した。さらに抗A1型ボツリヌス毒素抗体を含むヒト血清とA2 NTXを反応させた反応液について、ラットCMAP試験により神経筋伝達阻害作用を確認した。これにより、高度精製A2型ボツリヌス毒素を用いた新たな治療方法の可能性を証明した。
 すなわち、本発明は、下記(1)~(6)の発明を含むものである。
(1)A2型ボツリヌス菌由来の150kDaのA型神経毒素(A2 NTX)を有効成分として含有することを特徴とする、A1型ボツリヌス菌由来のボツリヌス毒素(A1型ボツリヌス毒素)に対する中和抗体保有患者用医薬製剤。
(2)A2 NTXを有効成分として含有するすることを特徴とする、A1型ボツリヌス毒素に対する中和抗体保有患者用筋緊張亢進疾患治療剤。
(3)A2 NTXを投与することを特徴とする、A1型ボツリヌス毒素に対して中和抗体を有する患者の治療方法。
(4)A2 NTXを投与することを特徴とする、A1型ボツリヌス毒素に対して中和抗体を有する筋緊張亢進疾患患者の治療方法。
(5)A1型ボツリヌス毒素に対して中和抗体を有する患者に対する、A2 NTXの使用。
(6)A1型ボツリヌス毒素に対して中和抗体を有する筋緊張亢進疾患患者に対する、A2 NTXの使用。
 本発明の乳児ボツリヌス症原因菌より分離されたHA陰性のボツリヌス菌に由来する高度精製ボツリヌス毒素(A2 NTX)は、A1型ボツリヌス毒素に対して中和抗体を有する患者に対し治療効果を持つ。またA2 NTXはHAを含有しないため、抗体産生を誘導しにくい。
 しかも、A2 NTXは、A1型ボツリヌス毒素を含有する医薬製剤で患者を処置した場合に生じる、A1型ボツリヌス毒素に対する中和抗体に起因する臨床的応答低下を解決するための医薬製剤として有用であるため、斜視、眼瞼痙攣、片側顔面痙攣、痙性斜頚、脳卒中後の麻痺、小児脳性麻痺、痙性発声障害、片頭痛などの頭痛、腰痛などの慢性的な疼痛、肩こり、パーキンソン病や多発性硬化症などの発症時に起こる筋弛緩不全、筋膜痛症候群、咀嚼筋攣縮、慢性裂肛、尿失禁、歯ぎしり、顔面ミオキミア、チック、局所性ジストニー、皺などの筋緊張亢進に起因する疾患の治療剤として特に有用である。
ボツリヌス毒素蛋白複合体の分子形態を表す図。
ボツリヌス毒素応答低下モデルラットを用いた左後肢筋におけるCMAP結果を示す図。横軸は投与毒素(NTX)の種類を、縦軸はCMAP振幅(mV)を示す。
抗A1ボツリヌス毒素抗体保持ヒト血清とA1 NTXおよびA2 NTXの反応を示す図。横軸はA1 NTXおよびA2 NTXと反応させた患者血清番号、縦軸は反応を示した毒素用量(U)を示す。
 本発明の種々の側面を以下詳細に説明する。
 本発明のA2 NTXは、乳児ボツリヌス症の原因菌として分離されたHA陰性のA2型ボツリヌス菌株より得られるM毒素の無毒成分を除去した高度精製A型ボツリヌス毒素、すなわち、NTXを有効成分とする。NTXは、LL毒素やM毒素と比較して、投与後速やかに治療効果を発揮するので、本発明の治療剤はより速効性に優れた治療剤として使用できる。また、少ない拡散性を有しているため、安全域が広く、筋緊張亢進疾患における局所の筋緊張亢進を低下させる治療剤として使用するのに最適である。しかも、A2 NTXは、A1型ボツリヌス菌由来のボツリヌス毒素を含有する医薬製剤で患者を処置した場合に生じる、A1型ボツリヌス毒素に対する中和抗体に起因する臨床的応答低下を解決するための医薬製剤として有用である。
 乳児ボツリヌス症の患者から単離されたタイプのボツリヌス毒素はA型ではあるものの、HA蛋白を含まないM毒素のみを産生する。HA蛋白を含まないボツリヌス毒素を産生するA型ボツリヌス菌は、Kyoto-F、Chiba-H、Y-8036、7I03-H、7I05-HとKZ1828から選択される。
 本発明の治療剤は、好ましくは、乳児ボツリヌス症原因菌に由来する高度精製A型ボツリヌス毒素とボツリヌス毒素安定化物質を含んでなる医薬組成物である。
 ボツリヌス毒素安定化物質は、上記の組成物が保存される条件において、ボツリヌス神経毒素を安定化することができ、かつボツリヌス毒素の筋緊張疾患治療効果を損なわないものであればよい。例えば、ボツリヌス毒素安定化物質の例としては、ヒト血清アルブミンが挙げられる。
 本発明における好ましい医薬組成物は、乳児ボツリヌス症原因菌に由来する高度精製A型ボツリヌス毒素をヒト血清アルブミンと混合する工程により製造することができる。
 高度精製A型ボツリヌス毒素は、イオン交換クロマトグラフィー、ゲルろ過、疎水クロマトグラフィー等を適宜組み合わせて精製することができる。具体的にはボツリヌス菌の培養上清についてろ過による除菌を行い、得られるM毒素をUF膜等の方法により濃縮する。M毒素をpH7以上の条件にすることで、神経毒素(NTX)と無毒蛋白質(NTNH)に分離する。その後、例えば陽イオン交換クロマトグラフィーにより粗精製し、毒素活性のある分画を集めて、更にゲルろ過で精製することができる。毒素活性は、例えばマウス腹腔内注射法(マウス腹腔内に投与してLD50から毒素活性を求める方法)により測定し、マウス1LD50を1単位とする。
 また、精製工程の後は、ボツリヌス毒素をヒト血清アルブミンと混合する工程を含む限り、特に限定されず、例えばボツリヌス毒素とボツリヌス毒素安定化物質を溶媒に溶解後、無菌ろ過し、アンプル、バイアル等に充填して本発明の組成物を製造することができる。また、ボツリヌス毒素を予めボツリヌス毒素安定化物質を溶解した溶媒に溶解後、無菌ろ過しアンプル等に充填することもできる。溶媒は、注射用蒸留水、生理食塩水、0.01M~0.1Mのリン酸緩衝液等を用いることができ、必要に応じて、エタノール、グリセリン等を混合することもできる。
 更に、ボツリヌス毒素とボツリヌス毒素安定化物質を溶媒に溶解後、無菌ろ過し、バイアル等に充填後、凍結乾燥して本発明の医薬組成物を製造することもでき、また、ボツリヌス毒素とボツリヌス毒素安定化物質を混合後、バイアル等に無菌充填して本発明の医薬組成物を製造することもできる。
 具体的には、精製したボツリヌス毒素を、ボツリヌス毒素安定化物質、好ましくはヒト血清アルブミン、更に好ましくはヒトでの安全性が確保された治療用ヒト血清アルブミンを、最終濃度が0.1~5mg/ml、好ましくは0.5~2mg/mlになるように加え、冷蔵保存、冷凍保存あるいは凍結乾燥することができる。
 本発明の治療剤には、必要に応じさらに、マンニトール、グルコース、乳糖等の糖類、食塩、リン酸ナトリウム等の塩を添加剤として混合することができる。溶解状態での本発明に係る医薬組成物のpHは、通常3~8であり、好ましくは4~7であり、より好ましくは5~7である。
 本発明の治療剤において、ボツリヌス毒素は、本発明の使用目的において有効な量が含まれていればよい。また、ボツリヌス毒素安定化物質が含まれる場合には、ボツリヌス毒素安定化物質は、ボツリヌス神経毒素を安定化するのに十分な量含まれていればよい。
 本発明の治療剤は、A1型ボツリヌス毒素に対する中和抗体を有する筋緊張亢進疾患患者における局所の筋緊張亢進を低下させる治療剤として使用するのに最適であるが、ここでいう局所の筋緊張亢進を低下させる治療の対象疾患は、斜視、眼瞼痙攣、片側顔面痙攣、痙性斜頚、脳卒中後の麻痺、小児脳性麻痺、痙性発声障害、片頭痛などの頭痛、腰痛などの慢性的な疼痛、肩こり、パーキンソン病や多発性硬化症などの発症時に起こる筋弛緩不全、筋膜痛症候群、咀嚼筋攣縮、慢性裂肛、尿失禁、歯ぎしり、顔面ミオキミア、チック、局所性ジストニー、皺である。筋膜痛症候群は、急性の筋肉障害や筋肉の反復性の過負荷(使いすぎ)により、筋肉内に硬いしこり状の緊張帯ができ、強い痛みを感じる疾患であり、脳卒中後、あるいは、小児性脳性麻痺、パーキンソン病若しくは多発性硬化症の発症に伴い、手や足の筋緊張が過度に亢進することが知られている。さらに、首および肩の筋肉緊張が異常に亢進することによって慢性的な片頭痛などの頭痛を生じ、また、筋肉疲労や持続的な姿勢の悪さにより筋肉緊張が異常に亢進し、結果的に、腰痛、頚痛あるいは背中痛などの慢性的な疼痛や肩こりが誘発されることも知られている。
 本発明の治療剤により治療される筋緊張亢進疾患は、速やかな筋緊張亢進の抑制を必要とする疾患、すなわち速効型治療剤による治療を必要とする疾患であることが好ましい。このような筋緊張亢進疾患としては、有効用量が決まるまで投与量を調節しながら投与する筋緊張亢進疾患、累積的に効果を積み重ねて治療を行う全身性の筋緊張亢進疾患が挙げられる。全身性の筋緊張亢進疾患の例としては、全身性ジストニア・全身性痙縮、脳卒中後の麻痺、児脳性麻痺、パーキンソン病や多発性硬化症が挙げられる。
 本発明の治療剤は、治療に有効な量投与される。ヒトに投与する場合、その投与形態は好ましくは局所的投与、更に好ましくは筋肉内注射である。また、それらの投与タイミングや投与量も、特に限定されず、症状の程度等により異なる。投与量は症状の程度、年齢、性別、体重、投与部位および形態等に応じて異なるが、例えば成人ならば0.01~2000単位を、好ましくは0.5~600単位を、1回筋肉内注射する。ここで1単位とは、マウスに腹腔内投与した時に半数のマウスが死亡する毒素の量(1LD50)である。患者に対する総用量は、約0.01~2000単位の範囲である。
 注射後、すべての患者において、全身的または局所的副作用は無く、治療対象となる筋肉以外での大きな局所的緊張低下は見られないことと、治療対象筋肉の機能改善が見られることを筋電計などにより確認しながら治療する。
 本発明はまた、乳児ボツリヌス症の原因菌として分離されたHA陰性のA型ボツリヌス菌株に由来する高度精製A型ボツリヌス毒素を有効成分として含有する医薬製剤及び該医薬製剤を筋緊張亢進疾患における局所の筋緊張亢進を低下させる治療剤として使用することを特徴とする治療方法を提供する。高度精製ボツリヌス毒素、筋緊張亢進疾患、投与方法、製造方法等については上記に説明した通りである。
 本発明を下記実施例により更に詳しく説明するが、本発明はこれに限られるものではない。
《実施例1:A2型ボツリヌス菌由来NTXの精製》
 使用するボツリヌス菌としては、乳児ボツリヌス症の患者から分離されたタイプのA型ボツリヌス菌であるChiba-H株を用い、Sakaguchi G., Biochemical aspects of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins., 21-34, Lewis GE., 1981, Academic Press, New Yorkに記載された方法に従って、ボツリヌスA型M毒素を精製した。
 また、ボツリヌスM毒素を10mMリン酸緩衝液(pH7.5)に対して透析した後、同緩衝液で平衡化したDEAEセファロースカラムに吸着させ、同緩衝液の0~0.3mol/L NaCl濃度勾配で溶出し、神経毒素(NTX)と無毒蛋白質(NTNH)に分離した。得られた高度精製NTX(A2 NTX)はYM-10メンブラン(アミコン社製)で1mg/mLまで濃縮し、50mMリン酸緩衝液(pH7.5)に対して透析した後、使用時まで-80℃に保存した。これをA2 NTXとした。
《実施例2:A1型ボツリヌス菌由来LL毒素およびNTXの精製》
 使用するボツリヌス菌はHA陽性のA1型ボツリヌス菌である62A株を用い、実施例1同様に、Sakaguchiらの文献に記載された方法に従って、毒素の培養、精製を行い、LL毒素及びM毒素を得た。さらに、M毒素から、NTXを精製し、これをA1 NTXとした。
《実施例3:ボツリヌス毒素応答低下モデルラットの作成》
 62A株由来LL毒素を0.1mol/Lリン酸緩衝液、pH6.4で0.3mg/mLに希釈し、透析装置に入れた。希釈毒素の100倍量のトキソイド化用緩衝液で透析(30℃、7日間)を行った。透析終了後4℃で保存し、マウスに投与して無毒化を確認した。
 ラット(S/D系、6週齢、メス)にトキソイドを2週間間隔で3回、10μg/headで皮下投与した。1回目の投与から6、10週後に採血を行った。A1 NTXによる中和抗体価の上昇を確認し、トキソイドと同一種類のA1 NTXを2×106U/head左後肢腓腹筋に投与し、投与後1日目のCMAP振幅は低下せず、症状も変化しないことを確認した。なお、CMAP測定は、WO2007/125604に記載の方法に従い実施した。免疫10週後におけるラット血清中の中和抗体価を表1に示した。
Figure JPOXMLDOC01-appb-T000001
《実施例4:ボツリヌス毒素応答低下モデルラットへのNTXの投与》
 62A株由来LL毒素トキソイドを投与したボツリヌス毒素応答低下モデルラットの群内平均中和抗体価がほぼ同じになるように表2のようにラットを2群に分け、各群にA1 NTXおよびA2 NTXを2×106U/head左後肢腓腹筋に投与し、投与後1日目のCMAP振幅を測定した。
Figure JPOXMLDOC01-appb-T000002
 その結果、A1 NTX投与群ではラット体内の抗体により中和され、CMAP振幅に変化は生じないが、A2 NTX投与群はCMAP振幅を低下させ、毒素による神経筋伝達抑制効果があることが示された(図2)。
《実施例5:抗A1毒素抗体保持ヒト血清とNTXの反応》
 研究用ボツリヌストキソイドを接種した6名のヒトから採血し、血清中のA1型ボツリヌス毒素に対する抗体価を測定した。このトキソイドに含まれるA型トキソイドは97A株由来で62A株同様にA1型に分類される。これらの血清を、ボツリヌス毒素応答低下患者血清中に含まれる抗体価に想定される10mIU/mLに希釈した。試験毒素はA1 NTXならびにA2 NTXをそれぞれ10U/mLに希釈した。希釈血清と各試験毒素を等量混合し室温で1時間反応させた後、反応液をラットの左後肢腓腹筋に0.1mL投与し、投与後1日のCMAP振幅値を測定した。コントロールとして各毒素をラットに0.5U/head投与し、同様に測定した。
 その結果、図3に示すとおり、試験毒素にA1 NTXを使用した群では、残存した毒素量は、0.13~0.21Uとなり、6割以上の毒素が中和された。それに対し、試験毒素にA2 NTXを使用した群では、残存した毒素は、0.26~0.43Uとなり、半分以上の毒素が残存した。A1 NTXを使用した群とA2 NTXを投与した群とをTukeyの多重比較をしたところ、群間に有意差が認められた。
 本発明の乳児ボツリヌス症原因菌より分離されたHA陰性のボツリヌス菌に由来する高度精製ボツリヌス毒素(A2 NTX)は、HAを含有しないため、抗体産生を誘導しにくく、繰り返し投与しても効果の減弱が少ない。さらに、A2 NTXは、A1型ボツリヌス毒素を含有する医薬製剤で患者を処置した場合に生じる、A1型ボツリヌス毒素に対する中和抗体に起因する臨床的応答低下という弊害も惹起しない。それゆえ、A2 NTXを含有する本発明の医薬組成物は、筋緊張亢進に起因する様々な疾患の治療剤として特に有用である。

Claims (6)

  1.  A2型ボツリヌス菌由来の150kDaのA型神経毒素(A2 NTX)を有効成分として含有することを特徴とする、A1型ボツリヌス菌由来のボツリヌス毒素(A1型ボツリヌス毒素)に対する中和抗体保有患者用医薬製剤。
  2.  A2 NTXを有効成分として含有することを特徴とする、A1型ボツリヌス毒素に対する中和抗体保有患者用筋緊張亢進疾患治療剤。
  3.  A2 NTXを投与することを特徴とする、A1型ボツリヌス毒素に対して中和抗体を有する患者の治療方法。
  4.  A2 NTXを投与することを特徴とする、A1型ボツリヌス毒素に対して中和抗体を有する筋緊張亢進疾患患者の治療方法。
  5.  A1型ボツリヌス毒素に対して中和抗体を有する患者に対する、A2 NTXの使用。
  6.  A1型ボツリヌス毒素に対して中和抗体を有する筋緊張亢進疾患患者に対する、A2 NTXの使用。
PCT/JP2009/056613 2008-03-31 2009-03-31 A2型ボツリヌス神経毒素製剤 WO2009123174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010505929A JPWO2009123174A1 (ja) 2008-03-31 2009-03-31 A2型ボツリヌス神経毒素製剤
EP09726893.2A EP2283849B1 (en) 2008-03-31 2009-03-31 A2 botulinum neurotoxin for use in the treatment of muscle overactivity in the presence of type a1 neutralising antibodies
US12/935,769 US20110033431A1 (en) 2008-03-31 2009-03-31 Type a2 botulinum toxin preparation
ES09726893T ES2571792T3 (es) 2008-03-31 2009-03-31 Neurotoxina botulínica A2 para su uso en el tratamiento de la hiperactividad muscular en presencia de anticuerpos neutralizantes de tipo A1
US13/903,731 US9623075B2 (en) 2008-03-31 2013-05-28 Type A2 botulinum toxin preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008092145 2008-03-31
JP2008-092145 2008-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/935,769 A-371-Of-International US20110033431A1 (en) 2008-03-31 2009-03-31 Type a2 botulinum toxin preparation
US13/903,731 Division US9623075B2 (en) 2008-03-31 2013-05-28 Type A2 botulinum toxin preparation

Publications (1)

Publication Number Publication Date
WO2009123174A1 true WO2009123174A1 (ja) 2009-10-08

Family

ID=41135546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056613 WO2009123174A1 (ja) 2008-03-31 2009-03-31 A2型ボツリヌス神経毒素製剤

Country Status (5)

Country Link
US (2) US20110033431A1 (ja)
EP (1) EP2283849B1 (ja)
JP (1) JPWO2009123174A1 (ja)
ES (1) ES2571792T3 (ja)
WO (1) WO2009123174A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2085093E (pt) * 2006-10-27 2015-06-26 Chemo Sero Therapeut Res Inst Preparação que contém uma toxina botulínica tipo a altamente purificada derivada de um agente patogénico do botulismo infantil
WO2009123174A1 (ja) * 2008-03-31 2009-10-08 財団法人化学及血清療法研究所 A2型ボツリヌス神経毒素製剤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028922A1 (en) * 1993-06-10 1994-12-22 Allergan, Inc. Treatment of neuromuscular disorders and conditions with different botulinum serotype
WO1996011699A1 (en) 1994-10-13 1996-04-25 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
WO2007125604A1 (ja) 2006-04-28 2007-11-08 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute 神経毒素の定量方法
WO2008050866A1 (en) * 2006-10-27 2008-05-02 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Preparation containing highly purified botulinum toxin type a derived from infant botulism pathogen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756468A (en) * 1994-10-13 1998-05-26 Wisconsin Alumni Research Foundation Pharmaceutical compositions of botulinum toxin or botulinum neurotoxin and methods of preparation
DE19925739A1 (de) * 1999-06-07 2000-12-21 Biotecon Ges Fuer Biotechnologische Entwicklung & Consulting Mbh Therapeutikum mit einem Botulinum-Neurotoxin
AU2003221050A1 (en) * 2002-03-29 2003-10-13 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Remedy for hypermyotonia
WO2004112821A1 (ja) * 2003-06-20 2004-12-29 Santen Pharmaceutical Co., Ltd. 筋緊張亢進性疾患の治療剤
AR061669A1 (es) * 2006-06-29 2008-09-10 Merz Pharma Gmbh & Co Kgaa Aplicacion de alta frecuencia de terapia con toxina botulinica
US8540987B2 (en) * 2008-01-29 2013-09-24 Institute For Antibodies Co., Ltd. Composition for neutralizing botulinus toxin type-A, and human anti-botulinus toxin type-A antibody
WO2009123174A1 (ja) * 2008-03-31 2009-10-08 財団法人化学及血清療法研究所 A2型ボツリヌス神経毒素製剤
WO2012047427A2 (en) * 2010-08-31 2012-04-12 The Regents Of The University Of California Antibodies for botulinum neurotoxins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028922A1 (en) * 1993-06-10 1994-12-22 Allergan, Inc. Treatment of neuromuscular disorders and conditions with different botulinum serotype
WO1996011699A1 (en) 1994-10-13 1996-04-25 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
WO2007125604A1 (ja) 2006-04-28 2007-11-08 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute 神経毒素の定量方法
WO2008050866A1 (en) * 2006-10-27 2008-05-02 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Preparation containing highly purified botulinum toxin type a derived from infant botulism pathogen

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ARIMITSU H. ET AL., INFECT. IMMUN., vol. 71, no. 3, 2003, pages 1599 - 1603
BRIN MF., MUSCLE NERVE SUPPL., vol. 6, 1997, pages 146 - 168
CORDOBA J. ET AL., SYSTEM. APPL. MICROBIOL., vol. 18, 1995, pages 13 - 22
DRESSLER D. ET AL., DISABIL REHABIL., vol. 29, no. 23, 2007, pages 1761 - 1768
JANKOVIC J. ET AL., CURR. OPIN. NEUROL., 1994, pages 358 - 366
KOZAKI S. ET AL., MICROBIOL. IMMUNOL., vol. 39, no. 10, 1995, pages 767 - 774
KUBOTA T. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 224, no. 3, 1996, pages 843 - 848
KUBOTA T. ET AL., FEMS MICROBIOLOGY LETTERS, vol. 158, 1998, pages 215 - 221
RYUJI KAJI ET AL., DYSTONIA AND BOTULINUM THERAPY, 2005
RYUJI KAJI ET AL., DYSTONIA AND BOTULINUM THERAPY, vol. 23, 1996
SAKAGUCHI G. ET AL., INT. J. FOOD MICROBIOL., vol. 11, 1990, pages 231 - 242
SAKAGUCHI G.: "Biochemical aspects of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins", 1981, ACADEMIC PRESS, pages: 21 - 34
See also references of EP2283849A4 *
SHOJI NAKAGAMI ET AL.: "Nyuji Botulinus-sho Kiin Kin no Sansei suru A-gata Dokuso no Seijo ni Tsuite", NIPPON JUI GAKKAI GAKUJUTSU SHUKAI KOEN YOSHISHU, vol. 111TH, 1991, pages 230, XP008147011 *
SHUNJI OZAKI ET AL.: "Nyuji Botulinus-sho Yurai A-gata Kin to Hyojun A-gata Kin no Sansei suru Dokuso no Ruijisei to Sai ni Tsuite", NIPPON JUI GAKKAI GAKUJUTSU SHUKAI KOEN YOSHISHU, vol. 113TH, 1992, pages 216, XP008147012 *
TSE CK. ET AL., EUR. J. BIOCHEM., vol. 122, no. 3, 1982, pages 493 - 500

Also Published As

Publication number Publication date
US20110033431A1 (en) 2011-02-10
EP2283849A4 (en) 2013-04-10
EP2283849B1 (en) 2016-05-04
EP2283849A1 (en) 2011-02-16
US20130252902A1 (en) 2013-09-26
JPWO2009123174A1 (ja) 2011-07-28
US9623075B2 (en) 2017-04-18
ES2571792T3 (es) 2016-05-26

Similar Documents

Publication Publication Date Title
AU774590B2 (en) Therapeutic agent comprising a botulinum neurotoxin
Hambleton Clostridium botulinum toxins: a general review of involvement in disease, structure, mode of action and preparation for clinical use
EP1374886B1 (en) Treatment of neuromuscular disorders and conditions with different botulinum serotype
KR100852824B1 (ko) 보툴리눔 신경독소를 포함하는 치료 조성물
AU2009286973B2 (en) Clostridial neurotoxins with altered persistency
CN109640954B (zh) 含有肉毒杆菌毒素和稳定剂的液体制剂及其制备方法
KR20130043251A (ko) 화학 조성물을 신경세포로 도입하기 위해 사용되는 수송단백질
KR20110106346A (ko) 클로스트리디움 독소 약제학적 조성물
KR20030009431A (ko) 신경독의 말초 투여를 통한 동통 처치 방법
ES2371785T3 (es) Utilización de al menos una neurotoxina botulínica para tratar el dolor causado por los tratamientos terapéuticos del virus del sida.
KR20190022548A (ko) 트립토판 또는 타이로신으로 안정화된 액체 신경독 제형
JP5634675B2 (ja) 乳児ボツリヌス症原因菌由来の高度精製a型ボツリヌス毒素製剤
WO2009123174A1 (ja) A2型ボツリヌス神経毒素製剤
WO2003082315A1 (fr) Remede contre l'hypermyotonie
KR20200006587A (ko) 경부 근긴장이상증의 치료 방법
JP2011157331A (ja) 高用量投与が可能なボツリヌス毒素製剤
JPWO2010013494A1 (ja) 軸索輸送されないボツリヌス神経毒素製剤を含有する医薬組成物およびその利用
AU2019253771A1 (en) Clostridial toxin pharmaceutical compositions
US20240082368A1 (en) Treatment of Brain Damage
KR20240032688A (ko) 내성 발현이 감소된 보툴리눔 독소 제제 및 이와 관련된 방법
WO2012048246A1 (en) Reduction of antibody response against botulinum neurotoxin and variants thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726893

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12935769

Country of ref document: US

Ref document number: 2010505929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009726893

Country of ref document: EP