WO2007119655A1 - 超電導ケーブルコアおよび超電導ケーブル - Google Patents

超電導ケーブルコアおよび超電導ケーブル Download PDF

Info

Publication number
WO2007119655A1
WO2007119655A1 PCT/JP2007/057448 JP2007057448W WO2007119655A1 WO 2007119655 A1 WO2007119655 A1 WO 2007119655A1 JP 2007057448 W JP2007057448 W JP 2007057448W WO 2007119655 A1 WO2007119655 A1 WO 2007119655A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
superconducting cable
superconducting
cable core
cable
Prior art date
Application number
PCT/JP2007/057448
Other languages
English (en)
French (fr)
Inventor
Yuichi Ashibe
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to KR1020077030548A priority Critical patent/KR101306519B1/ko
Priority to CN2007800006580A priority patent/CN101331560B/zh
Priority to EP07740884A priority patent/EP2006862B1/en
Priority to US11/917,581 priority patent/US7800000B2/en
Priority to CA002609321A priority patent/CA2609321A1/en
Publication of WO2007119655A1 publication Critical patent/WO2007119655A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/14Superconductive or hyperconductive conductors, cables, or transmission lines characterised by the disposition of thermal insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting cable core and a structure of a superconducting cable using the superconducting cable core.
  • the present invention relates to a superconducting cable core and a superconducting cable structure having good insulation performance over an intermediate connecting portion for connecting the superconducting cables or a terminal connecting portion for connecting the superconducting cable and another power device.
  • the superconducting cable having a higher power transmission capacity than a normal conducting cable as a power cable.
  • the superconducting cable include a superconducting cable having a configuration in which a three-core superconducting cable core as described in Patent Document 1 is twisted and housed in a heat insulating tube.
  • This superconducting cable core includes a former, a superconducting conductor, an insulating layer, an external conductor layer, and a protective layer in order of central force.
  • both the superconducting conductor and the outer conductor layer are formed of a superconducting wire.
  • the insulating layer is formed by winding insulating paper to ensure a desired insulation performance.
  • the heat insulating tube has a structure in which a heat insulating material is disposed between a double tube composed of an inner tube and an outer tube, and the inside of the double tube is evacuated. Furthermore, an anticorrosion layer is formed on the outside of the heat insulation pipe. In such a superconducting cable, a space surrounded by the inner tube and the cable core is usually a refrigerant flow path.
  • the superconducting cable core is cooled to a very low temperature by the refrigerant and contracts, the contraction may cause the superconducting wire to be damaged by applying tension to the superconducting wire. For this reason, in a multi-core superconducting cable, the cable core contraction allowance is secured by loosening the twisting of the cores and placing them in a heat insulating tube.
  • connection parts that connect to other power equipment (conductive members such as normal conductors) at the end of the line.
  • connection parts that connect to other power equipment (conductive members such as normal conductors) at the end of the line.
  • the end of the superconducting cable core is stripped to expose the superconducting conductor.
  • the exposed superconducting conductor is connected to another conductive member exposed in the same manner as this superconducting conductor.
  • a reinforcing insulating structure is formed so as to cover the outer periphery of the exposed conductor and its vicinity. Normally, at both ends of the reinforced insulation structure, a tapered stress cone portion is formed on the end portion to reduce the concentration of the electric field at the connection portion.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-59695 (FIG. 5)
  • connection portion is formed using such a superconducting cable, it becomes even more difficult to secure a margin in the insulation design of the connection portion.
  • an electric field is locally concentrated on the stepped part of the end portion of the superconducting cable core to become an electric weak point.
  • the electric field concentrates on the rising part of the stress cone part in the reinforced insulation structure, and sufficient design margin may not be obtained at that part. Therefore, the development of a superconducting cable that can form a more reliable connection is desired.
  • a main object of the present invention is to provide a superconducting cable core capable of forming a highly reliable connection portion even when the outer diameter of the cable is limited.
  • Another object of the present invention is to provide a superconducting cable and a superconducting cable line using the superconducting cable core.
  • the present invention provides the above-described structure by making the end portion of the cable core an insulating structure different from other portions. Achieve the goal.
  • the superconducting cable core of the present invention includes a superconducting conductor and an insulating layer covering the outer periphery of the superconducting conductor.
  • the superconducting cable core of the present invention is divided into a cable part in the longitudinal direction and a connection structure forming part that is located at both ends of the cable part and forms a reinforcing insulating structure when connected to other conductive members.
  • the connection structure forming portion is a range from at least the end portion of the superconducting cable core to the end portion of the reinforcing insulation structure of the superconducting cable core.
  • the insulating performance of the insulating layer in the connection structure forming portion is higher than the insulating performance of the insulating layer in the cable portion.
  • the reinforced insulating structure refers to a structure formed of a superconducting conductor exposed by stripping at a connection portion and an insulating member covering an outer periphery in the vicinity thereof.
  • the reinforced insulation structure is formed so as to cover at least the entire stepped portion of the superconducting conductor of the superconducting cable core and the outer periphery of the insulating layer.
  • the reinforced insulation structure usually has a stress cone portion formed in a taper shape tapered toward both ends, and the rising portion of the stress cone portion (the end portion of the reinforcement insulation structure) is stepped. Located on the outer periphery of the insulating layer that has not been stripped.
  • connection structure forming portion of the superconducting cable core in the present invention indicates at least from the end portion of the superconducting cable core to the rising portion of the stress cone.
  • a portion other than the connection structure forming portion is a cable portion.
  • connection structure forming portion located at the end of the superconducting cable can be formed in an insulating structure different from the cable portion.
  • the cable end portion used for forming the connection portion is This is because it can be identified.
  • connection portion In the case of a normal conducting cable, the connection portion can be formed by cutting at an arbitrary position. Therefore, it is not always the case that the cable end is specified at the time of shipping the cable!
  • a superconducting cable usually has a heat insulating tube with a vacuum heat insulating structure. If this insulation tube is cut at an arbitrary position, the vacuum state will be destroyed. Therefore, the superconducting cable is manufactured with an exact length according to the unit length of the line. For this reason, the end of the cable is specified in the superconducting cable, and the insulation characteristics of the end of the cable used to form the connection are different. It is relatively easy to change the part.
  • connection portion can have a large design margin. it can.
  • connection structure forming portion of the superconducting cable core In order to make the insulation performance in the connection structure forming portion of the superconducting cable core higher than that of the cable portion, for example, by increasing the thickness of the insulating layer in the connection structure forming portion, the superconducting conductor and the external conductor layer It can be configured so that the insulation distance is secured and the electric field is not concentrated on the stress cone part of the reinforced insulation structure.
  • the simplest method is to add a tape-like insulating member to the insulating layer of the connection structure forming portion.
  • an insulating layer having a dielectric constant ⁇ higher than that of other portions may be disposed at a position immediately above the superconducting conductor.
  • the insulating layer is divided into a main insulating layer and an internal insulating layer directly above the superconducting conductor, and the dielectric constant of the internal insulating layer is made higher than the dielectric constant of the main insulating layer.
  • the main insulating layer is further divided into layers having different dielectric constants, and so-called ⁇ grading is performed so that the dielectric constants ⁇ are arranged in the order of high ⁇ medium ⁇ low in order from directly above the superconducting conductor.
  • the superconducting cable core of the present invention preferably has a configuration in consideration of the above possibilities.
  • an outer insulating layer having a dielectric constant ⁇ higher than that of the main insulating layer may be provided on the outer periphery of the insulating layer and immediately below the outer conductor layer.
  • the dielectric constant ⁇ of the internal insulating layer, the main insulating layer, and the external insulating layer must be high, medium, and high, respectively. preferable.
  • the main insulating layer may be divided into a plurality of layers and subjected to ⁇ -grading.
  • the cable core of the present invention can be applied to both a DC superconducting cable and an AC superconducting cable.
  • the resistivity ⁇ of the inner insulating layer located immediately above the superconducting conductor should be different from the resistivity ⁇ ⁇ ⁇ ⁇ in other parts of the insulating layer (for example, the main insulating layer). It is preferable.
  • the resistivity ⁇ of the inner insulating layer directly above the superconducting conductor may be changed stepwise in the entire insulating layer, which may be lower or higher than the resistivity ⁇ in other portions.
  • the resistivity ⁇ of the internal insulating layer is made lower than the resistivity ⁇ ⁇ of the insulating layer in other portions, it is preferable because the electric field can be smoothed over the entire insulating layer including the internal insulating layer.
  • ⁇ grading is performed so that the resistivity ⁇ is arranged in the order of low ⁇ medium ⁇ high, starting from directly above the conductor. It is done.
  • the above ⁇ grading may be combined with ⁇ grading.
  • a layer of high ⁇ and low ⁇ is disposed immediately above the conductor, and a layer of low ⁇ and high ⁇ is disposed at a position away from the conductor.
  • a superconducting cable line having good insulation performance can be obtained in both cases of direct current and alternating current. Therefore, once a superconducting cable line is laid, it can be safely operated even if it is a power transmission type. For example, when a superconducting cable used for AC transmission is switched to DC transmission, there is no need to re-lay the cable, and there is no need to improve the insulation performance at the connection. Also good.
  • ⁇ -grading or ⁇ -grading it is possible to change the material of the insulating member constituting each insulating layer.
  • the insulating layer is formed of a tape-like insulating member, it is easy to adjust the dielectric constant ⁇ and resistivity ⁇ in each layer.
  • kraft paper becomes high ⁇ high ⁇ when its airtightness is increased.
  • Typical kraft paper has a resistivity p (20 ° C) of about 10 14 to 10 17 ⁇ 'cm and a dielectric constant ⁇ of about 3.2 to 3.7.
  • composite paper for example, PPLP: registered trademark of Sumitomo Electric Industries, Ltd.
  • plastic film in which plastic film is laminated on kraft paper increases the cocoon and lowers ⁇ by increasing the ratio of plastic to the entire composite paper.
  • the ratio of plastic film to the total thickness of composite paper k is 60%.
  • the resistivity / 0 (20 ° C) is about 10 17 to 10 19 ⁇ 'cm, and the dielectric constant ⁇ is about 2.5 to 3.0.
  • the resistivity p (20 ° C) of the composite paper having the same ratio k of 80% is about 10 18 to 10 2 ° ⁇ 'cm, and the dielectric constant ⁇ is about 2.0 to 2.5.
  • an insulating layer having desired characteristics may be formed.
  • the tape-like insulating member added to the connection structure forming portion is effective in improving the insulation performance from the thickness of one tape. For example, even with a PPLP having a thickness of about 125 / zm, an improvement in the insulation performance at the connection structure forming portion can be recognized even if the inner insulating layer is formed only by this thickness.
  • the number of layers of the tape-like insulating member to be added may be about 1 to 5 in consideration of the extra effort.
  • the number of layers of the tape-like insulating member where the high electric field acts is increased.
  • the vicinity of the end portion of the cable core may be formed thicker than the other portions.
  • the rising part of the stress cone part may be formed thickly.
  • the overlap margin of the insulating member in the connection structure forming portion may be adjusted.
  • the stacking allowance is a width in which a turn and a turn adjacent to the turn overlap when the tape-like insulating member is wound. That is, if the overlap margin is increased, the number of overlapping portions of the insulating member increases, and as a result, the thickness of the insulating layer increases. At this time, the thickness of the insulating layer can be efficiently increased by making the end of the turn adjacent to the two turns overlap the overlap margin between the two adjacent turns.
  • connection structure forming portion are preferably formed at the time of cable manufacture.
  • insulation reinforcement By applying insulation reinforcement to the connection structure forming part in advance, it is possible to perform insulation reinforcement at places that are practically impossible at work at the cable laying site, and to reduce insulation reinforcement work at the laying site. it can.
  • the main insulation layer is formed by winding a tape-like insulation member, the main insulation layer must be wound in order to form the internal insulation layer under the main insulation layer at the site where the superconducting cable line is laid. Must be solved. For this reason, when unwinding and rewinding, gaps are formed between the layers, and the insulation performance deteriorates due to wrinkling.
  • connection structure forming portion is reinforced by insulation as described above, only the connection structure forming portion has a large diameter.
  • the outer diameter of the cable heat insulation pipe
  • multi-core superconducting cables have a twist on the twisted cape cores to absorb the shrinkage of the cores caused by cooling during cable operation. Therefore, it is easy to adjust the interval between the cores at the end of the cable. Accordingly, even if the outer diameter of the core is somewhat increased by applying insulation reinforcement only to the cable end, it is possible to avoid increasing the envelope diameter of all the cores by reducing the distance between the cores at the cable end. As a result, it is possible to avoid an increase in the outer diameter of the heat insulating pipe that houses these cores.
  • the auxiliary pipe may be a single pipe that does not need to have a vacuum heat insulating structure. Therefore, if the auxiliary pipe is provided along the outer pipe of the heat insulation pipe, a larger space can be secured inside the auxiliary pipe than the inside of the heat insulation pipe which is a double pipe. As a result, even if the end portion of the core becomes locally thick due to insulation reinforcement, the end portion of the core that does not change the outer diameter of the heat insulating tube can be accommodated in the auxiliary tube.
  • connection structure forming part protrudes at the end of the thermal insulation layer of the double-pipe structure, it is easy to adjust the spacing between the cores at the cable end and secure the space for storing the connection structure forming part. it can.
  • the superconducting cable core of the present invention can be used not only for multi-core cables but also for single-core cables.
  • the insulation performance in the intermediate connection part and the terminal connection part is remarkably improved by locally reinforcing the connection structure forming part located at the end thereof. be able to. Therefore, very high safety can be ensured over the entire superconducting cable line using this superconducting cable core.
  • the outer diameter of the cable heat insulation pipe
  • workability when the cable is pulled into the pipe line is not hindered.
  • FIG. 1 is a cross-sectional view of a superconducting cable.
  • FIG. 2 is a partial cross-sectional view showing an end portion of the superconducting cable core of Example 1.
  • FIG. 3 is an explanatory view showing a state in which a pooling eye is attached to the end of the superconducting cable of Example 1.
  • FIGS. 4A and 4B are partial cross-sectional views showing an intermediate connection part of the superconducting cable line of Example 1, and FIG. 4A shows a schematic configuration diagram.
  • FIG. 4B shows a partial cross-sectional view of FIG. 4A.
  • FIG. 5 is a partial cross-sectional view showing an intermediate connection part of a superconducting cable line of Example 2.
  • FIG. 6 is a partial cross-sectional view showing an intermediate connection portion of a superconducting cable line of Modification 2-1. Explanation of symbols
  • the superconducting cable used in this example is a three-core superconducting cable 1 in which three superconducting cable cores 10 are twisted and housed in a heat insulating tube 20.
  • the superconducting cable core 10 includes a former 11, a superconducting conductor 12, an insulating layer 13, an outer conductor layer 14, and a protective layer 15 in order from the center.
  • the former 11 is a former having a stranded wire structure in which a plurality of insulated copper wires are twisted together.
  • Bi2223-based Ag-Mn sheathed tape with a thickness of 0.24mm and a width of 3.8mm was used.
  • This tape wire is wound in multiple layers on former 11 to form superconducting conductor 12, and PPLP (registered trademark of Sumitomo Electric Industries, Ltd.) with a thickness of 125 ⁇ m and a width of 20 mm is formed on the outer periphery of superconducting conductor 12. And the insulating layer 13 was formed. Further, the outer conductor layer 14 was formed by winding a sheath tape wire around the outer periphery of the insulating layer 13 in multiple layers. In addition, although not shown, an internal semiconductive layer force is formed between the superconducting conductor 12 and the insulating layer 13, and an external semiconductive layer is formed between the insulating layer 13 and the external conductor layer 14.
  • FIG. 2 is an enlarged partial cross-sectional view of the end portion of the superconducting cable core 10.
  • the middle part of the superconducting cable core 10 (right from the dotted line in the center of Fig. 2) is the same as the former 11, superconducting conductor 12, insulating layer 13, outer conductor layer 14, and protective layer 15 in the longitudinal direction.
  • the cable part is 10k thick.
  • the end portion of the superconducting cable core 10 (the dotted line left in FIG. 2) is a connection structure forming portion 10c in which an internal insulating layer 13a is provided immediately above the superconducting conductor 12.
  • the thickness of the layers other than the inner insulating layer 13a in the connection structure forming portion 10c is uniform in the longitudinal direction of the cable core 10.
  • the main insulating layer 13b in the connection structure forming portion 10c is the insulating layer 13 formed continuously from the cable portion 10k.
  • the relationship between the dielectric constant ⁇ and the resistivity ⁇ of the internal insulating layer 13a and the main insulating layer 13b is as follows. However, ⁇ and ⁇ are constants.
  • the inner insulating layer 13a is a PPLP layer wound so that its thickness gradually increases toward the end of the cable core 10, and the PPLP forming the main insulating layer 13b is a dielectric material.
  • the rate ⁇ is different.
  • the thickness of the inner insulating layer 13 a at the position of the rising portion of the connection structure forming portion 10c is equal to PPLP-sheets (about 125 m).
  • the thickness of the insulating layer 13a is five PPLP sheets (about 625 m). Note that the thickness of each part of the inner insulating layer 13a is appropriately selected so that the concentration of the electric field at the connection part is not limited to the above-mentioned thickness, and a desired tolerance can be secured. Good.
  • the internal insulating layer 13a having a high dielectric constant ⁇ is formed immediately above the superconducting conductor 12, the electric field strength is high and the electric field in the vicinity of the superconducting conductor 12 can be relaxed.
  • the heat insulation pipe 20 that houses the superconducting cable core 10 has a double pipe structure including an inner pipe 21 and an outer pipe 22 (see FIG. 1).
  • a heat insulation material such as super insulation was placed between the inner tube 21 and the outer tube 22.
  • a space 16 surrounded by the inner tube 21 and the cable core 10 described above serves as a refrigerant flow path.
  • the partition was formed in the edge part of the heat insulation pipe
  • An anticorrosion layer 23 is provided on the outer periphery of the outer tube 22.
  • FIG. 3 is a partially enlarged view showing an end portion of the superconducting cable 1 to which the pooling eye 100 is attached. Although only two cable cores are shown in Fig. 3, there are actually three.
  • connection structure forming portion 10c is in a state in which the end force of the heat insulating tube 20 including the inner tube 21 and the outer tube 22 is protruded, and the protruding connection structure forming portion 10c.
  • the auxiliary pipe 50 was arranged so as to cover the outer periphery. Then, one end of the auxiliary tube 50 was fixed to the outer tube 22, and the other end was attached to the pooling eye 100.
  • Insulating pipe 20 Step off the end of the connection structure forming part 10c that protrudes from the end of the wire and cover the exposed end of the superconducting conductor 12 with a cap C to protect the superconducting conductor 12 and the superconducting conductor 12 does not come apart I did it.
  • the former 11 was fixed to the core fixing portion 101 of the pooling eye 100. With such a configuration, the tension at the time of pulling the cable core 10 is mainly shared by the heat insulating pipe 20 and the former 11 connected to the auxiliary pipe 50.
  • the auxiliary pipe 50 to which the pooling eye 100 is attached does not need to have a double pipe structure, and therefore, the auxiliary pipe 50 having an inner diameter substantially matching the outer diameter of the outer pipe 22 was used.
  • the space 51 inside the auxiliary pipe 50 has a larger radial direction than the space inside the heat insulating pipe 20, so that the connecting structure forming portion 10 c having a larger diameter is supplemented by adding an inner insulating layer. It could be stored in tube 50. Therefore, the superconducting cable 1 could be produced without increasing the diameter of the heat insulating tube 20 (the diameter of the superconducting cable 1).
  • the cable cores 10 are accommodated in the auxiliary pipe 50 by narrowing the twist. You can. At this time, even if the twist of the cable core is narrowed, the cable section 10k secures the looseness of the twist, so that the cable core is sufficiently loosened as a whole.
  • connection part where the reinforced insulation structure is formed includes an intermediate connection part that connects one superconducting cable and another superconducting cable, and a terminal connection part that connects the superconducting cable and other power equipment.
  • the configuration of both connecting portions is basically the same in that the insulating tape-like member is wound to form the reinforcing insulating layer and the end of the reinforcing insulating layer is formed in a pencil down shape. Only the intermediate connection will be described with reference to FIGS. 4A and 4B.
  • the intermediate connection portion 30 causes the ends of the two superconducting cable cores to conduct through the connection member 32, and the vicinity of the outer periphery of the connection member 32 is a reinforcing insulating layer. It is the structure covered with 31.
  • the intermediate connection portion 30 first, the end portion of the cable core (the end portion of the connection structure forming portion) is stripped, and the former 11, the superconducting conductor 12, the insulating layer 13, and the external conductor Tier 1 4 was exposed. The former 11 and the superconducting conductor 12 are connected to the other former 11 and the superconducting conductor 12 through the connection member 32, respectively.
  • a pencil-down portion 13p having a tapered shape is formed by applying a force toward the end portion of the core so as to alleviate the electric field concentration at the stepped portion.
  • the outer conductor layer 14 is in a state in which the winding of the superconducting wire (sea step wire) is unwound to the vicinity of the boundary between the cable portion 10k and the connection structure forming portion 10c so that the reinforcing insulating layer 31 can be formed. .
  • the reinforcing insulating layer 31 was formed so as to cover the outer periphery of the connecting member 32, the superconducting conductor 12, and the insulating layer 13 (mainly the pencil down portion 13p).
  • the reinforcing insulating layer 31 is formed with stress cone portions 31p that are tapered toward both ends. The rising portion s of the stress cone portion 31 tends to be a weak point of insulation where the electric field tends to concentrate.
  • the outer conductor layer 14 was extended to the outer periphery of the reinforcing insulating layer 31 so that the outer conductor layer 14 that had been unwound was connected between adjacent cables.
  • the electric field in the vicinity of the superconducting conductor 12 having high electric field strength can be relaxed by providing the high-permittivity internal insulating layer 13a immediately above the superconducting conductor 12. .
  • the electric field strength at the rising portion s of the stress cone portion at a position relatively away from the superconducting conductor 12 can be reduced.
  • the resistivity p of the inner insulating layer 13a is smaller than the resistivity p of the main insulating layer 13b, when direct current power transmission is performed using the superconducting cable of this example, the electric field is generated in the entire insulating layer 13 as a whole. Can be smoothed. Therefore, it is possible to improve the insulation performance in the intermediate connection portion 30, and as a result, it is possible to improve the reliability of the entire superconducting cable line.
  • the insulating layer 13 is formed by winding a tape-shaped wire in multiple layers, and the insulating layer 13 (main insulating layer) wound in multiple layers at the site where the cable core 10 is laid. It is very difficult to solve 13b).
  • the winding of the insulating layer (main insulating layer 13b) is unraveled when the superconducting cable line is laid. You can eliminate the need.
  • the dielectric constant ⁇ is lower than the insulating layer immediately below the outer conductor layer.
  • a superconducting cable core provided with an insulating layer (external insulating layer) having a high resistivity p and a high resistivity p will be described.
  • an external semiconductive layer is provided on the superconducting cable core, an external insulating layer is provided immediately below the external semiconductive layer. Since the superconducting cable core of this example has the same configuration as the superconducting cable core of Example 1 except that an external insulating layer is provided, only the differences will be described.
  • FIG. 5 is a partial cross-sectional view showing an intermediate connection portion using the superconducting cable core of this example.
  • an external insulating layer 13 c is provided between the main insulating layer 13 b and the external conductor layer 14 of the superconducting cable core 10.
  • the outer insulating layer 13c is formed so that the boundary partial force between the cable portion 10k and the connection structure forming portion 10c gradually increases toward the end of the cable core 10.
  • the outer insulating layer 13c can be formed so as to increase its thickness toward the end of the cable core by adjusting the overlap amount when winding the PPLP (registered trademark).
  • dielectric constant ⁇ and resistivity ⁇ of each of the insulating layers 13a to 13c described above are shown below.
  • ⁇ and B are constants.
  • the dielectric constant ⁇ is high ⁇ middle ⁇ high in the direction of the superconductor 12 force and the external conductor layer 14. Therefore, the electric field can be relaxed not only at the position of the inner insulating layer 13a but also at the position of the outer insulating layer 13c. Further, the presence of the external insulating layer 13c can effectively reduce the electric field even when the polarity is reversed, that is, when an electric field is formed from the external conductor layer 14 toward the superconducting conductor 12.
  • the resistivity p decreases from the superconducting conductor 12 toward the outer conductor layer 14 in the order of low ⁇ middle ⁇ high. Therefore, when direct current power transmission is performed by the superconducting cable line of this example, the direct current electric field distribution can be smoothed in the thickness direction of the insulating layer. In addition, even if negative lightning innulus or switching impulse is applied to the cable line and the position immediately below the outer conductor layer 14 provided on the outer periphery of the insulating layer reaches the maximum electric field strength, the resistivity p is low. High The outer insulating layer 13c can withstand the maximum electric field strength.
  • Example 2 a superconducting cable line in which the thickness of the external insulating layer is changed in the configuration of Example 2 will be described.
  • This line is the same as Example 2 except that the configuration of the outer insulating layer of the superconducting cable core is different, so only the differences will be described with reference to FIG.
  • FIG. 6 is a partial cross-sectional view showing the vicinity of an intermediate connection portion using the superconducting cable (core) of this example.
  • the outer insulation layer 13c of this example is formed gradually thicker toward the end force cable portion 10k of the superconducting cable core 10, and is maximum at the position of the rising portion s of the stress cone portion 31p. It is the thickness of. The thickness gradually decreases from the rising portion s toward the boundary portion between the connection structure forming portion 10c and the cable portion 10k.
  • the outer insulating layer 13c is preferably formed so as not to cause a step in the stress cone portion 31p.
  • the superconducting cable having the superconducting cable core of the present invention can be laid on an existing pipe line, it can be suitably used for a highly reliable superconducting cable line.
  • the superconducting cable line of the present invention can be suitably used for both AC and DC.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulated Conductors (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

超電導導体と、超電導導体の外周を覆う絶縁層とを備える超電導ケーブルコアであって、超電導ケーブルコアが、長手方向にケーブル部と、ケーブル部の両端部に位置して、他の導電部材と接続したときに補強絶縁構造が形成される接続構造形成部とに区分され、接続構造形成部は、超電導ケーブルコアのうち、少なくとも超電導ケーブルコアの端部から補強絶縁構造の端部までの範囲であり、接続構造形成部における絶縁層の絶縁性能を、ケーブル部における絶縁層の絶縁性能よりも高くすることにより、ケーブル自体に十分裕度のある絶縁設計を施せない場合であっても、高い信頼性の接続部を形成することができる超電導ケーブルコアを提供する。

Description

明 細 書
超電導ケーブルコアおよび超電導ケーブル
技術分野
[0001] 本発明は、超電導ケーブルコアおよびこの超電導ケーブルコアを使用した超電導 ケーブルの構造に関する。特に、超電導ケーブル同士を接続する中間接続部あるい は超電導ケーブルと他の電力機器とを接続する終端接続部にぉ ヽて、絶縁性能の 良い超電導ケーブルコアおよび超電導ケーブルの構造に関する。 背景技術
[0002] 近年、電力ケーブルとして、常電導ケーブルよりも送電容量の高い超電導ケーブル を用いることが提案されている。超電導ケーブルとしては、例えば、特許文献 1に記 載のような 3心の超電導ケーブルコアを撚り合せて断熱管に収納した構成の超電導 ケーブルが挙げられる。
[0003] この超電導ケーブルコアは、中心力 順にフォーマ、超電導導体、絶縁層、外部導 体層、保護層を備えている。通常、超電導導体および外部導体層は、いずれも超電 導線材にて形成されている。また、絶縁層は、絶縁紙を卷回して構成され、所望の絶 縁性能を確保している。これら超電導導体、絶縁層、外部導体層は、ケーブルコアの 全長に亘つて均一な厚さを有している。
[0004] 一方、断熱管は、内管と外管とからなる二重管の間に断熱材が配置され、且つ二 重管内が真空引きされた構成である。さらに、断熱管の外側には防食層が形成され ている。このような超電導ケーブルにおいて、通常、内管とケーブルコアとで囲まれる 空間が冷媒の流路となる。
[0005] 超電導ケーブルコアは、冷媒により極低温に冷却されて収縮するため、この収縮に より超電導線材に張力が作用して超電導線材が損傷することがある。このため、多心 コアの超電導ケーブルでは、各コアの撚り合わせを弛めて断熱管内に配置すること でケーブルコアの収縮代を確保して 、る。
[0006] このような超電導ケーブルを用いて長距離に亘る線路を構築する場合、線路の途 中において、異なるケーブルから引き出したケーブルコア同士を接続する中間接続 部や、線路の端部で他の電力機器 (常電導導体などの導電部材)に接続する終端接 続部が必要になる(以下、中間接続部および終端接続部を、単に接続部とする)。こ れら接続部では、超電導ケーブルコアの端部を段剥ぎして超電導導体を露出させる 。次に、露出させた超電導導体と、この超電導導体と同様にして露出させた他の導電 部材とを接続する。そして、露出させた導体の外周とその近傍を覆うように補強絶縁 構造を形成する。通常、補強絶縁構造の両端部では、端部に向力つて先細りのスト レスコーン部を形成し、接続部での電界の集中を緩和している。
[0007] 特許文献 1 :特開 2006— 59695号公報(図 5)
発明の開示
発明が解決しょうとする課題
[0008] ところで、超電導ケーブルは、すでに常電導ケーブルが設けられて!/、る既存の管路 に常電導ケーブルの代わりに布設されることが検討されて 、る。このような事情から、 超電導ケーブルは、すでに管路径の決まっている管路に引き込み可能なように外径 が制約されていることが考えられる。それに伴い、ケーブルコアの外径も制約を受け、 厚い絶縁層を設けることが困難なため、ケーブルコア自体に十分な裕度を持って絶 縁設計することが難しい。
[0009] また、このような超電導ケーブルを使用して接続部を形成した場合、接続部の絶縁 設計に裕度を確保することはより一層困難になる。そもそも、接続部では、超電導ケ 一ブルコアの端部の段剥ぎされた部分に電界が局部的に集中して電気的弱点とな る箇所が生じやすい。特に、補強絶縁構造におけるストレスコーン部の立ち上がり部 分に電界が集中して、その箇所に十分な設計裕度が取れないことがある。そのため、 より信頼性の高い接続部を形成できる超電導ケーブルの開発が望まれている。
[0010] そこで、本発明の主目的は、ケーブルの外径に制約がある場合であっても、信頼性 の高い接続部を形成することができる超電導ケーブルコアを提供することにある。ま た、本発明の別の目的は、この超電導ケーブルコアを用いた超電導ケーブルおよび 超電導ケーブル線路を提供することにある。
課題を解決するための手段
[0011] 本発明は、ケーブルコアの端部を他の部分と異なる絶縁構造とすることで上記の目 的を達成する。
[0012] 本発明超電導ケーブルコアは、超電導導体と、超電導導体の外周を覆う絶縁層と を備える。本発明超電導ケーブルコアは、長手方向にケーブル部と、ケーブル部の 両端部に位置して、他の導電部材と接続したときに補強絶縁構造が形成される接続 構造形成部とに区分される。ここで、接続構造形成部は、超電導ケーブルコアのうち 、少なくとも超電導ケーブルコアの端部力 補強絶縁構造の端部までの範囲である。 そして、接続構造形成部における絶縁層の絶縁性能を、ケーブル部における絶縁層 の絶縁性能よりも高くしたことを特徴とする。
[0013] 補強絶縁構造とは、接続部において段剥ぎにより露出された超電導導体とその近 傍の外周を覆う絶縁部材で形成された構造を指す。補強絶縁構造は、超電導ケー ブルコアの超電導導体と絶縁層の外周のうち、少なくとも段剥ぎされた部分全体を覆 うように形成される。また、補強絶縁構造は、通常、両端部に向力つて先細りのテー パ状に形成されたストレスコーン部を有しており、ストレスコーン部の立ち上がり部分( 補強絶縁構造の端部)は、段剥ぎされていない絶縁層の外周に位置する。従って、 ストレスコーン部が形成されて ヽる場合、本発明における超電導ケーブルコアの接続 構造形成部は、少なくとも超電導ケーブルコアの端部からストレスコーンの立ち上がり 部分までを指す。そして、超電導ケーブルコアのうち、上記接続構造形成部以外の 部分がケーブル部である。
[0014] このように、超電導ケーブルの端部に位置する接続構造形成部をケーブル部と異 なる絶縁構造に形成できるのは、超電導ケーブルの場合、接続部の形成に利用され るケーブル端部が特定できるからである。
[0015] 常電導ケーブルの場合、任意の箇所で切断して接続部を形成できる。そのため、 ケーブル線路の単位長に正確に合わせてケーブルを製造して!/、るわけではなぐケ 一ブル出荷時にケーブル端部が特定されているとは限らない。一方、超電導ケープ ルは、通常、真空断熱構造の断熱管を備えている。この断熱管を任意の位置で切断 すれば、その真空状態が破壊されてしまうため、超電導ケーブルは線路の単位長に 合わせて正確に長さを決めて製造される。そのため、超電導ケーブルではケーブル の端部が特定されており、接続部の形成に利用されるケーブル端部の絶縁特性を他 の部分と変えることが比較的容易にできる。
[0016] そして、ケーブルコアにおける接続構造形成部の絶縁性能をケーブル部の絶縁性 能よりも高くすることで、接続部を形成した際に、その接続部により大きな設計裕度を 持たせることができる。
[0017] 超電導ケーブルコアの接続構造形成部における絶縁性能をケーブル部のそれより も高くするには、例えば、接続構造形成部における絶縁層の厚さを厚くして超電導導 体と外部導体層との絶縁距離を確保したり、補強絶縁構造のストレスコーン部に電界 が集中しな 、ように構成すれば良 、。
[0018] 前者の場合、最も簡易には、接続構造形成部の絶縁層にテープ状絶縁部材を卷 き足すことが挙げられる。この構成により、ケーブル端部の絶縁性能が補強され、接 続部を形成した際、その接続部により高い絶縁設計裕度を持たせることができる。
[0019] 後者の場合、代表的には、超電導導体の直上の位置に、他の部分よりも誘電率 ε が高い絶縁性の層を配置することが挙げられる。具体的には、絶縁層を主絶縁層と 超電導導体直上の内部絶縁層とに区分し、内部絶縁層における誘電率を主絶縁層 における誘電率よりも高くする。
[0020] このようになすことにより、絶縁層のうち、導体に近接して高い電界強度となる箇所 の電気ストレスを緩和することができる。それに伴い、ケーブルの接続部では、ストレ スコーンの絶縁設計により一層の裕度を持たせることができる。好ましくは、さらに主 絶縁層を誘電率の異なる層に分割し、超電導導体直上から順に、誘電率 εが高→ 中→低と並ぶようにする、いわゆる εグレーデイングを施すと良い。
[0021] ところで、電力ケーブル (超電導ケーブルや常電導ケーブル)で送電を行なう場合 、負極性の雷インパルスもしくは開閉インパルスがケーブル線路に印加され、絶縁層 の外周に設けられる外部導体層(シールド層)の直下の位置が最大電界強度となる 可能性がある。従って、本発明超電導ケーブルコアは、上記の可能性を考慮した構 成を有することが好ましい。例えば、内部絶縁層に加えて、絶縁層の外周で外部導 体層の直下に誘電率 εを主絶縁層よりも高くした外部絶縁層を設けることが挙げられ る。内部絶縁層と外部絶縁層の両方を設けて εグレーデイングを形成する場合は、 内部絶縁層、主絶縁層、外部絶縁層の誘電率 εをそれぞれ、高、中、高とすることが 好ましい。さら〖こ、主絶縁層を複数層に分割して、 εグレーデイングを施しても良い。
[0022] その他、本発明ケーブルコアは、直流超電導ケーブル、交流超電導ケーブルのい ずれにも適用できる。直流送電を想定した超電導ケーブルであれば、超電導導体直 上の位置にある内部絶縁層の抵抗率 Ρを、絶縁層の他の部分 (例えば、主絶縁層) における抵抗率 Ρと異なるようにすることが好ましい。超電導導体直上の内部絶縁層 の抵抗率 ρは、他の部分における抵抗率 ρよりも低くても高くても良ぐ絶縁層全体 で段階的に抵抗率 Ρが変化するようにすれば良い。特に、内部絶縁層の抵抗率 ρ を他の部分における絶縁層の抵抗率 Ρよりも低くした場合、内部絶縁層を含む絶縁 層全体で電界を平滑ィ匕することができるので好ましい。超電導導体直上に抵抗率 ρ の低い絶縁層を形成する場合、代表的には、導体直上から順に、抵抗率 Ρが低→ 中→高と並ぶようにする、いわゆる ρグレーデイングを施すことが挙げられる。
[0023] 上記 ρグレーデイングは、 εグレーデイングと組み合わせても良 、。この場合、例え ば、導体直上に高 ε低 ρの層を配置し、導体から離れた位置には低 ε高 ρの層を 配置する。このような構成を有する超電導ケーブルによれば、直流および交流のい ずれの場合でも絶縁性能の良い超電導ケーブル線路とすることができる。従って、一 度布設した超電導ケーブル線路を!ヽずれの送電形式でも安全に運転できる。例え ば、交流送電に使用していた超電導ケーブルを直流送電に切り替えるときに、ケー ブルの再布設を行う必要がないことはもちろん、接続部などに絶縁性能を向上させる ネ ΐ強も行なわなくても良い。
[0024] εグレーデイングや ρグレーディンを施すには、各絶縁層を構成する絶縁部材の 材質を変化させることが挙げられる。代表的には、絶縁層をテープ状の絶縁部材によ り形成すれば、各層における誘電率 εや抵抗率 ρを調節し易い。例えば、クラフト紙 は、その気密度を高くすると高 ρ高 εになる。一般的なクラフト紙の抵抗率 p (20°C) は 1014〜1017 Ω ' cm程度、誘電率 εは 3.2〜3.7程度である。一方、クラフト紙にプラス チックフィルムをラミネートした複合紙 (例えば PPLP :住友電気工業株式会社の登録 商標)は、複合紙全体に対するプラスチックの割合を高くすることで、 Ρが高くなり、 ε が低くなる。例えば、複合紙全体の厚みに対するプラスチックフィルムの比率 kが 60% の複合紙の抵抗率 /0 (20°C)は、 1017〜1019 Ω ' cm程度、誘電率 εは、 2.5〜3.0程度、 同比率 kが 80%の複合紙の抵抗率 p (20°C)は、 1018〜102°Ω 'cm程度、誘電率 εは 2 .0〜2.5程度である。このような性質を考慮して、所望の特性を有する絶縁層を形成 すれば良い。
[0025] 接続構造形成部に卷足すテープ状絶縁部材は、テープ一枚分の厚さから絶縁性 能の向上に効果がある。例えば、厚さが約 125 /z mの PPLPであっても、この厚さ分だ け内部絶縁層を形成しただけでも接続構造形成部における絶縁性能の向上が認め られる。卷足すテープ状絶縁部材の層数は、卷足す手間などを考慮に入れて 1〜5 層程度とすれば良い。好ましくは、高い電界が作用する箇所のテープ状絶縁部材の 層数をより多くする。例えば、内部絶縁層であればケーブルコアの端部近傍を他の 部分よりも厚く形成することが挙げられる。また、外部絶縁層であればストレスコーン 部の立ち上がり部分を厚く形成することが挙げられる。
[0026] 接続構造形成部における絶縁層の厚さを調節するには、代表的には、接続構造形 成部における絶縁部材の重ね代を調節すると良い。ここで、重ね代とは、テープ状の 絶縁部材を卷回したときに、あるターンと、そのターンに隣接するターンとが重なる幅 である。即ち、重ね代を大きくすれば、絶縁部材の重複箇所が多くなるので、結果的 に絶縁層の厚さが厚くなる。このとき、隣接する 2つのターン間の重ね代に、この 2つ のターンに隣接するターンの端部が重なるようにすることで、効率的に絶縁層の厚さ を厚くすることができる。
[0027] 接続構造形成部におけるこれらの絶縁補強は、ケーブル製造時に形成しておくこと が好ましい。予め接続構造形成部に絶縁補強を施しておくことにより、ケーブル布設 現場での作業では事実上不可能な箇所に絶縁補強を行うことができ、かつ布設現場 での絶縁補強作業を軽減することができる。主絶縁層をテープ状絶縁部材の卷回に より形成している場合、超電導ケーブル線路の布設現場において、主絶縁層の下に 内部絶縁層を形成するためには、主絶縁層の卷回を解かなければならない。そのた め、卷回を解いて再度巻き直したりするときに、層間に空隙ができたり、皺がよったり して絶縁性能が低下する。なにより、主絶縁層の卷回は、非常に多層に形成されて いるため、布設現場で内部絶縁層を形成することは、事実上不可能である。ケープ ル製造時であれば、このような箇所への絶縁補強も容易に行うことができる。 [0028] 上述したように接続構造形成部を絶縁補強すると、接続構造形成部のみ径が大き くなる。しかし、本発明コアでは、このコアの局部的な大径ィ匕に関わらず、超電導ケー ブルを構成した場合に、そのケーブル (断熱管)の外径を大きくしなくてもよい。その 主な理由は次の通りである。
[0029] (1)多心コアの場合、端部ではコア同士の間隔を調整しやすい。
通常、多心コアの超電導ケーブルでは、ケーブル運用時の冷却に伴うコアの収縮 を吸収するため、撚り合わせたケープノレコアの撚りに弛みを持たせている。そのため 、ケーブルの端部では、各コアの間隔を調整しやすい。それに伴い、ケーブル端部 のみ絶縁補強を施してコアの外径が多少大きくなつても、ケーブル端部におけるコア 同士の間隔を小さくすることで全コアの包絡円径が大きくなることを回避できる。その 結果、これらコアを収納する断熱管の外径が大きくなることも回避できる。
[0030] (2)超電導ケーブルの端部では真空断熱構造になってなくてもよ!、。
超電導ケーブルを管路内に布設する場合、通常、ケーブル端部にプーリングアイ を取り付け、このプーリングアイを牽引することでケーブルを管路内に引き込んで!/、る 。このプーリングアイは、断熱管の端部に補助管を継ぎ足し、その補助管に固定され ることが多い。その際、補助管は真空断熱構造とする必要がなぐ一重管で良い。そ のため、補助管を断熱管の外管に沿って設ければ、補助管の内側は二重管となって いる断熱管の内側よりも広い空間を確保できる。その結果、コアの端部が絶縁補強に より局部的に太くなつても、断熱管の外径を変えることなぐコアの端部を補助管内に 収糸内することができる。
[0031] そして、これらの事情を考慮すれば、超電導ケーブルコアの外周に二重管構造か らなる断熱層を設けて超電導ケーブルとした場合、この二重管の端部力 突出するよ うに接続構造形成部を構成することが好ま ヽ。接続構造形成部が二重管構造の断 熱層の端部力 突出していれば、ケーブル端部におけるコア同士の間隔調整や、接 続構造形成部を収納する空間の確保を容易に行うことができる。
[0032] なお、本発明超電導ケーブルコアは、多心ケーブルに限らず単心ケーブルにも用 いることがでさる。
発明の効果 [0033] 本発明超電導ケーブルコアによれば、その端部に位置する接続構造形成部を局 部的に絶縁補強しておくことで、中間接続部や終端接続部における絶縁性能を顕著 に向上させることができる。従って、この超電導ケーブルコアを使用した超電導ケー ブル線路の全線に亘つて非常に高い安全性を確保することができる。特に、コア全 長にわたってその外径を大きくする必要がなぐケーブル (断熱管)外径も大きくする 必要がないため、ケーブルを管路に引き込む際の作業性を阻害することもない。 図面の簡単な説明
[0034] [図 1]図 1は、超電導ケーブルの断面図である。
[図 2]図 2は、実施例 1の超電導ケーブルコアの端部を示す部分断面図である。
[図 3]図 3は、実施例 1の超電導ケーブルの端部にプーリングアイを取り付けた状態を 示す説明図である。
[図 4A]図 4Aおよび図 4Bは、実施例 1の超電導ケーブル線路の中間接続部を示す部 分断面図であり、図 4Aは、概略構成図を示す。
[図 4B]図 4Bは、図 4Aの部分断面図を示す。
[図 5]実施例 2の超電導ケーブル線路の中間接続部を示す部分断面図である。
[図 6]変形例 2— 1の超電導ケーブル線路の中間接続部を示す部分断面図である。 符号の説明
[0035] 1 超電導ケーブル
10 超電導ケーブルコア 10k ケーブル部 10c 接続構造形成部
11 フォーマ 12 超電導導体 13 絶縁層 14 外部導体層 15 防食層
20 断熱管 21 断熱内管 22 断熱外管 23 保護層
50 補助管 51 空間
100 プーリングアイ 101 コア固定部
30 中間接続部 31 補強絶縁層 31p ストレスコーン部 32 接続部材
13p ペンシルダウン部 13a 内部絶縁層 13b 主絶縁層 13c 外部絶縁層 発明を実施するための最良の形態
[0036] 以下、本発明の実施の形態を説明する。なお、図面の説明においては、同一要素 には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の ものと必ずしも一致して 、な 、。
<実施例 1 >
本実施例では、超電導ケーブルコアの端部において、超電導導体直上に高誘電 率の層を設けた超電導ケーブルと、この超電導ケーブルを用いた超電導ケーブル線 路を図 1〜4に基づいて説明する。
[0037] 本例で使用する超電導ケーブルは、図 1に示すように、 3条の超電導ケーブルコア 1 0を撚り合せて断熱管 20の内部に収納した 3心一括型の超電導ケーブル 1である。
[0038] 超電導ケーブルコア 10は、中心から順に、フォーマ 11、超電導導体 12、絶縁層 13、 外部導体層 14、保護層 15を備える。フォーマ 11には、素線絶縁された複数本の銅素 線を撚り合わせた撚り線構造のフォーマとした。超電導導体 12および外部導体層 14 には、厚さ 0.24mm、幅 3.8mmの Bi2223系 Ag-Mnシーステープ線材を使用した。この テープ線材をフォーマ 11上に多層に卷回して超電導導体 12を形成し、超電導導体 1 2の外周に厚さ 125 μ m、幅 20mmの PPLP (住友電気工業株式会社の登録商標)を多 層に卷回して絶縁層 13を形成した。さら〖こ、絶縁層 13の外周にシーステープ線材を 多層に卷回して外部導体層 14を形成した。その他、図示していないが、超電導導体 12と絶縁層 13との間に内部半導電層力 絶縁層 13と外部導体層 14との間に外部半 導電層が形成される。
[0039] この超電導ケーブルコアの両端部 (接続構造形成部)にお 、て、超電導導体の直 上(内部半導電層を設ける場合、内部半導電層の直上)に絶縁層よりも誘電率 εが 高ぐ抵抗率 ρが低い内部絶縁層を形成した。図 2は、超電導ケーブルコア 10の端 部を拡大した部分断面図である。超電導ケーブルコア 10の中間部(図 2の中央の点 線から右)は、フォーマ 11、超電導導体 12、絶縁層 13、外部導体層 14、保護層 15の 全てが、長手方向に亘つて均等な厚さであるケーブル部 10kである。一方、超電導ケ 一ブルコア 10の端部(図 2の点線力 左)は、超電導導体 12の直上に内部絶縁層 13a を設けた接続構造形成部 10cである。接続構造形成部 10cにおける内部絶縁層 13a 以外の層の厚さはケーブルコア 10の長手方向に均一である。また、接続構造形成部 10cにおける主絶縁層 13bは、ケーブル部 10kから連続的に形成された絶縁層 13であ る。 [0040] ここで、内部絶縁層 13a、主絶縁層 13bの誘電率 εおよび抵抗率 ρの関係は、以下 に示す通りである。但し、 Αおよび Βは定数である。
誘電率 ε 抵抗率 p ^iTC)
内部絶縁層 約 1.5A 約 0.7Β Ω · αη
主絶縁層 A Β Ω - cm
[0041] 内部絶縁層 13aは、その厚さがケーブルコア 10の端部に向力つて徐々に厚くなるよ うに卷回された PPLPの層であり、主絶縁層 13bを形成する PPLPとは誘電率 εが異な る。具体的には、接続構造形成部 10cの立ち上がり部分の位置にある内部絶縁層 13 aの厚さは、 PPLP—枚分 (約 125 m)であり、接続構造形成部 10cの端部における内 部絶縁層 13aの厚さは、 PPLP五枚分 (約 625 m)である。なお、内部絶縁層 13aの各 部における厚さは、上記の厚さに限定されることはなぐ接続部における電界の集中 を緩和し、所望の裕度を確保することができるように適宜選択すれば良 、。
[0042] 超電導導体 12の直上に誘電率 εの高い内部絶縁層 13aが形成されていることによ り、電界強度の高!、超電導導体 12近傍での電界を緩和することができる。
[0043] 一方、超電導ケーブルコア 10を収納する断熱管 20は、内管 21と外管 22からなる二 重管構造を有している(図 1を参照)。また、内管 21と外管 22との間にスーパーインシ ユレーシヨンなどの断熱材を配置した。内管 21と上述したケーブルコア 10とで囲まれ た空間 16が冷媒の流路になる。そして、断熱管 20の端部に仕切りを形成して、内管 2 1と外管 22との間を封止し、両者の間を真空引きすることで断熱層を形成した。外管 2 2の外周には防食層 23が設けられて 、る。
[0044] このような超電導ケーブルの端部にプーリングアイを取り付けて、このプーリングァ ィを牽引することで超電導ケーブルを管路に引き込む。図 3は、プーリングアイ 100を 取り付けた超電導ケーブル 1の端部を示す部分拡大図である。なお、図 3では、 2心 のケーブルコアしか図示していないが、実際には 3心存在する。
[0045] ケーブルコア 10の端部、即ち、接続構造形成部 10cは、内管 21と外管 22とからなる 断熱管 20の端部力 突出させた状態とし、突出させた接続構造形成部 10cの外周を 覆うように補助管 50を配置した。そして、補助管 50の一端を外管 22に固定し、他端を プーリングアイ 100に取り付けた。プーリングアイ 100を取り付けるにあたり、断熱管 20 の端部から突出した接続構造形成部 10cの端部を段剥ぎし、露出された超電導導体 12の端部にキャップ Cを被せて、超電導導体 12を保護すると共に、超電導導体 12が ばらけないようにした。また、フォーマ 11をプーリングアイ 100のコア固定部 101に固定 した。このような構成により、ケーブルコア 10を牽引するときの張力を、主として補助管 50に連なる断熱管 20とフォーマ 11に分担させるようにした。
[0046] プーリングアイ 100が取り付けられる補助管 50は、二重管構造である必要はないの で、外管 22の外径にほぼ一致した内径のものを使用した。この補助管 50の内部の空 間 51は、断熱管 20の内部の空間と比較して径方向に余裕があるので、内部絶縁層を 巻き足して径の大きくなつた接続構造形成部 10cを補助管 50内に収納することができ た。従って、断熱管 20の径 (超電導ケーブル 1の径)を大きくすることなく超電導ケー ブル 1を作製できた。
[0047] ここで、内部絶縁層 13aの厚さをさらに厚くして、接続構造形成部 10cの径を大きくし た場合、各ケーブルコア 10の撚りを絞めることにより補助管 50内に収納することができ る。このとき、ケーブルコアの撚りが絞まったとしても、ケーブル部 10kで撚りの弛みを 確保しているので、全体として十分なケーブルコアの撚りの弛みが確保されている。
[0048] 次に、プーリングアイを牽引することで管路に引き込んだ超電導ケーブルを、他の 導電部材と接続して、この接続部において補強絶縁構造を形成する。補強絶縁構造 が形成される接続部としては、具体的には、一の超電導ケーブルと他の超電導ケー ブルとを接続する中間接続部や、超電導ケーブルと他の電力機器とを接続する終端 接続部が挙げられる。両接続部の構成は、基本的に、絶縁性のテープ状部材を卷 回して補強絶縁層を形成する点、補強絶縁層の端部をペンシルダウン形状に形成 する点で共通するため、ここでは、中間接続部のみを図 4Aおよび図 4Bを参照して説 明する。
[0049] 図 4Aおよび図 4Bに示すように、中間接続部 30は、二本の超電導ケーブルコアの端 部を接続部材 32を介して導通させ、この接続部材 32の外周の近傍を補強絶縁層 31 で覆った構成である。
[0050] この中間接続部 30を形成するにあたり、まず初めに、ケーブルコアの端部 (接続構 造形成部の端部)を段剥ぎし、フォーマ 11、超電導導体 12、絶縁層 13、外部導体層 1 4を露出させた。フォーマ 11と超電導導体 12は、接続部材 32を介して、他のフォーマ 1 1と超電導導体 12にそれぞれ接続される。絶縁層 13の端部は、段剥ぎした部分で電 界の集中を緩和するように、コアの端部側に向力つて先細りのテーパ状であるペンシ ルダウン部 13pを形成した。また、外部導体層 14は、補強絶縁層 31を形成できるよう に、ケーブル部 10kと接続構造形成部 10cの境界部分近傍まで超電導線材 (シーステ ープ線材)の卷回を解 、た状態とした。
[0051] 次に、接続部材 32、超電導導体 12および絶縁層 13 (主としてペンシルダウン部 13p) の外周を覆うように補強絶縁層 31を形成した。補強絶縁層 31には、両端部に向かつ て先細りのテーパ状に形成したストレスコーン部 31pが形成されている。ストレスコーン 部 31の立ち上がり部分 sは、電界が集中し易ぐ絶縁の弱点となり易い。
[0052] 最後に、卷回を解いておいた外部導体層 14が隣接するケーブル間で接続されるよ うに、外部導体層 14を補強絶縁層 31の外周に延長して形成した。
[0053] 以上、説明した中間接続部 30では、超電導導体 12の直上に高誘電率の内部絶縁 層 13aを設けることにより、電界強度の高い超電導導体 12近傍での電界を緩和するこ とができる。この部分ですでに電界を緩和していることにより、超電導導体 12から比較 的はなれた位置にあるストレスコーン部の立ち上がり部分 sにおける電界強度も小さく することができる。
[0054] さらに、内部絶縁層 13aの抵抗率 pが主絶縁層 13bの抵抗率 pと比較して小さいの で、本例の超電導ケーブルにより直流送電を行なった場合、これら絶縁層 13全体で 電界を平滑ィ匕することができる。従って、中間接続部 30における絶縁性能を向上させ ることができ、その結果、超電導ケーブル線路全体の信頼性を高めることができる。
[0055] また、すでに述べたように絶縁層 13は、テープ状線材を多層に卷回して形成してお り、ケーブルコア 10の布設現場で多層に卷回された絶縁層 13 (主絶縁層 13b)を解く ことは非常に困難である。しかし、本発明超電導ケーブルコア 10によれば、予め超電 導導体 12の直上に内部絶縁層 13aを設けているので、超電導ケーブル線路の布設 時に絶縁層(主絶縁層 13b)の卷回を解く必要をなくすることができる。
[0056] <実施例 2 >
本例では、実施例 1の構成に加えて、外部導体層の直下に絶縁層よりも誘電率 ε が高ぐ抵抗率 pが高い絶縁性の層(外部絶縁層)を設けた超電導ケーブルコアを 説明する。なお、超電導ケーブルコアに外部半導電層を設ける場合、外部半導電層 の直下に外部絶縁層を設ける。本例の超電導ケーブルコアは、外部絶縁層を設ける 以外は、実施例 1の超電導ケーブルコアと同一の構成を有するため、相違点につい てのみ説明する。
[0057] 図 5は、本例の超電導ケーブルコアを用いた中間接続部を示す部分断面図である 。図 5に示すように、この超電導ケーブルコア 10の主絶縁層 13bと外部導体層 14との 間には、外部絶縁層 13cが設けられている。外部絶縁層 13cは、内部絶縁層 13aと同 様に、ケーブル部 10kと接続構造形成部 10cとの境界部分力もケーブルコア 10の端部 に向かって徐々に厚くなるように形成されている。外部絶縁層 13cをケーブルコアの 端部に向力つて厚くなるように形成するには、 PPLP (登録商標)を卷回するときの重 ね代を調節することで容易に行なうことができる。
[0058] 上述した各絶縁層 13a〜13cの誘電率 εと抵抗率 ρを以下に示す。但し、 Αおよび Bは定数である。
誘電率 ε 抵抗率 p ^iTC)
内部絶縁層 約 1.5A 約 0.8Β Ω · «η
主絶縁層 A Β Ω - cm
外部絶縁層 約 1.5A 約 1.2Β Ω · «η
[0059] 上記のように、誘電率 εは、超電導導体 12力 外部導体層 14に向力つて、高→中 →高となっている。従って、内部絶縁層 13aの位置に加えて、外部絶縁層 13cの位置 でも電界を緩和できる。また、外部絶縁層 13cが存在することにより、極性が反転した 場合、即ち、外部導体層 14から超電導導体 12に向かって電界が形成された場合でも 、効果的に電界を緩和することができる。
[0060] 一方、抵抗率 pは、超電導導体 12から外部導体層 14に向かって低→中→高となつ ている。従って、本例の超電導ケーブル線路により直流送電を行なった場合、直流 電界分布を絶縁層の厚さ方向に平滑ィ匕することができる。また、仮に、負極性の雷ィ ンノルスもしくは開閉インパルスがケーブル線路に印加され、絶縁層の外周に設けら れる外部導体層 14の直下の位置が最大電界強度となった場合でも、抵抗率 pの高 い外部絶縁層 13cにより最大電界強度に耐えることができる。
[0061] <変形例 2— 1 >
本例では、実施例 2の構成のうち、外部絶縁層の厚さを変化させた超電導ケープ ル線路を説明する。この線路では、超電導ケーブルコアの外部絶縁層の構成が異な る以外、実施例 2と同様であるため、図 6を参照して相違点についてのみ説明する。
[0062] 図 6は、本例の超電導ケーブル (コア)を用いた中間接続部の近傍を示す部分断面 図である。図に示すように、本例の外部絶縁層 13cは、超電導ケーブルコア 10の端部 力 ケーブル部 10kに向かって徐々に厚く形成され、ストレスコーン部 31pの立ち上が り部分 sの位置で最大の厚さとなっている。そして、立ち上がり部分 sから接続構造形 成部 10cとケーブル部 10kとの境界部分に向力つて徐々に薄くなつている。ここで、外 部絶縁層 13cは、ストレスコーン部 31pにおいて、段差が生じないように形成すると良 い。
[0063] 上記構成となすことにより、補強絶縁層 31のうち、特に電界が集中し易いストレスコ ーンの立ち上がり部分 sにおいて、効果的に電界を緩和することができる。従って、よ り信頼性の高 ヽ接続部を形成することができる。
産業上の利用可能性
[0064] 本発明超電導ケーブルコアを備える超電導ケーブルは、既設の管路に布設可能な ので、信頼性の高い超電導ケーブル線路に好適に利用可能である。また、本発明超 電導ケーブル線路は、 AC、 DCの両方に好適に利用可能である。

Claims

請求の範囲
[1] 超電導導体と、超電導導体の外周を覆う絶縁層とを備える超電導ケーブルコアで あって、
超電導ケーブルコアは、長手方向にケーブル部と、ケーブル部の両端部に位置し て、他の導電部材と接続したときに補強絶縁構造が形成される接続構造形成部と〖こ 区分され、
接続構造形成部は、超電導ケーブルコアのうち、少なくとも超電導ケーブルコアの 端部から補強絶縁構造の端部までの範囲であり、
接続構造形成部における絶縁層の絶縁性能を、ケーブル部における絶縁層の絶 縁性能よりも高くしたことを特徴とする超電導ケーブルコア。
[2] 接続構造形成部における絶縁層は、主絶縁層および主絶縁層と超電導導体との 間に配置される内部絶縁層を備え、
内部絶縁層の誘電率力 主絶縁層の誘電率よりも高いことを特徴とする請求項 1に 記載の超電導ケーブルコア。
[3] さらに、接続構造形成部における主絶縁層の外周に、主絶縁層よりも誘電率が高 い外部絶縁層を配置したことを特徴とする請求項 2に記載の超電導ケーブルコア。
[4] 絶縁層は、テープ状の絶縁部材を多層に卷回して形成されており、接続構造形成 部の少なくとも一部において他の部分よりも厚く形成した箇所が存在することを特徴 とする請求項 1〜3のいずれかに記載の超電導ケーブルコア。
[5] 接続構造形成部において隣接する絶縁部材のターンの重ね代を大きくすることで 絶縁層の厚さを調節したことを特徴とする請求項 4に記載の超電導ケーブルコア。
[6] 請求項 1〜5のいずれかに記載の超電導ケーブルコアと、
超電導ケーブルコアの外周に配置される二重管構造力 なる断熱層とを有し、 この二重管の端部から接続構造形成部が突出するように構成したことを特徴とする 超電導ケーブル。
[7] 請求項 6に記載の超電導ケーブルを使用して布設された超電導ケーブル線路であ つて、
この超電導ケーブル線路は、直流超電導ケーブル線路または交流超電導ケープ ル線路のいずれかであることを特徴とする超電導ケーブル線路。
PCT/JP2007/057448 2006-04-13 2007-04-03 超電導ケーブルコアおよび超電導ケーブル WO2007119655A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077030548A KR101306519B1 (ko) 2006-04-13 2007-04-03 초전도 케이블 코어 및 초전도 케이블
CN2007800006580A CN101331560B (zh) 2006-04-13 2007-04-03 超导电缆芯和超导电缆
EP07740884A EP2006862B1 (en) 2006-04-13 2007-04-03 Superconducting cable core and superconducting cable
US11/917,581 US7800000B2 (en) 2006-04-13 2007-04-03 Superconducting-cable core and superconducting cable
CA002609321A CA2609321A1 (en) 2006-04-13 2007-04-03 Superconducting cable core and superconducting cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006111032A JP2007287388A (ja) 2006-04-13 2006-04-13 超電導ケーブルコアおよび超電導ケーブル
JP2006-111032 2006-04-13

Publications (1)

Publication Number Publication Date
WO2007119655A1 true WO2007119655A1 (ja) 2007-10-25

Family

ID=38609419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057448 WO2007119655A1 (ja) 2006-04-13 2007-04-03 超電導ケーブルコアおよび超電導ケーブル

Country Status (8)

Country Link
US (1) US7800000B2 (ja)
EP (1) EP2006862B1 (ja)
JP (1) JP2007287388A (ja)
KR (1) KR101306519B1 (ja)
CN (1) CN101331560B (ja)
CA (1) CA2609321A1 (ja)
TW (1) TW200802419A (ja)
WO (1) WO2007119655A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151371A1 (ko) * 2017-02-16 2018-08-23 엘에스전선 주식회사 전력 케이블

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965487B2 (ja) * 2008-03-10 2012-07-04 株式会社リコー 画像形成装置および画像濃度制御方法
JP5390297B2 (ja) * 2009-01-15 2014-01-15 住友電気工業株式会社 超電導ケーブルの接続部、及びそれを用いた超電導ケーブル線路
JP5810925B2 (ja) 2012-01-10 2015-11-11 住友電気工業株式会社 常温絶縁型超電導ケーブルの接続構造
JP5731564B2 (ja) * 2013-03-29 2015-06-10 昭和電線ケーブルシステム株式会社 超電導ケーブルの端末構造体
FR3010847B1 (fr) 2013-09-19 2017-12-29 Nexans Jonction de cables supraconducteurs
KR102351517B1 (ko) * 2015-02-17 2022-01-14 엘에스전선 주식회사 케이블 포설장치
WO2018174330A1 (ko) * 2017-03-24 2018-09-27 엘에스전선 주식회사 전력 케이블
CN108899157B (zh) * 2018-08-17 2024-02-13 广东电网有限责任公司 一种螺旋结构的限流器超导线圈
CN109741900A (zh) * 2019-01-31 2019-05-10 中国科学院合肥物质科学研究院 Bi-2212铠装电缆子缆对接超导接头及制造方法
CN211507914U (zh) * 2020-04-01 2020-09-15 吉林省中赢高科技有限公司 一种新型端部铝件
US11783968B2 (en) * 2020-05-07 2023-10-10 Massachusetts Institute Of Technology Cabling method of superconducting flat wires
CN113419100A (zh) * 2021-06-21 2021-09-21 国网上海市电力公司 一种超导电缆各层电流分布的测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955241A (ja) * 1995-08-11 1997-02-25 Furukawa Electric Co Ltd:The 多層超電導ケーブル
JP2005100777A (ja) * 2003-09-24 2005-04-14 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2005210834A (ja) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd 多相超電導ケーブルの接続構造
JP2006059695A (ja) 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2006114342A (ja) * 2004-10-14 2006-04-27 Sumitomo Electric Ind Ltd 超電導ケーブル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342672B1 (en) * 1994-02-14 2002-01-29 Canon Kabushiki Kaisha Superconducting lead with recoverable and nonrecoverable insulation
JP3239036B2 (ja) * 1994-02-14 2001-12-17 キヤノン株式会社 超電導装置
US6596945B1 (en) * 1998-09-11 2003-07-22 Southwire Company Superconducting cable
MXPA02007435A (es) * 2002-08-01 2004-07-16 Servicios Condumex Sa Cable de energia superconductor con nucleo superconductor mejorado.
JP2005012915A (ja) * 2003-06-19 2005-01-13 Sumitomo Electric Ind Ltd 超電導ケーブルの接続構造および超電導ケーブル接続用絶縁スペーサー
CA2598343A1 (en) * 2005-03-14 2006-09-21 Sumitomo Electric Industries, Ltd. Superconducting cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955241A (ja) * 1995-08-11 1997-02-25 Furukawa Electric Co Ltd:The 多層超電導ケーブル
JP2005100777A (ja) * 2003-09-24 2005-04-14 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2005210834A (ja) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd 多相超電導ケーブルの接続構造
JP2006059695A (ja) 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd 超電導ケーブル
JP2006114342A (ja) * 2004-10-14 2006-04-27 Sumitomo Electric Ind Ltd 超電導ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006862A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151371A1 (ko) * 2017-02-16 2018-08-23 엘에스전선 주식회사 전력 케이블
US11049631B2 (en) 2017-02-16 2021-06-29 Ls Cable & System Ltd. Power cable

Also Published As

Publication number Publication date
CN101331560B (zh) 2010-12-01
CN101331560A (zh) 2008-12-24
US7800000B2 (en) 2010-09-21
US20090082210A1 (en) 2009-03-26
KR20080108383A (ko) 2008-12-15
TW200802419A (en) 2008-01-01
CA2609321A1 (en) 2007-10-25
KR101306519B1 (ko) 2013-09-09
EP2006862A4 (en) 2012-04-04
EP2006862A1 (en) 2008-12-24
EP2006862B1 (en) 2013-01-30
JP2007287388A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2007119655A1 (ja) 超電導ケーブルコアおよび超電導ケーブル
JP6155195B2 (ja) 超電導ケーブルの接続構造
US7498519B2 (en) Joint for superconducting cable
JP4399763B2 (ja) 直流用超電導ケーブル線路
JP5053466B2 (ja) 超電導ケーブル導体の端末構造
JP2003249130A (ja) 直流超電導ケーブル
JP6210537B2 (ja) 超電導ケーブルの接続構造、超電導ケーブル、超電導ケーブルの終端部の電流端子構造
JP2006012776A (ja) 超電導ケーブル
JP5390297B2 (ja) 超電導ケーブルの接続部、及びそれを用いた超電導ケーブル線路
WO2007122670A1 (ja) 超電導ケーブル
WO2006098069A1 (ja) 超電導ケーブル及びこの超電導ケーブルを利用した直流送電方法
JP2006012775A (ja) 超電導ケーブル
AU2020334655B2 (en) Cable
JP2006059695A (ja) 超電導ケーブル
WO2006061960A1 (ja) 直流超電導ケーブルの設計システム
WO2007060804A1 (ja) 超電導ケーブルの接続部
JP4986291B2 (ja) 超電導ケーブル
JP3877057B2 (ja) 高温超電導ケーブル
JP5273572B2 (ja) 超電導ケーブルの布設方法
JP2006320115A (ja) 超電導ケーブルの接続部
CN220691753U (zh) 一种光伏系统用直流电缆
JP4978397B2 (ja) 超電導ケーブル
WO2007116519A1 (ja) 超電導ケーブル
JP2007258192A (ja) 超電導ケーブルの中間接続部

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000658.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2609321

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11917581

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007740884

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077030548

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE