WO2007123048A1 - 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム - Google Patents

適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム Download PDF

Info

Publication number
WO2007123048A1
WO2007123048A1 PCT/JP2007/058091 JP2007058091W WO2007123048A1 WO 2007123048 A1 WO2007123048 A1 WO 2007123048A1 JP 2007058091 W JP2007058091 W JP 2007058091W WO 2007123048 A1 WO2007123048 A1 WO 2007123048A1
Authority
WO
WIPO (PCT)
Prior art keywords
array processing
signal
array
signals
adaptive
Prior art date
Application number
PCT/JP2007/058091
Other languages
English (en)
French (fr)
Inventor
Akihiko Sugiyama
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2008512085A priority Critical patent/JP5315991B2/ja
Priority to US12/297,870 priority patent/US8174935B2/en
Publication of WO2007123048A1 publication Critical patent/WO2007123048A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/86Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with means for eliminating undesired waves, e.g. disturbing noises
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the present invention relates to an adaptive array control device, method, program, and adaptive array processing device and method using the same, which selectively receive and process signals such as incoming speech using a plurality of sensors. , Related to the program.
  • These devices can receive only a specific signal from a plurality of signal sources, and are an application of adaptive array technology.
  • a microphone an ultrasonic sensor, a sonar receiver, a radio antenna, or the like can be used.
  • a microphone is used as a sensor.
  • the microphone array forms a spatial filter by filtering the signals input to a plurality of microphones and then adding them. This spatial filter emphasizes only the signals coming from the direction specified in advance and the switch target signal and attenuates signals other than the target.
  • An adaptive microphone array is a microphone array having a function of adaptively changing spatial filter characteristics.
  • the “generalized sidelobe canceller” disclosed in Non-Patent Document 1 the configuration disclosed in Non-Patent Document 2
  • the configuration disclosed in Non-Patent Document 3 the configuration disclosed in Non-Patent Document 3
  • "Frost 'beamformer” disclosed in Patent Document 4 non-patent text Disclosed in item 5, the composition is known! /
  • a generalized sidelobe canceller which is a basic adaptive array processing apparatus disclosed in Non-Patent Document 1, has a fixed beamformer, a blocking matrix circuit, and a multi-input canceller force.
  • An adaptive blocking matrix circuit including an adaptive filter is also used as the blocking matrix circuit.
  • the fixed beamformer processes a plurality of sensor signals to enhance the target signal.
  • the blocking matrix circuit suppresses a target signal included in the plurality of sensor signals.
  • the interfering signal is relatively emphasized.
  • the adaptive blocking matrix circuit uses the fixed beamformer output as a reference signal, subtracts the plurality of sensor signal forces from the pseudo target signal generated by the adaptive filter, and supplies it to the multi-input canceller.
  • the adaptive filter coefficient of the adaptive blocking matrix circuit is updated so that the output of the adaptive blocking matrix circuit is minimized using the fixed beamformer output and the output of the adaptive blocking matrix circuit.
  • the multi-input canceller uses the output of the blocking matrix circuit as a reference signal and subtracts the pseudo-jamming signal generated by the adaptive filter from the fixed beamformer output force.
  • the target signal is emphasized and the interference signal is suppressed, and this is used as the array device output. This subtraction process removes the correlation of the output signal with the disturbing signal.
  • the adaptive filter coefficient of the multi-input canceller is updated using the blocking matrix circuit output and the multi-input canceller output so that the multi-input canceller output is minimized.
  • the fixed beamformer As the fixed beamformer, a delay and sum beamformer that delays and adds a plurality of sensor signals, and a filter and sum beamformer that adds by filtering can be used. These fixed beamformers are described in detail in Non-Patent Document 6.
  • the delay and sum beamformer delays a plurality of sensor signals by the number of samples specific to each signal, further multiplies each signal by a specific coefficient, and then calculates and outputs the sum.
  • the delay time of each signal is set so that the phase of the target signal included in each sensor signal is the same after being delayed. As a result, the delay and thumb beam The target signal contained in the output of the format is emphasized.
  • interference signals coming from a direction different from the target signal are attenuated by canceling each other by addition because the phases of the delayed signals are different from each other. Therefore, at the output of the delay and sum beamformer, the target signal is emphasized and the interference signal is attenuated.
  • the filter add-sum beamformer has a configuration in which the delay and constant multiple for a plurality of sensor signals in the delay and sum beamformer are replaced by a filter. These multiple filters can be made to have different delay and constant multiple effects in the delay and sum beamformer for each frequency. For this reason, the target signal enhancement effect is higher than the delay and sum beamformer for signals with non-flat spectra.
  • the adaptive blocking matrix circuit and the multi-input canceller include a plurality of adaptive filters.
  • these adaptive filters structures such as FIR filters, IIR filters, and lattice filters can be used.
  • the coefficient update algorithms in these adaptive filters include NLMS algorithm (learning identification method or normalized LMS algorithm), RL S algorithm (sequential least square method), projection algorithm, gradient method, LS algorithm (least square method), Block adaptation algorithms, transform domain adaptation algorithms, etc. can be used.
  • the disturbing signal emphasized in the coefficient update of the adaptive blocking matrix circuit becomes a signal unnecessary for the coefficient update, and the target signal emphasized in the coefficient update of the multi-input canceller disturbs the coefficient update. For this reason, in any case, the adaptive filter coefficient is disturbed, and unpleasant breathing noise is generated in the output signal of the array processing apparatus.
  • Non-Patent Document 8 an adaptive mode control device is disclosed in Non-Patent Document 8 and Non-Patent Document 9.
  • Non-Patent Document 8 the presence of the interference signal is detected using the correlation between signals obtained by adjacent sensor forces. By stopping coefficient updating when a jamming signal is detected, a good adaptive array device output can be obtained.
  • the microphone interval is wide, and the signal band is limited to about 600 [Hz] to 1200 [Hz] in order to avoid spatial aliasing.
  • the configuration is such that the coefficient update of only the multi-input canceller is controlled, and cannot be applied directly to the adaptive blocking matrix circuit.
  • the presence of a disturbing signal is detected using the power ratio (SIR) of the target signal to the disturbing signal.
  • the target signal power is estimated using the fixed beamformer output.
  • Interference signal power estimation is performed using the output of the adaptive blocking matrix circuit.
  • the ratio of these estimates is compared to a threshold.
  • the adaptive blocking matrix circuit When the SIR (target signal to jamming signal power ratio) is larger than the threshold value! When the target signal is dominant in the input signal and the influence of the jamming signal is small, the adaptive blocking matrix circuit is used. Update the coefficient. On the other hand, since the target signal interferes with the coefficient update of the multi-input canceller, the coefficient update of the multi-input canceller stops.
  • coefficient updating is stopped by the adaptive blocking matrix circuit, and coefficient updating is executed by the multi-input canceller.
  • Non-Patent Document 10 an adaptive mode having a dedicated fixed blocking matrix circuit The control means is disclosed in Non-Patent Document 10.
  • Non-Patent Document 10 the power estimation of the interference signal is performed using a dedicated fixed blocking matrix circuit. For this reason, desired performance can be obtained regardless of convergence of the adaptive filter coefficients included in the adaptive blocking matrix circuit, and accurate interference signal power estimation can be performed.
  • FIG. 8 shows an adaptive mode processing device in another conventional example.
  • the other conventional example (adaptive mode processing device) shown in FIG. 8 is a combination of the adaptive array processing device disclosed in Non-Patent Document 9 and the adaptive mode control means disclosed in Non-Patent Document 10. It is configured.
  • the adaptive array processing device disclosed in Non-Patent Document 9 has a configuration including a fixed beamformer 200, an adaptive blocking matrix circuit 300, a delay element 400, and a multi-input canceller 500.
  • the adaptive mode control means includes a blocking matrix circuit 310, an SIR estimation unit 700, a comparison unit 800a, and the like.
  • the fixed beamformer 200 of the adaptive array processor is composed of M sensors 100-100.
  • the adaptive blocking matrix circuit 300 suppresses the target signal included in the plurality of sensor signals and relatively emphasizes the interference signal. This is achieved by using the output of the fixed beamformer 200 described above as a reference signal to generate a pseudo target signal by a plurality of adaptive filters, and subtracting these signals from the M sensors 100 to 100 forces.
  • the coefficient of the adaptive filter described above is updated using the output of the fixed beamformer 200 and the output of the adaptive blocking matrix circuit 300 so that the output of the adaptive blocking matrix circuit 300 is minimized.
  • the delay element 400 delays the output of the fixed beamformer 200 by L samples and supplies it to the multi-input canceller 500.
  • the value of L is set so that the target signal component at the output of the delay element 400 and the target signal component at the output of the adaptive blocking matrix circuit 300 are in phase. For example, set the sum of the group delay time of the fixed beamformer 200 and the time corresponding to about one quarter to one half of the number of taps of the adaptive blocking matrix circuit 300 !, [0022]
  • the multi-input canceller 500 receives and processes the delayed output signal of the fixed beamformer 200 and the output signal of the adaptive blocking matrix circuit 300, thereby suppressing the interfering signal and relatively processing the target signal. Emphasize further.
  • the multi-input canceller 500 receives the interference signal emphasized from the adaptive blocking matrix circuit 300 as a reference signal, and generates a pseudo interference signal by an adaptive filter as a signal correlated therewith.
  • the generated pseudo disturbance signal is subtracted from the emphasized target signal force that is the output of the delay element 400. This output is transmitted to the output terminal 600.
  • the adaptive filter coefficient of the multi-input canceller 500 is updated using the output of the adaptive blocking matrix circuit 300 and the output signal transmitted to the output terminal 600 so that the output signal is minimized.
  • the output of the adaptive blocking matrix circuit 300 used in the coefficient update of the adaptive blocking matrix circuit 300 includes the interference signal and the suppressed target signal.
  • the adaptive blocking matrix circuit 300 can only affect the target signal component, and the interference signal is output as it is. That is, the adaptive blocking matrix circuit 300 can minimize only the target signal component, and the disturbing signal component included in the output disturbs the coefficient update.
  • the adaptive filter coefficient included in adaptive blocking matrix circuit 300 is disturbed, and the signal transmitted to multi-input canceller 500 becomes unstable.
  • the output of the multi-input canceller 500 that is, the output of the entire adaptive array device is disturbed, and unpleasant breathing noise is generated.
  • the SIR is estimated using the plurality of sensor signals, and the coefficient update of the adaptive blocking matrix circuit 300 is controlled using the estimated value.
  • the target signal emphasized in the coefficient update of the multi-input canceller 500 becomes a signal unnecessary for the coefficient update, and disturbs the coefficient update.
  • the interference disturbs the adaptive filter coefficient included in the multi-input canceller 500, causing unpleasant breathing noise at the output of the adaptive array device. Therefore, similarly to the adaptive blocking matrix circuit 300, the SIR of the plurality of sensor signals is estimated, and the coefficient update of the multi-input canceller 500 is controlled using this estimated value.
  • SIR estimation section 700 performs SIR estimation using the output of blocking matrix circuit 310 and the output of fixed beamformer 200.
  • the power estimation of the target signal is performed using the output of the fixed beamformer 200.
  • the power estimation of the interference signal is performed using the output of the fixed blocking matrix circuit 310.
  • the SIR estimation value calculated by SIR estimation section 700 is transmitted from SIR estimation section 700 to comparison section 800.
  • the comparison unit 800a compares the SIR estimated value with a threshold value.
  • the target signal When the estimated SIR value is larger than the threshold value, the target signal is dominant in the input signal, and the influence of the interference signal is small. Therefore, a control signal for updating the coefficient in the adaptive blocking matrix circuit is generated, and the adaptive blocking matrix circuit 300 To supply. On the contrary, when the coefficient of the multi-input canceller 500 is updated, the target signal gives an interference. Therefore, a control signal for stopping the coefficient update of the multi-input canceller 500 is generated and supplied to the multi-input canceller 500.
  • the adaptive blocking matrix circuit stops the coefficient update and generates a signal for executing the coefficient update by the multi-input canceller.
  • the adaptive blocking matrix circuit 300 and the multi-input canceller 500 respectively To supply.
  • FIG. 9 shows a configuration example of the above-described fixed blocking matrix circuit 310.
  • the difference between the i-th sensor signal X (k) and the (i + 1) -th sensor signal X (k) is obtained.
  • the subtractor 311 is comprised.
  • k is an index representing time
  • i is an integer in the range of 0 to M ⁇ 2.
  • the output signal Z (k) of the blocking matrix circuit 310 is X (k) —X (k).
  • the fixed blocking matrix circuit 310 has an effect of suppressing the target signal.
  • Non-Patent Document 1 January 1982, IEEE Transactions ON ANTENNAS AND PROPAGATIONS, Vol. 30, NO.l Pp. 27-34, Jan. 1982) 27-34.
  • Non-Patent Document 2 September 1992, IEEE Transactions 'On' Antennas 'and' property GAISSION, No. 40, No. 9, (IEEE TRANSACTIONS ON ANTENNAS AND PROPA GATIONS, VOL.40, NO.9, PP.1093—1096, Sep. 1992) 1093-1096.
  • Non-patent document 3 September 1996, IEICE Transactions A, No. 79, No. 9, 1516-15 24 pages.
  • Non-Patent Document 4 August 1972, Proceedings' IEEE, 60th, No. 8 (PROCE EDINGS OF IEEE, VOL.60, NO.8, PP.926—935, Aug. 1972) 926 ⁇ 935 pages.
  • Non-Patent Document 5 April 1994, IEEE Proceedings of International Conference on ACOUSTICS, SP EECH 'AND SIGNNAL PROCESSING, VOL.IV, PP.269-272, Apr. 1994) 269-272 pages.
  • Non-Patent Document 6 1993, “Array Signal Processing”, Chapter 4, Prentice Hall, Inglewood 'Cliffs (CH.4, ARRAY SIGNAL PROCESSING, PRENTICE-H ALL, ENGLEWOOD CLIFS, 1993. )
  • Non-Patent Document 7 2001, “Microphone Array”, Springer (MICROPHONE ARRA YS, SPRINGER, 2001.)
  • Non-Patent Document 8 March 1992, Journal of Architectural Society of America, USA 91st, No. 3, (JOURNALOF ACOUSTICAL SOCIETYOF AMERICA, VOL.91, N0.3, PP. 1662-1676, Mar. 1992) 1662-1676
  • Non-Patent Document 9 April 1998, “I'1'1'1'Proceedings' Ob'I'S--A.S.S.P. (IEEE PROCEEDINGS OF ICASSP, PP.3605— 3608, APR. 1998) 3605-3608
  • Non-Patent Document 10 March 1999, “Professionals of I.S.P.949” (IEEE PROCEEDINGS OF ICASSP, PP.949— 952, MAR. 1 999) Pages 949-952
  • the above-described array is used in order to avoid distortion caused by space folding.
  • the upper limit of the wavelength and the speed of sound is set for the interval between the sensors arranged in a shape.
  • the present invention improves the disadvantages of the above-described conventional example, and in particular, enables accurate coefficient update control regardless of the influence of the frequency characteristics and direction of arrival of the disturbing signal, and thereby the frequency characteristics of the input signal. And providing an adaptive array control method, apparatus, program, and adaptive array processing apparatus, method, and program using the same, which can obtain a high-quality array processing output that is not easily affected by the direction of arrival. Objective.
  • the adaptive array controller specifies a plurality of sensor forces in an array, a plurality of signal forces to be fed, and a plurality of sensor pairs having different sensor intervals and Sensor counter force
  • An array processing unit that performs array processing on the obtained signal and outputs the result as an array processing signal, and controls the speed and accuracy of parameter adjustment in adaptive array processing using the output signal of this array processing unit
  • an arithmetic control unit for generating a control signal.
  • the above-described array processing unit may include a plurality of filters that respectively filter the array processing results, and an adder that adds and outputs the outputs of the filters.
  • the first array processing signal obtained by emphasizing the target signal with respect to other signals among the plurality of signals to be sent in the plurality of sensor forces in the above-described array shape is taken in, and
  • the array processing unit that outputs the ray processing signal is the second array processing unit that outputs the second array processing signal.
  • a calculation unit is provided for calculating a relative magnitude relationship between the second array processing signal and the captured first array processing signal.
  • the arithmetic control unit has a control signal generation function for generating a control signal for controlling the speed and accuracy of parameter adjustment in adaptive array processing using the magnitude relationship of the processing signals obtained by the calculation unit.
  • the first array processing signal obtained by emphasizing the target signal with respect to other signals is fetched, and the fetched first array Equipped with an estimation unit that estimates the target signal to interference signal ratio (SIR) based on the processed signal, the arithmetic control unit uses the estimated SIR estimation value to adjust the parameters in adaptive array processing. It may also be configured with a control signal generation function that generates control signals to control speed and accuracy.
  • SIR target signal to interference signal ratio
  • the adaptive array control device effectively estimates the interference signal power at the array processing unit or the second array processing unit, for example, using outputs of a plurality of sensor groups having different sensor intervals. Therefore, it is possible to realize a high flatness characteristic that combines different frequency characteristics and spatial selection characteristics, and to accurately estimate the interference signal power. Coefficient update control (parameter adjustment in array processing) can be performed appropriately, and output control of high-quality array processing that is less affected by the frequency characteristics and direction of arrival of interfering signals
  • a plurality of sensor forces in an array shape A plurality of signal forces to be fed In a plurality of sensor forces having different sensor intervals, an array processing is performed on signals obtained.
  • the array processing result is generated, and the array processing signal is generated by using the array processing result as an array processing signal in which the target signal is attenuated with respect to other signals, and parameter adjustment in the adaptive array processing is performed using the array processing signal.
  • Control speed and accuracy And an adaptive array processing step to be controlled.
  • the execution contents of the above-described array processing signal generation step are obtained by array processing the signals obtained from a plurality of sensors having different sensor intervals to obtain the array processing result, and the array processing signal.
  • Each of the results may be filtered to obtain a plurality of filter processing results, and the plurality of filter processing results may be added to generate the array processing signal.
  • a first array processing signal acquisition step for capturing a first array processing signal obtained by emphasizing a target signal among a plurality of signals sent in an array form with respect to other signals.
  • the above-described array processing signal generation step is used as a second array processing signal generation step, and the captured first array processing signal and second array processing signal generation step are generated.
  • the magnitude relation specifying process for comparing the above and the relative magnitude relation is set before the adaptive array processing process described above. Then, the execution contents of the adaptive array processing step described above are configured to control the speed and accuracy of parameter adjustment in the adaptive array processing using the magnitude relation of each processing signal specified in the magnitude relation specifying step.
  • a first array processing signal acquisition step for capturing a first array processing signal formed by emphasizing a target signal among a plurality of signals sent to the array in a plurality of sensor forces with respect to other signals
  • the array processing signal generation step is a second array processing signal generation step, and the second array processing generated by the captured first array processing signal and the second array processing signal generation step
  • a SIR estimation step is used to estimate a target signal to jamming signal ratio (SIR) using the signal before the adaptive array processing step.
  • the execution contents of the adaptive array processing step described above may be configured to control the speed and accuracy of parameter adjustment in the adaptive array processing using the SIR estimation value estimated in the SIR estimation step.
  • the adaptive array control method according to the present invention is configured as described above. According to this, it is possible to control high-quality array processing output almost equivalent to each of the adaptive array control devices described above, and in particular, the adaptive array processing process functions effectively to execute array processing control smoothly. There is an advantage of getting.
  • a program for adaptive array control includes a first array processing signal formed by emphasizing a target signal of a plurality of signals fed into an array of a plurality of sensor forces with respect to other signals.
  • Second array processing signal generation processing to be generated as the second array processing signal, and the magnitude of the relative size relationship between the captured first array processing signal and the generated second array processing signal.
  • the relationship identification process and the adaptive array process that controls the speed and accuracy of parameter adjustment in the adaptive array process using this identified magnitude relationship are programmed and executed on a computer. Characterized in that have configured to so that.
  • the adaptive array processing apparatus array-processes signals obtained by a plurality of sensor forces having different sensor intervals among a plurality of signals sent in an array. And an array processing unit for outputting the result as an array processing signal.
  • the array processing section described above may be configured to include a plurality of filters that respectively filter the array processing results, and an adder that adds and outputs the outputs of the filters. .
  • the adaptive array processing apparatus emphasizes a target signal of a plurality of signals sent in an array of a plurality of sensor forces with respect to other signals, and performs first array processing.
  • a first array processing unit for obtaining a signal a third array processing unit for obtaining a third array processing signal by attenuating the target signal with respect to other signals, and a correlation with the third array processing signal.
  • a correlation removal unit that eliminates a certain signal component from the first array processing signal, and a plurality of signals obtained by array processing of signals obtained by a plurality of sensors having different sensor intervals among the plurality of signals.
  • a second array processing unit for outputting as an array processing signal, and an arithmetic control unit for generating a control signal for controlling the speed and accuracy of parameter adjustment in adaptive array processing using the output signal of the second array processing unit It is characterized by comprising.
  • the adaptive array processing apparatus emphasizes the target signal of the plurality of signals fed into the array-like plurality of sensor forces with respect to other signals, and generates the first array processing signal.
  • a first array processing generation unit for generating, a third array processing generation unit for generating a third array processing signal by attenuating the target signal with respect to other signals, and the third array processing signal A correlation removing unit that eliminates correlated signal components from the first array processing signal; and a second result obtained by array processing of signals obtained from a plurality of sensors having different sensor intervals among the plurality of signals.
  • a second array processing unit that outputs the first array processing signal, a calculation unit that calculates a relative magnitude relationship between the first array processing signal and the second array processing signal, and the first and second array processing signals.
  • a computation control section for generating a control signal for controlling the speed and accuracy of parameter adjustment in array processing.
  • the adaptive array processing apparatus emphasizes a target signal among a plurality of signals sent in an array of a plurality of sensor forces with respect to other signals, and performs first array processing.
  • a first array processing generator for generating a signal; a third array processing generator for generating a third array processing signal by attenuating the target signal with respect to other signals; and
  • a correlation removing unit that eliminates a signal component correlated with an array processing signal from the first array processing signal, and a plurality of sensors having different sensor intervals among the plurality of signals, and an array processing of signals obtained
  • a second array processing unit that outputs the result as a second array processing signal, a SIR estimation unit that estimates a target signal to interference signal ratio (SIR) using the second array processing signal, An adaptive algorithm using the SIR estimation value estimated by the SIR estimation unit.
  • SIR target signal to interference signal ratio
  • the second array processing unit described above may be configured to include a plurality of filters that respectively filter the array processing results, and an adder that adds and outputs the outputs of the filters.
  • the signal extraction can be accurately performed regardless of the frequency characteristics and the arrival direction of the signal.
  • a quality array processing output can be obtained.
  • the interference signal noise is effectively estimated by the array processing unit or the second array processing unit using the outputs of a plurality of sensor groups having different sensor intervals. Therefore, it is possible to achieve high flatness and characteristics combining different frequency characteristics and spatial selection characteristics, and to accurately estimate the interference signal power.
  • Coefficient update control adjustment of parameters in array processing
  • high-quality array processing output can be obtained that is less affected by the frequency characteristics and direction of interference signals.
  • the adaptive array processing method performs array processing on a plurality of sensor forces having different sensor intervals and a plurality of signals obtained from an array of sensor forces.
  • the execution contents of the array processing signal generation process described above are configured to generate the array processing signal in a state where the target signal of the plurality of signals is attenuated with respect to other signals.
  • the adaptive array processing method performs array processing on signals obtained from a plurality of sensor pairs having different sensor intervals for a plurality of signals fed in an array. Then, an array processing signal generation step for generating an array processing signal and an array processing signal output step for outputting the array processing result in the array processing signal generation step as an array processing signal are provided. And the above array processing signal generation The execution contents of the process are characterized in that each of the array processing results is filtered to obtain a plurality of filter processing results and the plurality of filter processing results are added to generate the array processing signal. To do.
  • the adaptive array processing method according to the present invention is fed with a plurality of sensor forces in the form of an array, and the target signal of the plurality of signals sent in the form of a plurality of sensors in the array is compared with other signals.
  • the array processing signal generation step and the signal component correlated with the third array processing signal are erased from the first array processing signal and output, they differ for the plurality of captured array signals.
  • a plurality of sensor forces having different sensor intervals are obtained by array processing to obtain an array processing result, and this array processing result is used as a second array processing signal in which the target signal is attenuated with respect to other signals.
  • Array processing signal generation And an adaptive array processing control step for controlling the speed and accuracy of parameter adjustment in the adaptive array processing using the second array processing signal.
  • the adaptive array processing method includes a first array processing by emphasizing a target signal among a plurality of signals fed into an array of a plurality of sensor forces with respect to other signals.
  • a first array processing signal generation step for generating a signal;
  • a third array processing signal generation step for generating a third array processing signal by attenuating the target signal with respect to other signals;
  • a signal component having a correlation with the array processing signal is erased from the first array processing signal and output, it is obtained from a plurality of sensor pairs having different sensor intervals for the plurality of captured array signals.
  • array processing signals A size relationship specifying step for obtaining a relative size relationship of the second array processing signal, and an adaptive array processing for controlling the speed and accuracy of parameter adjustment in the adaptive array processing using the specified size relationship. And a control step.
  • the adaptive array processing method provides a plurality of sensor forces in an array and a plurality of sensor forces in an array.
  • a first array processing signal generating step for generating a first array processing signal with emphasis on the signal and a third array processing signal by attenuating the target signal with respect to other signals
  • the third array processing signal generation step and a signal component correlated with the third array processing signal are erased from the first array processing signal and output, the plurality of captured array signals are output.
  • Multiple sensor forces with different sensor intervals as the target are subjected to array processing to obtain the array processing result, and this array processing result is compared with the second array processing signal in which the target signal is attenuated with respect to other signals.
  • a second array processing signal generation step a SIR estimation step for estimating a target signal to interference signal ratio (SIR) using the second array processing signal, and the estimated SIR estimation value.
  • An adaptive array processing control step of controlling the speed and accuracy of the data adjustment characterized by comprising a.
  • the execution contents of the second array processing signal generation step described above are obtained by filtering each of the array processing results to obtain a plurality of filter processing results and calculating the sum of the plurality of filter processing results.
  • the second array processing signal may be used to obtain the second array processing signal.
  • the adaptive array processing method according to the present invention is configured as described above, according to this, it is possible to obtain a high-quality array processing output substantially equivalent to each adaptive array control device described above. There is an advantage that the adaptive array processing process functions effectively and the array processing output can be executed smoothly.
  • the interference signal power is effectively estimated in the array processing step or the second array processing step by using outputs of a plurality of sensor groups having different sensor intervals. Therefore, high flatness and characteristics combining different frequency characteristics and spatial selection characteristics can be obtained, and the interference signal power can be accurately estimated. For this reason, it is possible to appropriately perform the coefficient update control (adjustment of parameters in the array processing) of the apparatus during adaptive array processing, and it is difficult to be affected by the frequency characteristics of the interfering signal and the direction of arrival. An array processing output can be obtained.
  • the adaptive array processing program according to the present invention is fed from a plurality of array-shaped sensors, and a plurality of array-shaped sensor forces. Emphasize the first array processing signal to obtain the first array processing signal.
  • a third array processing signal generation function for generating a third array processing signal by attenuating the target signal with respect to other signals, and a signal component correlated with the third array processing signal.
  • Correlation component elimination function that erases and outputs from the first array processing signal, a plurality of array-like signal forces When a plurality of sensor pairs having different sensor intervals are set, a signal obtained from this sensor pair force is obtained.
  • a second array processing signal specifying function for specifying a result of the array processing as a second array processing signal obtained by attenuating the target signal with respect to another signal; the first array processing signal and the second array processing signal; A size relationship specifying function for specifying the relative size relationship of the array processing signals of the array, and an adaptive array processing control function for controlling the speed and accuracy of parameter adjustment in the adaptive array processing using the specified size relationship. Characterized by being configured to execute gram of computerized.
  • the interference signal power is estimated using the outputs of a plurality of sensor groups having different sensor intervals, a characteristic with high flatness combining different frequency characteristics and spatial selection characteristics is obtained. It can be realized and the interference signal power can be estimated accurately.
  • the coefficient update control of the adaptive array processor (adjustment of parameters in array processing) can be performed appropriately, and high-quality array processing that is less affected by the frequency characteristics and direction of arrival of interference signals.
  • the method, apparatus, program, and adaptive array processing apparatus using the same which are superior in the conventional array control method, can control the execution of the data, and thereby obtain a high-quality array processing output. , Methods and programs can be obtained.
  • the embodiment shown in FIG. 1 to FIG. 7 performs array processing by receiving signals of a plurality of sensor pairs having different sensor intervals, and uses the obtained array processing result to obtain interference signal power. Is accurately estimated. More specifically, several different It is characterized by a multiple blocking matrix circuit that receives and processes sensor force signals at different intervals.
  • FIG. 1 to 6 show a first embodiment of an adaptive array processing apparatus according to the present invention.
  • the adaptive array processing apparatus according to the first embodiment uses a target signal among a plurality of signals sent from 100 to 100 forces of M sensor groups in an array.
  • the fixed beamformer 200 as the first array processing signal generation unit for processing the signal to be emphasized and generating the first array processing signal thereby, and the target signal with respect to the other signals
  • a multi-blocking matrix circuit 320 as a second array processing signal generation unit for generating a second array processing signal by attenuation.
  • the multiple blocking matrix circuit (second array processing signal generation unit) 320 includes a plurality of array sensors to which 100 to 100 forces of the array-like M sensor groups described above are sent.
  • a sensor pair difference output function is provided for setting a plurality of sensor pairs having different sensor intervals in terms of information power and calculating an output difference of the sensor pair and outputting the calculated difference.
  • the multiple blocking matrix circuit (second array processing signal generation unit) 320 includes a plurality of filters that respectively filter the output differences described above, and an adder that calculates the output of the filters. And an addition result output function for externally outputting the addition result in the adder.
  • the adaptive array processing device described above includes an SIR estimation unit 700 that estimates the ratio (SIR) of the interference signal to the target signal based on the first array processing signal described above, and adaptive blocking.
  • the multi-input canceller (applied array processing unit) 500 that emphasizes and outputs the first array processing signal, and the operations of the adaptive blocking matrix circuit 300 and the multi-pole input canceller 500 are controlled.
  • the input canceller (applied array processing unit) 500 updates the parameters of the adjustment parameters to the optimum state based on the control information from the SIR estimation unit 700 so that high-quality array processing output can be achieved.
  • Calculation control to be controlled And a delay element 400 that delays the first array processing signal and sends it to the multi-pole input canceller 500.
  • the arithmetic control unit 800 also has a function as the comparison unit 800a in FIG. 8 described above.
  • adaptive mode control means (adaptive array control device) 1200 is configured by the multiple blocking matrix circuit 320, the SIR estimation unit 700, and the arithmetic control unit 800 that also functions as the comparison unit 800a. .
  • the first array processing signal is obtained by erasing the signal component correlated with the second array processing signal described above to the first array processing signal power. It is configured to have a function as a correlation removal unit that performs emphasis output.
  • the SIR estimation unit 700 is based on the second array processing signal generated by the multiple blocking matrix circuit (second array processing signal generation unit) 320 and the first correction array processing signal.
  • the target signal to jamming signal ratio (SIR) may be estimated and specified.
  • the above SIR estimation unit 700 may be replaced with a calculation unit (not shown) for obtaining a relative magnitude relationship between the first array processing signal and the second array processing signal.
  • the arithmetic control unit 800 described above determines the speed of parameter adjustment in the adaptive array processing based on the information on the relative magnitude relationship between the first array processing signal and the second array processing signal. It has a control signal generation function that generates a control signal for controlling the accuracy, and the fixed beamformer (first array processing signal generation unit) 200 and the multiple blocking matrix circuit (second Function of the array processing signal generator), adaptive blocking matrix circuit 300 and multi-input canceller 500 (correlation removal unit) to control the operation and output the target signal or disturbance signal clearly (Adaptive Array) Processing control function).
  • the fixed beamformer first array processing signal generation unit
  • the multiple blocking matrix circuit second Function of the array processing signal generator
  • adaptive blocking matrix circuit 300 and multi-input canceller 500 correlation removal unit
  • the multiple blocking matrix circuit 320 forming a part of the adaptive mode control means (adaptive array controller) 1200 is provided. Is completely different from the blocking matrix circuit 310 shown in FIG. 8 (conventional example) described above. This will be described in detail below.
  • the multi-blocking matrix circuit 320 includes subtracters 321 to 321 and a calorie calculator 322.
  • the subtractor i has the first sensor signal X (k) and the i-th sensor signal X (k)
  • the Calo arithmetic unit 322 performs Calo calculation on all these M-1 input signals and outputs the addition result as Z (k).
  • each difference Z (k) 0 with respect to the target signal coming from the front.
  • k is not zero. That is, all the differences function independently as a multiple blocking matrix.
  • each difference Z (k) has different frequency response and spatial selection characteristics. This is due to the following two reasons.
  • the relative delay between two sensor signals which are subtractor inputs, is given by the product of the distance between sensors and the sine of the signal arrival direction divided by the speed of sound.
  • the distance between sensors is different for all Z (k).
  • the frequency characteristics and spatial selection characteristics of the difference Z (k) are functions of the distance between sensors.
  • Z (k) with different distances between sensors has different frequency characteristics and spatial selection characteristics. This is the subtractor 321-3 i 0
  • the sensitivity is higher in the direction away from the front where the sensitivity is low with respect to the target signal coming from the front.
  • the transition from the direction of low sensitivity to the direction of high sensitivity is gradual, and sufficient spatial selectivity cannot be obtained.
  • the sensor interval is increased, the relative delay is increased, and high spatial selectivity can be realized. That is, steep space selectivity can be obtained.
  • the first embodiment has a comprehensively excellent spatial selectivity by obtaining a plurality of differences between signals obtained from pairs of sensors having different intervals and adding them. Obtain a multiple blocking matrix. Multiple differences are obtained by subtracters 321 to 321
  • the multiple blocking matrix circuit 320 can suppress the target signal with excellent frequency characteristics and spatial selectivity.
  • the interference signal power is accurately estimated using the output of the multi-blocking matrix circuit 320 having such characteristics, and the SIR calculation unit 700 calculates SIR using the result. Is configured to do.
  • adaptive blocking in adaptive array processors is controlled by controlling parameters that determine the adaptive filter tracking and calculation accuracy, such as coefficient update step size and forgetting coefficient, based on accurate SIR estimates!
  • the coefficient update in the matrix circuit 300 and the multipolar input canceller 500 that outputs the target signal can be appropriately controlled. As a result, it is possible to obtain a high-quality array processing output that is hardly affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal.
  • FIG. 3 Another configuration example of the multiple blocking matrix circuit 320 is shown in FIG.
  • the multiple blocking matrix circuit 320 shown in FIG. 3 includes subtractors 321 to 321, a filter 3
  • the subtractor i is the first sensor signal
  • the difference Z (k) X (k) — X (k) between the signal X (k) and the i-th sensor signal X (k)
  • 0 i i is transmitted to 0 i i.
  • the sign i is an integer in the range 0 to M-2.
  • the filter 32 transmits the passband signal component to the adder 322.
  • the adder 322 adds all these M ⁇ 1 input signals and outputs the addition result as Z (k).
  • the passband of filter 323 is determined by the 0th and i-th microphone intervals. Filter 323 is designed so that the passivity is a frequency where the spatial selectivity defined by the 0th and i-th microphone signals is flat, especially in the direction other than the front direction. Yes.
  • the multi-blocking matrix circuit 320 can have another configuration.
  • the distance between the two sensors is D, 2D, 3D, ..., (M-1) D in order from the shortest.
  • the set of sensors with sensor spacing D is M-l
  • the set of 2D is M-2
  • the set of (M-1) D is 1. Therefore, as long as the configuration is such that a set of sensors corresponding to each of these sensor intervals is selected, the difference between the signals obtained from them is obtained, and these are added by the adder 322, the multiple blocking matrix circuit 320 has the above configuration. It has the effect of.
  • An example of such a configuration is shown in FIG.
  • these subtractors output a difference signal corresponding to the sensor interval D and (M-1) D.
  • the difference signal corresponding to the sensor interval of (M-1) D and D is output. Output.
  • various similar configurations are possible.
  • the target signal blocking effect is higher than that of the conventional blocking matrix circuit 310.
  • a configuration example (fourth example) of such a multiple blocking matrix circuit 320 is shown in FIG. Comparing FIG. 5 with FIG. 3, the subtractor 321 does not exist. For this reason, there is no differential signal corresponding to the sensor interval of 2D, and the effect of sensor interval 2D cannot be expected.
  • the outputs of the subtractors 32 1 to 321 are supplied to the adder 322 via the filters 323 to 323.
  • the receiving unit 100 receives them and temporarily holds them (step S101).
  • This receiving unit has a function capable of constantly receiving a plurality of signals of the array sensor group force.
  • the array sensor signal received by the receiving unit 100 includes a fixed beamformer (first array processing signal generation unit) 200, a multiple blocking matrix circuit (second array processing signal generation unit) 320, and an adaptive blocking matrix circuit. (Interfering signal extraction unit) Simultaneously sent to 300.
  • Step S102 First array processing signal generation step
  • the multiple blocking matrix circuit (second array processing signal generation unit) 320 attenuates the target signal of a plurality of transmitted signals with respect to other signals, thereby causing interference signals.
  • the second array processing signal is generated so as to emphasize (step S103: second array processing signal generation step).
  • the generated second array processing signal is temporarily stored in the multiple blocking matrix circuit 320.
  • the target signal in the plurality of signals sent is attenuated with respect to other signals, and thereby the interfering signal is processed to be emphasized temporarily. And then output to the above-described multi-input canceller 500 at a predetermined timing (step S104).
  • Each processing operation in the fixed beamformer 200, the multiple blocking matrix circuit 300, and the adaptive blocking matrix circuit 300 operates simultaneously in the present embodiment and is performed in parallel. It will be executed from time to time.
  • the first array processing signal generated in step S102 and having the target signal emphasized is sent a timing by the delay element 400, and sent to the multi-input canceller 500 at a predetermined delayed timing (step S105). ).
  • the first array processing signal generated in step S102 and having the target signal emphasized is determined based on the second array processing signal generated by the multiple blocking matrix circuit 320 described above.
  • a signal-to-interference ratio (SIR) is calculated and estimated by the SIR estimation unit 700 (step S 106: SIR estimation step).
  • the SIR may be estimated by using a predetermined interference signal (for example, assumed in advance) set in advance instead of the second array processing signal.
  • a magnitude relationship specifying step for obtaining a relative magnitude relationship between the first array processing signal and the second array processing signal may be set.
  • the SIR estimated value (or magnitude relation specific value) estimated in the SIR estimating step described above is immediately sent to the calculation control unit 800.
  • the arithmetic control unit 800 functions based on the SIR estimated value (or the magnitude relation specific value).
  • the tracking speed and the calculation accuracy are determined.
  • a control signal for setting and controlling the parameter for determining the optimal state is generated (step S107: control signal generation step).
  • setting control is performed so as to emphasize and output the target signal (adaptive array processing control step).
  • the coefficient update control of the processing device can be appropriately performed, and the frequency characteristics of the input signal, the target signal, and the interference signal can be controlled. It is possible to obtain a high-quality array processing output that is not easily affected by the direction of the (step S108).
  • the arithmetic control unit 800 sends the control signal described above to the fixed beamformer 200 and the multiple blocking matrix circuit 320, and performs control so that these outputs or at least one of them is emphasized. It can be configured to do!
  • each power of the target signal (or the target signal and the interference signal) can be effectively estimated. Therefore, the coefficient update control of the processing device is appropriately performed.
  • the frequency characteristics of the input signal and the target signal and interference signal It is possible to obtain a high-quality array processing output that is hardly affected by the direction.
  • the adaptive mode control means 1200 sets a plurality of sensor pairs having different sensor intervals and sets a plurality of sensor pairs as in the adaptive mode control means in each of the embodiments described above. It has a function to estimate the interference signal power using each sensor pair output. For this reason, by providing this adaptive mode control means 1200, it is possible to realize characteristics with high flatness combining different frequency characteristics and spatial selection characteristics, and accurately estimate the interference signal power. .
  • the interference signal power is estimated using the outputs of the sensor groups having a plurality of different sensor intervals, and thus flatness combining different frequency characteristics and spatial selection characteristics. Can be realized and the interference signal power can be estimated accurately. This makes it possible to appropriately perform coefficient update control of the adaptive array processing device, and to control the execution of high-quality array processing that is hardly affected by the frequency characteristics and direction of arrival of interference signals. As a result, high-quality array processing output can be obtained.
  • the first embodiment it is possible to obtain a high-quality array processing output that is hardly affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal.
  • the second embodiment shown in FIG. 7 includes a computer (central processing unit; processor; processing unit main body) 1000 that operates by program control, input terminals 101 to 101, and an output.
  • a computer central processing unit; processor; processing unit main body 1000 that operates by program control, input terminals 101 to 101, and an output.
  • a computer (central processing unit; processor; processing unit main body) 1000 includes a fixed beamformer 200, an adaptive blocking matrix circuit 300, a delay element 400, and the like disclosed in the first to second embodiments.
  • the target signal and the interference signal supplied to the input terminals 101 to 101 are stored in a computer.
  • the assumed array processing apparatus 1100 includes the same execution contents as the fixed beam former 200, the adaptive blocking matrix circuit 300, the delay element 400, and the multi-input canceller 500 described above as constituent elements.
  • the adaptive blocking matrix circuit 300 and the multi-input canceller 500 include an adaptive mode control means (adaptive array controller) for controlling each operation of the adaptive blocking matrix circuit 300 and the multi-input canceller 500 1 200. Is attached.
  • This adaptive mode control means 1200 is a process including execution contents equivalent to the multiple blocking matrix circuit 320, the SIR estimation unit 700, and the arithmetic control unit 800 that also functions as a comparison unit in the first embodiment described above. It consists of programs.
  • the adaptive mode control means 1200 controls the coefficient update speed and accuracy of the adaptive filters included in the adaptive blocking matrix circuit 300 and the multi-input canceller 500 in the array processing device described above.
  • adaptive mode control means (adaptive mode control apparatus) 1200 estimates the interference signal power using the outputs of a plurality of sensor groups having different sensor intervals. A combination of spatial selection characteristics and high flatness characteristics can be realized, and the interference signal power can be accurately estimated. For this reason, the adaptive array processing apparatus using this makes it possible to appropriately perform the coefficient update control, and is a high-quality array that is hardly affected by the frequency characteristics of the input signal and the direction of the target signal and the disturbing signal. Processing output can be obtained.
  • a sensor such as an ultrasonic sensor, a sonar receiver, and an antenna can be used in addition to the force microphone that has been described using a microphone as the sensor.
  • the adaptive array processing apparatus 1100 is equipped with the adaptive mode control unit 1200, so that the adaptive blocking matrix circuit 300 and the multi-input canceller 500 are the same as in the above-described embodiment. It is possible to perform appropriate coefficient update control Thus, it is possible to obtain a high-quality array processing output that is hardly affected by the frequency characteristics of the input signal and the direction of the target signal and the interference signal.
  • the interference signal power and the ratio of target signal to interference signal can be accurately estimated. For this reason, it is possible to appropriately perform coefficient update control that is less affected by the frequency characteristics of the jamming signal and the direction of arrival. As a result, signal degradation and breathing noise at the output of the array processing apparatus are reduced, and high-quality array processing can be performed.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a first example of the multiple blocking matrix circuit disclosed in FIG.
  • FIG. 3 is a block diagram showing a second example of the multiple blocking matrix circuit disclosed in FIG.
  • FIG. 4 is a block diagram showing a third example of the multiple blocking matrix circuit disclosed in FIG.
  • FIG. 5 is a block diagram showing a fourth example of the multiple blocking matrix circuit disclosed in FIG.
  • FIG. 6 is a flowchart showing an operation of the first embodiment disclosed in FIG.
  • FIG. 7 is a block diagram showing a second embodiment of the present invention.
  • FIG. 8 is a block diagram showing a conventional example.
  • FIG. 9 is an explanatory diagram showing an example of the blocking matrix circuit disclosed in FIG. 8.
  • Target signal-to-interference signal ratio calculator SIR calculator, SIR estimator
  • Adaptive mode control means (adaptive array controller)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

【課題】信号の周波数特性や到来方向によらず、正確な係数更新制御を行うことが可能な、適応アレイ制御の方法、装置、及びプログラム、並びに適応アレイ処理の方法、装置、及びプログラムを提供することである。 【解決手段】複数の異なったセンサ間隔を有する複数のセンサ対の信号を受けてアレイ処理を行い、得られたアレイ処理結果を用いて、妨害信号パワーを正確に推定することを特徴とする。より具体的には、複数の異なった間隔のセンサから信号を受けて処理する多重ブロッキング行列回路320を備え、その出力であるアレイ処理信号に基づいて正確な係数更新制御が実行され、これにより、出力された信号の劣化や息づき雑音が減少し、高品質なアレイ処理の実行が可能となる。

Description

明 細 書
適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ 処理装置、方法、プログラム
技術分野
[0001] 本発明は、到来する音声等の信号を複数のセンサを用いて、空間選択的に受信し 処理する適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処 理装置、方法、プログラムに関する。
背景技術
[0002] 従来より、音声信号取得や、ソーナ一、無線通信などの分野においては、適応マイ クロフオンアレイによる音声強調装置や、適応アンテナアレイによる無線送受信装置 などが知られている。
これらの装置は、複数の信号源の中から特定の信号だけを強調して受信することが 可能であり、適応アレイ技術の応用である。センサとしては、マイクロフォン、超音波セ ンサ、ソーナー受音器、電波アンテナなどを用いることができる。ここでは、センサとし てマイクロフォンを用いた場合にっ 、て説明する。
[0003] 以下、説明を簡単にするため、マイクロフォンが直線上に等間隔に配置されている 場合を考える。また、目標音源がマイクロフォンの配置されている直線力も十分に離 れており、目標音源の方向は前記直線に対して直交していると仮定する。
マイクロフォンアレイは、複数のマイクロフォンに入力された信号をフィルタリングし た後、加算することによって空間フィルタを形成する。この空間フィルタにより、事前に 規定した方向から到来した信号、スィッチ目標信号だけを強調し、目標以外の信号 を減衰させる。
[0004] 適応マイクロフォンアレイは、空間フィルタ特性を適応的に変化させる機能を有した マイクロフォンアレイである。
適応マイクロフォンアレイの構成として、非特許文献 1に開示されて ヽる「一般化サ イドローブキャンセラ」、非特許文献 2に開示されている構成、非特許文献 3に開示さ れている構成、非特許文献 4に開示されている「フロスト 'ビームフォーマ」、非特許文 献 5に開示されて 、る構成などが知られて!/、る。
[0005] ここで、非特許文献 1に開示されて!ヽる基本的な適応アレイ処理装置である一般化 サイドローブキャンセラは、固定ビームフォーマ、ブロッキング行列回路、多入力キヤ ンセラ力 構成される。
ブロッキング行列回路には、適応フィルタを含む適応ブロッキング行列回路も使用 される。固定ビームフォーマは、複数のセンサ信号を処理して目標信号を強調する。 このブロッキング行列回路は、前記複数のセンサ信号に含まれる目標信号を抑圧し
、妨害信号を相対的に強調する。
[0006] 適応ブロッキング行列回路は、前記固定ビームフォーマ出力を参照信号として、適 応フィルタによって生成した擬似目標信号を前記複数のセンサ信号力も差し引き、多 入力キャンセラに供給する。この適応ブロッキング行列回路の適応フィルタ係数は、 固定ビームフォーマ出力と適応ブロッキング行列回路の出力を用いて適応ブロッキ ング行列回路の出力が最小化されるように更新される。
多入力キャンセラは、ブロッキング行列回路の出力を参照信号として、適応フィルタ によって生成した擬似妨害信号を、前記固定ビームフォーマ出力力 差し引く。この 減算処理によって得られた信号においては、 目標信号が強調され、妨害信号が抑圧 されており、これをアレイ装置出力とする。この減算処理により、出力信号の妨害信号 に対する相関が除去される。
多入力キャンセラの適応フィルタ係数は、ブロッキング行列回路出力と多入力キヤ ンセラ出力を用いて、多入力キャンセラ出力が最小化されるように更新される。
[0007] 固定ビームフォーマとして、複数のセンサ信号をそれぞれ遅延して加算するディレ ィアンドサムビームフォーマや、フィルタリングして加算するフィルタアンドサムビーム フォーマを用いることが可能である。これらの固定ビームフォーマについては、非特 許文献 6に詳細に説明されて 、る。
[0008] 上記ディレイアンドサムビームフォーマは、複数のセンサ信号を各信号に固有のサ ンプル数だけ遅延させ、更に各信号に固有の係数を乗算した後に、総和を計算して 出力する。 各信号の遅延時間は、各センサ信号を遅延した後に、それに含まれる 目標信号の位相が同じになるように設定する。その結果、ディレイアンドサムビームフ ォーマの出力に含まれる目標信号が強調される。
一方、 目標信号とは異なる方向から到来する妨害信号は、前記の各遅延信号にお いて、位相が互いに異なるため、加算によって互いに打ち消し合って減衰する。従つ て、ディレイアンドサムビームフォーマの出力では、 目標信号が強調され、妨害信号 が減衰する。
[0009] フィルタアドサムビームフォーマは、ディレイアンドサムビームフォーマにおける複数 のセンサ信号に対する遅延と定数倍が、フィルタで置換された構成を有する。これら 複数のフィルタは、ディレイアンドサムビームフォーマにおける遅延と定数倍の効果が 、各周波数に対して異なるようにすることができる。このため、スペクトルが平坦でない 信号に対して、 目標信号強調効果がディレイアンドサムビームフォーマよりも高 、。
[0010] 適応ブロッキング行列回路および多入力キャンセラは、複数の適応フィルタを含む 。これらの適応フィルタとして、 FIRフィルタ、 IIRフィルタ、及びラテイスフィルタなどの 構造を用いることが可能である。又、これらの適応フィルタにおける係数更新アルゴリ ズムとして、 NLMSアルゴリズム(学習同定法または正規化 LMSアルゴリズム)、 RL Sアルゴリズム (逐次最小自乗法)、射影アルゴリズム、勾配法、 LSアルゴリズム (最小 自乗法)、ブロック適応アルゴリズム、変換領域の適応アルゴリズムなどを用いることが できる。
[0011] 更に、係数更新に際して、新たに計算される係数値に制約を課するタップ係数拘 束適応アルゴリズムや、リーク適応アルゴリズム、更には係数値ノルムに拘束を課する タップノルム拘束適応アルゴリズム、などを用いることが可能である。これらの制約付 係数更新アルゴリズムにつ 、ては、非特許文献 7に詳 、。
[0012] 適応ブロッキング行列回路の係数更新では強調された妨害信号が、多入力キャン セラの係数更新では強調された目標信号が、係数更新には不要な信号となり、係数 更新を妨害する。このため、いずれの場合も、適応フィルタ係数が乱れ、アレイ処理 装置の出力信号に不快な息づき雑音が生じる。
[0013] これを防ぐためには、係数更新ステップサイズを小さく設定する必要がある。しかし 、小さなステップサイズは、適応ブロッキング行列回路の特性が目標信号の移動に追 従する速度を鈍らせ、最終出力である適応アレイ装置出力の品質が劣化する。 この問題を解決するために、適応モード制御装置が非特許文献 8および非特許文 献 9に開示されている。
[0014] ここで、非特許文献 8に開示された方法では、隣接するセンサ力 得られる信号間 の相関を利用して、前記妨害信号の存在を検出する。妨害信号が検出されたときに 係数更新を停止することによって、良好な適応アレイ装置の出力を得ることができる。 この方法では、ヒアリングエイドを応用として開発されているためにマイク間隔が広く 、空間折返しを避けるために信号帯域が 600 [Hz]から 1200 [Hz]程度に制限され ている。
通常の音声信号を利用する応用では、時として音声パワーがこの周波数範囲外に も存在するために、妨害信号の存在を正確に検出することができない。また、固定ブ ロッキング行列回路を想定して多入力キャンセラだけの係数更新を制御する構成と なっており、適応ブロッキング行列回路にそのまま適用することはできない。
[0015] 又、非特許文献 9に開示された方法では、目標信号対妨害信号のパワー比 (SIR) を用いて、妨害信号の存在を検出する。目標信号のパワー推定は、固定ビームフォ 一マ出力を用いて行う。妨害信号のパワー推定は、適応ブロッキング行列回路の出 力を用いて行う。これらの推定値の比 (即ち、 SIRの推定値)を閾値と比較する。
[0016] 閾値より SIR (目標信号対妨害信号のパワー比)が大き!、ときは、入力信号にお 、 て目標信号が支配的であり、妨害信号の影響が少ないので適応ブロッキング行列回 路で係数更新を行う。反対に、多入力キャンセラの係数更新に目標信号が妨害を与 えるので、多入力キャンセラの係数更新は停止する。
閾値より SIRが小さいときは、適応ブロッキング行列回路で係数更新を停止し、多 入力キャンセラで係数更新を実行する。
[0017] し力しながら、この方法では、適応ブロッキング行列回路に含まれる適応フィルタ係 数が収束するまでは、適応ブロッキング行列回路が十分な性能を発揮せず、妨害信 号パワー推定が不正確になる。このため、特に動作初期に、適応ブロッキング行列回 路と多入力キャンセラの係数更新制御を誤り易くなり、アレイ処理装置出力音声の劣 化を引き起こす。
[0018] この問題を解決するために、専用の固定ブロッキング行列回路を有する適応モード 制御手段が非特許文献 10に開示されている。
この非特許文献 10に開示された方法では、妨害信号のパワー推定を、専用の固 定ブロッキング行列回路を用いて行う。このため、適応ブロッキング行列回路に含ま れる適応フィルタ係数の収束とは無関係に所望の性能が得られ、正確な妨害信号パ ヮー推定が可能となる。
[0019] 次に、図 8に、他の従来例における適応モード処理装置を示す。
この図 8に示す他の従来例 (適応モード処理装置)は、前述した非特許文献 9に開 示されている適応アレイ処理装置に、非特許文献 10に開示された適応モード制御 手段を組み合わせて構成されたものである。
この内、非特許文献 9に開示されている適応アレイ処理装置は、固定ビームフォー マ 200、適応ブロッキング行列回路 300、遅延素子 400、及び多入力キャンセラ 500 を備えた構成となっている。又、適応モード制御手段は、ブロッキング行列回路 310 、 SIR推定部 700、及び比較部 800a等を備えた構成となっている。
[0020] 適応アレイ処理装置の固定ビームフォーマ 200は、 M個のセンサ 100〜100 から
0 M- 1 得られた信号を処理して目標信号を強調する。
適応ブロッキング行列回路 300は、前記複数のセンサ信号に含まれる目標信号を 抑圧し、妨害信号を相対的に強調する。これは、前述した固定ビームフォーマ 200の 出力を参照信号として、複数の適応フィルタによって擬似目標信号を生成し、これら を M個のセンサ 100〜100 力 得られた信号力 減算することによって達成され
0 M- 1
る。この場合、前述した適応フィルタの係数は、固定ビームフォーマ 200の出力と適 応ブロッキング行列回路 300の出力を用いて、適応ブロッキング行列回路 300の出 力が最小化されるように更新される。
[0021] 遅延素子 400は、固定ビームフォーマ 200の出力を Lサンプル遅延させて、多入力 キャンセラ 500に供給する。 Lの値は、遅延素子 400の出力における目標信号成分と 適応ブロッキング行列回路 300の出力における目標信号成分の位相が揃うように設 定する。例えば、固定ビームフォーマ 200の群遅延時間と、適応ブロッキング行列回 路 300のタップ数の 4分の 1から 2分の 1程度に相当する時間の和に設定すればよ!、 [0022] 多入力キャンセラ 500は、固定ビームフォーマ 200の出力信号を遅延した信号と適 応ブロッキング行列回路 300の出力信号を受けて処理することによって、妨害信号を 抑圧し、目標信号を相対的にさらに強調する。この多入力キャンセラ 500は、適応ブ ロッキング行列回路 300から強調された妨害信号を参照信号として受け、これと相関 のある信号として、適応フィルタによって擬似妨害信号を生成する。生成した擬似妨 害信号を、遅延素子 400の出力である強調された目標信号力 差し引く。この出力 は、出力端子 600に伝達される。
多入力キャンセラ 500の適応フィルタ係数は、適応ブロッキング行列回路 300の出 力と出力端子 600に伝達される出力信号を用いて、該出力信号が最小化されるよう に更新される。
[0023] 適応ブロッキング行列回路 300の係数更新で用いる適応ブロッキング行列回路 30 0の出力は、妨害信号と抑圧された目標信号を含む。しかし、適応ブロッキング行列 回路 300が影響を与えることができるのは目標信号成分だけであり、妨害信号はそ のまま出力される。即ち、適応ブロッキング行列回路 300が最小化することができるの は目標信号成分だけであり、出力に含まれる妨害信号成分は、係数更新に対して妨 害を与える。
[0024] この妨害によって、適応ブロッキング行列回路 300に含まれる適応フィルタ係数が 乱れ、多入力キャンセラ 500に伝達される信号が不安定となる。その結果、多入力キ ヤンセラ 500の出力、即ち、適応アレイ装置全体の出力が乱れ、不快な息づき雑音 が生じる。
これを防ぐために、前記複数のセンサ信号を用いて SIRを推定し、この推定値を用 いて適応ブロッキング行列回路 300の係数更新を制御する。
[0025] 同様に、多入力キャンセラ 500の係数更新では強調された目標信号が、係数更新 には不要な信号となり、係数更新を妨害する。妨害によって多入力キャンセラ 500に 含まれる適応フィルタ係数が乱れ、適応アレイ装置出力にお!、て不快な息づき雑音 が生じる。このため、適応ブロッキング行列回路 300と同様に、前記複数のセンサ信 号の SIRを推定し、この推定値を用いて多入力キャンセラ 500の係数更新を制御す る。 [0026] SIR推定部 700は、ブロッキング行列回路 310の出力と固定ビームフォーマ 200の 出力を用いて、 SIR推定を行う。
目標信号のパワー推定は、固定ビームフォーマ 200の出力を用いて行われる。妨 害信号のパワー推定は、固定ブロッキング行列回路 310の出力を用いて行われる。 これら二つの推定パワー情報は前述した SIR推定部 700に供給され、その比が算定 されて SIR推定値となる。
[0027] この SIR推定部 700で算定された SIR推定値は、 SIR推定部 700から比較部 800 に伝達される。比較部 800aでは、 SIR推定値を閾値と比較する。
そして、閾値より SIR推定値が大きいときは、入力信号において目標信号が支配的 であり、妨害信号の影響が少ないので適応ブロッキング行列回路で係数更新を行う 制御信号を発生し、適応ブロッキング行列回路 300に供給する。反対に、多入力キヤ ンセラ 500の係数更新に際しては、目標信号が妨害を与えるので、多入力キャンセラ 500の係数更新を停止する制御信号を発生し、当該多入力キャンセラ 500に供給す る。
閾値より SIR推定値が小さ ヽときは、適応ブロッキング行列回路で係数更新を停止 し、多入力キャンセラで係数更新を実行するような信号を発生し、それぞれ適応プロ ッキング行列回路 300と多入力キャンセラ 500に供給する。
[0028] 図 9に、前述した固定ブロッキング行列回路 310の構成例を示す。この図 9におい て、 i番目のセンサ信号 X(k)と (i+ 1)番目のセンサ信号 X (k)の差分を求めるため
i i+ 1
の減算器 311から構成される。ここで、 kは時刻を表す指標、 iは 0から M— 2の範囲 の整数である。ブロッキング行列回路 310の出力信号 Z(k)は、 X(k)— X (k)となる。
i i+ 1
正面から到来する目標信号に対して、 X(k)と X (k)は等しいので、 Z(k) = 0となる。
i i+ 1
それ以外の方向から到来する妨害信号に対しては、 Z (k)はゼロとならない。このため 、固定ブロッキング行列回路 310は、目標信号を抑圧する効果を有する。
[0029] 非特許文献 1: 1982年 1月、 IEEEトランザクションズ'オン ·アンテナス'アンド'プロパ ゲイシヨン、 30卷、第 1号、 (IEEE TRANSACTIONS ON ANTENNAS AND PROPAG ATIONS, VOL.30,NO.l, PP.27- 34, Jan. 1982) 27〜34ページ。
非特許文献 2 : 1992年 9月、 IEEEトランザクションズ'オン'アンテナス'アンド'プロパ ゲイシヨン、第 40卷、第 9号、 (IEEE TRANSACTIONS ON ANTENNAS AND PROPA GATIONS, VOL.40,NO.9, PP.1093— 1096, Sep. 1992) 1093〜1096ページ。
非特許文献 3 : 1996年 9月、電子情報通信学会論文誌 A、第 79卷、第 9号、 1516〜15 24ページ。
非特許文献 4 : 1972年 8月、プロシーディングス 'ォブ IEEE、第 60卷、第 8号(PROCE EDINGS OF IEEE, VOL.60,NO.8, PP.926— 935, Aug. 1972) 926〜935ページ。 非特許文献 5 : 1994年 4月、 IEEEプロシーディングス'ォブ'インターナショナル'カン フアレンス'オン'ァクースティタス 'スピーチ 'アンド'シグナルプロセシング、第 IV卷、 ( IEEE PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ACOUSTICS, SP EECH'AND SIGNNAL PROCESSING, VOL.IV, PP.269- 272, Apr. 1994) 269〜272 ぺ' ~~ジ。
非特許文献 6: 1993年、 「アレイ ·シグナル ·プロセシング」、 第 4章、プレンティス ·ホ ール、イングルウッド 'クリフス(CH.4, ARRAY SIGNAL PROCESSING, PRENTICE- H ALL, ENGLEWOOD CLIFS, 1993.)
非特許文献 7 : 2001年、「マイクロフォンアレイ」、スプリンガー(MICROPHONE ARRA YS, SPRINGER, 2001.)
非特許文献 8: 1992年 3月、ジャーナル ·ォブ ·ァクースティカル ·ソサイエティ ·ォブ · アメリカ、第 91卷、第 3号、 (JOURNALOF ACOUSTICAL SOCIETYOF AMERICA, VOL.91,N0.3, PP.1662- 1676, Mar. 1992) 1662〜1676ページ
非特許文献 9 : 1998年 4月、アイ'ィ一'ィ一'ィ一'プロシーディングス 'ォブ 'アイ'シ ~ ·エイ.エス.エス.ピー、(IEEE PROCEEDINGS OF ICASSP, PP.3605— 3608, APR. 1998) 3605〜3608ページ
非特許文献 10 : 1999年 3月、アイ'ィ一'ィ一'ィ一'プロシーディングス 'ォブ 'アイ'シ ~ ·エイ ·エス ·エス ·ピー、(IEEE PROCEEDINGS OF ICASSP, PP.949— 952, MAR. 1 999) 949〜952ページ
発明の開示
発明が解決しょうとする課題
上記従来例にあっては、空間折り返しにかかる歪を避けるために、前述したアレイ 状に配設されたセンサの間隔には、波長と音速力 定まる上限が設定されている。ま た、現実的には、センサの個数 Mの値にも上限がある。このため、妨害信号のパワー 推定を行う固定ブロッキング行列回路の周波数特性が平坦ではなぐ方向に基づく 選択度も十分でない。
従って、上述した各従来の技術では、妨害信号の周波数特性や到来方向によって は、そのパワー推定に誤りが避けられず、適応アレイ処理装置の不適切な係数更新 制御による性能劣化を引き起こす、という不都合が生じていた。
(発明の目的)
[0031] 本発明は、上記従来例の有する不都合を改善し、特に、妨害信号の周波数特性や 到来方向の影響によらず、正確な係数更新制御を可能とし、これにより、入力信号の 周波数特性や到来方向の影響の受けにくい高品質のアレイ処理出力を得ることので きる適応アレイ制御の方法、装置、プログラム、及びこれを利用した適応アレイ処理 装置、方法、及びプログラムを提供することを、その目的とする。
課題を解決するための手段
[0032] 上記目的を達成するため、本発明に力かる適応アレイ制御装置では、アレイ状の 複数のセンサ力 送り込まれる複数の信号力 異なったセンサ間隔を有する複数の センサ対を特定すると共に当該各センサ対力 得られる信号をアレイ処理すると共に その結果をアレイ処理信号として出力するアレイ処理部を有し、このアレイ処理部の 出力信号を用いて適応アレイ処理におけるパラメータ調整の速度と精度を制御する ための制御信号を生成する演算制御部を具備したことを特徴とする。
このため、これによると、信号の周波数特性や到来方向によらず正確に信号抽出を 行うことができ、これによつて高品質のアレイ処理を有効に出力制御することができる
[0033] ここで、前述したアレイ処理部が、前記アレイ処理結果をそれぞれフィルタ処理する 複数のフィルタと、前記フィルタの出力を加算して出力する加算器とを備えた構成と してちよい。
[0034] 更に、前述したアレイ状の複数のセンサ力 送り込まれる複数の信号の内、目標信 号を他の信号に対して強調して成る第 1のアレイ処理信号を取り込むと共に、前記ァ レイ処理信号を出力するアレイ処理部を、第 2のアレイ処理信号を出力する第 2のァ レイ処理部とする。この第 2のアレイ処理信号と前記取り込んだ第 1のアレイ処理信号 との間の相対的な大小関係を算定する計算部を設ける。そして、前記演算制御部が 、前記計算部で求めた前記処理信号の大小関係を用いて適応アレイ処理における パラメータ調整の速度と精度を制御するための制御信号を発生する制御信号発生機 能を備えた構成としてもょ 、。
[0035] 又、前述した複数のセンサから送り込まれる複数の信号の内、目標信号を他の信 号に対して強調して成る第 1のアレイ処理信号を取り込むと共に、この取り込んだ第 1 のアレイ処理信号に基づ 、て目標信号対妨害信号の比 (SIR)を推定する推定部を 装備し、前記演算制御部を、前記推定された SIR推定値を用いて適応アレイ処理に おけるパラメータ調整の速度と精度を制御するための制御信号を発生する制御信号 発生機能を備えた構成としてもょ ヽ。
[0036] このように構成した本発明に力かる上記適応アレイ制御装置によると、信号の周波 数特性や到来方向によらず、正確に信号抽出を行うことができ、これによつて、高品 質のアレイ処理を出力制御することができる。
又、本発明にかかる上記適応アレイ制御装置は、例えば、複数の異なったセンサ 間隔を有するセンサ群の出力を用いてアレイ処理部若しくは第 2のアレイ処理部で妨 害信号パワーを有効に推定することができるので、異なった周波数特性や空間選択 特性を組み合わせた平坦度の高 ヽ特性を実現することができ、妨害信号パワーを正 確に推定することができ、このため、適応アレイ処理装置の係数更新制御(アレイ処 理におけるパラメータの調整)を適切に行うことが可能となり、妨害信号の周波数特 性や到来方向の影響を受けにくい、高品質なアレイ処理を出力制御することができる
[0037] 又、本発明に力かる適応アレイ制御方法では、アレイ状の複数のセンサ力 送り込 まれる複数の信号力 異なったセンサ間隔を有する複数のセンサ対力 得られる信 号をアレイ処理してアレイ処理結果を求めると共に、このアレイ処理結果を目標信号 が他の信号に対して減衰したアレイ処理信号とするアレイ処理信号生成工程と、この アレイ処理信号を用いて適応アレイ処理におけるパラメータ調整の速度と精度を制 御する適応アレイ処理工程とを備えたことを特徴とする。
このため、これによると、前述した適応アレイ制御装置の場合と同様に、信号の周波 数特性や到来方向によらず正確に信号抽出を行うことができ、これにより高品質のァ レイ処理を出力制御することができる。
[0038] ここで、前述したアレイ処理信号生成工程の実行内容を、異なったセンサ間隔を有 する複数のセンサ対力 得られる信号をアレイ処理してアレイ処理結果を求めると共 に、このアレイ処理結果をそれぞれフィルタ処理して複数のフィルタ処理結果を求め 、この複数のフィルタ処理結果を加算して前記アレイ処理信号を生成するように構成 してちよい。
[0039] 更に、アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他 の信号に対して強調して成る第 1のアレイ処理信号を取り込む第 1のアレイ処理信号 取得工程を設ける。又、前述したアレイ処理信号生成工程を第 2のアレイ処理信号 生成工程とし、前記取り込まれた第 1のアレイ処理信号と前記第 2のアレイ処理信号 生成工程で生成される第 2のアレイ処理信号とを比較してその相対的な大小関係を 特定する大小関係特定工程を、前述した適応アレイ処理工程の前に設定する。そし て、前述した適応アレイ処理工程の実行内容を、前記大小関係特定工程で特定され る各処理信号の大小関係を用いて適応アレイ処理におけるパラメータ調整の速度と 精度を制御するように構成してもよ ヽ。
[0040] 又、アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の 信号に対して強調して成る第 1のアレイ処理信号を取り込む第 1のアレイ処理信号取 得工程を設け、前記アレイ処理信号生成工程を第 2のアレイ処理信号生成工程とし 、前記取り込まれた第 1のアレイ処理信号と前記第 2のアレイ処理信号生成工程で生 成される第 2のアレイ処理信号とを用いて目標信号対妨害信号の比 (SIR)を推定する SIR推定工程を、前記適応アレイ処理工程の前に設定する。そして、前述した適応 アレイ処理工程の実行内容を、前記 SIR推定工程で推定される SIR推定値を用いて 適応アレイ処理におけるパラメータ調整の速度と精度を制御するように構成してもよ い。
[0041] このように、本発明に力かる適応アレイ制御方法では、上述したように構成したので 、これによると、前述した各適応アレイ制御装置とほぼ同等の高品質なアレイ処理出 力を制御することができ、とくに、適応アレイ処理工程が有効に機能してアレイ処理 制御を円滑に実行し得るという利点がある。
[0042] 本発明に力かる適応アレイ制御用プログラムは、アレイ状の複数のセンサ力 送り 込まれる複数の信号の内の目標信号を他の信号に対して強調して成る第 1のアレイ 処理信号を取り込む第 1のアレイ処理信号取込み処理、前記複数の信号の内、異な つたセンサ間隔を有する複数のセンサ対力 得られる信号をアレイ処理した結果を、 前記目標信号を他の信号に対して減衰させた第 2のアレイ処理信号として生成する 第 2のアレイ処理信号生成処理、前記取り込んだ第 1のアレイ処理信号と前記生成し た第 2のアレイ処理信号との相対的な大小関係を求める大小関係特定処理、および この特定された大小関係を用いて適応アレイ処理におけるパラメータ調整の速度と 精度を制御する適応アレイ処理、をプログラム化しコンピュータに実行させるように構 成したことを特徴とする。
このようにしても、前述した適応アレイ制御装置の場合とほぼ同等に機能する適応 アレイ制御用プログラムを得ることができる。
[0043] 又、本発明に力かる適応アレイ処理装置は、アレイ状の複数のセンサ力 送り込ま れる複数の信号の内の異なったセンサ間隔を有する複数のセンサ対力 得られる信 号をアレイ処理し、その結果をアレイ処理信号として出力するアレイ処理部を具備し たことを特徴とする。
このため、これによると、信号の周波数特性や到来方向によらず正確に信号抽出を 行うことができ、これによつて高品質のアレイ処理出力を得ることができる。
[0044] ここで、前述したアレイ処理部は、前記アレイ処理結果をそれぞれフィルタ処理する 複数のフィルタと、この各フィルタの出力を加算して出力する加算器とを備えた構成と してちよい。
[0045] 更に、本発明に力かる適応アレイ処理装置は、アレイ状の複数のセンサ力 送り込 まれる複数の信号の内の目標信号を他の信号に対して強調して第 1のアレイ処理信 号を求める第 1のアレイ処理部と、前記目標信号を他の信号に対して減衰させて第 3 のアレイ処理信号を求める第 3のアレイ処理部と、前記第 3のアレイ処理信号と相関 のある信号成分を前記第 1のアレイ処理信号から消去する相関除去部と、前記複数 の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる信号をアレイ 処理した結果を第 2のアレイ処理信号として出力する第 2のアレイ処理部と、前記第 2 のアレイ処理部の出力信号を用いて適応アレイ処理におけるパラメータ調整の速度 と精度を制御するための制御信号を生成する演算制御部とを具備したことを特徴と する。
[0046] 又、本発明に力かる適応アレイ処理装置は、アレイ状の複数のセンサ力 送り込ま れる複数の信号の内の目標信号を他の信号に対して強調して第 1のアレイ処理信号 を生成する第 1のアレイ処理生成部と、前記目標信号を他の信号に対して減衰させ て第 3のアレイ処理信号を生成する第 3のアレイ処理生成部と、この第 3のアレイ処理 信号と相関のある信号成分を前記第 1のアレイ処理信号から消去する相関除去部と 、前記複数の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる 信号をアレイ処理した結果を第 2のアレイ処理信号として出力する第 2のアレイ処理 部と、前記第 1のアレイ処理信号と前記第 2のアレイ処理信号の相対的な大小関係を 求める計算部と、前記第 1,第 2の各アレイ処理信号の大小関係を用いて適応アレイ 処理におけるパラメータ調整の速度と精度を制御するための制御信号を発生する演 算制御部とを具備したことを特徴とする。
[0047] 更に、本発明に力かる適応アレイ処理装置は、アレイ状の複数のセンサ力 送り込 まれる複数の信号の内の目標信号を他の信号に対して強調して第 1のアレイ処理信 号を生成する第 1のアレイ処理生成部と、前記目標信号を他の信号に対して減衰さ せて第 3のアレイ処理信号を生成する第 3のアレイ処理生成部と、この第 3のアレイ処 理信号と相関のある信号成分を前記第 1のアレイ処理信号から消去する相関除去部 と、前記複数の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる 信号をアレイ処理した結果を第 2のアレイ処理信号として出力する第 2のアレイ処理 部と、前記第 2のアレイ処理信号を用いて目標信号対妨害信号の比 (SIR)を推定す る SIR推定部と、この SIR推定部で推定された前記 SIR推定値を用いて適応アレイ 処理におけるパラメータ調整の速度と精度を制御するための制御信号を発生する演 算制御部とを具備したことを特徴とする。 又、前述した第 2のアレイ処理部を、前記アレイ処理結果をそれぞれフィルタ処理 する複数のフィルタと、前記フィルタの出力を加算して出力する加算器を備えた構成 としてちよい。
[0048] このように構成した本発明に力かる上記各適応アレイ処理装置によると、信号の周 波数特性や到来方向によらず、正確に信号抽出を行うことができ、これによつて、高 品質のアレイ処理出力を得ることができる。
又、上記各適応アレイ処理装置によると、例えば、複数の異なったセンサ間隔を有 するセンサ群の出力を用いてアレイ処理部若しくは第 2のアレイ処理部で妨害信号 ノ^ーを有効に推定することができるので、異なった周波数特性や空間選択特性を 組み合わせた平坦度の高 、特性を実現することができ、妨害信号パワーを正確に推 定することができ、このため、適応アレイ処理装置の係数更新制御(アレイ処理にお けるパラメータの調整)を適切に行うことが可能となり、妨害信号の周波数特性や到 来方向の影響を受けにくい、高品質なアレイ処理出力を得ることができる。
[0049] 又、本発明に力かる適応アレイ処理方法は、アレイ状の複数のセンサ力 送り込ま れる複数の信号を対象として異なったセンサ間隔を有する複数のセンサ対力 得ら れる信号をアレイ処理してアレイ処理信号を生成するアレイ処理信号生成工程と、こ のアレイ処理信号生成工程におけるアレイ処理結果をアレイ処理信号として出力す るアレイ処理信号出力工程とを備えている。そして、前述したアレイ処理信号生成ェ 程の実行内容を、前記複数の信号の内の目標信号が他の信号に対して減衰した状 態に当該アレイ処理信号を生成するように構成したことを特徴とする。
このため、これによると、前述した適応アレイ制御装置の場合と同様に、信号の周波 数特性や到来方向によらず正確に信号抽出を行うことができ、これにより高品質のァ レイ処理出力を得ることができる。
[0050] 更に、本発明に力かる適応アレイ処理方法は、アレイ状の複数のセンサ力 送り込 まれる複数の信号を対象として異なったセンサ間隔を有する複数のセンサ対から得 られる信号をアレイ処理してアレイ処理信号を生成するアレイ処理信号生成工程と、 このアレイ処理信号生成工程におけるアレイ処理結果をアレイ処理信号として出力 するアレイ処理信号出力工程とを備えている。そして、前述したアレイ処理信号生成 工程の実行内容を、前記アレイ処理結果をそれぞれフィルタ処理して複数のフィルタ 処理結果を求めると共に当該複数のフィルタ処理結果を加算して前記アレイ処理信 号を生成するように構成したことを特徴とする。
[0051] 又、本発明に力かる適応アレイ処理方法は、アレイ状の複数のセンサ力 送り込ま れ、アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信 号に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成ェ 程と、前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成す る第 3のアレイ処理信号生成工程と、この第 3のアレイ処理信号と相関のある信号成 分を前記第 1のアレイ処理信号から消去して出力する際し、前記取り込んだ複数のァ レイ信号を対象として異なったセンサ間隔を有する複数のセンサ対力 得られる信号 をアレイ処理してアレイ処理結果を求め、このアレイ処理結果を目標信号が他の信号 に対して減衰した第 2のアレイ処理信号とする第 2のアレイ処理信号生成工程と、こ の第 2のアレイ処理信号を用いて適応アレイ処理におけるパラメータ調整の速度と精 度を制御する適応アレイ処理制御工程とを備えたことを特徴とする。
[0052] 更に、本発明に力かる適応アレイ処理方法は、アレイ状の複数のセンサ力 送り込 まれる複数の信号の内の目標信号を他の信号に対して強調して第 1のアレイ処理信 号を生成する第 1のアレイ処理信号生成工程と、前記目標信号を他の信号に対して 減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理信号生成工程と、この 第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から消去し て出力する際し、前記取り込んだ複数のアレイ信号を対象として異なったセンサ間隔 を有する複数のセンサ対から得られる信号をアレイ処理してアレイ処理結果を求め、 このアレイ処理結果を目標信号が他の信号に対して減衰した第 2のアレイ処理信号 とする第 2のアレイ処理信号生成工程と、前記第 1のアレイ処理信号と前記第 2のァ レイ処理信号の相対的な大小関係を求める大小関係特定工程と、この特定された前 記大小関係を用いて適応アレイ処理におけるパラメータ調整の速度と精度を制御す る適応アレイ処理制御工程と、を備えたことを特徴とする。
[0053] 更に、本発明に力かる適応アレイ処理方法は、アレイ状の複数のセンサ力 送り込 まれアレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信 号に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成ェ 程と、前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成す る第 3のアレイ処理信号生成工程と、この第 3のアレイ処理信号と相関のある信号成 分を前記第 1のアレイ処理信号から消去して出力する際し、前記取り込んだ複数のァ レイ信号を対象として異なったセンサ間隔を有する複数のセンサ対力 得られる信号 をアレイ処理してアレイ処理結果を求め、このアレイ処理結果を目標信号が他の信号 に対して減衰した第 2のアレイ処理信号とする第 2のアレイ処理信号生成工程と、こ の第 2のアレイ処理信号を用いて目標信号対妨害信号の比 (SIR)を推定する SIR推 定工程と、この推定された SIR推定値を用いて適応アレイ処理におけるパラメータ調 整の速度と精度を制御する適応アレイ処理制御工程と、を備えたことを特徴とする。
[0054] ここで、前述した第 2のアレイ処理信号生成工程の実行内容を、前記アレイ処理結 果をそれぞれフィルタ処理して複数のフィルタ処理結果を求めると共に当該複数のフ ィルタ処理結果の和を用いて前記第 2のアレイ処理信号を求めるように構成してもよ い。
[0055] 本発明に力かる適応アレイ処理方法は上述したように構成したので、これによると、 前述した各適応アレイ制御装置とほぼ同等の高品質なアレイ処理出力を得ることが でき、とくに、適応アレイ処理工程が有効に機能してアレイ処理出力を円滑に実行し 得るという利点がある。
又、上記各適応アレイ処理方法によると、例えば、複数の異なったセンサ間隔を有 するセンサ群の出力を用いてアレイ処理工程若しくは第 2のアレイ処理工程で妨害 信号パワーを有効に推定するようにしたので、異なった周波数特性や空間選択特性 を組み合わせた平坦度の高 、特性を得ることができ、妨害信号パワーを正確に推定 される。このため、適応アレイ処理に際しての装置の係数更新制御(アレイ処理にお けるパラメータの調整)を適切に行うことが可能となり、妨害信号の周波数特性や到 来方向の影響を受けにくい、高品質なアレイ処理出力を得ることができる。
[0056] 更に、本発明に力かる適応アレイ処理用プログラムは、アレイ状の複数のセンサか ら送り込まれ アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号 を他の信号に対して強調して第 1のアレイ処理信号を求める第 1のアレイ処理信号生 成機能、前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成 する第 3のアレイ処理信号生成機能、この第 3のアレイ処理信号と相関のある信号成 分を前記第 1のアレイ処理信号から消去して出力する相関成分消去機能、前記ァレ ィ状の複数の信号力 異なったセンサ間隔を有する複数のセンサ対を設定すると共 にこのセンサ対力 得られる信号をアレイ処理した結果を、前記目標信号を他の信 号に対して減衰させた第 2のアレイ処理信号として特定する第 2のアレイ処理信号特 定機能、前記第 1のアレイ処理信号と前記第 2のアレイ処理信号の相対的な大小関 係を特定する大小関係特定機能、この特定された大小関係を用いて適応アレイ処理 におけるパラメータ調整の速度と精度を制御する適応アレイ処理制御機能、をプログ ラム化しコンピュータに実行させるように構成したことを特徴とする。
このようにしても、前述した適応アレイ処理装置の実行内容と同等に機能する適応 アレイ処理用プログラムを得ることができる。
発明の効果
[0057] 本発明によると、複数の異なったセンサ間隔を有するセンサ群の出力を用いて妨 害信号パワーを推定するので、異なった周波数特性や空間選択特性を組み合わせ た、平坦度の高い特性を実現することができ、妨害信号パワーを正確に推定すること ができる。このため、適応アレイ処理装置の係数更新制御(アレイ処理におけるパラメ ータの調整)を適切に行うことが可能となり、妨害信号の周波数特性や到来方向の影 響を受けにくい、高品質なアレイ処理の実行を制御することができ、又、これにより、 高品質なアレイ処理出力を得ることができるという従来にない優れた適応アレイ制御 の方法、装置、プログラム、及びこれを利用した適応アレイ処理装置、方法、及びプ ログラムを得ることができる。
発明を実施するための最良の形態
[0058] 次に、本発明に力かる適応アレイ制御装置およびこれを利用した適応アレイ処理 装置の実施形態を、図 1乃至図 7に基づいて説明する。
本発明にかかる図 1乃至図 7に示す実施形態は、異なったセンサ間隔を有する複 数のセンサ対の信号を受けてアレイ処理を行 、、得られたアレイ処理結果を用いて、 妨害信号パワーを正確に推定することを特徴とする。より具体的には、複数の異なつ た間隔のセンサ力 信号を受けて処理する多重ブロッキング行列回路を備えている ことを特徴とする。
以下、これを詳述する。
[0059] 〔第 1の実施形態〕
図 1乃至図 6に、本発明にかかる適応アレイ処理装置の第 1の実施形態を示す。 まず、図 1において、本第 1の実施形態における適応アレイ処理装置は、アレイ状 の M個のセンサ群 100〜100 力 送り込まれる複数の信号の内の目標信号を他
0 M- 1
の信号に対して強調するように処理すると共にこれによつて第 1のアレイ処理信号を 生成する第 1のアレイ処理信号生成部としての固定ビームフォーマ 200と、前記目標 信号を他の信号に対して減衰させて第 2のアレイ処理信号を生成する第 2のアレイ処 理信号生成部としての多重ブロッキング行列回路 320とを備えている。
[0060] ここで、上記多重ブロッキング行列回路 (第 2のアレイ処理信号生成部) 320は、前 述したアレイ状の M個のセンサ群 100〜100 力 送り込まれる複数のアレイセンサ
0 M- 1
情報力も異なったセンサ間隔を有する複数のセンサ対を設定すると共に、そのセン サ対の出力差分を算定してこれを出力するセンサ対差分出力機能を備えている。 又、この多重ブロッキング行列回路 (第 2のアレイ処理信号生成部) 320は、前述し た各出力差分をそれぞれフィルタ処理する複数のフィルタと、このフィルタ出力をカロ 算する加算器とを具備すると共に、前記加算器における加算結果を外部出力する加 算結果出力機能を備えて!/、る。
[0061] 又、上述した適応アレイ処理装置は、前述した第 1のアレイ処理信号に基づ!/ヽて目 標信号に対する妨害信号の比 (SIR)を推定する SIR推定部 700と、適応ブロッキング 行列回路 (第 3のアレイ処理信号生成部) 300と、前記 SIR推定部 700で推定される 推定値に対応して前記第 1のアレイ処理信号を適応アレイ処理し前記妨害信号の影 響を排除して当該第 1のアレイ処理信号を強調出力する多入力キャンセラ (適用ァレ ィ処理部) 500と、これら適応ブロッキング行列回路 300および多極の入力キャンセラ 500の動作を制御すると共に特に当該多極の入力キャンセラ (適用アレイ処理部) 5 00からは高品質のアレイ処理出力を成し得るように,前記 SIR推定部 700からの制 御情報に基づいて最適な状態に調整パラメータの係数更新等を制御する演算制御 部 800と、前記第 1のアレイ処理信号を遅延させて当該多極の入力キャンセラ 500に 送り込む遅延素子 400とを備えている。尚、前記演算制御部 800は、前述した図 8に おける比較部 800aとしての機能も兼ね備えて 、る。
[0062] ここで、上記多重ブロッキング行列回路 320、 SIR推定部 700、および比較部 800a としても機能する演算制御部 800とにより、適応モード制御手段 (適応アレイ制御装 置) 1200が構成されている。
[0063] ここで、上述した多入力キャンセラ 500については、前述した第 2のアレイ処理信号 と相関のある信号成分を前記第 1のアレイ処理信号力 消去して当該第 1のアレイ処 理信号を強調出力する相関除去部としての機能を備えて構成されている。
又、上記 SIR推定部 700については、前記多重ブロッキング行列回路 (第 2のァレ ィ処理信号生成部) 320で生成された第 2のアレイ処理信号と前記第 1の補正アレイ 処理信号とに基づいて前記目標信号対妨害信号の比 (SIR)を推定し特定する構成と してちよい。
[0064] 更に、上記 SIR推定部 700については、前述した第 1のアレイ処理信号と第 2のァ レイ処理信号との相対的な大小関係を求める計算部(図示せず)で置き換えてもよい
[0065] 又、前述した演算制御部 800は、前述した第 1のアレイ処理信号と第 2のアレイ処 理信号との相対的な大小関係の情報に基づいて適応アレイ処理におけるパラメータ 調整の速度と精度とを制御するための制御信号を生成する制御信号生成機能を有 し、当該制御信号を用いて前述した固定ビームフォーマ (第 1のアレイ処理信号生成 部) 200と多重ブロッキング行列回路 (第 2のアレイ処理信号生成部)と適応ブロッキ ング行列回路 300と多入力キャンセラ (相関除去部) 500の少なくとも何れか一つを 動作制御し、目標信号又は妨害信号を鮮明に強調出力させる機能 (適応アレイ処理 制御機能)を備えている。
[0066] 更に、この図 1における第 1実施形態にあっては、前述した従来例と比較して、適応 モード制御手段 (適応アレイ制御装置) 1200の一部を成す多重ブロッキング行列回 路 320が、前述した図 8 (従来例)に示すブロッキング行列回路 310とは全く相違する 以下これにつ 、て詳述する。
[0067] (多重ブロッキング行列回路 320について:第 1の例)
次に、多重ブロッキング行列回路 320について、その構成内容と動作等について 詳述する。
この図 1における多重ブロッキング行列回路 320の一構成例を図 2に示す。図 2に 示すように、多重ブロッキング行列回路 320は、減算器 321〜321 とカロ算器 322と
0 M- 1
力 構成されている。減算器 iは、 1番目のセンサ信号 X (k)と i番目のセンサ信号 X(k)
0 i の差分 Z (k)=X (k)— X(k)を求めて、加算器 322に伝達する。ここに、記号 iは 0から i 0 i
M— 2の範囲の整数である。カロ算器 322は、これら M— 1個の入力信号をすベてカロ 算して、加算結果を Z(k)として出力する。
[0068] 前述した従来例のブロッキング行列回路 310 (図 8参照)で説明したように、正面か ら到来する目標信号に対して、各差分 Z (k) = 0となる。それ以外の方向から到来する 妨害信号に対しては、 k)はゼロとならない。即ち、すべての差分は、それぞれ単独 で多重ブロッキング行列として機能する。しかし、それぞれの差分 Z (k)は、異なった 周波数応答と空間選択特性を有する。これは、次の 2つの理由による。
[0069] まず、減算器入力である 2つのセンサ信号間の相対的な遅延は、センサ間距離と 信号到来方向の正弦 (sin)の積を音速で除した形で与えられることがあげられる。また 、センサ間距離は、すべての Z (k)において異なる。差分 Z (k)の周波数特性及び空間 選択特性は、センサ間距離の関数となるのである。逆にいえば、センサ間距離が異 なる Z (k)は、異なった周波数特性と空間選択特性を有する。これは、減算器 321〜3 i 0
21 を加算器に交換しても正 、。ただし、利得が減算器の場合の逆数となる点が
M- 1
異なる。尚、加算器を用いた場合は、目標信号が強調されるが、その場合の周波数 特性と空間選択特性が、下記文献に開示されている。
「2001年、「マイクロフォン 'ァレイズ」、第 1章、図 1. 1、スプリンガ——バーラグ、ベル リン(CH.l, MICROPHONE ARRAYS, SPRINGER- VERLAG, BERLIN, 2001.)」 [0070] 減算器の場合には、上記文献中の周波数特性と空間選択特性の逆数をとつて正 規化すればよい。この文献中にあっては、センサ間距離が一定の場合、入力信号周 波数が高くなるほど空間選択性が急峻になることがわかる。低い周波数においては、 ビーム角度が広ぐ空間選択性も劣化する。
これを上記の減算器 321〜321 の場合にあてはめてみると、低い周波数におい
0 M- 1
て、正面方向から到来する目標信号に対して感度が低ぐ正面からはずれた方向に 対してより感度が高い。し力しながら、感度が低い方向から感度が高い方向への遷移 はゆるやかであり、十分な空間選択性を得ることができない。一方、センサ間隔が広 くなれば、相対遅延が大きくなり、高い空間選択性を実現できる。即ち、急峻な空間 選択性を得ることができる。
[0071] 本第 1実施形態は、この原理に基づき、間隔が異なるセンサの組から得られた信号 の差分を複数求め、これらを加算することによって、総合的に優れた空間選択性を有 する多重ブロッキング行列を得る。複数の差分は減算器 321〜321 で求め、それ
0 M- 1
らを加算器 322で加算する。
このように構成することにより、低域信号に対しては間隔が広いセンサ力も得られた 信号ペアの差分が、高域信号に対しては間隔が狭いセンサ力 得られた信号ペアの 差分が有効に作用し、広帯域信号に対して優れた空間選択性を実現することができ る。このため、この多重ブロッキング行列回路 320は、優れた周波数特性と空間選択 性で、目標信号を抑圧することができる。
[0072] 本第 1実施形態では、このような特性を有する多重ブロッキング行列回路 320の出 力を用いて妨害信号パワーを正確に推定し、その結果を用いて SIR計算部 700で SI Rを計算するように構成されている。このため、係数更新ステップサイズや忘却係数な どの適応フィルタの追従性と演算精度を決定するパラメータを、正確な SIR推定値に 基づ!/、て制御することで、適応アレイ処理装置における適応ブロッキング行列回路 3 00および目標信号を出力する多極の入力キャンセラ 500での係数更新を、適切に 制御することが可能となる。その結果、入力信号の周波数特性や目標信号と妨害信 号の方向の影響を受けにくい、高品質なアレイ処理出力を得ることができる。
[0073] (多重ブロッキング行列回路 320の他の構成例:第 2の例)
多重ブロッキング行列回路 320の他の構成例を図 3に示す。
この図 3に示す多重ブロッキング行列回路 320は、減算器 321〜321 、フィルタ 3
0 M- 1
23〜323 、及び加算器 322と力も構成されて 、る。減算器 iは、 1番目のセンサ信 号 X (k)と i番目のセンサ信号 X(k)の差分 Z (k)=X (k)— X(k)を求めて、フィルタ 323
0 i i 0 i i に伝達する。符号 iは 0から M - 2の範囲の整数である。
[0074] フィルタ 32 は、通過帯域の信号成分を加算器 322に伝達する。加算器 322は、こ れら M—1個の入力信号をすベて加算して、加算結果を Z(k)として出力する。フィル タ 323の通過帯域は、 0番目と i番目のマイクロフォン間隔によって決定する。 0番目と i 番目のマイクロフォン信号によって定められる空間選択性の、とくに正面以外の方向 に対する減衰特性が、方向に対して平坦になるような周波数を通過帯域とするように 、フィルタ 323が設計されている。
[0075] (多重ブロッキング行列回路 320の第 3の例)
多重ブロッキング行列回路 320は、更に別の構成とすることができる。 M個のセンサ 力もなる直列アレイにおいて、 2つのセンサの間隔は短いものから順に、 D、 2D、 3D 、 · · ·、(M—1) Dとする。センサ間隔が Dとなるセンサの組は M—lあり、 2Dとなる組 は M— 2、同様に考えて、(M— 1) Dとなる組は 1となる。従って、これらそれぞれのセ ンサ間隔に対応した一組のセンサを選択し、それらから得られる信号の差分を求め、 これらを加算器 322で加算する構成である限り、多重ブロッキング行列回路 320は上 記の効果を有する。このような構成例を図 4に示す。
[0076] この図 4では、減算器 321と 321 の動作が図 3の場合と異なる。
0 M-2
図 3では、これらの減算器はセンサ間隔 Dと(M—1) Dに対応した差分信号を出力 するが、図 4では、(M—1) Dと Dのセンサ間隔に対応した差分信号を出力する。この 他にも、様々な類似構成が可能となる。
[0077] (多重ブロッキング行列回路 320の第 4の例)
更に、これらの内、特定のセンサ間隔に対応した信号を用いない構成であっても、 従来のブロッキング行列回路 310よりは、目標信号のブロック効果が高い。このような 多重ブロッキング行列回路 320の構成例 (第 4の例)を、図 5に示す。図 5を図 3と比 較すると、減算器 321が存在しない。このため、センサ間隔が 2Dに対応した差分信 号は存在せず、センサ間隔 2Dによる効果は期待できない。しかし、それ以外のセン サ間隔に対応した信号によって、図 3の例には及ばないものの、総合的に優れた空 間選択性を有する多重ブロッキング行列回路 320を得ることができる。 [0078] 多重ブロッキング行列回路 320の第 3乃至第 4の例(図 4及び図 5)では、減算器 32 1〜321 の出力は、フィルタ 323〜323 を経由して加算器 322に供給されてい
0 M- 1 0 M- 1
るが、図 2と同様にフィルタ 323〜323 のない構成も可能である。これらの構成は、
0 M- 1
図 4及び図 5においてフィルタ 323〜323 の入出力をすベて直結することで得られ
0 M- 1
る。
その他の構成は前述した図 8における従来等例の場合と同一となっている。
[0079] (全体的な動作説明)
次に、上記第 1の実施形態における全体的な動作について説明する。 まず、アレイ状センサ群で捕捉された複数の信号が送り込まれると受信部 100はこ れを受信し一時的に保持する (ステップ S101)。この受信部では、アレイ状センサ群 力 の複数の信号を常時受信し得る機能を備えて 、る。この受信部 100で受信され たアレイ状センサ信号は、固定ビームフォーマ(第 1のアレイ処理信号生成部) 200と 多重ブロッキング行列回路 (第 2のアレイ処理信号生成部) 320と適応ブロッキング行 列回路 (妨害信号抽出部) 300へ同時に送り込まれる。
[0080] 固定ビームフォーマ 200では、送り込まれた複数の信号の内の目標信号が他の信 号に対して強調するように処理され、これによつて第 1のアレイ処理信号が生成される (ステップ S 102:第 1のアレイ処理信号生成工程)。
又、同時に多重ブロッキング行列回路 (第 2のアレイ処理信号生成部) 320では、送 り込まれた複数の信号の内の前記目標信号を他の信号に対して減衰させ、これによ つて妨害信号が強調するように処理され、第 2のアレイ処理信号が生成される (ステツ プ S 103:第 2のアレイ処理信号生成工程)。この生成された第 2のアレイ処理信号は 、多重ブロッキング行列回路 320で一時的に記憶される。
[0081] 更に、適応ブロッキング行列回路 300では、送り込まれた複数の信号の内の前記 目標信号を他の信号に対して減衰させ、これによつて妨害信号が強調するように処 理されて一時的に記憶され、その後に所定のタイミングで前述した多入力キャンセラ 500へ出力される(ステップ S 104)。
これら固定ビームフォーマ 200、多重ブロッキング行列回路、および適応ブロッキン グ行列回路 300における各処理動作は、本実施形態では同時に作動し並行して同 時に実行されるようになって 、る。
[0082] ステップ S102で生成され目標信号が強調された第 1のアレイ処理信号は遅延素子 400でタイミングを送られ、所定の遅延されたタイミングで多入力キャンセラ 500へ送 り込まれる(ステップ S 105)。
[0083] 同時に、ステップ S 102で生成され目標信号が強調された第 1のアレイ処理信号は 、と前述した多重ブロッキング行列回路 320で生成された第 2のアレイ処理信号とに 基づ 、て目標信号対妨害信号の比 (SIR)が SIR推定部 700で演算され推定される ( ステップ S 106 : SIR推定工程)。この場合、 SIRの推定は、第 2のアレイ処理信号に 代わって予め設定した所定の妨害信号 (例えば予め想定されたもの)を用いてもよい 。又、この場合、 SIR推定工程に代えて、第 1のアレイ処理信号と第 2のアレイ処理信 号との相対的な大小関係を求める大小関係特定工程を設定してもよい。
[0084] そして、前述した SIR推定工程で推定された SIR推定値 (又は大小関係特定値)は 、直ちに演算制御部 800へ送られる。そして、この演算制御部 800では、この SIR推 定値 (又は大小関係特定値)に基づいて機能し、多入力キャンセラ 500における第 1 のアレイ処理信号の適応アレイ処理にあってその追従速度と演算精度とを定めるパ ラメータを最適な状態に設定制御するための制御信号を生成する (ステップ S107: 制御信号生成工程)。この制御信号を入力した多入力キャンセラ 500では、これによ り目標信号を強調出力するように設定制御される (適応アレイ処理制御工程)。
[0085] 即ち、演算制御部 800によって第 1のアレイ処理信号の適応アレイ処理に際し、処 理装置の係数更新制御を適切に行うことが可能となり、入力信号の周波数特性や目 標信号と妨害信号の方向の影響を受けにくい高品質なアレイ処理出力を得られる( ステップ S 108)。
ここで、演算制御部 800により、前述した制御信号を固定ビームフォーマ 200およ び多重ブロッキング行列回路 320にも送り込み、これらの出力又はこれらの内の少な くとも一つを強調出力するように制御する構成としてもよ!、。
[0086] 以上のように、この第 1の実施形態によると、目標信号 (又は目標信号および妨害 信号)の各パワーを有効に推定することができ、このため、処理装置の係数更新制御 を適切に行うことが可能となり、入力信号の周波数特性や目標信号と妨害信号の方 向の影響を受けにくい高品質なアレイ処理出力を得ることができる。
[0087] 又、適応モード制御手段 1200は、前述した各実施形態における適応モード制御 手段と同様に、入力される複数のアレイセンサ情報力 異なったセンサ間隔を有する 複数のセンサ対を設定し、これら各センサ対出力を用いて妨害信号パワーを推定す る機能を備えている。このため、この適応モード制御手段 1200を装備することにより 、異なった周波数特性や空間選択特性を組み合わせた、平坦度の高い特性を実現 することができ、妨害信号パワーを正確に推定することができる。
[0088] このように、本発明の実施形態では、複数の異なったセンサ間隔を有するセンサ群 の出力を用いて妨害信号パワーを推定するので、異なった周波数特性や空間選択 特性を組み合わせた平坦度の高 ヽ特性を実現することができ、妨害信号パワーを正 確に推定することができる。このため、適応アレイ処理装置の係数更新制御を適切に 行うことが可能となり、妨害信号の周波数特性や到来方向の影響を受けにくい、高品 質なアレイ処理の実行を制御することができ、又、これにより高品質なアレイ処理出 力を得ることができる。
即ち、上記第 1の実施形態によると、入力信号の周波数特性や目標信号と妨害信 号の方向の影響を受けにくい、高品質なアレイ処理出力を得ることができる。
[0089] 〔第 2の実施形態〕
本発明の第 2の実施形態を図 7に基づいて説明する。
ここで、前述した第 1の実施形態における構成部材と同等に機能する構成要素に つ!ヽては同一の符号を用いるものとする。
この図 7に示す第 2の実施形態は、プログラム制御により動作するコンピュータ(中 央処理装置;プロセッサ;処理装置本体) 1000と、入力端子 101〜101 、及び出
0 M- 1 力端子 600とから構成されて 、る。
[0090] コンピュータ(中央処理装置;プロセッサ;処理装置本体) 1000は、前述した第 1乃 至第 2の各実施例で開示した固定ビームフォーマ 200、適応ブロッキング行列回路 3 00、遅延素子 400、及び多入力キャンセラ 500、多重ブロッキング行列回路 320、 SI R推定部 700、及び比較機能も備えた演算制御部 800の各機能と同等に機能する 処理プログラムを格納した記憶装置、および当該処理プログラムを実行する中央処 理装置を備えている。
[0091] そして、入力端子 101〜101 に供給される目標信号と妨害信号は、コンピュータ
0 M- 1
1000内の前記処理プログラムにて想定されるアレイ処理装置 1100に供給され、ここ で妨害信号が抑圧処理される。
この想定されるアレイ処理装置 1100は、前述した固定ビームフォーマ 200、適応ブ ロッキング行列回路 300、遅延素子 400、多入力キャンセラ 500と同等の実行内容を 、構成要素として備えている。又、本実施形態では、適応ブロッキング行列回路 300 および多入力キャンセラ 500には、当該適応ブロッキング行列回路 300および多入 力キャンセラ 500の各動作を制御する適応モード制御手段 (適応アレイ制御装置) 1 200が併設されている。
[0092] この適応モード制御手段 1200は、前述した第 1実施形態における多重ブロッキン グ行列回路 320、 SIR推定部 700、および比較部としても機能する演算制御部 800、 と同等の実行内容を含む処理プログラムにより構成されている。
[0093] そして、この適応モード制御手段 1200により、前述したアレイ処理装置における適 応ブロッキング行列回路 300と多入力キャンセラ 500に含まれる適応フィルタの係数 更新速度及び精度を制御される。
[0094] このように、適応モード制御手段 (適応モード制御装置) 1200は、複数の異なった センサ間隔を有するセンサ群の出力を用いて、妨害信号パワーを推定するので、異 なった周波数特性や空間選択特性を組み合わせた、平坦度の高!ヽ特性を実現する ことができ、妨害信号パワーを正確に推定することができる。このため、これを利用し た適応アレイ処理装置では、その係数更新制御を適切に行うことが可能となり、入力 信号の周波数特性や目標信号と妨害信号の方向の影響を受けにくい、高品質なァ レイ処理出力を得ることができる。
[0095] 以上、センサとしてマイクロフォンを用いて説明してきた力 マイクロフォン以外に、 超音波センサや、ソーナー受音器、アンテナなどのセンサを用いることができる。
[0096] このように、本実施形態における適応アレイ処理装置 1100は、適応モード制御手 段 1200を装備することにより、前述した実施形態の場合と同様に、適応ブロッキング 行列回路 300および多入力キャンセラ 500の係数更新制御を適切に行うことが可能 となり、入力信号の周波数特性や目標信号と妨害信号の方向の影響を受けにくい、 高品質なアレイ処理出力を得ることができる。
[0097] 以上説明したように、上述した各実施形態によれば、妨害信号パワー及び目標信 号と妨害信号の比(SIR)を正確に推定することができる。このため、妨害信号の周波 数特性や到来方向の影響を受けにくぐ係数更新制御を適切に行うことが可能となる 。その結果、アレイ処理装置の出力における信号の劣化や息づき雑音が減少し、高 品質なアレイ処理を行うことができる。
図面の簡単な説明
[0098] [図 1]本発明の第 1の実施形態を示すブロック図である。
[図 2]図 1中に開示した多重ブロッキング行列回路の第 1の例を示すブロック図である
[図 3]図 1中に開示した多重ブロッキング行列回路の第 2の例を示すブロック図である
[図 4]図 1中に開示した多重ブロッキング行列回路の第 3の例を示すブロック図である
[図 5]図 1中に開示した多重ブロッキング行列回路の第 4の例を示すブロック図である
[図 6]図 1に開示した第 1の実施形態の動作を示すフローチャートである。
[図 7]本発明の第 2の実施形態を示すブロック図である。
[図 8]従来例を示すブロック図である。
[図 9]図 8中に開示したブロッキング行列回路の例示す説明図である。
符号の説明
[0099] 100〜100 アレイセンサとしての複数のマイクロフォン
0 M- 1
200 固定ビームフォーマ(第 1のアレイ処理信号生成部)
300 適応ブロッキング行列回路 (第 3のアレイ処理信号生成部)
320 多重ブロッキング行列回路 (第 2のアレイ処理信号生成部)
311, 321〜321 減算器
0 M- 1
322 加算器 323〜323 フィルタ
0 M- l
500 多入力キャンセラ (適用アレイ処理部,相関除去部)
700 目標信号対妨害信号比の計算部 (SIR計算部, SIR推定部)
800 演算制御部
1000 コンピュータ
1200 適応モード制御手段 (適応アレイ制御装置)

Claims

請求の範囲
[1] アレイ状の複数のセンサ力 送り込まれる複数の信号力 異なったセンサ間隔を有 する複数のセンサ対を特定すると共に当該各センサ対力 得られる信号をアレイ処 理すると共にその結果をアレイ処理信号として出力するアレイ処理部を設け、 このアレイ処理部の出力信号を用いて適応アレイ処理におけるパラメータ調整の速 度と精度を制御するための制御信号を生成する演算制御部を具備したことを特徴と する適応アレイ制御装置。
[2] 前記請求項 1に記載の適応アレイ制御装置にお 、て、
前記アレイ処理部力 前記アレイ処理結果をそれぞれフィルタ処理する複数のフィ ルタと、前記フィルタの出力を加算して出力する加算器とを備えていることを特徴とす る適応アレイ制御装置。
[3] 前記請求項 1又は 2に記載の適応アレイ制御装置において、
アレイ状の複数のセンサ力 送り込まれる複数の信号の内、目標信号を他の信号 に対して強調して成る第 1のアレイ処理信号を取り込むと共に、前記アレイ処理信号 を出力するアレイ処理部を、第 2のアレイ処理信号を出力する第 2のアレイ処理部とし この第 2のアレイ処理信号と前記取り込んだ第 1のアレイ処理信号との間の相対的 な大小関係を算定する計算部を備え、
前記演算制御部が、前記計算部で求めた前記処理信号の大小関係を用いて適応 アレイ処理におけるパラメータ調整の速度と精度を制御するための制御信号を発生 する制御信号発生機能を備えていることを特徴とした適応アレイ制御装置。
[4] 前記請求項 1又は 2に記載の適応アレイ制御装置において、
前記アレイ状の複数のセンサ力 送り込まれる複数の信号の内、目標信号を他の 信号に対して強調して成る第 1のアレイ処理信号を取り込むと共に、
この取り込んだ第 1のアレイ処理信号に基づいて目標信号対妨害信号の比 (SIR)を 推定する推定部を装備し、
前記演算制御部が、前記推定された SIR推定値を用いて適応アレイ処理における パラメータ調整の速度と精度を制御するための制御信号を発生する制御信号発生機 能を備えて ヽることを特徴とした適応アレイ制御装置。
[5] アレイ状の複数のセンサ力 送り込まれる複数の信号力 異なったセンサ間隔を有 する複数のセンサ対力 得られる信号をアレイ処理してアレイ処理結果を求めると共 に、このアレイ処理結果を目標信号が他の信号に対して減衰したアレイ処理信号と するアレイ処理信号生成工程と、
このアレイ処理信号を用いて適応アレイ処理におけるパラメータ調整の速度と精度 を制御する適応アレイ処理制御工程とを備えたことを特徴とする適応アレイ制御方法
[6] 前記請求項 5に記載の適応アレイ制御方法にぉ 、て、
前記アレイ処理信号生成工程の実行内容を、異なったセンサ間隔を有する複数の センサ対力 得られる信号をアレイ処理してアレイ処理結果を求めると共に、このァレ ィ処理結果をそれぞれフィルタ処理して複数のフィルタ処理結果を求め、この複数の フィルタ処理結果を加算して前記アレイ処理信号を生成するように構成したことを特 徴とする適応アレイ制御の方法。
[7] 前記請求項 5又は 6に記載の適応アレイ制御方法にぉ 、て、
アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して成る第 1のアレイ処理信号を取り込む第 1のアレイ処理信号取得ェ 程を設けると共に、前記アレイ処理信号生成工程を第 2のアレイ処理信号生成工程 とし、
前記取り込まれた第 1のアレイ処理信号と前記第 2のアレイ処理信号生成工程で生 成される第 2のアレイ処理信号とを比較してその相対的な大小関係を特定する大小 関係特定工程を、前記適応アレイ処理制御工程の前に設定し、
前記適応アレイ処理制御工程の実行内容を、前記大小関係特定工程で特定され る各処理信号の大小関係を用いて適応アレイ処理におけるパラメータ調整の速度と 精度を制御するように構成したことを特徴とする適応アレイ制御方法。
[8] 前記請求項 5又は 6に記載の適応アレイ制御方法にぉ 、て、
アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して成る第 1のアレイ処理信号を取り込む第 1のアレイ処理信号取得ェ 程を設け、
前記アレイ処理信号生成工程を第 2のアレイ処理信号生成工程とし、
前記取り込まれた第 1のアレイ処理信号と前記第 2のアレイ処理信号生成工程で生 成される第 2のアレイ処理信号とを用いて目標信号対妨害信号の比 (SIR)を推定する
SIR推定工程を、前記適応アレイ処理制御工程の前に設定すると共に、
前記適応アレイ処理制御工程の実行内容を、前記 SIR推定工程で推定される SIR 推定値を用いて適応アレイ処理におけるパラメータ調整の速度と精度を制御するよう に構成したことを特徴とする適応アレイ制御方法。
[9] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して成る第 1のアレイ処理信号を取り込む第 1のアレイ処理信号取込み 機能、
前記複数の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる 信号をアレイ処理した結果を、前記目標信号を他の信号に対して減衰させた第 2の アレイ処理信号として生成する第 2のアレイ処理信号生成機能、
前記取り込んだ第 1のアレイ処理信号と前記生成した第 2のアレイ処理信号との相 対的な大小関係を求める大小関係特定機能、
この特定された大小関係を用いて適応アレイ処理におけるパラメータ調整の速度と 精度を制御する適応アレイ制御機能、
をコンピュータに実行させるように構成したことを特徴とする適応アレイ制御プロダラ ム。
[10] アレイ状の複数のセンサ力も送り込まれる複数の信号の内の異なったセンサ間隔を 有する複数のセンサ対から得られる信号をアレイ処理し、その結果をアレイ処理信号 として出力するアレイ処理部を具備したことを特徴とする適応アレイ処理装置。
[11] 前記請求項 10に記載の適応アレイ処理装置において、
前記アレイ処理部は、前記アレイ処理結果をそれぞれフィルタ処理する複数のフィ ルタと、この各フィルタの出力を加算して出力する加算器とを備えていることを特徴と した適応アレイ処理装置。
[12] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を求める第 1のアレイ処理部と、 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を求める第 3 のアレイ処理部と、
前記第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号力 消去する相関除去部と、
前記複数の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる 信号をアレイ処理した結果を第 2のアレイ処理信号として出力する第 2のアレイ処理 部と、
前記第 2のアレイ処理部の出力信号を用いて適応アレイ処理におけるパラメータ調 整の速度と精度を制御するための制御信号を生成する演算制御部とを具備したこと を特徴とする適応アレイ処理装置。
[13] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理生成部と、 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理生成部と、
この第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去する相関除去部と、
前記複数の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる 信号をアレイ処理した結果を第 2のアレイ処理信号として出力する第 2のアレイ処理 部と、
前記第 1のアレイ処理信号と前記第 2のアレイ処理信号の相対的な大小関係を求 める計算部と、
前記第 1,第 2の各アレイ処理信号の大小関係を用いて適応アレイ処理におけるパ ラメータ調整の速度と精度を制御するための制御信号を発生する演算制御部とを具 備したことを特徴とする適応アレイ処理装置。
[14] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理生成部と、 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理生成部と、
この第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去する相関除去部と、
前記複数の信号の内、異なったセンサ間隔を有する複数のセンサ対力 得られる 信号をアレイ処理した結果を第 2のアレイ処理信号として出力する第 2のアレイ処理 部と、
前記第 2のアレイ処理信号を用いて目標信号対妨害信号の比 (SIR)を推定する SI R推定部と、
この SIR推定部で推定された前記 SIR推定値を用いて適応アレイ処理におけるパ ラメータ調整の速度と精度を制御するための制御信号を発生する演算制御部とを具 備したことを特徴とする適応アレイ処理装置。
[15] 前記請求項 12, 13又は 14に記載の適応アレイ処理装置において、
前記第 2のアレイ処理部は、前記アレイ処理結果をそれぞれフィルタ処理する複数 のフィルタと、前記フィルタの出力を加算して出力する加算器を備えていることを特徴 とした適応アレイ処理装置。
[16] アレイ状の複数のセンサ力 送り込まれる複数の信号を対象として異なったセンサ 間隔を有する複数のセンサ対から得られる信号をアレイ処理してアレイ処理信号を 生成するアレイ処理信号生成工程と、このアレイ処理信号生成工程におけるアレイ 処理結果をアレイ処理信号として出力するアレイ処理信号出力工程とを備え、 前記アレイ処理信号生成工程の実行内容を、前記複数の信号の内の目標信号が 他の信号に対して減衰した状態に当該アレイ処理信号を生成するように構成したこと を特徴とする適応アレイ処理方法。
[17] アレイ状の複数のセンサ力 送り込まれる複数の信号を対象として異なったセンサ 間隔を有する複数のセンサ対から得られる信号をアレイ処理してアレイ処理信号を 生成するアレイ処理信号生成工程と、このアレイ処理信号生成工程におけるアレイ 処理結果をアレイ処理信号として出力するアレイ処理信号出力工程とを備え、 前記アレイ処理信号生成工程の実行内容を、前記アレイ処理結果をそれぞれフィ ルタ処理して複数のフィルタ処理結果を求めると共に当該複数のフィルタ処理結果 を加算して前記アレイ処理信号を生成するように構成したことを特徴とする適応ァレ ィ処理方法。
[18] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成工程と 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理信号生成工程と、
この第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去して出力する際に、前記取り込んだ複数のアレイ信号を対象として異なったセン サ間隔を有する複数のセンサ対から得られる信号をアレイ処理してアレイ処理結果を 求め、このアレイ処理結果を目標信号が他の信号に対して減衰した第 2のアレイ処理 信号とする第 2のアレイ処理信号生成工程と、
この第 2のアレイ処理信号を用いて適応アレイ処理におけるパラメータ調整の速度 と精度を制御する適応アレイ処理制御工程とを備えたことを特徴とする適応アレイ処 理方法。
[19] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成工程と 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理信号生成工程と、
この第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去して出力する際に、前記取り込んだ複数のアレイ信号を対象として異なったセン サ間隔を有する複数のセンサ対から得られる信号をアレイ処理してアレイ処理結果を 求め、このアレイ処理結果を目標信号が他の信号に対して減衰した第 2のアレイ処理 信号とする第 2のアレイ処理信号生成工程と、
前記第 1のアレイ処理信号と前記第 2のアレイ処理信号の相対的な大小関係を求 める大小関係特定工程と、
この特定された前記大小関係を用いて適応アレイ処理におけるパラメータ調整の 速度と精度を制御する適応アレイ処理制御工程と、
を備えたことを特徴とする適応アレイ処理方法。
[20] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を生成する第 1のアレイ処理信号生成工程と 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理信号生成工程と、
この第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去して出力する際に、前記取り込んだ複数のアレイ信号を対象として異なったセン サ間隔を有する複数のセンサ対から得られる信号をアレイ処理してアレイ処理結果を 求め、このアレイ処理結果を目標信号が他の信号に対して減衰した第 2のアレイ処理 信号とする第 2のアレイ処理信号生成工程と、
この第 2のアレイ処理信号を用いて目標信号対妨害信号の比 (SIR)を推定する SIR 推定工程と、
この推定された SIR推定値を用いて適応アレイ処理におけるパラメータ調整の速度 と精度を制御する適応アレイ処理制御工程と、
を備えたことを特徴とする適応アレイ処理方法。
[21] 前記請求項 18, 19又は 20に記載の適応アレイ処理方法において、
前記第 2のアレイ処理信号生成工程の実行内容を、前記アレイ処理結果をそれぞ れフィルタ処理して複数のフィルタ処理結果を求めると共に当該複数のフィルタ処理 結果の和を用いて前記第 2のアレイ処理信号を求めるように構成したことを特徴とす る適応アレイ処理方法。
[22] アレイ状の複数のセンサ力 送り込まれる複数の信号の内の目標信号を他の信号 に対して強調して第 1のアレイ処理信号を求める第 1のアレイ処理信号生成機能、 前記目標信号を他の信号に対して減衰させて第 3のアレイ処理信号を生成する第 3のアレイ処理信号生成機能、
この第 3のアレイ処理信号と相関のある信号成分を前記第 1のアレイ処理信号から 消去して出力する相関成分消去機能、 前記アレイ状の複数の信号力 異なったセンサ間隔を有する複数のセンサ対を設 定すると共にこのセンサ対力 得られる信号をアレイ処理した結果を、前記目標信号 を他の信号に対して減衰させた第 2のアレイ処理信号として特定する第 2のアレイ処 理信号特定機能、
前記第 1のアレイ処理信号と前記第 2のアレイ処理信号の相対的な大小関係を特 定する大小関係特定機能、
この特定された大小関係を用いて適応アレイ処理におけるパラメータ調整の速度と 精度を制御する適応アレイ処理制御機能、
をコンピュータに実行させるように構成したことを特徴とする適応アレイ処理プロダラ ム。
PCT/JP2007/058091 2006-04-20 2007-04-12 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム WO2007123048A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008512085A JP5315991B2 (ja) 2006-04-20 2007-04-12 アレイ制御装置、アレイ制御方法及びアレイ制御プログラム、アレイ処理装置、アレイ処理方法及びアレイ処理プログラム
US12/297,870 US8174935B2 (en) 2006-04-20 2007-04-12 Adaptive array control device, method and program, and adaptive array processing device, method and program using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006117287 2006-04-20
JP2006-117287 2006-04-20

Publications (1)

Publication Number Publication Date
WO2007123048A1 true WO2007123048A1 (ja) 2007-11-01

Family

ID=38624952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058091 WO2007123048A1 (ja) 2006-04-20 2007-04-12 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム

Country Status (3)

Country Link
US (1) US8174935B2 (ja)
JP (1) JP5315991B2 (ja)
WO (1) WO2007123048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571147A (zh) * 2016-11-13 2017-04-19 南京汉隆科技有限公司 用于网络话机声学回声抑制的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174935B2 (en) * 2006-04-20 2012-05-08 Nec Corporation Adaptive array control device, method and program, and adaptive array processing device, method and program using the same
JP4973655B2 (ja) * 2006-04-20 2012-07-11 日本電気株式会社 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
JP4973657B2 (ja) * 2006-04-20 2012-07-11 日本電気株式会社 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム
KR20100003530A (ko) * 2008-07-01 2010-01-11 삼성전자주식회사 전자기기에서 음성 신호의 잡음 제거 장치 및 방법
WO2011141902A1 (en) * 2010-05-13 2011-11-17 Dsp Group Ltd. Adaptive processor
CN102664023A (zh) * 2012-04-26 2012-09-12 南京邮电大学 一种麦克风阵列语音增强的优化方法
CN113055772B (zh) * 2021-02-07 2023-02-17 厦门亿联网络技术股份有限公司 一种提升麦克风信号的信噪比的方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122424A (ja) * 1994-09-01 1996-05-17 Nec Corp 適応アレイ装置
JPH10207490A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 信号処理装置
JPH1152988A (ja) * 1997-08-01 1999-02-26 Nec Corp 適応アレイの制御方法および適応アレイ装置
JP2000181498A (ja) * 1998-12-15 2000-06-30 Toshiba Corp ビームフォーマを用いた信号入力装置及び信号入力用プログラムを記録した記録媒体
JP2003140700A (ja) * 2001-11-05 2003-05-16 Nec Corp ノイズ除去方法及び装置
JP2003271191A (ja) * 2002-03-15 2003-09-25 Toshiba Corp 音声認識用雑音抑圧装置及び方法、音声認識装置及び方法並びにプログラム
JP2003333683A (ja) * 2002-05-16 2003-11-21 Tokai Rika Co Ltd ノイズ抑圧方法及びマイクロフォン装置
JP2005249816A (ja) * 2004-03-01 2005-09-15 Internatl Business Mach Corp <Ibm> 信号強調装置、方法及びプログラム、並びに音声認識装置、方法及びプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481826A (en) * 1977-12-13 1979-06-29 Japan National Railway Directional sound collector
JPS62318Y2 (ja) * 1979-12-29 1987-01-07
JPS5888994A (ja) * 1981-11-24 1983-05-27 Victor Co Of Japan Ltd 2次音圧傾度型単一指向性マイクロホン
JP2003232849A (ja) 2002-02-13 2003-08-22 Oki Electric Ind Co Ltd 適応整相方法
JP4247037B2 (ja) 2003-01-29 2009-04-02 株式会社東芝 音声信号処理方法と装置及びプログラム
JP4457221B2 (ja) 2003-08-29 2010-04-28 学校法人早稲田大学 音源分離方法およびそのシステム、並びに音声認識方法およびそのシステム
JP4973655B2 (ja) * 2006-04-20 2012-07-11 日本電気株式会社 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
WO2007123051A1 (ja) * 2006-04-20 2007-11-01 Nec Corporation 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム
US8174935B2 (en) * 2006-04-20 2012-05-08 Nec Corporation Adaptive array control device, method and program, and adaptive array processing device, method and program using the same
JP4973657B2 (ja) * 2006-04-20 2012-07-11 日本電気株式会社 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122424A (ja) * 1994-09-01 1996-05-17 Nec Corp 適応アレイ装置
JPH10207490A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 信号処理装置
JPH1152988A (ja) * 1997-08-01 1999-02-26 Nec Corp 適応アレイの制御方法および適応アレイ装置
JP2000181498A (ja) * 1998-12-15 2000-06-30 Toshiba Corp ビームフォーマを用いた信号入力装置及び信号入力用プログラムを記録した記録媒体
JP2003140700A (ja) * 2001-11-05 2003-05-16 Nec Corp ノイズ除去方法及び装置
JP2003271191A (ja) * 2002-03-15 2003-09-25 Toshiba Corp 音声認識用雑音抑圧装置及び方法、音声認識装置及び方法並びにプログラム
JP2003333683A (ja) * 2002-05-16 2003-11-21 Tokai Rika Co Ltd ノイズ抑圧方法及びマイクロフォン装置
JP2005249816A (ja) * 2004-03-01 2005-09-15 Internatl Business Mach Corp <Ibm> 信号強調装置、方法及びプログラム、並びに音声認識装置、方法及びプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOSHUYAMA O. ET AL.: "A Realtime Robust Adaptive Microphone Array Controlled By An SNR Estimate", IEEE PROC. OF ICASSP'98, vol. 6, April 1998 (1998-04-01), pages 3605 - 3608, XP000951238 *
HOSHUYAMA O. ET AL.: "An Adaptive Microphone Array with Good Sound Quality Using Auxiliary Fixed Beamformers and Its DSP Implementation", IEEE PROC. OF ICASP'99, vol. 2, March 1999 (1999-03-01), pages 949 - 952, XP000900279 *
HOSHUYAMA O. ET AL.: "Blocking Gyoretsu ni Leak Tekio Filter o Mochiita Robust Ippanka Sidelobe Canceller", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J79-A, no. 9, 25 September 1996 (1996-09-25), pages 1516 - 1524, XP003018597 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571147A (zh) * 2016-11-13 2017-04-19 南京汉隆科技有限公司 用于网络话机声学回声抑制的方法

Also Published As

Publication number Publication date
JPWO2007123048A1 (ja) 2009-09-03
US8174935B2 (en) 2012-05-08
US20090086578A1 (en) 2009-04-02
JP5315991B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP4973655B2 (ja) 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
JP7175441B2 (ja) 雑音のある時変環境のための重み付け予測誤差に基づくオンライン残響除去アルゴリズム
US9008327B2 (en) Acoustic multi-channel cancellation
US7957542B2 (en) Adaptive beamformer, sidelobe canceller, handsfree speech communication device
JP5805365B2 (ja) ノイズ推定装置及び方法とそれを利用したノイズ減少装置
US8374358B2 (en) Method for determining a noise reference signal for noise compensation and/or noise reduction
JP4973657B2 (ja) 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム
US8504117B2 (en) De-noising method for multi-microphone audio equipment, in particular for a “hands free” telephony system
KR100878992B1 (ko) 지오메트릭 소스 분리 신호 처리 기술
JP5315991B2 (ja) アレイ制御装置、アレイ制御方法及びアレイ制御プログラム、アレイ処理装置、アレイ処理方法及びアレイ処理プログラム
JP5331201B2 (ja) オーディオ処理
CN110140359B (zh) 使用波束形成的音频捕获
JP4973656B2 (ja) 適応アレイ制御装置、方法、プログラム、及び適応アレイ処理装置、方法、プログラム
Adel et al. Beamforming techniques for multichannel audio signal separation
US20130322655A1 (en) Method and device for microphone selection
Yang et al. Dereverberation with differential microphone arrays and the weighted-prediction-error method
JP2011100030A (ja) 信号処理方法、情報処理装置、及び信号処理プログラム
JP3001092B2 (ja) 適応アレイの制御方法および適応アレイ装置
EP4016977A1 (en) Apparatus and method for filtered-reference acoustic echo cancellation
Kim et al. Extension of two-channel transfer function based generalized sidelobe canceller for dealing with both background and point-source noise
Mahale Robust adaptive CRLS-GSC algorithm for DOA mismatch in microphone array

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512085

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12297870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741527

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)