WO2007119379A1 - Exhaust pressure control valve - Google Patents

Exhaust pressure control valve Download PDF

Info

Publication number
WO2007119379A1
WO2007119379A1 PCT/JP2007/055272 JP2007055272W WO2007119379A1 WO 2007119379 A1 WO2007119379 A1 WO 2007119379A1 JP 2007055272 W JP2007055272 W JP 2007055272W WO 2007119379 A1 WO2007119379 A1 WO 2007119379A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
main
exhaust
flow path
pressure control
Prior art date
Application number
PCT/JP2007/055272
Other languages
French (fr)
Japanese (ja)
Inventor
Kimio Nemoto
Mitsuru Takeuchi
Yukihiro Harada
Koji Sakurai
Koichi Sugihara
Original Assignee
Aisan Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006070481A external-priority patent/JP2007247488A/en
Priority claimed from JP2006082528A external-priority patent/JP2007255351A/en
Priority claimed from JP2006084510A external-priority patent/JP2007255395A/en
Application filed by Aisan Kogyo Kabushiki Kaisha filed Critical Aisan Kogyo Kabushiki Kaisha
Priority to EP07738722A priority Critical patent/EP2003313B1/en
Publication of WO2007119379A1 publication Critical patent/WO2007119379A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0235Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using exhaust gas throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/1055Details of the valve housing having a fluid by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/08Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the pneumatic type

Definitions

  • the present invention relates to an exhaust pressure control valve that controls the pressure of exhaust gas exhausted from an engine.
  • An exhaust pressure control valve that controls the pressure of exhaust gas exhausted from the engine is used in order to improve the startability of the engine or purify exhaust gas from which engine power is also exhausted.
  • International Publication No. 99Z41495 discloses a conventional exhaust pressure control valve.
  • This exhaust pressure control valve includes a housing provided with a main flow path and a bypass flow path.
  • An inlet port and an outlet port are provided on the inner wall surface of the main channel.
  • the upstream end of the binos passage is connected to the inlet port, and the downstream end of the binos passage is connected to the outlet port.
  • a main valve for opening and closing the main channel is provided in the main channel.
  • the main valve is disposed between the inlet port and the outlet port.
  • the bypass channel is provided with a bypass nozzle that opens and closes the bypass channel. When the bypass valve is opened, the exhaust gas upstream of the main valve can flow downstream of the main valve through the nopass channel.
  • the exhaust gas pressure increases when the opening of the main valve is reduced.
  • the bypass valve opens.
  • exhaust gas flows through the bypass flow path.
  • the pressure increase of the exhaust gas is suppressed, and the pressure of the exhaust gas is maintained at a predetermined value.
  • the opening of the main valve is increased, the pressure of the exhaust gas decreases, the no-pass valve is closed and the bypass flow path is also closed. It is.
  • the above-described exhaust pressure control valve can be applied to a diesel particulate filter system (hereinafter referred to as a DPF system! /) That purifies exhaust gas discharged from a diesel engine car. It is being considered.
  • the DPF system is a system that collects particulates (particulate matter) and graphite contained in the exhaust gas of a diesel engine with a ceramic filter.
  • the particulate matter (PM) mainly composed of soot collected by the filter exceeds a certain amount, the particulate matter (PM) mainly composed of soot collected by the filter is burned. Play the filter.
  • An exhaust pressure control valve is used to regenerate this filter.
  • the exhaust pressure control valve is arranged upstream or downstream of the filter.
  • the bypass valve opens and the exhaust gas flows through the no-pass passage.
  • the pressure of the exhaust gas is maintained at a predetermined value.
  • the fuel supplied to the oxidation catalyst raises the exhaust gas temperature in the catalyst by an oxidation reaction, and burns particulate matter (PM) mainly composed of soot collected by the filter (that is, regenerates the filter). )
  • PM particulate matter
  • the main valve opens and the exhaust pressure drops to normal pressure.
  • An object of the present invention is to switch the main valve of the exhaust pressure control valve to a closed state force open state. It is an object to provide an exhaust pressure control valve that can reduce the noise generated during the operation.
  • the exhaust pressure control valve of the present invention has a housing having a main flow path and a bypass flow path, a main valve for opening and closing the main flow path, and a bypass valve for opening and closing the bypass flow path.
  • the main nozzle includes a throttle shaft that is rotatably supported by the housing, and a valve body that is attached to the throttle shaft. When the throttle shaft rotates, the valve body is switched between a closed state in which the main flow path is closed and an open state in which the valve body opens the main flow path.
  • An inlet port to which the upstream end of the bypass channel is connected is provided on the inner wall surface of the main channel on the upstream side of the main valve.
  • An outlet port to which the downstream end of the bypass flow path is connected is provided on the inner wall surface of the main flow path on the downstream side of the main valve.
  • the axial force of the throttle shaft is at the point on the rim of the valve body where the distance to the rim of the valve body is the longest (that is, the point where the turning radius is the largest).
  • the gap between the body periphery and the main channel is maximized, and the exhaust gas flow rate is also maximized.
  • the position of the outlet port and the position of the point on the peripheral edge of the valve body where the distance to the peripheral edge of the axial force valve body of the throttle shaft is longest are shifted in the circumferential direction. For this reason, the center of the high-speed exhaust gas flow that occurs when the main valve is closed deviates from the outlet port. As a result, noise generated when the main valve is closed can be suppressed.
  • the position force in the circumferential direction of the outlet port substantially coincides with the position in the circumferential direction of the portion supporting the throttle shaft provided in the main flow path.
  • the exhaust pressure control valve described above is housed in a through hole formed in the housing and supports one end of the throttle shaft, and one end of the throttle shaft on the side protruding from the through hole to the outside of the housing. It is preferable to further include an actuator that is attached to the shaft and rotationally drives the throttle shaft, and a seal member that seals between the throttle shaft and the inner wall surface of the through hole.
  • the rotation operation of the throttle shaft can be performed smoothly and the outflow of exhaust gas from the main flow path can be suppressed.
  • the outlet port is provided with flow characteristic changing means for changing the flow characteristic of the exhaust gas. If the outlet port is provided with flow characteristic changing means, even if the high-speed exhaust gas flow from the closed state to the open state flows toward the outlet port, the exhaust gas in the outlet port is changed. Generation of vortex is suppressed. As a result, noise generated when the main valve is closed can be reduced.
  • the flow characteristic changing means can be a curved wall surface formed on the downstream side of the outlet port. That is, by forming the wall surface on the downstream side of the outlet port in a curved surface, it is possible to suppress the generation of vortex in the outlet port.
  • the flow characteristic changing means can be a rectifying member that is attached to the wall surface on the downstream side of the outlet port and rectifies the flow of the exhaust gas.
  • the rectifying member can also suppress the generation of vortex in the outlet port.
  • a gap may be formed between the periphery of the valve element and the inner wall surface of the main flow path.
  • the high-pressure exhaust gas upstream of the main valve flows at high speed from the gap between the peripheral edge of the valve body and the inner wall surface of the main flow path, and an ejection noise is generated.
  • the cause of the sound is mainly due to the difference in flow velocity between the exhaust gas flowing at high speed from the upstream side of the valve and the surrounding exhaust gas (downstream of the valve). It turned out to be. Therefore, if the flow rate of the exhaust gas flowing out from the upstream side of the valve to the downstream side can be kept low, the flow rate difference will be reduced and the jet noise can be reduced.
  • the communication hole surface force (For example, JP-A-2005-299457).
  • the communication hole provided in the valve body extends in parallel with the direction in which the exhaust passage extends. For this reason, the outflow direction of the exhaust gas flowing out from the peripheral edge of the valve body and the outflow direction of the exhaust gas flowing out downstream from the communication hole are parallel (the same), and the flows of both are difficult to be mixed. It was. Therefore, the difference in flow rate between the exhaust gas flow flowing from the upstream side of the main valve at high speed and the surrounding exhaust gas is not sufficiently relaxed, and the generated sound cannot be sufficiently reduced.
  • a gap is formed around the entire periphery of the valve body at the periphery of the valve body and the inner wall surface of the main flow path with the valve closed.
  • a communication hole penetrating the back surface is provided. The communication hole is provided such that the exhaust gas flowing out through the communication hole force in a state where the main valve is closed is inclined with respect to the axial direction of the main flow path.
  • the flow of the exhaust gas flowing from the peripheral edge of the valve body to the downstream side and the flow of the exhaust gas flowing out from the communication hole are not parallel, so that both are easily mixed. For this reason, the flow velocity of the exhaust gas flowing out from the upstream side of the valve body to the downstream side is decelerated. As a result, it is possible to reduce the noise generated when the main valve is closed.
  • This exhaust pressure control valve can be configured such that the surface of the valve element is inclined with respect to the axial direction of the main flow path in a state where the valve is closed.
  • the communication hole is provided at a position on the downstream side of the throttle shaft on the surface of the valve body in a direction substantially perpendicular to the surface of the valve body.
  • the exhaust gas that has also flowed out of the communication hole is directed toward the center of the exhaust passage. For this reason, since the exhaust gas diffuses and flows throughout the exhaust passage, the flow rate of the exhaust gas can be effectively reduced. As a result, the effect of reducing the ejection noise can be improved.
  • the inner wall surface of the main flow path on the downstream side of the main valve In addition, it is preferable to provide a gas flow rate reduction means (for example, a wire mesh or the like) for reducing the flow rate of the exhaust gas near the inner wall surface. Since the flow velocity of the exhaust gas flowing downstream from between the peripheral edge of the valve body and the inner wall surface of the exhaust flow path is reduced, the ejection noise can be further reduced.
  • a gas flow rate reduction means for example, a wire mesh or the like
  • the present invention provides an exhaust pressure control valve that can reduce noise generated when the main valve is switched from the closed state to the open state.
  • the exhaust pressure control valve includes a housing including a main flow path and a bypass flow path, a main valve that opens and closes the main flow path, a first valve opening and closing device that opens and closes the main valve, and opens and closes the bypass flow path. It has a bypass valve and a second valve opening / closing device that opens and closes the binos valve.
  • the first valve opening / closing device is set so that the time until the main valve is closed and the force is opened is longer than the time until the main valve is opened and the valve is closed. .
  • the first valve opening / closing device is operated by, for example, a solenoid, air, hydraulic pressure, etc., and can be opened / closed according to the operating state of the engine.
  • the second valve opening / closing device can use, for example, a diaphragm type actuator, and is opened / closed according to the pressure of the exhaust gas upstream of the main valve.
  • the first valve opening / closing device includes a diaphragm type actuator that opens and closes the main valve, a supply / exhaust means for supplying / exhausting gas to / from the pressure chamber of the actuator, and pressures of the supply / exhaust means and the actuator.
  • a pipe connecting the chambers, a first state provided in the middle of the pipe and having a large passage cross-sectional area of the gas, and a second state having a small passage cross-sectional area of the gas and a second passage It is possible to have a flow rate adjusting means for switching to.
  • the actuator is set to close the main valve when the gas pressure in the pressure chamber exceeds a predetermined pressure, and to open the main valve when the pressure in the pressure chamber is lower than the predetermined pressure.
  • the flow rate adjusting means is in the first state when the gas is exhausted from the pressure chamber, and is in the second state when the gas is supplied to the pressure chamber.
  • the main valve when the pressure in the pressure chamber exceeds a predetermined pressure by supplying gas to the pressure chamber of the diaphragm type actuator, the main valve is in the closed state force open state.
  • the flow rate adjusting means becomes a passage opening with a small gas passage cross-sectional area, so that the pressure chamber pressure is prevented from rapidly increasing. For this reason, the main solenoid slowly opens.
  • the main valve changes from the open state to the closed state.
  • the flow rate adjusting means becomes a passage port having a large gas passage cross-sectional area, so that the pressure in the pressure chamber rapidly decreases. For this reason, the main valve is quickly closed.
  • the second valve opening / closing device includes a movable member that moves linearly according to the pressure of the exhaust gas upstream of the main valve, and a link mechanism that converts the linear motion of the movable member into an opening / closing motion of the bypass valve. And prefer to have, and.
  • the second valve opening / closing device includes, for example, a storage chamber that houses a movable member, an introduction pipe that introduces exhaust gas upstream of the main valve into one of the storage chambers partitioned by the movable member, An urging means arranged on the other side of the chamber to urge the movable member toward one of the accommodation chambers can be provided.
  • the opening degree of the noisy valve can be changed according to the exhaust gas pressure. According to this
  • the pressure of the exhaust gas can be controlled with high accuracy.
  • connection port to which a DPF device can be connected is provided at the upstream end of the housing.
  • the exhaust pressure control valve is arranged downstream of the DPF device.
  • Exhaust gas from which particulate matter (PM) containing soot as the main component is removed is exhaust pressure. It will flow through the force control valve. Therefore, particulate matter (PM) containing soot as a main component is prevented from adhering to the isotropic exhaust pressure control valve, and deterioration of the controllability of the exhaust pressure control valve is prevented.
  • a flange portion to which an exhaust pipe is attached can be provided at the downstream end of the housing. In this case, it is preferable that the flange portion is flexibly coupled to the exhaust pipe.
  • the bypass valve is disposed at a position where the main flow path is also retracted at an intermediate portion of the non-pass flow path.
  • the second valve opening / closing device includes a movable member that linearly moves according to the pressure of the exhaust gas upstream of the main valve, and a link mechanism that converts the linear motion of the movable member into the opening / closing motion of the no-pass valve. It is preferable. According to this configuration, since the bypass valve force S is provided in the middle portion of the bypass flow path (that is, the position where the main flow path force is also retracted), it is prevented that the pressure of the exhaust gas flowing through the main flow path directly acts on the binos valve.
  • the binos valve is opened and closed by linearly moving the movable member in accordance with the pressure of the exhaust gas upstream of the main valve and transmitting the linear motion of the movable member to the bypass valve via the link mechanism. For this reason, even if the exhaust gas flowing in the main flow channel pulsates and the pressure of the exhaust gas upstream of the main valve fluctuates, it is possible to prevent the bypass valve from being greatly affected. As a result, chattering of the bypass valve can be prevented, and the exhaust gas pressure can be stably controlled.
  • FIG. 1 is a diagram showing a configuration of an exhaust system of a diesel engine equipped with an exhaust pressure control valve of a first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of an exhaust pressure control valve of the first embodiment.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • ⁇ 5 A diagram schematically showing a schematic configuration of a device for opening and closing the main valve.
  • FIG. 6 A diagram schematically showing a schematic configuration of a device for opening and closing a bypass valve.
  • FIG. 8 is a diagram schematically showing temporal changes in the pressure chamber pressure of the three-way solenoid valve and the actuator and the opening of the main valve.
  • FIG. 9 is a diagram showing an example of a result of measuring a change in exhaust pressure and a change in sound pressure of the ejection sound when the state force when the main valve is closed is also opened.
  • ⁇ 10 A graph showing the relationship between the response time of the main valve (the time until the closing force is fully opened) and the sound pressure (maximum sound pressure) of the erupting sound.
  • FIG. 11 is a view showing a modified example of the mounting structure of the exhaust pressure control valve and the exhaust pipe.
  • FIG. 13 is a view showing another modification of the exhaust pressure control valve of the first embodiment.
  • FIG. 14 is a view showing another modification of the exhaust pressure control valve of the first embodiment.
  • FIG. 15 is an enlarged view showing an outlet port of the exhaust pressure control valve shown in FIG.
  • FIG. 17 is a partially broken perspective view of the exhaust pressure control valve shown in FIG. 16 as seen from different directions.
  • FIG. 18 Inlet port 116, outlet port 146 and throttle shaft of exhaust pressure control valve shown in FIG.
  • Fig. 132 is a view of the bypass channel side.
  • FIG. 19 is an enlarged view showing a connection portion between the inlet port 116 and the main flow path 112.
  • FIG. 20 is an exhaust pressure control valve force of the second embodiment.
  • FIG. 20 shows only the main flow path and the main nove.
  • FIG. 21 is an enlarged view of the periphery of the valve body and the inner wall surface of the main flow path.
  • FIG. 22 is a view showing a flow simulation result of the exhaust pressure control valve of the second embodiment.
  • FIG. 23 is a diagram showing the result of flow simulation in a case where a communication hole is provided.
  • FIG. 24 is a diagram showing a flow simulation result of a modification of the second embodiment.
  • the exhaust pressure control valve is arranged in the exhaust passage of the diesel engine.
  • a DPF device is connected upstream of the exhaust pressure control valve, and an exhaust pipe (muffler) is connected downstream.
  • the exhaust pressure control valve has a housing provided with a main flow path and a bypass flow path.
  • the no-pass channel is provided adjacent to the main channel.
  • an inlet port is provided on the upstream side of the main valve, and an outlet port is provided on the downstream side of the main valve.
  • the upstream end of the bypass channel is connected to the main channel via the inlet port, and the downstream end is connected to the main channel via the outlet port.
  • the binos valve is placed in the middle of the binos channel.
  • An opening / closing device that opens and closes the bypass valve includes a diaphragm type actuator and a link mechanism that converts linear motion of the rod of the actuator into opening / closing motion of the bypass valve.
  • the opening / closing device that opens and closes the main valve is equipped with a diaphragm type actuator.
  • the main valve opens when the pressure in the pressure chamber of the actuator exceeds a predetermined pressure, and closes when the pressure in the pressure chamber of the actuator falls below a predetermined pressure.
  • the pressure chamber of the actuator is connected to the neutral port of the 3-way solenoid valve, one of the other two ports of the 3-way solenoid valve is connected to the suction pump, and the other is open to the atmosphere.
  • a flow control valve is installed between the pressure chamber of the actuator and the three-way solenoid valve.
  • the flow control valve has a housing and a partition plate that partitions the inside of the housing into an actuator side and a three-way solenoid valve side.
  • a plurality of orifices are formed in the partition plate, and some of the plurality of orifices are opened and closed by a valve body (valve).
  • the valve body closes the orifice when air is introduced into the pressure chamber of the actuator, and opens the orifice when air is exhausted from the pressure chamber of the actuator.
  • the main valve has a throttle shaft and a valve body attached to the throttle shaft. Both ends of the throttle shaft are rotatably supported by the housing. By rotating the throttle shaft, the valve body is switched between a closed state in which the main flow path is closed and an open state in which the valve body opens the main flow path. When the main valve is closed, the valve body is inclined with respect to the axial direction of the main flow path.
  • the circumferential position of the outlet port is the axial force of the throttle shaft.
  • the circumferential position of the point on the periphery of the valve body where the distance to the periphery of the valve body is the shortest that is, the support part that supports the throttle shaft) It becomes the same as the position.
  • the downstream wall of the outlet port is chamfered into a curved surface (R shape).
  • a flow straightening member (shielding plate, fin, hard cam, etc.) is arranged on the downstream wall of the outlet port.
  • the inlet port is formed in parallel with the throttle shaft.
  • the inlet port is provided at a position displaced in the circumferential direction of the supporting portion force that supports the throttle shaft. Part of the inlet port and the throttle shaft overlap in the axial direction of the main flow path.
  • the exhaust pressure control valve includes a housing having a main flow path and a bypass flow path, a throttle shaft that is rotatably supported by a housing, and a valve body attached to the throttle shaft.
  • the valve body has a main valve that switches between a closed state in which the valve body closes the main flow path and an open state in which the valve body opens the main flow path by rotating the shaft, and a bypass valve that opens and closes the bypass flow path.
  • An inlet port to which the upstream end of the bypass channel is connected is provided on the inner wall surface of the main channel on the upstream side of the main valve.
  • An outlet port to which the downstream end of the bypass channel is connected is provided on the inner wall surface of the main channel on the downstream side of the main nozzle.
  • the outlet port is provided with flow characteristic changing means for changing the flow characteristic of the exhaust gas.
  • the exhaust pressure control valve includes a housing provided with an exhaust flow path, a rotating shaft rotatably supported by the housing, and a valve body attached to the rotating shaft, and rotates the rotating shaft.
  • the valve body has a valve that switches between a closed state that closes the exhaust passage and an open state that opens the exhaust passage.
  • the valve body is provided with a communication hole penetrating from the front surface to the back surface. The communication hole is provided so that the outflow direction of the exhaust gas flowing out of the communication hole force with the valve closed is inclined with respect to the axial direction of the exhaust passage.
  • Exhaust pressure control valve has a housing provided with an exhaust flow path, and a housing.
  • a rotating shaft that is rotatably supported and a valve body that is attached to the rotating shaft are provided.
  • the valve body closes the exhaust flow path and the open state opens the exhaust flow path.
  • a gas flow rate reduction means for reducing the flow rate of the exhaust gas near the inner wall surface, provided on the inner wall surface of the exhaust passage downstream from the valve.
  • the exhaust pressure control valve includes a housing including a main flow path and a bypass flow path, a main valve that opens and closes the main flow path, a first valve opening / closing device that opens and closes the main valve, and a bypass flow.
  • a bypass valve that opens and closes the passage and a second valve opening and closing device that opens and closes the bypass valve are provided.
  • the bypass valve is arranged at a position where the main channel force is also retracted in the middle of the nopass channel.
  • the second valve opening / closing device includes a movable member that linearly moves in accordance with the exhaust gas pressure on the upstream side of the main valve, and a link mechanism that converts the linear movement of the movable member into an opening / closing motion of the bypass valve. Yes.
  • the exhaust system of the diesel engine 1 includes a DPF device 3 and an exhaust pressure control valve 10.
  • the DPF device 3 has a filter (made of ceramic) that collects particulate matter (PM) mainly composed of soot contained in exhaust gas.
  • a diesel engine 1 is connected to the upstream end of the DPF device 3 through an exhaust pipe 2.
  • An exhaust pressure control valve 10 is connected to the downstream end of the DPF device 3 through an exhaust pipe 5.
  • the exhaust pipe 2 is provided with a pressure sensor 2a.
  • the pressure sensor 2a detects the pressure of the exhaust gas flowing through the exhaust pipe 2.
  • the exhaust pipe 5 is provided with a pressure sensor 5a.
  • the pressure sensor 5a detects the pressure of the exhaust gas flowing through the exhaust pipe 5.
  • the exhaust gas pressure detected by the pressure sensors 2a and 5a is input to the ECU 4 (electronic control unit).
  • the exhaust pressure control valve 10 controls the pressure of exhaust gas exhausted from the diesel engine 1.
  • the downstream end of the exhaust pressure control valve 10 is connected to the muffler via the exhaust pipe 6! RU
  • the diesel engine 1 and the exhaust pressure control valve 10 are controlled by the ECU 4.
  • the ECU 4 controls the intake air amount and the fuel supply amount to the diesel engine 1 according to the operation state of the diesel engine 1.
  • ECU4 is detected by pressure sensors 2a and 5a.
  • the main valve (described later) of the exhaust pressure control valve 10 is closed to regenerate the filter of the DPF device 3.
  • the exhaust gas exhausted from the diesel engine 1 flows to the DPF device 3 via the exhaust pipe 2.
  • the DPF device 3 collects particulate matter (PM) mainly containing soot contained in the exhaust gas.
  • the exhaust gas purified by the DPF device 3 is discharged from the muffler to the atmosphere through the exhaust pipe 5, the exhaust pressure control valve 10 and the exhaust pipe 6.
  • the ECU 4 closes the main valve of the exhaust pressure control valve 10.
  • the exhaust pressure of the diesel engine 1 increases, and the amount of fuel supplied to the diesel engine 1 increases in accordance with the increase of the exhaust pressure.
  • the gas containing unburned components is supplied to the 3D DPF device.
  • Gas containing unburned components is supplied to the oxidation catalyst upstream of the filter. The unburned components supplied to the oxidation catalyst raise the gas temperature in the catalyst by an oxidation reaction.
  • particulate matter (PM) mainly containing soot collected by the filter burns that is, the filter of the DPF device 3 is regenerated.
  • the ECU 4 opens the main valve of the exhaust pressure control valve 10 and returns to the normal operation state. The regeneration of the DPF device 3 is performed every time the pressure loss of the DPF device 3 exceeds a predetermined value.
  • the exhaust pressure control valve 10 includes a nosing 11 provided with a main flow path 12 and a bypass flow path 28, a main valve 30 that opens and closes the main flow path 12, and opens and closes the bypass flow path 28.
  • a no-pass valve 26 is provided.
  • the nosing / housing 11 has a main flow path 12 and a binos flow path 28 (bypass chamber) provided adjacent to the main flow path 12.
  • An exhaust pipe 5 is attached to the upstream end 14 of the main flow path 12.
  • An exhaust pipe 6 is attached to the downstream end 66 of the main flow path 12 via a connecting pipe 70.
  • An inlet port 16 and an outlet port 46 are formed on the inner wall surface of the main channel 12.
  • the inlet port 16 is formed on the upstream end 14 side, and the outlet port 46 is formed on the downstream end 66 side.
  • a main valve 30 is arranged between the inlet port 16 and the outlet port 46. The main valve 30 opens and closes the main flow path 12 between the inlet port 16 and the outlet port 46.
  • the upstream end of the no-pass channel 28 is connected to the main channel 12 via the inlet port 16.
  • the downstream end of the no-pass channel 28 is connected to the main channel 12 via the outlet port 46.
  • a bypass valve 26 is accommodated in the bypass channel 28.
  • the bypass valve 26 opens and closes an opening from the inlet port 16 to the bypass flow path 28.
  • the bypass valve 26 is disposed at a position where the inner wall surface force of the main flow path 12 is also retracted.
  • the throttle shaft 32 of the main valve 30 passes through the center (point O) of the main flow path 12, and both ends thereof are the wall surfaces of the main flow path 12 (point A of the nosing 11). Supported by C).
  • the circumferential position of the inlet port 16 is the same as the circumferential position of the bearing portion that supports one end of the throttle shaft 32 (point A or point C in FIG. 4).
  • the circumferential position of the outlet port 46 is the same as the circumferential position of the bearing portion that supports one end of the throttle shaft 32. Therefore, the main flow path 12 and the bypass flow path 28 extend substantially parallel (the axes are parallel)!
  • the inlet port 16 has a circular cross section. By making the inlet port 16 circular in cross section, the inlet port 16 can be easily airtightly closed by a binos valve 26 (described later) (see Fig. 2).
  • the outlet port 46 has a rectangular cross section. By making the outlet port 46 have a rectangular cross section, a large cross-sectional area of the outlet port 46 can be secured, and the exhaust gas can easily flow from the outlet port 46 to the main flow path 12.
  • the inlet port 16 and the outlet port 46 are formed so as to be substantially orthogonal to the axis of the main flow path 12 (that is, the inlet port 16, the outlet port 46 and the throttle shaft 32 are parallel to each other). .
  • the wall surface 48 on the downstream side of the outlet port 46 is chamfered in a curved surface shape (R shape) at the connection portion to the main flow path 12.
  • R shape curved surface shape
  • the main valve 30 is a butterfly valve.
  • the main valve 30 includes a throttle shaft 32 and a valve body 34 attached to the throttle shaft 32.
  • the valve body 34 is switched between a closed state in which the main flow path 12 is closed and an open state in which the valve body 34 opens the main flow path 12.
  • Valve body 34 with main flow path 12 closed Then, the valve body 34 is inclined with respect to the axis (center axis) of the main flow path 12 (see FIG. 3).
  • a clearance is formed between the peripheral edge of the valve body 34 and the inner wall surface of the main flow path 12. This clearance is provided so that the diesel engine 1 can be operated even when the main valve 30 is closed.
  • the clearance is formed over the entire circumference of the valve body 34.
  • One end of the throttle shaft 32 is rotatably supported by a bearing 40.
  • the bearing 40 is accommodated in a mounting hole 42 formed in the housing 11.
  • the mounting hole 42 is provided between the inlet port 16 and the outlet port 46.
  • a throttle shaft 32 is inserted into one end of the mounting hole 42 (the end on the main flow path 12 side).
  • the other end of the mounting hole 42 is open to the bypass channel 28, and the opening is closed by a cap 36.
  • the other end of the throttle shaft 32 is rotatably supported by a bearing 54.
  • the bearing 54 is accommodated in a mounting hole 52 formed in the housing 11.
  • a throttle shaft 32 is passed through one end of the mounting hole 52 (the end on the main flow path 12 side).
  • a seal ring 50 is disposed between the throttle shaft 32 and the mounting hole 52. The seal ring 50 prevents the exhaust gas in the main flow path 12 from flowing out.
  • the other end of the mounting hole 42 is open to the outside, and the drive end 32b of the throttle shaft 32 projects outside from the opening.
  • the drive end 32 b of the throttle shaft 32 is coupled to the rod 60 of the actuator 64 via the coupling piece 62. As the rod 60 extends, the throttle shaft 32 rotates.
  • the opening / closing device 41 includes an actuator 64, a three-way solenoid valve 47, and a vacuum pump 43.
  • the actuator 64 is a diaphragm type actuator.
  • the actuator 64 includes a rod 60 that is displaced according to the pressure in a pressure chamber (not shown).
  • One end of a connecting piece 62 is rotatably attached to the tip of the rod 60.
  • the drive end 32b of the throttle shaft 32 is attached to the other end of the connecting piece 62.
  • the main valve 30 opens the main flow path 12, and when the pressure in the pressure chamber of the actuator 64 becomes equal to or lower than the predetermined pressure, the main valve 30 opens the main flow path 12. Close.
  • the pressure chamber of the actuator 64 is connected to the neutral port 47c of the three-way electromagnetic valve 47 through the pipe 57a, the flow rate control valve 51, and the pipe 57b.
  • One port 47a of the remaining two ports 47a, 47b of the three-way solenoid valve 47 is connected to the vacuum pump 43 via the check valve 45.
  • the other port 47b of the three-way solenoid valve 47 is open to the atmosphere.
  • the check valve 45 prevents the backflow of air from the vacuum pump 43 to the three-way solenoid valve 47 side.
  • the three-way solenoid valve 47 is controlled by the ECU 4.
  • the neutral port 47c and the port 47a are in communication with each other by closing the port 47b and the vacuum pump 43 is operated, the air pressure in the pressure chamber of the actuator 64 is exhausted (this causes the main valve 30 to close).
  • the port 47a is closed and the neutral port 47c and the port 47b communicate with each other, the atmosphere is introduced into the pressure chamber of the actuator 64 (so that the main valve 30 is opened). Become).
  • a flow control valve 51 is interposed between the pressure chamber of the actuator 64 and the three-way solenoid valve 47.
  • the flow control valve 51 includes a housing 51, a partition wall 53 provided in the middle of the housing 51, and a valve body 55 attached to the partition wall 53.
  • One chamber 51a partitioned by the partition wall 53 communicates with the pressure chamber of the actuator 64 through a pipe 57a.
  • the other chamber 51b partitioned by the partition wall 53 is connected to a neutral port 47c of the three-way solenoid valve 47 through a pipe 57b.
  • the partition wall 53 has a plurality of orifices (through holes) 53a. Some of the plurality of orifices 53 a are opened and closed by the valve body 55. That is, when air is introduced into the pressure chamber of the actuator 64 (when air flows from the three-way solenoid valve 47 to the actuator 64, the valve element 55 closes a part of the orifice of the partition wall 53. When the pressure chamber force of the actuator 64 also exhausts air (when air flows from the actuator 64 to the three-way solenoid valve 47), Then, the valve body 55 is deformed to open the orifice 53a of the partition wall 53 (the state shown in FIG. 7).
  • the bypass valve 26 is a flapper valve.
  • the bypass valve 26 has a valve body 24 and a bolt 22 for attaching the valve body 24 to the arm 20.
  • an opening / closing device 69 for opening and closing the bypass valve 26 includes an actuator 79 and a link mechanism (73, 20) for transmitting the motion of the actuator 79 to the bypass valve 26! /.
  • the actuator 79 is a diaphragm type actuator.
  • the actuator 79 includes a cylinder 81 and a rod 75.
  • the rod 75 has a partition wall portion 75a provided at the base end portion thereof and a rod portion 75b provided upright on the partition wall portion 75a.
  • the partition wall 75a is movably accommodated in the cylinder 81, and divides the cylinder 81 into a pressure chamber 77 and a spring accommodation chamber 83.
  • the pressure chamber 77 is communicated with the exhaust pipe 5 by the exhaust gas introduction pipe 23, and the exhaust gas flowing through the exhaust pipe 5 is introduced into the pressure chamber 77.
  • a spring 85 is accommodated in the spring accommodating chamber 83 in a compressed state. The spring 85 urges the partition wall 75a toward the pressure chamber 77.
  • the base end of the link 73 is rotatably attached to the tip of the rod portion 75b.
  • One end of the arm 20 is fixed to the tip of the link 73.
  • a bypass valve 26 is attached to the other end of the arm
  • Opening and closing of the exhaust pressure control valve 10 is controlled by the ECU 4.
  • the ECU 4 first outputs a drive signal to the three-way electromagnetic valve 47, closes the port 47b, and makes the neutral port 47c and the port 47a communicate with each other.
  • the port 47a communicates with the negative pressure generated by the vacuum pump 43.
  • the air in the pressure chamber of the actuator 64 is exhausted, and the main valve 30 closes the main flow path 12.
  • the valve body 55 of the flow control valve 51 opens the orifice 53a. For this reason, the air in the pressure chamber of the actuator 64 is quickly exhausted.
  • the binos valve 26 is disposed at a position where the inner wall surface force of the main flow path 12 is also retracted, the exhaust pressure of the exhaust gas flowing through the main flow path 12 does not act directly.
  • the bypass valve 26 is opened and closed by transmitting the linear motion of the actuator 79 to the arm 20 through the link mechanism. For these reasons, even when the exhaust gas flowing through the exhaust pipe 5 pulsates, the behavior of the bypass valve 26 is stabilized and the chattering of the bypass valve 26 can be prevented. As a result, the controllability of the exhaust pressure is enhanced.
  • the operation when the main valve 30 is changed from the closed state to the opened state will be described.
  • the ECU4 A drive signal is output to the valve 47, and the port 47a is closed so that the neutral port 47c and the port 47b communicate with each other.
  • the atmosphere is also introduced into the pressure chamber of the actuator 64 on the side of the three-way solenoid valve 47, and the main valve 30 opens the main flow path 12.
  • the valve body 55 of the flow control valve 51 closes some of the orifices 53a. For this reason, air is slowly introduced into the pressure chamber in the actuator 64, and the main nanoreb 30 is slowly opened.
  • FIG. 8 shows changes in the state of the three-way solenoid valve 47 when the main valve 30 is changed from the closed state to the open state, the pressure change in the pressure chamber of the actuator 64, and the valve of the main valve 30. It is a figure which shows the change of an opening degree typically.
  • the three-way solenoid valve 47 is switched to the negative pressure state (the state where the actuator 64 and the vacuum pump 43 are connected), and the force is also switched to the atmospheric state (the state where the actuator 64 is opened to the atmosphere).
  • the pressure chamber of the actuator 64 gradually shifts from the negative pressure state to the atmospheric pressure state.
  • the main valve 30 begins to open gradually after a slight delay t after the timing force when the three-way solenoid valve 47 is switched to the open state. Then, when the time tO has elapsed since the timing of switching to the atmospheric release state, the main valve 30 is fully opened.
  • the main valve 30 changes from the closed state to the open state, the exhaust gas flows from the upstream side to the downstream side of the main valve 30.
  • the size of the gap between the peripheral edge of the valve body 34 and the inner wall surface of the main flow path 12 is from the axis of the throttle shaft 32 to the valve body 34 (peripheral point). Is proportional to the distance (rotation radius). That is, the axial force of the throttle shaft 32 also has the largest gap at points B and D where the distance to the valve body 34 (peripheral point) is the longest (see FIG. 4).
  • the gap is the smallest at points A and C where the distance to the axial force valve body 34 (peripheral point) of the throttle shaft 32 is the shortest.
  • the flow rate of the exhaust gas from which the main valve 30 also flows is the fastest at points B and D, and the slowest at points A and C.
  • the outlet port 46 is provided at a point A (or a point C), and is arranged at a position shifted from a position where high-speed exhaust gas flows out. For this reason, the exhaust gas flowing out rapidly when the main valve 30 is opened is prevented from generating a vortex in the outlet port 46, and noise is prevented. Also, the downstream wall 48 of the outlet port 46 is curved.
  • the exhaust gas flowing out from the main valve 30 can flow smoothly toward the downstream end 66. This also prevents the generation of vortex in the outlet port 46 and suppresses the generation of noise. Furthermore, since the main valve 30 is opened slowly, the exhaust gas is prevented from flowing out to the downstream side of the main valve 30 abruptly. This also suppresses the generation of noise.
  • the flow control valve 49 is provided in the opening / closing device 41 that opens and closes the main valve 30, so that the main valve 30 gradually shifts from the closed state to the opened state. .
  • the sound pressure of the generated noise (spout sound) is reduced.
  • FIG. 9 shows an example of the results of measuring the change in exhaust pressure and the change in sound pressure of the ejection sound when the main valve 30 is closed and the state force is also open.
  • FIG. 9 also shows, as a comparative example, a change in the exhaust pressure when the flow control valve 49 is not applied and the force is applied.
  • the exhaust gas pressure change ⁇ P / dt
  • response time the time required for the state force when the main valve 30 is closed to the fully open state
  • the ejection noise can be reduced by increasing the response time of the main valve 30.
  • FIG. 10 is a diagram showing the relationship between the response time of the main valve 30 (the time until the closed state force is also fully opened) and the sound pressure of the ejection sound (maximum sound pressure). As is apparent from the figure, by increasing the response time of the main valve 30, the maximum sound pressure of the ejected sound is reduced.
  • the circumferential position of the outlet port 46 and the circumferential position of the bearing portion of the throttle shaft 32 are the same, and the downstream wall surface 48 of the outlet port 46 is curved. Is formed. As a result, the generation of vortex in the exhaust gas in the outlet port 46 is suppressed, and the generation of noise can be effectively prevented. Further, by providing the flow control valve 49 in the opening / closing device 42 that opens and closes the main valve 30, the response time until the main noble 30 is changed from the closed state to the open state is lengthened. For this reason, the ejection sound when the main valve 30 is changed from the closed state to the open state is reduced. On the other hand, since the time until the main valve 30 is opened and closed is set short, the filter regeneration of the DPF device 3 can be performed without a time delay.
  • the bypass valve 26 is disposed at a position retracted from the main flow path 12, and the expansion / contraction motion of the rod of the actuator 79 is converted into the opening / closing operation of the bypass valve 26 by a link mechanism. Since the pulsation pressure is reduced by the buffering effect of the diaphragm of the actuator, even if the exhaust gas in the exhaust pipe 5 pulsates, the bypass valve 26 is prevented from chattering, and the exhaust pressure is kept within a predetermined pressure range. It becomes possible to control. In addition, since the opening of bino solenoid 26 changes in accordance with the change in exhaust gas pressure, the filter regeneration of DPF device 3 can be performed even when the vehicle is running (exhaust gas flow rate (pressure) changes). Can do.
  • the force transmitted from the movement of the actuator 79 to the binos valve 26 via the link mechanism is not limited to such a form.
  • the motion of the actuator may be converted into the opening / closing motion of the bypass valve using a rack and pion mechanism. Even with such a configuration, the opening degree of the bypass valve can be adjusted according to the exhaust pressure.
  • the connecting pipe 70 (exhaust pipe 6) is attached to the downstream end 66 of the main flow path 12 so as not to be displaceable.
  • an exhaust pipe 96 may be attached to the downstream end 93 of the main flow path in a flexible state (a state in which the exhaust pipe 96 can move relative to the downstream end 93). That is, the flange 94c is provided at the downstream end of the housing 90.
  • the exhaust pipe 96 is also provided with a flange 87.
  • the flange 94c and the flange 87 are connected by a bolt 89b and a weld nut 89d!
  • a seal ring 89a is arranged between the flange 94c and the flange 87.
  • a spring 89c is arranged in a compressed state between the flange 87 and the head of the bolt 89b. For this reason, the flange 87 is biased toward the flange 94c by the spring 89c, whereby the seal ring 89a is sandwiched between the flange 87 and the flange 94c.
  • Seal ring 89a is graphite It has a certain degree of elasticity (deformability).
  • the seal ring 89a is deformed, and the position of the exhaust pipe 96 can be changed relative to the housing 90 (the downstream end 33 of the main flow path).
  • the vibration of the device upstream of the exhaust pressure control valve (engine 1) is suppressed from being transmitted to the exhaust pipe 96, and the exhaust pipe 96 and the muffler can be prevented from vibrating.
  • the force in which the wall surface 48 on the downstream side of the outlet port 46 is formed in a curved shape is not limited to such a form.
  • a hard cam 74 may be disposed in the opening 78 of the outlet port 46.
  • a shielding plate 80 that covers the outlet port 46 may be provided so that the exhaust gas flow does not directly collide with the opening 82 of the outlet port 46.
  • fins 84 may be provided on the wall surface 48 on the downstream side of the outlet port 46. Providing the fins 84 can also prevent eddy currents from occurring in the exhaust gas in the outlet port 46.
  • the bearing portions of the inlet port 16, the outlet port 46, and the throttle shaft 32 are arranged at the same position in the circumferential direction, but the present invention is not limited to such a form.
  • the bearing portions of the inlet port 116 and the throttle shaft 132 can be shifted in the circumferential direction.
  • the bearing portions of the inlet port 116 and the throttle shaft 132 are arranged so as to overlap in the axial direction of the main flow path.
  • the exhaust pressure control valve can be made compact.
  • Second Embodiment An exhaust pressure control valve according to the second embodiment will be described with reference to the drawings.
  • Second implementation The exhaust pressure control valve in the example is configured in the same manner as the exhaust pressure control valve in the first embodiment, and differs from the first embodiment in that a communication hole is formed in the valve body of the main valve. Here, only the differences from the first embodiment will be described.
  • the valve body 237 force of the main valve 230 S When the main flow path 234 is closed, the valve body 237 is inclined with respect to the axis (center axis) C of the main flow path 234. Yes.
  • a clearance 234d is formed between the peripheral edge of the valve element 237 and the inner wall surface of the main flow path 234.
  • the clearance 234d is formed over the entire circumference of the valve body 237.
  • the clearance 234d is preferably 0.5 mm or less. This is because if the clearance exceeds 234d force .5mm, the effect of increasing the exhaust pressure cannot be fully exhibited.
  • the valve body 237 is formed with one communication hole 237a that penetrates the surface force of the valve body 237 by directing it toward the back surface.
  • the communication hole 237a is formed on the downstream side of the rotary shaft (throttle shaft) 238 when the valve body 237 closes the main flow path 234.
  • the communication hole 237a is provided substantially perpendicular to the surface of the valve body 237.
  • a wire mesh 290 is disposed on the inner wall surface of the main flow path 234 at a position downstream of the main valve 236.
  • the wire mesh 290 is arranged over the entire circumference of the inner wall surface of the main flow path 234.
  • the exhaust gas upstream of the main valve 230 has a clearance 234d between the peripheral edge of the valve body 237 and the inner wall surface of the main flow path 234 and the valve body 237. It flows out from the communication hole 237a to the downstream side of the main valve 230. At this time, the exhaust gas flowing out from the clearance 234d flows out in parallel with the axial direction C of the main flow path 234. The exhaust gas flowing out from the communication hole 237a flows out toward the center of the main flow path 234 (that is, flows out in a direction inclined with respect to the axial direction C). For this reason, the exhaust gas flowing out from the clearance 234d and the exhaust gas flowing out from the communication hole 237a are mixed efficiently, and the flow velocity is reduced.
  • the exhaust gas flowing out from the communication hole 237a flows toward the center of the main flow path 234, and the diameter of the communication hole 237a is increased by using one communication hole 237a. It flows out from the communication hole 237a. For this reason, the exhaust gas flowing out from the communication hole 237a is easily diffused throughout the main flow path 234, and the flow velocity is reduced. Further, a wire mesh 290 is arranged on the inner wall surface of the main flow path 234 on the downstream side of the main valve 230. For this reason, the flow velocity of the exhaust gas flowing out from the clearance 234d is reduced by the wire mesh 290.
  • FIG. 22 shows the result of simulating the flow state of the exhaust gas when the main valve 230 is closed for the exhaust pressure control valve of the present embodiment.
  • FIG. 23 shows the result of simulating the flow state of exhaust gas when the main valve is closed by the exhaust pressure control valve with a communication hole provided in the valve body of the main valve.
  • the exhaust pressure control valve of the second embodiment when the main valve 230 is closed, the exhaust gas flowing out from the clearance 234d and the exhaust gas flowing out from the communication hole 237a are mixed efficiently, and the flow velocity is kept low. . Further, the exhaust gas flowing out from the communication hole 237a into the main flow path 234 flows out toward the center of the main flow path 234 and spreads over the entire main flow path 234. For this reason, the flow velocity of the exhaust gas flowing out from the communication hole 237a can be kept low. Furthermore, the flow rate of the exhaust gas flowing out from the clearance 234d is kept low by the metal mesh 290 provided on the inner wall surface of the main flow path 234. As a result, the difference in flow velocity between the gas flow flowing out from the clearance 234d and the gas flow flowing out from the communication hole 237a and the surrounding exhaust gas is reduced, and the jet noise can be reduced.
  • FIG. 24 shows the simulation results of the flow state when a plurality of communication holes are provided in the valve body. As can be seen from FIG.
  • the exhaust gas diffuses throughout the main flow path, and the flow velocity is kept low.
  • the downstream end side of the communication hole is chamfered, and the downstream end side of the peripheral edge of the valve body is chamfered. This makes it easier for the exhaust gas flowing out of the upstream side of the main nozzle to diffuse, contributing to a reduction in the flow velocity.

Abstract

Provided is an exhaust pressure control valve for controlling the pressure of an exhaust gas to be discharged from an engine. The exhaust pressure control valve reduces the unusual noises which will arise when a main valve is switched from a closed state to an open state. The exhaust pressure control valve (10) comprises a housing (11) having a main passage (12) and a bypass passage (28), a main valve (30) for switching a closed state to close the main passage (12) and an open state to open the main passage (12), and a bypass valve (26) for opening/closing the bypass passage (28). An inlet port (16) is formed in the inner wall face of the main passage (12) on the upstream side of the main valve. An outlet port (46) is formed in the inner wall face of the main passage (12) on the downstream side of the main valve. The upstream end of the bypass passage (28) is connected to the inlet port (16), and the downstream end of the bypass passage (28) is connected to the outlet port (46). The position of the outlet port (46) deviates in the circumferential direction from the position of that point on the circumferential edge of a valve member, at which the distance from the axis of the rotating shaft of the main valve to the circumferential edge of the valve member is the longest.

Description

明 細 書  Specification
排気圧力制御弁  Exhaust pressure control valve
技術分野  Technical field
[0001] 本出願は、 2006年 3月 15日に出願された日本国特許出願第 2006— 70481号、 2006年 3月 24日に出願された日本国特許出願第 2006— 82528号、及び 2006年 3月 27日に出願された日本国特許出願第 2006— 84510号に基づく優先権を主張 する。それら出願の全ての内容はこの明細書中に参照により援用されている。  [0001] This application is filed with Japanese Patent Application No. 2006-70481 filed on March 15, 2006, Japanese Patent Application No. 2006-82528 filed on March 24, 2006, and 2006 Claims priority based on Japanese Patent Application No. 2006-84510 filed on March 27th. The entire contents of those applications are incorporated herein by reference.
[0002] 本発明はエンジンから排気される排気ガスの圧力を制御する排気圧力制御弁に関 する。  The present invention relates to an exhaust pressure control valve that controls the pressure of exhaust gas exhausted from an engine.
背景技術  Background art
[0003] エンジンの始動性を向上させ、あるいは、エンジン力も排気される排気ガスを浄ィ匕 するために、エンジンから排気される排気ガスの圧力を制御する排気圧力制御弁が 使用されている。国際公開 99Z41495号公報には、従来の排気圧力制御弁が開示 されている。  [0003] An exhaust pressure control valve that controls the pressure of exhaust gas exhausted from the engine is used in order to improve the startability of the engine or purify exhaust gas from which engine power is also exhausted. International Publication No. 99Z41495 discloses a conventional exhaust pressure control valve.
この排気圧力制御弁は、メイン流路とバイパス流路が設けられたハウジングを備え ている。メイン流路の内壁面には入口ポートと出口ポートが設けられている。入口ポ ートにはバイノス流路の上流端が接続され、出口ポートにはバイノス流路の下流端 が接続されている。メイン流路には、メイン流路を開閉するメインバルブが設けられて いる。メインバルブは、入口ポートと出口ポートの間に配されている。バイパス流路に は、バイパス流路を開閉するバイパスノ レブが設けられている。バイパスバルブを開 くと、メインバルブの上流側の排気ガスはノ ィパス流路を通ってメインノ レブの下流 側に流れることができる。  This exhaust pressure control valve includes a housing provided with a main flow path and a bypass flow path. An inlet port and an outlet port are provided on the inner wall surface of the main channel. The upstream end of the binos passage is connected to the inlet port, and the downstream end of the binos passage is connected to the outlet port. A main valve for opening and closing the main channel is provided in the main channel. The main valve is disposed between the inlet port and the outlet port. The bypass channel is provided with a bypass nozzle that opens and closes the bypass channel. When the bypass valve is opened, the exhaust gas upstream of the main valve can flow downstream of the main valve through the nopass channel.
この排気圧力制御弁では、メインバルブの開度を絞ると、排気ガスの圧力が上昇す る。排気ガスの圧力が所定の値を超えると、バイパスバルブが開く。バイパスバルブ が開くと、バイパス流路を排気ガスが流れる。これによつて、排気ガスの圧力上昇が 抑えられ、排気ガスの圧力が所定の値に維持される。一方、メインバルブの開度を大 きくすると、排気ガスの圧力が低下し、ノ ィパスバルブが閉じてバイパス流路も閉じら れる。 In this exhaust pressure control valve, the exhaust gas pressure increases when the opening of the main valve is reduced. When the exhaust gas pressure exceeds a predetermined value, the bypass valve opens. When the bypass valve opens, exhaust gas flows through the bypass flow path. As a result, the pressure increase of the exhaust gas is suppressed, and the pressure of the exhaust gas is maintained at a predetermined value. On the other hand, when the opening of the main valve is increased, the pressure of the exhaust gas decreases, the no-pass valve is closed and the bypass flow path is also closed. It is.
発明の開示  Disclosure of the invention
[0004] 近年、上述した排気圧力制御弁を、ディーゼルエンジンカゝら排出される排気ガスを 浄化するディーゼル ·パティキュレート'フィルタ ·システム(以下、 DPFシステムと!/、う) へ適用することが検討されている。 DPFシステムは、ディーゼルエンジンの排気ガス に含まれるパティキュレート (粒子状物質)や黒鉛をセラミック製のフィルタで捕集する システムである。 DPFシステムでは、フィルタに捕集されるすすを主成分とする粒子 状物質 (PM)がー定量を超えると、フィルタに捕集されたすすを主成分とする粒子状 物質 (PM)を燃焼させてフィルタを再生する。このフィルタの再生のために排気圧力 制御弁が用いられる。すなわち、排気圧力制御弁はフィルタの上流又は下流に配さ れる。フィルタを再生する際は、メインバルブの開度を絞り、排気ガスの圧力を高める 。排気ガスの圧力が所定値を超えると、バイパスバルブが開き、ノ ィパス流路を排気 ガスが流れる。これによつて、排気ガスの圧力が所定値に維持される。排気ガスの圧 力上昇によってエンジンへの負荷が大きくなると、エンジンへの燃料供給量が増量さ れる。このため、排気温度が高められ触媒が活性化するとともに、エンジンで燃焼し な力つた燃料の一部がフィルタ上流の酸ィ匕触媒に供給される。酸化触媒に供給され た燃料は、酸化反応によって触媒内の排気ガス温度を上昇させ、フィルタに捕集され たすすを主成分とする粒子状物質 (PM)を燃焼させる (すなわち、フィルタを再生す る)。フィルタの再生が終了すると、メインバルブが開き、排気圧力が通常の圧力まで 低下する。このように排気圧力制御弁で排気ガスの圧力を制御することで、エンジン に供給される燃料を利用してフィルタの再生を行うことができる。  [0004] In recent years, the above-described exhaust pressure control valve can be applied to a diesel particulate filter system (hereinafter referred to as a DPF system! /) That purifies exhaust gas discharged from a diesel engine car. It is being considered. The DPF system is a system that collects particulates (particulate matter) and graphite contained in the exhaust gas of a diesel engine with a ceramic filter. In the DPF system, if the particulate matter (PM) mainly composed of soot collected by the filter exceeds a certain amount, the particulate matter (PM) mainly composed of soot collected by the filter is burned. Play the filter. An exhaust pressure control valve is used to regenerate this filter. That is, the exhaust pressure control valve is arranged upstream or downstream of the filter. When regenerating the filter, reduce the opening of the main valve and increase the pressure of the exhaust gas. When the exhaust gas pressure exceeds a predetermined value, the bypass valve opens and the exhaust gas flows through the no-pass passage. As a result, the pressure of the exhaust gas is maintained at a predetermined value. When the load on the engine increases due to increased exhaust gas pressure, the fuel supply to the engine increases. For this reason, the exhaust temperature is raised and the catalyst is activated, and a part of the fuel that is not burned by the engine is supplied to the acid catalyst upstream of the filter. The fuel supplied to the oxidation catalyst raises the exhaust gas temperature in the catalyst by an oxidation reaction, and burns particulate matter (PM) mainly composed of soot collected by the filter (that is, regenerates the filter). ) When the filter regeneration is complete, the main valve opens and the exhaust pressure drops to normal pressure. By controlling the exhaust gas pressure with the exhaust pressure control valve in this way, the filter can be regenerated using the fuel supplied to the engine.
し力しながら、排気圧力制御弁を DPFシステムに適用した場合、フィルタの再生を 終了し、メインバルブを閉状態 (メインバルブの開度を絞った状態を含む)から開状態 に切り替える際に、メインバルブの上流側から下流側に排気ガスが急激に流れる。こ れによって、不快な騒音 (噴出音)が発生するという問題があった。特に、ディーゼル エンジンが搭載される車両は、バス、トラック等の大型車が多ぐ発生する騒音も大き い。このため、騒音の低減が大きな課題となっている。  However, when the exhaust pressure control valve is applied to the DPF system, the regeneration of the filter is terminated and the main valve is switched from the closed state (including the state where the main valve opening is reduced) to the open state. Exhaust gas rapidly flows from the upstream side to the downstream side of the main valve. As a result, there was a problem that unpleasant noise (squirting sound) was generated. In particular, vehicles equipped with diesel engines generate a lot of noise generated by large vehicles such as buses and trucks. For this reason, noise reduction has become a major issue.
[0005] 本発明の目的は、排気圧力制御弁のメインバルブを閉状態力 開状態に切り替え る際に発生する騒音を低減することができる排気圧力制御弁を提供することである。 [0005] An object of the present invention is to switch the main valve of the exhaust pressure control valve to a closed state force open state. It is an object to provide an exhaust pressure control valve that can reduce the noise generated during the operation.
[0006] 本発明者らは、メインバルブを閉状態から開状態に切り替える際に発生する騒音の 原因を特定するために、排気ガスの流動解析シミュレーションを行った。その結果、メ インバルブを閉状態から開状態に切り替えると、メインバルブの上流側から下流側に 高速で流れる排気ガスが出口ポートに衝突し、出口ポート内の排気ガスに渦流を発 生させ、この渦流が騒音の一因となっていることが判明した。 [0006] In order to identify the cause of noise generated when the main valve is switched from the closed state to the open state, the present inventors performed a flow analysis simulation of the exhaust gas. As a result, when the main valve is switched from the closed state to the open state, the exhaust gas flowing at high speed from the upstream side to the downstream side of the main valve collides with the outlet port, generating a vortex in the exhaust gas in the outlet port. It was found that eddy currents contributed to noise.
そこで、本発明の排気圧力制御弁は、メイン流路とバイパス流路を備えるハウジン グと、メイン流路を開閉するメインバルブと、バイパス流路を開閉するバイパスバルブ を有している。メインノ レブは、ハウジングに回転自在に支持されるスロットル軸と、ス ロットル軸に取付けられた弁体とを備えている。スロットル軸が回転することにより、弁 体がメイン流路を閉じる閉状態と弁体がメイン流路を開く開状態とに切換えられる。メ インバルブ上流側のメイン流路の内壁面には、バイパス流路の上流端が接続される 入口ポートが設けられている。メインバルブ下流側のメイン流路の内壁面には、バイ パス流路の下流端が接続される出口ポートが設けられている。そして、メインバルブ が閉じられた状態では、出口ポートの位置と、スロットル軸の軸線力 弁体の周縁ま での距離が最も長くなる弁体の周縁上の点の位置と力 周方向にずれている。  Therefore, the exhaust pressure control valve of the present invention has a housing having a main flow path and a bypass flow path, a main valve for opening and closing the main flow path, and a bypass valve for opening and closing the bypass flow path. The main nozzle includes a throttle shaft that is rotatably supported by the housing, and a valve body that is attached to the throttle shaft. When the throttle shaft rotates, the valve body is switched between a closed state in which the main flow path is closed and an open state in which the valve body opens the main flow path. An inlet port to which the upstream end of the bypass channel is connected is provided on the inner wall surface of the main channel on the upstream side of the main valve. An outlet port to which the downstream end of the bypass flow path is connected is provided on the inner wall surface of the main flow path on the downstream side of the main valve. When the main valve is closed, the position of the outlet port and the axial force of the throttle shaft are shifted in the circumferential direction from the position of the point on the periphery of the valve body where the distance to the periphery of the valve body is the longest. Yes.
メインバルブを閉じた状態から開くと、スロットル軸の軸線力 弁体の周縁までの距 離が最も長くなる弁体の周縁上の点 (すなわち、最も回転半径が大きくなる点)にお いて、弁体の周縁とメイン流路との隙間が最大となり、排気ガスの流速も最も速くなる 。この排気圧力制御弁では、出口ポートの位置と、スロットル軸の軸線力 弁体の周 縁までの距離が最も長くなる弁体の周縁上の点の位置とが、周方向にずれている。こ のため、メインバルブが閉じているときに生じる高速の排気ガス流の中心が出口ポー トからずれる。これによつて、メインバルブの閉弁時に発生する騒音を抑えることがで きる。  When the main valve is opened from the closed state, the axial force of the throttle shaft is at the point on the rim of the valve body where the distance to the rim of the valve body is the longest (that is, the point where the turning radius is the largest). The gap between the body periphery and the main channel is maximized, and the exhaust gas flow rate is also maximized. In this exhaust pressure control valve, the position of the outlet port and the position of the point on the peripheral edge of the valve body where the distance to the peripheral edge of the axial force valve body of the throttle shaft is longest are shifted in the circumferential direction. For this reason, the center of the high-speed exhaust gas flow that occurs when the main valve is closed deviates from the outlet port. As a result, noise generated when the main valve is closed can be suppressed.
[0007] 上述した排気圧力制御弁では、出口ポートの周方向の位置力 メイン流路に設けら れたスロットル軸を支持する部位の周方向の位置と略一致することが好ましい。  [0007] In the exhaust pressure control valve described above, it is preferable that the position force in the circumferential direction of the outlet port substantially coincides with the position in the circumferential direction of the portion supporting the throttle shaft provided in the main flow path.
この構成〖こよると、高速の排気ガス流カゝら離れた位置に出口ポートが配置されること になるため、発生する騒音を効果的に抑制することができる。 [0008] また、上述した排気圧力制御弁は、ハウジングに形成された貫通孔に収容されてス ロットル軸の一端を支持する軸受けと、貫通孔からハウジングの外側に突出する側の スロットル軸の一端に取付けられてスロットル軸を回転駆動するァクチユエータと、ス ロットル軸と貫通孔の内壁面との間をシールするシール部材をさらに有することが好 ましい。 According to this configuration, since the exit port is disposed at a position away from the high-speed exhaust gas flow, the generated noise can be effectively suppressed. [0008] Further, the exhaust pressure control valve described above is housed in a through hole formed in the housing and supports one end of the throttle shaft, and one end of the throttle shaft on the side protruding from the through hole to the outside of the housing. It is preferable to further include an actuator that is attached to the shaft and rotationally drives the throttle shaft, and a seal member that seals between the throttle shaft and the inner wall surface of the through hole.
この構成によると、スロットル軸の回転動作を円滑に行うことができ、かつ、メイン流 路からの排気ガスの流出を抑制することができる。  According to this configuration, the rotation operation of the throttle shaft can be performed smoothly and the outflow of exhaust gas from the main flow path can be suppressed.
[0009] また、出口ポートには、排気ガスの流れ特性を変更する流れ特性変更手段が設け られていることも好ましい。出口ポートに流れ特性変更手段が設けられていると、メイ ンノ レブを閉状態から開状態としたときの高速の排気ガス流が出口ポートに向かつ て流れても、出口ポート内の排気ガスに渦流が発生することが抑制される。これによ つて、メインバルブの閉弁時に発生する騒音を低減することができる。 [0009] It is also preferable that the outlet port is provided with flow characteristic changing means for changing the flow characteristic of the exhaust gas. If the outlet port is provided with flow characteristic changing means, even if the high-speed exhaust gas flow from the closed state to the open state flows toward the outlet port, the exhaust gas in the outlet port is changed. Generation of vortex is suppressed. As a result, noise generated when the main valve is closed can be reduced.
なお、流れ特性変更手段は、出口ポートの下流側に形成された曲面状の壁面とす ることができる。すなわち、出口ポートの下流側の壁面を曲面状に形成することによつ て、出口ポート内に渦流が発生することを抑制することができる。  The flow characteristic changing means can be a curved wall surface formed on the downstream side of the outlet port. That is, by forming the wall surface on the downstream side of the outlet port in a curved surface, it is possible to suppress the generation of vortex in the outlet port.
あるいは、流れ特性変更手段は、出口ポートの下流側の壁面に取付けられて排気 ガスの流れを整流する整流部材を用いることができる。整流部材によっても、出口ポ ート内に渦流が発生することを抑えることができる。  Alternatively, the flow characteristic changing means can be a rectifying member that is attached to the wall surface on the downstream side of the outlet port and rectifies the flow of the exhaust gas. The rectifying member can also suppress the generation of vortex in the outlet port.
[0010] DPFシステムに排気圧力制御弁を用いる場合、弁体の周縁とメイン流路の内壁面 との間に隙間が形成されることがある。この場合、メイン流路を閉じると、メインバルブ 上流の高圧の排気ガスが、弁体の周縁とメイン流路の内壁面との隙間から下流側に 向かって高速で流れ、噴出音が発生する。 [0010] When an exhaust pressure control valve is used in a DPF system, a gap may be formed between the periphery of the valve element and the inner wall surface of the main flow path. In this case, when the main flow path is closed, the high-pressure exhaust gas upstream of the main valve flows at high speed from the gap between the peripheral edge of the valve body and the inner wall surface of the main flow path, and an ejection noise is generated.
この噴出音の原因について流動解析シミュレーションにより検討した結果、噴出音 の原因はバルブ上流側から高速で流れ出る排気ガスの流れと、その周囲 (バルブ下 流)の排気ガスとの流速差が主要な原因であることが判明した。したがって、バルブ 上流側から下流側に向かって流れ出る排気ガスの流速を低く抑えることができれば、 その流速差も小さくなり、噴出音も低減できる。  As a result of investigating the cause of this sound by flow analysis simulation, the cause of the sound is mainly due to the difference in flow velocity between the exhaust gas flowing at high speed from the upstream side of the valve and the surrounding exhaust gas (downstream of the valve). It turned out to be. Therefore, if the flow rate of the exhaust gas flowing out from the upstream side of the valve to the downstream side can be kept low, the flow rate difference will be reduced and the jet noise can be reduced.
なお、この噴出音を低減するために、メインバルブの弁体に連通孔 (表面力 裏面 に貫通する)を設けたものがある(例えば、特開 2005— 299457号公報)。弁体に連 通孔を設けることで、弁体の周縁と排気流路の内壁面との隙間を流れる排気ガスの 流量が少なくなり、ある程度は騒音を低減できる。し力しながら、従来の技術では、弁 体に設けられた連通孔が、排気流路が伸びる方向と平行に伸びている。このため、 弁体の周縁から下流側に流れ出る排気ガスの流出方向と、連通孔から下流側に流 れ出る排気ガスの流出方向とが平行(同一)となり、両者の流れは混合され難くなつ ていた。したがって、メインバルブ上流側から高速で流れる排気ガスの流れと、その 周囲の排気ガスとの流速差が十分に緩和されず、発生する噴出音を充分に低減す ることができていない。 In order to reduce this blowing noise, the communication hole (surface force (For example, JP-A-2005-299457). By providing the communication hole in the valve body, the flow rate of the exhaust gas flowing through the gap between the peripheral edge of the valve body and the inner wall surface of the exhaust passage is reduced, and noise can be reduced to some extent. However, in the conventional technique, the communication hole provided in the valve body extends in parallel with the direction in which the exhaust passage extends. For this reason, the outflow direction of the exhaust gas flowing out from the peripheral edge of the valve body and the outflow direction of the exhaust gas flowing out downstream from the communication hole are parallel (the same), and the flows of both are difficult to be mixed. It was. Therefore, the difference in flow rate between the exhaust gas flow flowing from the upstream side of the main valve at high speed and the surrounding exhaust gas is not sufficiently relaxed, and the generated sound cannot be sufficiently reduced.
そこで、本発明の一態様に係る排気圧力制御弁では、バルブが閉じられた状態で 弁体の周縁とメイン流路の内壁面には全周にわたって隙間が形成され、弁体には、 その表面力 裏面に貫通する連通孔が設けられている。そして、連通孔は、メインバ ルブが閉じられた状態でその連通孔力 流れ出る排気ガスの流出方向がメイン流路 の軸線方向に対して傾斜するように設けられて 、る。  Therefore, in the exhaust pressure control valve according to one aspect of the present invention, a gap is formed around the entire periphery of the valve body at the periphery of the valve body and the inner wall surface of the main flow path with the valve closed. A communication hole penetrating the back surface is provided. The communication hole is provided such that the exhaust gas flowing out through the communication hole force in a state where the main valve is closed is inclined with respect to the axial direction of the main flow path.
この構成によると、弁体の周縁から下流側に流れる排気ガスの流れと、連通孔から 流れ出る排気ガスの流れとが平行とならないため、両者が混合され易くなる。このた め、弁体の上流側から下流側に流れ出る排気ガスの流速が減速されることとなる。こ れによって、メインバルブを閉じた状態のときに発生する噴出音を低減することができ る。  According to this configuration, the flow of the exhaust gas flowing from the peripheral edge of the valve body to the downstream side and the flow of the exhaust gas flowing out from the communication hole are not parallel, so that both are easily mixed. For this reason, the flow velocity of the exhaust gas flowing out from the upstream side of the valve body to the downstream side is decelerated. As a result, it is possible to reduce the noise generated when the main valve is closed.
[0011] この排気圧力制御弁は、バルブが閉じられた状態で、弁体の表面がメイン流路の 軸線方向に対して傾斜するように構成することができる。この場合、連通孔は、弁体 の表面のうちスロットル軸より下流側となる位置に、弁体の表面に対して略垂直方向 に設けられて 、ることが好まし 、。  [0011] This exhaust pressure control valve can be configured such that the surface of the valve element is inclined with respect to the axial direction of the main flow path in a state where the valve is closed. In this case, it is preferable that the communication hole is provided at a position on the downstream side of the throttle shaft on the surface of the valve body in a direction substantially perpendicular to the surface of the valve body.
この構成によると、連通孔カも流れ出た排気ガスは排気流路の中心に向力つて流 れ出る。このため、排気流路内の全体に排気ガスが拡散して流れるため、排気ガスの 流速を効果的に低減することができる。これによつて、噴出音の低減効果を向上する ことができる。  According to this configuration, the exhaust gas that has also flowed out of the communication hole is directed toward the center of the exhaust passage. For this reason, since the exhaust gas diffuses and flows throughout the exhaust passage, the flow rate of the exhaust gas can be effectively reduced. As a result, the effect of reducing the ejection noise can be improved.
[0012] また、上記の排気圧力制御弁では、メインバルブより下流側のメイン流路の内壁面 に、内壁面近傍の排気ガスの流速を低減するガス流速低減手段 (例えば、金網等) が設けられることが好まし 、。弁体の周縁と排気流路の内壁面の間から下流側に流 れる排気ガスの流速が低減されるため、噴出音をより低減することができる。 [0012] In the exhaust pressure control valve, the inner wall surface of the main flow path on the downstream side of the main valve In addition, it is preferable to provide a gas flow rate reduction means (for example, a wire mesh or the like) for reducing the flow rate of the exhaust gas near the inner wall surface. Since the flow velocity of the exhaust gas flowing downstream from between the peripheral edge of the valve body and the inner wall surface of the exhaust flow path is reduced, the ejection noise can be further reduced.
[0013] さらに、本発明は、メインバルブを閉状態から開状態に切り替える際に発生する騒 音を低減することができる排気圧力制御弁を提供する。この排気圧力制御弁は、メイ ン流路とバイパス流路を備えるハウジングと、メイン流路を開閉するメインバルブと、メ インバルブを開閉駆動する第 1のバルブ開閉装置と、バイパス流路を開閉するバイパ スバルブと、バイノ スバルブを開閉駆動する第 2のノ レブ開閉装置を有する。そして 、第 1のバルブ開閉装置は、メインバルブを閉状態力 開状態とするまでの時間がメ インバルブを開状態カも閉状態とするまでの時間に比して長くなるように設定されて いる。このため、メインバルブを閉状態から開状態としたときに、メインバルブの上流 側から下流側へ排気ガスが急激に流れることが抑制される。これによつて、騒音(噴 出音)を低減することができる。また、メインバルブを開状態カも閉状態とするまでの 時間は短く設定されているため、排気ガスの圧力を短時間で所望の値まで上昇させ ることがでさる。  Furthermore, the present invention provides an exhaust pressure control valve that can reduce noise generated when the main valve is switched from the closed state to the open state. The exhaust pressure control valve includes a housing including a main flow path and a bypass flow path, a main valve that opens and closes the main flow path, a first valve opening and closing device that opens and closes the main valve, and opens and closes the bypass flow path. It has a bypass valve and a second valve opening / closing device that opens and closes the binos valve. The first valve opening / closing device is set so that the time until the main valve is closed and the force is opened is longer than the time until the main valve is opened and the valve is closed. . For this reason, when the main valve is changed from the closed state to the open state, the exhaust gas is prevented from flowing rapidly from the upstream side to the downstream side of the main valve. As a result, noise (spout sound) can be reduced. Further, since the time until the main valve is opened and closed is set short, the exhaust gas pressure can be raised to a desired value in a short time.
[0014] 上記の排気圧力制御弁では、第 1バルブ開閉装置は、例えば、ソレノイド、空気、 油圧等によって作動するようにし、エンジンの運転状態に応じて開閉駆動することが できる。また、第 2バルブ開閉装置は、例えば、ダイアフラム式のァクチユエ一タを用 いることができ、メインバルブの上流の排気ガスの圧力に応じて開閉駆動される。 この場合に、第 1のバルブ開閉装置は、メインノ レブを開閉駆動するダイアフラム 式のァクチユエータと、そのァクチユエータの圧力室に気体の給排気を行う給排気手 段と、その給排気手段とァクチユエータの圧力室とを接続する配管と、その配管の途 中に設けられ、気体の通過断面積が大きな通過口となる第 1の状態と、気体の通過 断面積が小さな通過口となる第 2の状態とに切り替える流量調節手段を有することが できる。そして、ァクチユエータは、圧力室の気体の圧力が所定圧力を超えるときはメ インバルブを閉じ、圧力室の圧力が所定圧力以下のときはメインバルブを開くよう〖こ 設定されている。流量調節手段は、圧力室から気体を排気するときは第 1の状態とし 、圧力室に気体を供給するときは第 2の状態となる。 この構成によると、ダイアフラム式のァクチユエータの圧力室に気体を供給すること で圧力室の圧力が所定圧力を超えると、メインバルブが閉状態力 開状態となる。圧 力室に気体を供給するときは、流量調節手段は気体通過断面積の小さな通過口とな るため、圧力室の圧力が急激に上昇することが抑制される。このため、メインノ レブ はゆっくりと開状態となる。一方、ダイアフラム式のァクチユエータの圧力室力 気体 を排気することで圧力室の圧力が所定圧力以下となると、メインバルブが開状態から 閉状態となる。圧力室から気体を排気するときは、流量調節手段は気体通過断面積 の大きな通過口となるため、圧力室の圧力が急激に低下する。このため、メインバル ブは素早く閉状態となる。 [0014] In the exhaust pressure control valve described above, the first valve opening / closing device is operated by, for example, a solenoid, air, hydraulic pressure, etc., and can be opened / closed according to the operating state of the engine. The second valve opening / closing device can use, for example, a diaphragm type actuator, and is opened / closed according to the pressure of the exhaust gas upstream of the main valve. In this case, the first valve opening / closing device includes a diaphragm type actuator that opens and closes the main valve, a supply / exhaust means for supplying / exhausting gas to / from the pressure chamber of the actuator, and pressures of the supply / exhaust means and the actuator. A pipe connecting the chambers, a first state provided in the middle of the pipe and having a large passage cross-sectional area of the gas, and a second state having a small passage cross-sectional area of the gas and a second passage It is possible to have a flow rate adjusting means for switching to. The actuator is set to close the main valve when the gas pressure in the pressure chamber exceeds a predetermined pressure, and to open the main valve when the pressure in the pressure chamber is lower than the predetermined pressure. The flow rate adjusting means is in the first state when the gas is exhausted from the pressure chamber, and is in the second state when the gas is supplied to the pressure chamber. According to this configuration, when the pressure in the pressure chamber exceeds a predetermined pressure by supplying gas to the pressure chamber of the diaphragm type actuator, the main valve is in the closed state force open state. When the gas is supplied to the pressure chamber, the flow rate adjusting means becomes a passage opening with a small gas passage cross-sectional area, so that the pressure chamber pressure is prevented from rapidly increasing. For this reason, the main solenoid slowly opens. On the other hand, when the pressure chamber pressure gas of the diaphragm type actuator is exhausted and the pressure in the pressure chamber falls below a predetermined pressure, the main valve changes from the open state to the closed state. When the gas is exhausted from the pressure chamber, the flow rate adjusting means becomes a passage port having a large gas passage cross-sectional area, so that the pressure in the pressure chamber rapidly decreases. For this reason, the main valve is quickly closed.
[0015] また、第 2のバルブ開閉装置は、メインバルブ上流側の排気ガスの圧力に応じて直 線運動する可動部材と、その可動部材の直線運動をバイパスバルブの開閉運動に 変換するリンク機構とを備えて 、ることが好ま 、。  [0015] The second valve opening / closing device includes a movable member that moves linearly according to the pressure of the exhaust gas upstream of the main valve, and a link mechanism that converts the linear motion of the movable member into an opening / closing motion of the bypass valve. And prefer to have, and.
この構成〖こよると、可動部材の排気ガスの圧力に応じた直線運動がリンク機構を介 してバイパスバルブに伝達される。このため、排気ガスの圧力が脈動するような場合 でも、ダイァフラムの緩衝効果によって脈動を鈍化するため、バイパスバルブの挙動 を安定ィ匕することができる。これによつて、排気ガスの圧力を精度よく制御することが できる。  According to this configuration, a linear motion corresponding to the exhaust gas pressure of the movable member is transmitted to the bypass valve via the link mechanism. For this reason, even when the exhaust gas pressure pulsates, the pulsation is dulled by the buffering effect of the diaphragm, so that the behavior of the bypass valve can be stabilized. As a result, the pressure of the exhaust gas can be accurately controlled.
[0016] また、第 2のバルブ開閉装置は、例えば、可動部材を収容する収容室と、可動部材 によって仕切られた収容室の一方にメインノ レブ上流側の排気ガスを導入する導入 管と、収容室の他方に配されて可動部材を収容室の一方に向かって付勢する付勢 手段を備えることができる。  [0016] The second valve opening / closing device includes, for example, a storage chamber that houses a movable member, an introduction pipe that introduces exhaust gas upstream of the main valve into one of the storage chambers partitioned by the movable member, An urging means arranged on the other side of the chamber to urge the movable member toward one of the accommodation chambers can be provided.
この構成によると、排気ガスの圧力に応じて可動部材の位置が変化する。このため According to this configuration, the position of the movable member changes according to the pressure of the exhaust gas. For this reason
、ノ ィパスバルブの開度を排気ガスの圧力に応じて変えることができる。これによつてThe opening degree of the noisy valve can be changed according to the exhaust gas pressure. According to this
、排気ガスの圧力を精度良く制御することができる。 The pressure of the exhaust gas can be controlled with high accuracy.
[0017] また、ハウジングの上流端には、 DPF装置が接続可能とされた接続口が設けられ ていることが好ましい。 [0017] Further, it is preferable that a connection port to which a DPF device can be connected is provided at the upstream end of the housing.
この構成によると、 DPF装置の下流側に排気圧力制御弁が配置される。このため、 According to this configuration, the exhaust pressure control valve is arranged downstream of the DPF device. For this reason,
DPF装置ですすを主成分とする粒子状物質 (PM)が除去された排気ガスが排気圧 力制御弁を流れることとなる。したがって、すすを主成分とする粒子状物質 (PM)等 力排気圧力制御弁に付着し、排気圧力制御弁の制御性を悪化させることが防止され る。 Exhaust gas from which particulate matter (PM) containing soot as the main component is removed is exhaust pressure. It will flow through the force control valve. Therefore, particulate matter (PM) containing soot as a main component is prevented from adhering to the isotropic exhaust pressure control valve, and deterioration of the controllability of the exhaust pressure control valve is prevented.
[0018] また、ハウジングの下流端には、排気管が取付けられるフランジ部を設けることがで きる。この場合に、フランジ部は、排気管に対してフレキシブル結合されるようになつ ていることが好ましい。  [0018] A flange portion to which an exhaust pipe is attached can be provided at the downstream end of the housing. In this case, it is preferable that the flange portion is flexibly coupled to the exhaust pipe.
排気圧力制御弁と排気管がフレキシブル結合されることで、排気圧力制御弁の上 流側の装置 (例えば、エンジン等)の振動が排気管に伝わることを防止することができ る。  By flexibly coupling the exhaust pressure control valve and the exhaust pipe, it is possible to prevent the vibration of the upstream device (for example, engine) from being transmitted to the exhaust pipe.
[0019] さらに、バイパスバルブは、ノ ィパス流路の中間部でメイン流路カも退避した位置 に配置されることが好ましい。そして、第 2のノ レブ開閉装置は、メインバルブ上流側 の排気ガスの圧力に応じて直線運動する可動部材と、その可動部材の直線運動を ノ ィパスバルブの開閉運動に変換するリンク機構とを備えていることが好ましい。 この構成によると、ノ ィパスバルブ力 Sバイパス流路の中間部 (すなわち、メイン流路 力も退避した位置)に設けられるため、バイノスバルブにメイン流路を流れる排気ガス の圧力が直接作用することが防止される。また、バイノ スバルブの開閉は、メインバ ルブの上流側の排気ガスの圧力に応じて可動部材を直線運動させ、その可動部材 の直線運動をリンク機構を介してバイパスバルブに伝達することで行われる。このた め、メイン流路を流れる排気ガスが脈動し、メインバルブ上流側の排気ガスの圧力が 細かく変動しても、バイパスノ レブの開閉に大きく影響することが防止される。これに よって、バイパスバルブのチャタリングを防止でき、排気ガスの圧力を安定的に制御 することができる。  [0019] Further, it is preferable that the bypass valve is disposed at a position where the main flow path is also retracted at an intermediate portion of the non-pass flow path. The second valve opening / closing device includes a movable member that linearly moves according to the pressure of the exhaust gas upstream of the main valve, and a link mechanism that converts the linear motion of the movable member into the opening / closing motion of the no-pass valve. It is preferable. According to this configuration, since the bypass valve force S is provided in the middle portion of the bypass flow path (that is, the position where the main flow path force is also retracted), it is prevented that the pressure of the exhaust gas flowing through the main flow path directly acts on the binos valve. The The binos valve is opened and closed by linearly moving the movable member in accordance with the pressure of the exhaust gas upstream of the main valve and transmitting the linear motion of the movable member to the bypass valve via the link mechanism. For this reason, even if the exhaust gas flowing in the main flow channel pulsates and the pressure of the exhaust gas upstream of the main valve fluctuates, it is possible to prevent the bypass valve from being greatly affected. As a result, chattering of the bypass valve can be prevented, and the exhaust gas pressure can be stably controlled.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]第 1実施例の排気圧力制御弁が搭載されるディーゼルエンジンの排気系の構 成を示す図。  FIG. 1 is a diagram showing a configuration of an exhaust system of a diesel engine equipped with an exhaust pressure control valve of a first embodiment.
[図 2]第 1実施例の排気圧力制御弁の概略構成を示す断面図。  FIG. 2 is a cross-sectional view showing a schematic configuration of an exhaust pressure control valve of the first embodiment.
[図 3]図 2の III III線断面図。  FIG. 3 is a sectional view taken along line III-III in FIG.
[図 4]入口ポートと出口ポートとスロットル軸の軸受け部の周方向の位置を説明するた めの図。 [Fig. 4] To explain the circumferential position of the bearing part of the inlet port, outlet port and throttle shaft Figure for.
圆 5]メインバルブを開閉する装置の概略構成を模式的に示す図。 圆 5] A diagram schematically showing a schematic configuration of a device for opening and closing the main valve.
圆 6]バイパスバルブを開閉する装置の概略構成を模式的に示す図。 6] A diagram schematically showing a schematic configuration of a device for opening and closing a bypass valve.
圆 7]メインバルブを閉じるときの流量調節弁の状態を示す図。 圆 7] Diagram showing the state of the flow control valve when closing the main valve.
[図 8] 3方電磁弁とァクチユエータの圧力室の圧力とメインバルブの開度の時間的変 化を模式的に示す図。  FIG. 8 is a diagram schematically showing temporal changes in the pressure chamber pressure of the three-way solenoid valve and the actuator and the opening of the main valve.
圆 9]メインバルブを閉じた状態力も開いた状態とするときの排気圧力の変化と噴出 音の音圧変化を測定した結果の一例を示す図。 [9] FIG. 9 is a diagram showing an example of a result of measuring a change in exhaust pressure and a change in sound pressure of the ejection sound when the state force when the main valve is closed is also opened.
圆 10]メインバルブの応答時間(閉状態力も全開状態となるまでの時間)と噴出音の 音圧 (最大音圧)との関係を示す図。 圆 10] A graph showing the relationship between the response time of the main valve (the time until the closing force is fully opened) and the sound pressure (maximum sound pressure) of the erupting sound.
圆 11]排気圧力制御弁と排気管との取付け構造の変形例を示す図。 FIG. 11 is a view showing a modified example of the mounting structure of the exhaust pressure control valve and the exhaust pipe.
圆 12]第 1実施例の排気圧力制御弁の変形例を示す図。 12] A view showing a modified example of the exhaust pressure control valve of the first embodiment.
圆 13]第 1実施例の排気圧力制御弁の他の変形例を示す図。 FIG. 13 is a view showing another modification of the exhaust pressure control valve of the first embodiment.
圆 14]第 1実施例の排気圧力制御弁の他の変形例を示す図。 FIG. 14 is a view showing another modification of the exhaust pressure control valve of the first embodiment.
[図 15]図 14に示す排気圧力制御弁の出口ポートを拡大して示す図。  15 is an enlarged view showing an outlet port of the exhaust pressure control valve shown in FIG.
圆 16]本発明の他の排気圧力制御弁の一部破断斜視図。 16] Partially cutaway perspective view of another exhaust pressure control valve of the present invention.
圆 17]図 16に示す排気圧力制御弁を異なる方向から見た一部破断斜視図。 [17] FIG. 17 is a partially broken perspective view of the exhaust pressure control valve shown in FIG. 16 as seen from different directions.
[図 18]図 16に示す排気圧力制御弁の入口ポート 116と出口ポート 146とスロットル軸 [FIG. 18] Inlet port 116, outlet port 146 and throttle shaft of exhaust pressure control valve shown in FIG.
132をバイパス流路側カも見た図。 Fig. 132 is a view of the bypass channel side.
[図 19]入口ポート 116とメイン流路 112の接続部を拡大して示す図。  FIG. 19 is an enlarged view showing a connection portion between the inlet port 116 and the main flow path 112.
[図 20]第 2実施例の排気圧力制御弁力 メイン流路とメインノ レブのみを取り出して 示す図。  FIG. 20 is an exhaust pressure control valve force of the second embodiment. FIG. 20 shows only the main flow path and the main nove.
[図 21]弁体の周縁とメイン流路の内壁面の部分を拡大して示す図。  FIG. 21 is an enlarged view of the periphery of the valve body and the inner wall surface of the main flow path.
[図 22]第 2実施例の排気圧力制御弁の流動シミュレーションの結果を示す図。 FIG. 22 is a view showing a flow simulation result of the exhaust pressure control valve of the second embodiment.
[図 23]連通孔を設けて ヽな 、場合の流動シミュレーションの結果を示す図。 FIG. 23 is a diagram showing the result of flow simulation in a case where a communication hole is provided.
[図 24]第 2実施例の変形例の流動シミュレーションの結果を示す図。 FIG. 24 is a diagram showing a flow simulation result of a modification of the second embodiment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の好適な実施形態を説明する。 (形態 1) 排気圧力制御弁は、ディーゼルエンジンの排気流路に配される。排気圧 力制御弁の上流には DPF装置が接続され、下流には排気管 (マフラ)が接続される Hereinafter, preferred embodiments of the present invention will be described. (Form 1) The exhaust pressure control valve is arranged in the exhaust passage of the diesel engine. A DPF device is connected upstream of the exhaust pressure control valve, and an exhaust pipe (muffler) is connected downstream.
(形態 2) 排気圧力制御弁は、メイン流路とバイパス流路が設けられたハウジングを 有する。ノ ィパス流路はメイン流路に隣接して設けられる。メイン流路には、メインバ ルブの上流側に入口ポートが設けられ、メインバルブの下流側に出口ポートが設けら れる。バイパス流路の上流端は入口ポートを介してメイン流路に接続され、下流端は 出口ポートを介してメイン流路に接続される。バイノスバルブはバイノス流路の中間 に配される。 (Form 2) The exhaust pressure control valve has a housing provided with a main flow path and a bypass flow path. The no-pass channel is provided adjacent to the main channel. In the main channel, an inlet port is provided on the upstream side of the main valve, and an outlet port is provided on the downstream side of the main valve. The upstream end of the bypass channel is connected to the main channel via the inlet port, and the downstream end is connected to the main channel via the outlet port. The binos valve is placed in the middle of the binos channel.
(形態 3) バイパスバルブを開閉する開閉装置は、ダイアフラム式のァクチユエータと 、そのァクチユエータのロッドの直線運動をバイパスバルブの開閉運動に変換するリ ンク機構を備えている。  (Mode 3) An opening / closing device that opens and closes the bypass valve includes a diaphragm type actuator and a link mechanism that converts linear motion of the rod of the actuator into opening / closing motion of the bypass valve.
(形態 4) メインバルブを開閉する開閉装置は、ダイアフラム式のァクチユエ一タを備 えている。ァクチユエータの圧力室の圧力が所定圧力を超えるとメインバルブは開き 、ァクチユエータの圧力室の圧力が所定圧力以下となるとメインバルブは閉じる。ァク チユエータの圧力室は 3方電磁弁の中立ポートに接続され、 3方電磁弁の他の 2つの ポートの一方は吸引ポンプに接続され、他方は大気に開放されている。ァクチユエ一 タの圧力室と 3方電磁弁の間には流量調節弁が設けられる。  (Form 4) The opening / closing device that opens and closes the main valve is equipped with a diaphragm type actuator. The main valve opens when the pressure in the pressure chamber of the actuator exceeds a predetermined pressure, and closes when the pressure in the pressure chamber of the actuator falls below a predetermined pressure. The pressure chamber of the actuator is connected to the neutral port of the 3-way solenoid valve, one of the other two ports of the 3-way solenoid valve is connected to the suction pump, and the other is open to the atmosphere. A flow control valve is installed between the pressure chamber of the actuator and the three-way solenoid valve.
(形態 5) 流量調節弁は、ハウジングと、ハウジング内をァクチユエータ側と 3方電磁 弁側とに仕切る仕切り板を有している。仕切り板には、複数のオリフィスが形成され、 その複数のオリフィスの一部は弁体 (バルブ)によって開閉される。弁体は、ァクチュ エータの圧力室に空気を導入するときにオリフィスを閉じ、ァクチユエータの圧力室か ら空気を排気するときはオリフィスを開く。  (Form 5) The flow control valve has a housing and a partition plate that partitions the inside of the housing into an actuator side and a three-way solenoid valve side. A plurality of orifices are formed in the partition plate, and some of the plurality of orifices are opened and closed by a valve body (valve). The valve body closes the orifice when air is introduced into the pressure chamber of the actuator, and opens the orifice when air is exhausted from the pressure chamber of the actuator.
(形態 6) メインバルブは、スロットル軸と、スロットル軸に取り付けられた弁体とを有し ている。スロットル軸の両端はハウジングに回転可能に支持されている。スロットル軸 が回転することで、弁体がメイン流路を閉じる閉状態と、弁体がメイン流路を開く開状 態とに切り替えられる。メインバルブが閉状態となると、弁体はメイン流路の軸線方向 に対して傾斜する。 (形態 7) 出口ポートの周方向の位置は、スロットル軸の軸線力 弁体の周縁までの 距離が最も短くなる弁体の周縁上の点 (すなわち、スロットル軸を支持する支持部)の 周方向の位置と同一となる。出口ポートの下流側の壁面は曲面状 (R状)に面取りが なされている。 (Form 6) The main valve has a throttle shaft and a valve body attached to the throttle shaft. Both ends of the throttle shaft are rotatably supported by the housing. By rotating the throttle shaft, the valve body is switched between a closed state in which the main flow path is closed and an open state in which the valve body opens the main flow path. When the main valve is closed, the valve body is inclined with respect to the axial direction of the main flow path. (Form 7) The circumferential position of the outlet port is the axial force of the throttle shaft. The circumferential position of the point on the periphery of the valve body where the distance to the periphery of the valve body is the shortest (that is, the support part that supports the throttle shaft) It becomes the same as the position. The downstream wall of the outlet port is chamfered into a curved surface (R shape).
(形態 8) 出口ポートの下流側の壁面には整流部材 (遮蔽板,フィン,ハ-カム等)が 配されている。  (Form 8) A flow straightening member (shielding plate, fin, hard cam, etc.) is arranged on the downstream wall of the outlet port.
(形態 9) 入口ポートは、スロットル軸と平行に形成される。入口ポートは、スロットル 軸を支持する支持部力 周方向にずれた位置に設けられて 、る。入口ポートとスロッ トル軸は、その一部がメイン流路の軸線方向にオーバラップして 、る。  (Form 9) The inlet port is formed in parallel with the throttle shaft. The inlet port is provided at a position displaced in the circumferential direction of the supporting portion force that supports the throttle shaft. Part of the inlet port and the throttle shaft overlap in the axial direction of the main flow path.
(形態 10) メインバルブが閉状態となると、弁体の周縁とメイン流路の内壁面との間 には全周に亘つて隙間が形成され、また、弁体はメイン流路の軸線方向に対して傾 斜している。 (Mode 10) When the main valve is closed, a gap is formed between the periphery of the valve body and the inner wall surface of the main flow path, and the valve body extends in the axial direction of the main flow path. It is inclined with respect to it.
(形態 11) 排気圧力制御弁は、メイン流路とバイパス流路を備えるハウジングと、ハ ウジングに回転自在に支持されるスロットル軸と、スロットル軸に取付けられた弁体と を備えており、スロットル軸を回転することにより弁体がメイン流路を閉じる閉状態と弁 体がメイン流路を開く開状態とに切換えるメインバルブと、バイパス流路を開閉するバ ィパスバルブを有している。メインバルブ上流側のメイン流路の内壁面には、バイパ ス流路の上流端が接続される入口ポートが設けられて 、る。メインノ レブ下流側のメ イン流路の内壁面には、バイパス流路の下流端が接続される出口ポートが設けられ ている。出口ポートには、排気ガスの流れ特性を変更する流れ特性変更手段が設け られている。  (Form 11) The exhaust pressure control valve includes a housing having a main flow path and a bypass flow path, a throttle shaft that is rotatably supported by a housing, and a valve body attached to the throttle shaft. The valve body has a main valve that switches between a closed state in which the valve body closes the main flow path and an open state in which the valve body opens the main flow path by rotating the shaft, and a bypass valve that opens and closes the bypass flow path. An inlet port to which the upstream end of the bypass channel is connected is provided on the inner wall surface of the main channel on the upstream side of the main valve. An outlet port to which the downstream end of the bypass channel is connected is provided on the inner wall surface of the main channel on the downstream side of the main nozzle. The outlet port is provided with flow characteristic changing means for changing the flow characteristic of the exhaust gas.
(形態 12) 排気圧力制御弁は、排気流路が設けられるハウジングと、ハウジングに 回転自在に支持される回転軸と、回転軸に取付けられた弁体とを備えており、回転 軸を回転することにより弁体が排気流路を閉じる閉状態と排気流路を開く開状態とに 切換えるバルブを有している。弁体には、その表面から裏面に貫通する連通孔が設 けられている。連通孔は、バルブが閉じられた状態でその連通孔力 流れ出る排気 ガスの流出方向が排気流路の軸線方向に対して傾斜するように設けられて 、る。 (形態 13) 排気圧力制御弁は、排気流路が設けられるハウジングと、ハウジングに 回転自在に支持される回転軸と、回転軸に取付けられた弁体とを備えており、回転 軸を回転することにより弁体が排気流路を閉じる閉状態と排気流路を開く開状態とに 切換えるバルブと、バルブより下流側の排気流路の内壁面に設けられ、内壁面近傍 の排気ガスの流速を低減するガス流速低減手段を有する。 (Mode 12) The exhaust pressure control valve includes a housing provided with an exhaust flow path, a rotating shaft rotatably supported by the housing, and a valve body attached to the rotating shaft, and rotates the rotating shaft. Thus, the valve body has a valve that switches between a closed state that closes the exhaust passage and an open state that opens the exhaust passage. The valve body is provided with a communication hole penetrating from the front surface to the back surface. The communication hole is provided so that the outflow direction of the exhaust gas flowing out of the communication hole force with the valve closed is inclined with respect to the axial direction of the exhaust passage. (Form 13) Exhaust pressure control valve has a housing provided with an exhaust flow path, and a housing. A rotating shaft that is rotatably supported and a valve body that is attached to the rotating shaft are provided. When the rotating shaft is rotated, the valve body closes the exhaust flow path and the open state opens the exhaust flow path. And a gas flow rate reduction means for reducing the flow rate of the exhaust gas near the inner wall surface, provided on the inner wall surface of the exhaust passage downstream from the valve.
(形態 14) 排気圧力制御弁は、メイン流路とバイパス流路を備えるハウジングと、メイ ン流路を開閉するメインバルブと、メインバルブを開閉駆動する第 1のバルブ開閉装 置と、バイパス流路を開閉するバイパスバルブと、バイパスバルブを開閉駆動する第 2のバルブ開閉装置を有している。バイパスバルブは、ノ ィパス流路の中間部でメイ ン流路力も退避した位置に配されている。第 2のバルブ開閉装置は、メインバルブ上 流側の排気ガスの圧力に応じて直線運動する可動部材と、その可動部材の直線運 動をバイパスバルブの開閉運動に変換するリンク機構とを備えている。  (Form 14) The exhaust pressure control valve includes a housing including a main flow path and a bypass flow path, a main valve that opens and closes the main flow path, a first valve opening / closing device that opens and closes the main valve, and a bypass flow. A bypass valve that opens and closes the passage and a second valve opening and closing device that opens and closes the bypass valve are provided. The bypass valve is arranged at a position where the main channel force is also retracted in the middle of the nopass channel. The second valve opening / closing device includes a movable member that linearly moves in accordance with the exhaust gas pressure on the upstream side of the main valve, and a link mechanism that converts the linear movement of the movable member into an opening / closing motion of the bypass valve. Yes.
(第 1実施例) 本発明を具現化した第 1実施例を図面を参照して説明する。まず、本 実施例の排気圧力制御弁 10が搭載されるディーゼルエンジン 1の排気系の構成に ついて説明する。 First Embodiment A first embodiment embodying the present invention will be described with reference to the drawings. First, the configuration of the exhaust system of the diesel engine 1 on which the exhaust pressure control valve 10 of this embodiment is mounted will be described.
図 1に示すように、ディーゼルエンジン 1の排気系は、 DPF装置 3と排気圧力制御 弁 10を備えている。 DPF装置 3は、排気ガスに含まれるすすを主成分とする粒子状 物質 (PM)を捕集するフィルタ(セラミック製)を有して!/、る。 DPF装置 3の上流端に は排気管 2を介してディーゼルエンジン 1が接続されている。 DPF装置 3の下流端に は排気管 5を介して排気圧力制御弁 10が接続されている。排気管 2には圧力センサ 2aが配されて ヽる。圧力センサ 2aは排気管 2を流れる排気ガスの圧力を検出する。 排気管 5には圧力センサ 5aが配設されている。圧力センサ 5aは排気管 5を流れる排 気ガスの圧力を検出する。圧力センサ 2a, 5aで検出された排気ガスの圧力は ECU4 (電子制御ユニット)に入力される。排気圧力制御弁 10は、ディーゼルエンジン 1から 排気される排気ガスの圧力を制御する。排気圧力制御弁 10の下流端は排気管 6を 介してマフラに接続されて!、る。  As shown in FIG. 1, the exhaust system of the diesel engine 1 includes a DPF device 3 and an exhaust pressure control valve 10. The DPF device 3 has a filter (made of ceramic) that collects particulate matter (PM) mainly composed of soot contained in exhaust gas. A diesel engine 1 is connected to the upstream end of the DPF device 3 through an exhaust pipe 2. An exhaust pressure control valve 10 is connected to the downstream end of the DPF device 3 through an exhaust pipe 5. The exhaust pipe 2 is provided with a pressure sensor 2a. The pressure sensor 2a detects the pressure of the exhaust gas flowing through the exhaust pipe 2. The exhaust pipe 5 is provided with a pressure sensor 5a. The pressure sensor 5a detects the pressure of the exhaust gas flowing through the exhaust pipe 5. The exhaust gas pressure detected by the pressure sensors 2a and 5a is input to the ECU 4 (electronic control unit). The exhaust pressure control valve 10 controls the pressure of exhaust gas exhausted from the diesel engine 1. The downstream end of the exhaust pressure control valve 10 is connected to the muffler via the exhaust pipe 6! RU
ディーゼルエンジン 1及び排気圧力制御弁 10の制御は、 ECU4によって行われる 。 ECU4は、ディーゼルエンジン 1の運転状態に応じて、ディーゼルエンジン 1への 吸気量及び燃料供給量を制御する。また、 ECU4は、圧力センサ 2a, 5aで検出され た各圧力の圧力差 (すなわち、 DPF装置 3の圧力損失)が所定値を超えると、排気圧 力制御弁 10のメインバルブ (後述)を閉じて DPF装置 3のフィルタを再生する。 The diesel engine 1 and the exhaust pressure control valve 10 are controlled by the ECU 4. The ECU 4 controls the intake air amount and the fuel supply amount to the diesel engine 1 according to the operation state of the diesel engine 1. ECU4 is detected by pressure sensors 2a and 5a. When the pressure difference between the pressures (that is, the pressure loss of the DPF device 3) exceeds a predetermined value, the main valve (described later) of the exhaust pressure control valve 10 is closed to regenerate the filter of the DPF device 3.
[0023] 上述した排気系では、ディーゼルエンジン 1から排気される排気ガスは、排気管 2を 介して DPF装置 3に流れる。 DPF装置 3は、排気ガスに含まれるすすを主成分とする 粒子状物質 (PM)を捕集する。 DPF装置 3で浄化された排気ガスは、排気管 5、排 気圧力制御弁 10及び排気管 6を通って、マフラより大気に放出される。  In the exhaust system described above, the exhaust gas exhausted from the diesel engine 1 flows to the DPF device 3 via the exhaust pipe 2. The DPF device 3 collects particulate matter (PM) mainly containing soot contained in the exhaust gas. The exhaust gas purified by the DPF device 3 is discharged from the muffler to the atmosphere through the exhaust pipe 5, the exhaust pressure control valve 10 and the exhaust pipe 6.
DPF装置 3にすすを主成分とする粒子状物質 (PM)が捕集され、 DPF装置 3の圧 損が大きくなると、 ECU4は排気圧力制御弁 10のメインノ レブを閉じる。これによつ て、ディーゼルエンジン 1の排気圧力が上昇し、この排気圧力の上昇に応じてディー ゼルエンジン 1へ供給される燃料が増量される。このため、 DPF装置 3〖こは、未燃成 分を含んだガスが供給される。未燃成分を含んだガスは、フィルタ上流の酸化触媒に 供給される。酸化触媒に供給された未燃成分は、酸化反応によって触媒内のガス温 度を上昇させる。これによつて、フィルタに捕集されたすすを主成分とする粒子状物 質 (PM)が燃焼する(すなわち、 DPF装置 3のフィルタが再生される)。 DPF装置 3の フィルタの再生が完了すると、 ECU4は排気圧力制御弁 10のメインバルブを開き、 通常の運転状態に戻る。なお、 DPF装置 3の再生は、 DPF装置 3の圧力損失が所 定値を超える毎に行われる。  When particulate matter (PM) containing soot as a main component is collected in the DPF device 3 and the pressure loss of the DPF device 3 increases, the ECU 4 closes the main valve of the exhaust pressure control valve 10. As a result, the exhaust pressure of the diesel engine 1 increases, and the amount of fuel supplied to the diesel engine 1 increases in accordance with the increase of the exhaust pressure. For this reason, the gas containing unburned components is supplied to the 3D DPF device. Gas containing unburned components is supplied to the oxidation catalyst upstream of the filter. The unburned components supplied to the oxidation catalyst raise the gas temperature in the catalyst by an oxidation reaction. As a result, particulate matter (PM) mainly containing soot collected by the filter burns (that is, the filter of the DPF device 3 is regenerated). When regeneration of the filter of the DPF device 3 is completed, the ECU 4 opens the main valve of the exhaust pressure control valve 10 and returns to the normal operation state. The regeneration of the DPF device 3 is performed every time the pressure loss of the DPF device 3 exceeds a predetermined value.
[0024] 次に、排気圧力制御弁 10について説明する。図 2に示すように、排気圧力制御弁 10は、メイン流路 12とバイパス流路 28が設けられたノヽウジング 11と、メイン流路 12を 開閉するメインバルブ 30と、バイパス流路 28を開閉するノ ィパスバルブ 26を備えて いる。  Next, the exhaust pressure control valve 10 will be described. As shown in FIG. 2, the exhaust pressure control valve 10 includes a nosing 11 provided with a main flow path 12 and a bypass flow path 28, a main valve 30 that opens and closes the main flow path 12, and opens and closes the bypass flow path 28. A no-pass valve 26 is provided.
[0025] ノ、ウジング 11は、メイン流路 12と、メイン流路 12に隣接して設けられたバイノス流 路 28 (バイパス室)を有している。メイン流路 12の上流端 14には排気管 5が取付けら れる。メイン流路 12の下流端 66には、連結管 70を介して排気管 6が取付けられる。メ イン流路 12の内壁面には入口ポート 16と出口ポート 46が形成されている。入口ポー ト 16は上流端 14側に形成され、出口ポート 46は下流端 66側に形成されている。入 口ポート 16と出口ポート 46の間にはメインバルブ 30が配されている。メインバルブ 3 0は、入口ポート 16と出口ポート 46の間でメイン流路 12を開閉する。 [0026] ノ ィパス流路 28の上流端は、入口ポート 16を介してメイン流路 12に接続されてい る。ノ ィパス流路 28の下流端は、出口ポート 46を介してメイン流路 12に接続されて いる。バイパス流路 28にはバイパスバルブ 26が収容されている。バイパスバルブ 26 は、入口ポート 16からバイパス流路 28への開口部を開閉するようになっている。図か ら明らかなように、バイパスバルブ 26は、メイン流路 12の内壁面力も退避した位置に 配置されている。 The nosing / housing 11 has a main flow path 12 and a binos flow path 28 (bypass chamber) provided adjacent to the main flow path 12. An exhaust pipe 5 is attached to the upstream end 14 of the main flow path 12. An exhaust pipe 6 is attached to the downstream end 66 of the main flow path 12 via a connecting pipe 70. An inlet port 16 and an outlet port 46 are formed on the inner wall surface of the main channel 12. The inlet port 16 is formed on the upstream end 14 side, and the outlet port 46 is formed on the downstream end 66 side. A main valve 30 is arranged between the inlet port 16 and the outlet port 46. The main valve 30 opens and closes the main flow path 12 between the inlet port 16 and the outlet port 46. [0026] The upstream end of the no-pass channel 28 is connected to the main channel 12 via the inlet port 16. The downstream end of the no-pass channel 28 is connected to the main channel 12 via the outlet port 46. A bypass valve 26 is accommodated in the bypass channel 28. The bypass valve 26 opens and closes an opening from the inlet port 16 to the bypass flow path 28. As is apparent from the figure, the bypass valve 26 is disposed at a position where the inner wall surface force of the main flow path 12 is also retracted.
[0027] 図 4に示すように、メインバルブ 30のスロットル軸 32は、メイン流路 12の中心(点 O) を通り、その両端はそれぞれメイン流路 12の壁面 (ノヽウジング 11の点 A, C)で支持さ れている。図 3に示すように、入口ポート 16の周方向の位置は、スロットル軸 32の一 端を支持する軸受け部の周方向の位置と同一となっている(図 4の点 A又は点 C)。 出口ポート 46の周方向の位置も、入口ポート 16と同様に、スロットル軸 32の一端を 支持する軸受け部の周方向の位置と同一となっている。したがって、メイン流路 12と バイパス流路 28は略平行 (軸線が平行)に伸びて!/ヽる。  [0027] As shown in FIG. 4, the throttle shaft 32 of the main valve 30 passes through the center (point O) of the main flow path 12, and both ends thereof are the wall surfaces of the main flow path 12 (point A of the nosing 11). Supported by C). As shown in FIG. 3, the circumferential position of the inlet port 16 is the same as the circumferential position of the bearing portion that supports one end of the throttle shaft 32 (point A or point C in FIG. 4). Similarly to the inlet port 16, the circumferential position of the outlet port 46 is the same as the circumferential position of the bearing portion that supports one end of the throttle shaft 32. Therefore, the main flow path 12 and the bypass flow path 28 extend substantially parallel (the axes are parallel)!
図 3に示すように、入口ポート 16は断面円形状に形成されている。入口ポート 16を 断面円形状とすることで、入口ポート 16をバイノスバルブ 26 (後述)によって気密に 閉じ易くなつている(図 2参照)。一方、出口ポート 46は断面長方形状に形成されて いる。出口ポート 46を断面長方形状とすることで、出口ポート 46の流路断面積を大き く確保でき、出口ポート 46からメイン流路 12へ排気ガスが流れ易くされている。なお 、入口ポート 16と出口ポート 46は、メイン流路 12の軸線に対して略直交するように形 成されている(すなわち、入口ポート 16と出口ポート 46とスロットル軸 32は平行となつ ている。)。  As shown in FIG. 3, the inlet port 16 has a circular cross section. By making the inlet port 16 circular in cross section, the inlet port 16 can be easily airtightly closed by a binos valve 26 (described later) (see Fig. 2). On the other hand, the outlet port 46 has a rectangular cross section. By making the outlet port 46 have a rectangular cross section, a large cross-sectional area of the outlet port 46 can be secured, and the exhaust gas can easily flow from the outlet port 46 to the main flow path 12. The inlet port 16 and the outlet port 46 are formed so as to be substantially orthogonal to the axis of the main flow path 12 (that is, the inlet port 16, the outlet port 46 and the throttle shaft 32 are parallel to each other). .)
また、図 2に示すように、出口ポート 46の下流側の壁面 48は、メイン流路 12への接 続部分が曲面状 (R状)に面取りがなされている。これによつて、メイン流路 12を流れ る排気ガスが下流端 66側へ流れ易くなつている。  Further, as shown in FIG. 2, the wall surface 48 on the downstream side of the outlet port 46 is chamfered in a curved surface shape (R shape) at the connection portion to the main flow path 12. As a result, the exhaust gas flowing through the main flow path 12 can easily flow to the downstream end 66 side.
[0028] 図 2に示されるように、メインバルブ 30はバタフライ式バルブである。メインバルブ 3 0は、スロットル軸 32と、そのスロットル軸 32に取付けられた弁体 34を備えている。ス ロットル軸 32が回転することで、弁体 34がメイン流路 12を閉じる閉状態と、弁体 34が メイン流路 12を開く開状態とに切り替えられる。弁体 34がメイン流路 12を閉じた状態 では、弁体 34はメイン流路 12の軸線(中心軸線)に対して傾斜している(図 3参照)。 また、弁体 34の周縁とメイン流路 12の内壁面との間には、クリアランスが形成されて いる。このクリアランスは、メインバルブ 30を閉じたときでもディーゼルエンジン 1が運 転できるように設けられている。クリアランスは、弁体 34の全周にわたって形成されて いる。 [0028] As shown in FIG. 2, the main valve 30 is a butterfly valve. The main valve 30 includes a throttle shaft 32 and a valve body 34 attached to the throttle shaft 32. As the throttle shaft 32 rotates, the valve body 34 is switched between a closed state in which the main flow path 12 is closed and an open state in which the valve body 34 opens the main flow path 12. Valve body 34 with main flow path 12 closed Then, the valve body 34 is inclined with respect to the axis (center axis) of the main flow path 12 (see FIG. 3). A clearance is formed between the peripheral edge of the valve body 34 and the inner wall surface of the main flow path 12. This clearance is provided so that the diesel engine 1 can be operated even when the main valve 30 is closed. The clearance is formed over the entire circumference of the valve body 34.
[0029] スロットル軸 32の一端は、軸受け 40によって回転自在に支持されて 、る。軸受け 4 0は、ハウジング 11に形成された取付孔 42内に収容されている。取付孔 42は、入口 ポート 16と出口ポート 46の間に設けられている。取付孔 42の一端 (メイン流路 12側 の端部)には、スロットル軸 32が挿通されている。取付孔 42の他端は、バイパス流路 28に開放されており、その開口はキャップ 36によって閉じられている。取付孔 42の 開口をキャップ 36によって閉じることで、取付孔 42内に排気ガスのすすを主成分と する粒子状物質 (PM)が侵入することを防止して 、る。  [0029] One end of the throttle shaft 32 is rotatably supported by a bearing 40. The bearing 40 is accommodated in a mounting hole 42 formed in the housing 11. The mounting hole 42 is provided between the inlet port 16 and the outlet port 46. A throttle shaft 32 is inserted into one end of the mounting hole 42 (the end on the main flow path 12 side). The other end of the mounting hole 42 is open to the bypass channel 28, and the opening is closed by a cap 36. By closing the opening of the mounting hole 42 with the cap 36, particulate matter (PM) mainly composed of exhaust gas soot is prevented from entering the mounting hole 42.
また、スロットル軸 32の他端は、軸受け 54によって回転自在に支持されている。軸 受け 54は、ハウジング 11に形成された取付孔 52内に収容されている。取付孔 52の 一端 (メイン流路 12側の端部)には、スロットル軸 32が揷通されている。スロットル軸 3 2と取付孔 52の間にはシールリング 50が配されている。シールリング 50によって、メ イン流路 12内の排気ガスが外部に流れ出ることが防止されている。取付孔 42の他端 は外部に開放されており、その開口よりスロットル軸 32の駆動端 32bが外部に突出し ている。スロットル軸 32の駆動端 32bは、連結片 62を介してァクチユエータ 64のロッ ド 60に連結されている。ロッド 60が伸長することで、スロットル軸 32が回転するように なっている。  The other end of the throttle shaft 32 is rotatably supported by a bearing 54. The bearing 54 is accommodated in a mounting hole 52 formed in the housing 11. A throttle shaft 32 is passed through one end of the mounting hole 52 (the end on the main flow path 12 side). A seal ring 50 is disposed between the throttle shaft 32 and the mounting hole 52. The seal ring 50 prevents the exhaust gas in the main flow path 12 from flowing out. The other end of the mounting hole 42 is open to the outside, and the drive end 32b of the throttle shaft 32 projects outside from the opening. The drive end 32 b of the throttle shaft 32 is coupled to the rod 60 of the actuator 64 via the coupling piece 62. As the rod 60 extends, the throttle shaft 32 rotates.
[0030] 次に、メインバルブ 30を開閉する開閉装置 41について図 5を参照して説明する。  Next, the opening / closing device 41 that opens and closes the main valve 30 will be described with reference to FIG.
図 5に示すように、開閉装置 41は、ァクチユエータ 64と、 3方電磁弁 47と、バキューム ポンプ 43を備えている。  As shown in FIG. 5, the opening / closing device 41 includes an actuator 64, a three-way solenoid valve 47, and a vacuum pump 43.
ァクチユエータ 64は、ダイアフラム式のァクチユエータである。ァクチユエータ 64は 、図示しない圧力室の圧力に応じて変位するロッド 60を備えている。ロッド 60の先端 には連結片 62の一端が回転可能に取付けられて 、る。連結片 62の他端にはスロッ トル軸 32の駆動端 32bが取付けられている。ロッド 60が変位すると、それに応じてス ロットル軸 32が回転し、これによつて、メインバルブ 30がメイン流路 12を開く開状態と 、メイン流路 12を閉じる閉状態とに切り替えられる。すなわち、ァクチユエータ 64の圧 力室の圧力が所定圧力を超えるとメインバルブ 30がメイン流路 12を開き、ァクチユエ ータ 64の圧力室の圧力が所定圧力以下となるとメインバルブ 30がメイン流路 12を閉 じる。 The actuator 64 is a diaphragm type actuator. The actuator 64 includes a rod 60 that is displaced according to the pressure in a pressure chamber (not shown). One end of a connecting piece 62 is rotatably attached to the tip of the rod 60. The drive end 32b of the throttle shaft 32 is attached to the other end of the connecting piece 62. When rod 60 is displaced, The rottle shaft 32 rotates, whereby the main valve 30 is switched between an open state in which the main flow path 12 is opened and a closed state in which the main flow path 12 is closed. That is, when the pressure in the pressure chamber of the actuator 64 exceeds a predetermined pressure, the main valve 30 opens the main flow path 12, and when the pressure in the pressure chamber of the actuator 64 becomes equal to or lower than the predetermined pressure, the main valve 30 opens the main flow path 12. Close.
[0031] ァクチユエータ 64の圧力室は、配管 57a,流量調節弁 51,配管 57bを介して 3方電 磁弁 47の中立ポート 47cに接続されている。 3方電磁弁 47の残った 2つのポート 47a , 47bのうちの一方のポート 47aは、チェックバルブ 45を介してバキュームポンプ 43 に接続されている。 3方電磁弁 47の他方のポート 47bは、大気に開放されている。チ エックバルブ 45は、バキュームポンプ 43から 3方電磁弁 47側への空気の逆流を防止 している。  [0031] The pressure chamber of the actuator 64 is connected to the neutral port 47c of the three-way electromagnetic valve 47 through the pipe 57a, the flow rate control valve 51, and the pipe 57b. One port 47a of the remaining two ports 47a, 47b of the three-way solenoid valve 47 is connected to the vacuum pump 43 via the check valve 45. The other port 47b of the three-way solenoid valve 47 is open to the atmosphere. The check valve 45 prevents the backflow of air from the vacuum pump 43 to the three-way solenoid valve 47 side.
3方電磁弁 47は、 ECU4によって制御される。ポート 47bを閉じて中立ポート 47cと ポート 47aとが連通する状態とし、バキュームポンプ 43を作動させると、ァクチユエ一 タ 64の圧力室内の空気力排気される(これによつて、メインバルブ 30が閉状態となる ) o一方、ポート 47aを閉じて中立ポート 47cとポート 47bとが連通する状態とすると、 ァクチユエータ 64の圧力室内に大気が導入される(これによつて、メインバルブ 30が 開状態となる)。  The three-way solenoid valve 47 is controlled by the ECU 4. When the neutral port 47c and the port 47a are in communication with each other by closing the port 47b and the vacuum pump 43 is operated, the air pressure in the pressure chamber of the actuator 64 is exhausted (this causes the main valve 30 to close). O On the other hand, if the port 47a is closed and the neutral port 47c and the port 47b communicate with each other, the atmosphere is introduced into the pressure chamber of the actuator 64 (so that the main valve 30 is opened). Become).
[0032] ァクチユエータ 64の圧力室と 3方電磁弁 47の間には流量調節弁 51が介装されて いる。流量調節弁 51は、ハウジング 51と、ハウジング 51の中間に設けられた隔壁 53 と、隔壁 53に取付けられた弁体 55を有している。隔壁 53によって仕切られた一方の 部屋 51aは、配管 57aを介してァクチユエータ 64の圧力室に連通している。隔壁 53 によって仕切られた他方の部屋 51bは、配管 57bを介して 3方電磁弁 47の中立ポー ト 47cに接続されている。  A flow control valve 51 is interposed between the pressure chamber of the actuator 64 and the three-way solenoid valve 47. The flow control valve 51 includes a housing 51, a partition wall 53 provided in the middle of the housing 51, and a valve body 55 attached to the partition wall 53. One chamber 51a partitioned by the partition wall 53 communicates with the pressure chamber of the actuator 64 through a pipe 57a. The other chamber 51b partitioned by the partition wall 53 is connected to a neutral port 47c of the three-way solenoid valve 47 through a pipe 57b.
隔壁 53には複数のオリフィス(貫通孔) 53aが穿設されている。複数のオリフィス 53 aの一部は、弁体 55によって開閉される。すなわち、ァクチユエータ 64の圧力室に空 気を導入する時(3方電磁弁 47からァクチユエータ 64に向力つて空気が流れる時)は 、弁体 55が隔壁 53の一部のオリフィスを閉じる。ァクチユエータ 64の圧力室力も空 気を排気する時 (ァクチユエータ 64から 3方電磁弁 47に向力つて空気が流れる時)は 、弁体 55が変形して隔壁 53のオリフィス 53aを開く(図 7に示す状態)。したがって、 ァクチユエータ 64の圧力室に空気を導入する時は、空気の通過断面積が小さくなり 、ァクチユエータ 64の圧力室には緩やかに空気が供給される。一方、ァクチユエータ 64の圧力室力 空気を排気する時は、空気の通過断面積が大きくされ、ァクチユエ ータ 64の圧力室の空気が速やかに排気される。これによつて、メインバルブ 30が閉 状態から開状態となるまでの時間が、メインバルブ 30が開状態カも閉状態となるまで の時間より長くなるように調整されて 、る。 The partition wall 53 has a plurality of orifices (through holes) 53a. Some of the plurality of orifices 53 a are opened and closed by the valve body 55. That is, when air is introduced into the pressure chamber of the actuator 64 (when air flows from the three-way solenoid valve 47 to the actuator 64, the valve element 55 closes a part of the orifice of the partition wall 53. When the pressure chamber force of the actuator 64 also exhausts air (when air flows from the actuator 64 to the three-way solenoid valve 47), Then, the valve body 55 is deformed to open the orifice 53a of the partition wall 53 (the state shown in FIG. 7). Therefore, when air is introduced into the pressure chamber of the actuator 64, the cross sectional area of the air is reduced, and air is slowly supplied to the pressure chamber of the actuator 64. On the other hand, when the pressure chamber force air of the actuator 64 is exhausted, the cross-sectional area of the air passage is increased, and the air in the pressure chamber of the actuator 64 is exhausted quickly. Thus, the time until the main valve 30 is changed from the closed state to the open state is adjusted to be longer than the time until the main valve 30 is also set to the closed state.
バイパスバルブ 26は、フラッパ弁である。バイパスバルブ 26は、弁体 24と、弁体 24 をアーム 20に取付るためのボルト 22を有している。図 6に示すように、バイパスバル ブ 26を開閉する開閉装置 69は、ァクチユエータ 79と、ァクチユエータ 79の運動をバ ィパスバルブ 26に伝達するリンク機構(73, 20)を備えて!/、る。  The bypass valve 26 is a flapper valve. The bypass valve 26 has a valve body 24 and a bolt 22 for attaching the valve body 24 to the arm 20. As shown in FIG. 6, an opening / closing device 69 for opening and closing the bypass valve 26 includes an actuator 79 and a link mechanism (73, 20) for transmitting the motion of the actuator 79 to the bypass valve 26! /.
ァクチユエータ 79は、ダイアフラム式のァクチユエータである。ァクチユエータ 79は 、シリンダ 81とロッド 75を備えている。ロッド 75は、その基端部に設けられた隔壁部 7 5aと、隔壁部 75aに立設されたロッド部 75bを有している。隔壁部 75aは、シリンダ 81 内に移動可能に収容され、シリンダ 81内を圧力室 77とばね収容室 83に区画してい る。圧力室 77は排ガス導入管 23によって排気管 5と連通され、排気管 5内を流れる 排気ガスが圧力室 77内に導入されるようになって 、る。ばね収容室 83には圧縮され た状態でばね 85が収容されている。ばね 85は、隔壁部 75aを圧力室 77側に付勢し ている。ロッド部 75bの先端にはリンク 73の基端が回転自在に取付けられている。リ ンク 73の先端にはアーム 20の一端が固定されている。アーム 20の他端にはバイパ スバルブ 26が取付けられて!/、る。  The actuator 79 is a diaphragm type actuator. The actuator 79 includes a cylinder 81 and a rod 75. The rod 75 has a partition wall portion 75a provided at the base end portion thereof and a rod portion 75b provided upright on the partition wall portion 75a. The partition wall 75a is movably accommodated in the cylinder 81, and divides the cylinder 81 into a pressure chamber 77 and a spring accommodation chamber 83. The pressure chamber 77 is communicated with the exhaust pipe 5 by the exhaust gas introduction pipe 23, and the exhaust gas flowing through the exhaust pipe 5 is introduced into the pressure chamber 77. A spring 85 is accommodated in the spring accommodating chamber 83 in a compressed state. The spring 85 urges the partition wall 75a toward the pressure chamber 77. The base end of the link 73 is rotatably attached to the tip of the rod portion 75b. One end of the arm 20 is fixed to the tip of the link 73. A bypass valve 26 is attached to the other end of the arm 20.
圧力室 77に導入される排気ガスの圧力が所定の圧力以下のときは、圧力室 77内 の排気ガスから隔壁部 75aに作用する力より、ばね 85の隔壁部 75aを付勢する付勢 力の方が大きい。このため、ロッド 75は初期位置にあり、バイパスバルブ 26はバイパ ス流路 28を閉じている。一方、圧力室 77に導入される排気ガスの圧力が所定の圧 力を越えると、ばね 85の付勢力に抗してロッド 75が伸張する。これにより、アーム 20 が軸 18回りに回転し、アーム 20の先端に取付けたバイパスバルブ 26がバイパス流 路 28を開く。 [0034] 上述した排気圧力制御弁 10がメインバルブ 30を開閉するときの動作について説明 する。まず、メインノ レブ 30を開いた状態から閉じた状態とするときの動作について 説明する。なお、上述した説明から明らかなように、メインバルブ 30が開いた状態で は、ァクチユエータ 64の圧力室には大気が導入されて 、る。 When the pressure of the exhaust gas introduced into the pressure chamber 77 is below a predetermined pressure, the biasing force that biases the partition wall 75a of the spring 85 by the force acting on the partition wall 75a from the exhaust gas in the pressure chamber 77 Is bigger. Therefore, the rod 75 is in the initial position, and the bypass valve 26 closes the bypass flow path 28. On the other hand, when the pressure of the exhaust gas introduced into the pressure chamber 77 exceeds a predetermined pressure, the rod 75 extends against the biasing force of the spring 85. As a result, the arm 20 rotates around the shaft 18, and the bypass valve 26 attached to the tip of the arm 20 opens the bypass flow path 28. The operation when the exhaust pressure control valve 10 described above opens and closes the main valve 30 will be described. First, the operation when the main knob 30 is changed from the open state to the closed state will be described. As is clear from the above description, the atmosphere is introduced into the pressure chamber of the actuator 64 when the main valve 30 is open.
排気圧力制御弁 10の開閉は ECU4によって制御される。 ECU4は、まず、 3方電 磁弁 47に駆動信号を出力し、ポート 47bを閉じて中立ポート 47cとポート 47aとが連 通する状態とする。ポート 47aは、バキュームポンプ 43で発生する負圧と連通する。 これによつて、ァクチユエータ 64の圧力室内の空気が排気され、メインバルブ 30がメ イン流路 12を閉じる。ァクチユエータ 64の圧力室力も空気が排気されるときは、流量 調節弁 51の弁体 55はオリフィス 53aを開放する。このため、ァクチユエータ 64の圧力 室内の空気が速やかに排気される。  Opening and closing of the exhaust pressure control valve 10 is controlled by the ECU 4. The ECU 4 first outputs a drive signal to the three-way electromagnetic valve 47, closes the port 47b, and makes the neutral port 47c and the port 47a communicate with each other. The port 47a communicates with the negative pressure generated by the vacuum pump 43. As a result, the air in the pressure chamber of the actuator 64 is exhausted, and the main valve 30 closes the main flow path 12. When the pressure chamber force of the actuator 64 is also exhausted, the valve body 55 of the flow control valve 51 opens the orifice 53a. For this reason, the air in the pressure chamber of the actuator 64 is quickly exhausted.
[0035] メインバルブ 30がメイン流路 12を閉じると、排気ガスの圧力が上昇するため、バイ パスバルブ 26を駆動するァクチユエータ 79の圧力室 77に導入される排気ガスの圧 力も上昇する。圧力室 77内の排気ガスの圧力が所定値を超えると、ロッド 75がばね 85の付勢力に抗して伸張する。これによつて、バイパスバルブ 26がバイパス流路 28 を開く。なお、バイノ スノ レブ 26のバルブ開度は、排気管 5内の排気ガスの圧力によ つて決まり、排気管 5内の排気ガスの圧力が高いと大きぐ排気管 5内の排気ガスの 圧力が低いと小さくなる。これによつて、排気管 5内の排気ガスの圧力が略一定に維 持される。  [0035] When the main valve 30 closes the main flow path 12, the pressure of the exhaust gas increases, so the pressure of the exhaust gas introduced into the pressure chamber 77 of the actuator 79 that drives the bypass valve 26 also increases. When the pressure of the exhaust gas in the pressure chamber 77 exceeds a predetermined value, the rod 75 extends against the biasing force of the spring 85. As a result, the bypass valve 26 opens the bypass passage 28. The valve opening of the bino-nos lev 26 is determined by the pressure of the exhaust gas in the exhaust pipe 5, and the pressure of the exhaust gas in the exhaust pipe 5 increases as the pressure of the exhaust gas in the exhaust pipe 5 increases. The lower the value, the smaller. As a result, the pressure of the exhaust gas in the exhaust pipe 5 is maintained substantially constant.
なお、バイノ スバルブ 26は、メイン流路 12の内壁面力も退避した位置に配置され ているため、メイン流路 12内を流れる排気ガスの排気圧力が直接作用しない。また、 バイパスバルブ 26の開閉は、ァクチユエータ 79の直線運動をリンク機構を介してァ ーム 20に伝達することで行われる。これらのため、排気管 5を流れる排気ガスが脈動 する場合であっても、バイパスバルブ 26の挙動が安定し、バイパスバルブ 26のチヤ タリングを防止することができる。これによつて、排気圧力の制御性が高められている  Note that since the binos valve 26 is disposed at a position where the inner wall surface force of the main flow path 12 is also retracted, the exhaust pressure of the exhaust gas flowing through the main flow path 12 does not act directly. The bypass valve 26 is opened and closed by transmitting the linear motion of the actuator 79 to the arm 20 through the link mechanism. For these reasons, even when the exhaust gas flowing through the exhaust pipe 5 pulsates, the behavior of the bypass valve 26 is stabilized and the chattering of the bypass valve 26 can be prevented. As a result, the controllability of the exhaust pressure is enhanced.
[0036] 次に、メインバルブ 30を閉じた状態から開いた状態とするときの動作について説明 する。メインバルブ 30を閉じた状態から開いた状態とする際は、 ECU4は、 3方電磁 弁 47に駆動信号を出力し、ポート 47aを閉じて中立ポート 47cとポート 47bとが連通 する状態とする。これによつて、 3方電磁弁 47側カもァクチユエータ 64の圧力室内に 大気が導入され、メインバルブ 30がメイン流路 12を開く。ァクチユエータ 64の圧力室 内に空気が導入されるときは、流量調節弁 51の弁体 55は一部のオリフィス 53aを閉 じる。このため、ァクチユエータ 64内の圧力室には空気が緩やかに導入され、メイン ノ ノレブ 30はゆっくりと開くこととなる。 Next, the operation when the main valve 30 is changed from the closed state to the opened state will be described. When changing the main valve 30 from the closed state to the open state, the ECU4 A drive signal is output to the valve 47, and the port 47a is closed so that the neutral port 47c and the port 47b communicate with each other. As a result, the atmosphere is also introduced into the pressure chamber of the actuator 64 on the side of the three-way solenoid valve 47, and the main valve 30 opens the main flow path 12. When air is introduced into the pressure chamber of the actuator 64, the valve body 55 of the flow control valve 51 closes some of the orifices 53a. For this reason, air is slowly introduced into the pressure chamber in the actuator 64, and the main nanoreb 30 is slowly opened.
[0037] 図 8は、メインバルブ 30を閉じた状態から開いた状態に移行する際の 3方電磁弁 4 7の状態の変化、ァクチユエータ 64の圧力室の圧力変化、及びメインバルブ 30のバ ルブ開度の変化を模式的に示す図である。  [0037] FIG. 8 shows changes in the state of the three-way solenoid valve 47 when the main valve 30 is changed from the closed state to the open state, the pressure change in the pressure chamber of the actuator 64, and the valve of the main valve 30. It is a figure which shows the change of an opening degree typically.
図 8に示すように、まず、 3方電磁弁 47が負圧状態 (ァクチユエータ 64とバキューム ポンプ 43が接続された状態)力も大気開放状態 (ァクチユエータ 64が大気に開放さ れた状態)に切り替えられる。 3方電磁弁 47が大気開放状態に切り替えられると、ァク チユエータ 64の圧力室は徐々に負圧状態から大気圧状態に移行する。メインバルブ 30は、 3方電磁弁 47が大気開放状態に切り替えられたタイミング力 若干の時間遅 れ tを経過してから徐々に開き始める。そして、大気開放状態に切り替えられたタイミ ングから時間 tOが経過すると、メインバルブ 30は全開となる。  As shown in FIG. 8, first, the three-way solenoid valve 47 is switched to the negative pressure state (the state where the actuator 64 and the vacuum pump 43 are connected), and the force is also switched to the atmospheric state (the state where the actuator 64 is opened to the atmosphere). . When the three-way solenoid valve 47 is switched to the atmosphere open state, the pressure chamber of the actuator 64 gradually shifts from the negative pressure state to the atmospheric pressure state. The main valve 30 begins to open gradually after a slight delay t after the timing force when the three-way solenoid valve 47 is switched to the open state. Then, when the time tO has elapsed since the timing of switching to the atmospheric release state, the main valve 30 is fully opened.
[0038] メインバルブ 30が閉状態から開状態となると、メインバルブ 30の上流側から下流側 に排気ガスが流れ出る。ここで、メインバルブ 30が開き始めた初期においては、弁体 34の周縁とメイン流路 12の内壁面との隙間の大きさは、スロットル軸 32の軸線から 弁体 34 (周縁の点)までの距離(回転半径)に比例する。すなわち、スロットル軸 32の 軸線力も弁体 34 (周縁の点)までの距離が最も長くなる点 B, Dにおいて隙間が最も 大きくなる(図 4参照)。逆に、スロットル軸 32の軸線力 弁体 34 (周縁の点)までの距 離が最も短くなる点 A, Cにおいて隙間が最も小さくなる。このため、メインバルブ 30 力も流れ出る排気ガスの流速は、点 B, Dにおいて最も早くなり、点 A, Cにおいて最 も遅くなる。出口ポート 46は点 A (又は点 C)に設けられており、高速の排気ガスが流 れ出す位置からずれた位置に配されている。このため、メインバルブ 30を開いたとき に急激に流れ出る排気ガスによって、出口ポート 46内に渦流が発生することが防止 され、騒音の発生が防止される。また、出口ポート 46の下流側の壁面 48が曲面状に 形成されているため、メインバルブ 30から流れ出る排気ガスはスムーズに下流端 66 に向力つて流れることができる。これによつても、出口ポート 46内に渦流が発生するこ とが防止され、騒音の発生が抑えられる。さらに、メインバルブ 30がゆっくり開かれる ため、排気ガスが急激にメインノ レブ 30の下流側に流れ出ることが抑制される。これ によっても、騒音の発生が抑えられる。 [0038] When the main valve 30 changes from the closed state to the open state, the exhaust gas flows from the upstream side to the downstream side of the main valve 30. Here, at the initial stage when the main valve 30 starts to open, the size of the gap between the peripheral edge of the valve body 34 and the inner wall surface of the main flow path 12 is from the axis of the throttle shaft 32 to the valve body 34 (peripheral point). Is proportional to the distance (rotation radius). That is, the axial force of the throttle shaft 32 also has the largest gap at points B and D where the distance to the valve body 34 (peripheral point) is the longest (see FIG. 4). Conversely, the gap is the smallest at points A and C where the distance to the axial force valve body 34 (peripheral point) of the throttle shaft 32 is the shortest. For this reason, the flow rate of the exhaust gas from which the main valve 30 also flows is the fastest at points B and D, and the slowest at points A and C. The outlet port 46 is provided at a point A (or a point C), and is arranged at a position shifted from a position where high-speed exhaust gas flows out. For this reason, the exhaust gas flowing out rapidly when the main valve 30 is opened is prevented from generating a vortex in the outlet port 46, and noise is prevented. Also, the downstream wall 48 of the outlet port 46 is curved. Thus, the exhaust gas flowing out from the main valve 30 can flow smoothly toward the downstream end 66. This also prevents the generation of vortex in the outlet port 46 and suppresses the generation of noise. Furthermore, since the main valve 30 is opened slowly, the exhaust gas is prevented from flowing out to the downstream side of the main valve 30 abruptly. This also suppresses the generation of noise.
なお、メインバルブ 30がメイン流路 12を開くと、排気管 5内を流れる排気ガスの圧 力も低下する。このため、ノ ィパスバルブ 26はバイパス流路 28を閉じることとなる。  When the main valve 30 opens the main flow path 12, the pressure of the exhaust gas flowing through the exhaust pipe 5 also decreases. For this reason, the no-pass valve 26 closes the bypass passage 28.
[0039] また、本実施例では、メインバルブ 30を開閉する開閉装置 41に流量調節弁 49を 備えることで、メインバルブ 30が閉じた状態から開いた状態に徐々に移行するように なっている。これによつて、発生する騒音 (噴出音)の音圧を低下している。  [0039] Further, in this embodiment, the flow control valve 49 is provided in the opening / closing device 41 that opens and closes the main valve 30, so that the main valve 30 gradually shifts from the closed state to the opened state. . As a result, the sound pressure of the generated noise (spout sound) is reduced.
図 9は、メインバルブ 30を閉じた状態力も開いた状態とするときの排気圧力の変化 と噴出音の音圧変化を測定した結果の一例を示している。なお、図 9には、流量調節 弁 49を配設しな力つたときの排気圧力の変化を比較例として併せて示している。 図 9から明らかなように、流量調節弁 49を配設した場合は、流量調節弁 49を配設し な力つた場合と比較して、排気ガスの圧力変化( Δ P/dt)は緩やかになり、メインバ ルブ 30が閉じた状態力も全開状態となるまでに要する時間(いわゆる、応答時間)も 長くなる。また、排気ガスの圧力変化の波形と噴出音の音圧変化の波形の比較から 明らかなように、排気ガスの圧力変化の大きさと噴出音の音圧 (音圧の振幅量)には 相関がある。したがって、排気ガスの圧力変化を緩やかにすることで、噴出音が小さ くなる。すなわち、本実施例では、メインバルブ 30の応答時間を長くすることで、噴出 音を低減することができる。  FIG. 9 shows an example of the results of measuring the change in exhaust pressure and the change in sound pressure of the ejection sound when the main valve 30 is closed and the state force is also open. FIG. 9 also shows, as a comparative example, a change in the exhaust pressure when the flow control valve 49 is not applied and the force is applied. As can be seen from FIG. 9, when the flow control valve 49 is installed, the exhaust gas pressure change (Δ P / dt) is more gradual than when the flow control valve 49 is not used. Therefore, the time required for the state force when the main valve 30 is closed to the fully open state (so-called response time) also becomes longer. Also, as is clear from the comparison of the waveform of the exhaust gas pressure change and the sound pressure change waveform of the jet sound, there is a correlation between the magnitude of the exhaust gas pressure change and the sound pressure of the jet sound (the amplitude of the sound pressure). is there. Therefore, by making the pressure change of the exhaust gas moderate, the noise is reduced. That is, in the present embodiment, the ejection noise can be reduced by increasing the response time of the main valve 30.
[0040] 図 10はメインバルブ 30の応答時間(閉状態力も全開状態となるまでの時間)と噴出 音の音圧 (最大音圧)との関係を示す図である。図から明らかなように、メインバルブ 3 0の応答時間を長くすることで、噴出音の最大音圧が低減して 、る。  FIG. 10 is a diagram showing the relationship between the response time of the main valve 30 (the time until the closed state force is also fully opened) and the sound pressure of the ejection sound (maximum sound pressure). As is apparent from the figure, by increasing the response time of the main valve 30, the maximum sound pressure of the ejected sound is reduced.
[0041] 本実施例の排気圧力制御弁 10では、出口ポート 46の周方向の位置とスロットル軸 32の軸受け部の周方向の位置を同一とし、出口ポート 46の下流側の壁面 48を曲面 状に形成している。これによつて、出口ポート 46内の排気ガスに渦流が発生すること が抑制され、騒音の発生を効果的に防止することができる。 また、メインバルブ 30を開閉する開閉装置 42に流量調節弁 49を設けることで、メイ ンノ レブ 30を閉状態から開状態とするまでの応答時間を長くしている。このため、メ インバルブ 30を閉状態から開状態とするときの噴出音が緩和される。一方、メインバ ルブ 30を開状態カも閉状態とするまでの時間は短く設定されているため、 DPF装置 3のフィルタ再生を時間遅れなく実施することができる。 In the exhaust pressure control valve 10 of this embodiment, the circumferential position of the outlet port 46 and the circumferential position of the bearing portion of the throttle shaft 32 are the same, and the downstream wall surface 48 of the outlet port 46 is curved. Is formed. As a result, the generation of vortex in the exhaust gas in the outlet port 46 is suppressed, and the generation of noise can be effectively prevented. Further, by providing the flow control valve 49 in the opening / closing device 42 that opens and closes the main valve 30, the response time until the main noble 30 is changed from the closed state to the open state is lengthened. For this reason, the ejection sound when the main valve 30 is changed from the closed state to the open state is reduced. On the other hand, since the time until the main valve 30 is opened and closed is set short, the filter regeneration of the DPF device 3 can be performed without a time delay.
また、バイパスバルブ 26はメイン流路 12から退避した位置に配置され、かつ、ァク チユエータ 79のロッドの伸縮運動をリンク機構によってバイパスバルブ 26の開閉運 動に変換している。ァクチユエータのダイアフラムの緩衝効果によって脈動圧を鈍化 させるため、排気管 5内の排気ガスが脈動する場合であっても、バイパスノ レブ 26が チャタリングすることが防止され、排気圧力を所定の圧力範囲内に制御することが可 能となる。また、排気ガスの圧力の変化に応じてバイノ スノ レブ 26の開度が変化す るため、車両を走行した状態 (排気ガスの流量 (圧力)が変化する状態)でも DPF装 置 3のフィルタ再生をすることができる。  The bypass valve 26 is disposed at a position retracted from the main flow path 12, and the expansion / contraction motion of the rod of the actuator 79 is converted into the opening / closing operation of the bypass valve 26 by a link mechanism. Since the pulsation pressure is reduced by the buffering effect of the diaphragm of the actuator, even if the exhaust gas in the exhaust pipe 5 pulsates, the bypass valve 26 is prevented from chattering, and the exhaust pressure is kept within a predetermined pressure range. It becomes possible to control. In addition, since the opening of bino solenoid 26 changes in accordance with the change in exhaust gas pressure, the filter regeneration of DPF device 3 can be performed even when the vehicle is running (exhaust gas flow rate (pressure) changes). Can do.
なお、上述した実施例では、ァクチユエータ 79の運動をリンク機構を介してバイノス バルブ 26に伝達した力 本発明はこのような形態に限られない。例えば、ラックアンド ピ-オン機構を用いてァクチユエータの運動をバイパスバルブの開閉運動に変換す るようにしてもよい。このような構成によっても、排気圧力に応じてバイパスバルブの開 度を調節することができる。  In the above-described embodiment, the force transmitted from the movement of the actuator 79 to the binos valve 26 via the link mechanism is not limited to such a form. For example, the motion of the actuator may be converted into the opening / closing motion of the bypass valve using a rack and pion mechanism. Even with such a configuration, the opening degree of the bypass valve can be adjusted according to the exhaust pressure.
また、上述した実施例では、メイン流路 12の下流端 66に連結管 70 (排気管 6)を相 対変位不能に取付けたが、本発明はこのような形態に限られない。例えば、図 11に 示すように、メイン流路の下流端 93に排気管 96をフレキシブルな状態(下流端 93に 対して排気管 96が相対移動可能な状態)で取付けるようにしてもよい。すなわち、ハ ウジング 90の下流端にフランジ 94cを設ける。排気管 96にもフランジ 87を設ける。フ ランジ 94cとフランジ 87は、ボルト 89bとウエルドナット 89dによって連結されて!、る。 フランジ 94cとフランジ 87の間にはシールリング 89aが配されている。フランジ 87とボ ルト 89bの頭部の間には、スプリング 89cが圧縮状態で配されている。このため、フラ ンジ 87がスプリング 89cによってフランジ 94c側に付勢され、これによつて、フランジ 8 7とフランジ 94cの間にシールリング 89aが挟持されている。シールリング 89aは黒鉛 で成形され、ある程度の弾力性 (変形性)を有している。したがって、ハウジング 90と 排気管 96の間に力が作用すると、シールリング 89aが変形し、ハウジング 90 (メイン 流路の下流端 33)に対して排気管 96は相対的に位置を変えることができる。この構 成によると、排気圧力制御弁の上流側の装置 (エンジン 1)の振動が排気管 96に伝 達されることが抑制され、排気管 96及びマフラが振動することを防止することができる In the above-described embodiment, the connecting pipe 70 (exhaust pipe 6) is attached to the downstream end 66 of the main flow path 12 so as not to be displaceable. However, the present invention is not limited to such a form. For example, as shown in FIG. 11, an exhaust pipe 96 may be attached to the downstream end 93 of the main flow path in a flexible state (a state in which the exhaust pipe 96 can move relative to the downstream end 93). That is, the flange 94c is provided at the downstream end of the housing 90. The exhaust pipe 96 is also provided with a flange 87. The flange 94c and the flange 87 are connected by a bolt 89b and a weld nut 89d! A seal ring 89a is arranged between the flange 94c and the flange 87. A spring 89c is arranged in a compressed state between the flange 87 and the head of the bolt 89b. For this reason, the flange 87 is biased toward the flange 94c by the spring 89c, whereby the seal ring 89a is sandwiched between the flange 87 and the flange 94c. Seal ring 89a is graphite It has a certain degree of elasticity (deformability). Therefore, when a force acts between the housing 90 and the exhaust pipe 96, the seal ring 89a is deformed, and the position of the exhaust pipe 96 can be changed relative to the housing 90 (the downstream end 33 of the main flow path). . According to this configuration, the vibration of the device upstream of the exhaust pressure control valve (engine 1) is suppressed from being transmitted to the exhaust pipe 96, and the exhaust pipe 96 and the muffler can be prevented from vibrating.
[0043] また、上述した実施例では、出口ポート 46の下流側の壁面 48を曲面状に形成した 力 本発明はこのような形態に限られない。例えば、図 12に示すように、出口ポート 4 6の開口部 78にハ-カム 74を配するようにしてもよい。出口ポート 46の開口部 78に ハ-カム 74を配することによつても、出口ポート 46内の排気ガスに渦流が発生するこ とを防止することができる。また、図 13に示すように、出口ポート 46を覆う遮蔽板 80を 設けて、出口ポート 46の開口部 82に排気ガス流が直接衝突しないようにしてもよい。 あるいは、図 14, 15に示すように、出口ポート 46の下流側の壁面 48にフィン 84を設 けるようにしてもよい。フィン 84を設けることによつても、出口ポート 46内の排気ガスに 渦流が発生することを防止することができる。 Further, in the above-described embodiment, the force in which the wall surface 48 on the downstream side of the outlet port 46 is formed in a curved shape. The present invention is not limited to such a form. For example, as shown in FIG. 12, a hard cam 74 may be disposed in the opening 78 of the outlet port 46. By arranging the her cam 74 in the opening 78 of the outlet port 46, it is possible to prevent the vortex flow from being generated in the exhaust gas in the outlet port 46. Further, as shown in FIG. 13, a shielding plate 80 that covers the outlet port 46 may be provided so that the exhaust gas flow does not directly collide with the opening 82 of the outlet port 46. Alternatively, as shown in FIGS. 14 and 15, fins 84 may be provided on the wall surface 48 on the downstream side of the outlet port 46. Providing the fins 84 can also prevent eddy currents from occurring in the exhaust gas in the outlet port 46.
[0044] また、上述した実施例では、入口ポート 16と出口ポート 46とスロットル軸 32の軸受 け部を周方向の同一位置に配置したが、本発明はこのような形態に限られない。例 えば、図 16〜19に示すように、入口ポート 116とスロットル軸 132の軸受け部を周方 向にずらして配置することもできる。  In the above-described embodiment, the bearing portions of the inlet port 16, the outlet port 46, and the throttle shaft 32 are arranged at the same position in the circumferential direction, but the present invention is not limited to such a form. For example, as shown in FIGS. 16 to 19, the bearing portions of the inlet port 116 and the throttle shaft 132 can be shifted in the circumferential direction.
この場合、図 16〜18に示されるように、入口ポート 116とスロットル軸 132の軸受け 部をメイン流路の軸方向にオーバラップさせて配置することが好まし 、。入口ポート 1 16とスロットル軸 132の軸受け部を軸方向にオーバラップさせることで、排気圧力制 御弁をコンパクトィ匕することができる。また、図 19に示すように、入口ポート 116をメイ ン流路 112の内壁面 112aより外側に突出するように設けることが好ま 、。入口ポー ト 116とスロットル軸 132の軸受け部を軸方向にオーバラップさせても、入口ポート 11 6をメイン流路 112の外側(図 19の下側)に突出させることで、入口ポート 116の流路 断面積を充分に確保することができる。  In this case, as shown in FIGS. 16 to 18, it is preferable to arrange the bearing portions of the inlet port 116 and the throttle shaft 132 so as to overlap in the axial direction of the main flow path. By overlapping the inlet port 116 and the bearing portion of the throttle shaft 132 in the axial direction, the exhaust pressure control valve can be made compact. Further, as shown in FIG. 19, it is preferable to provide the inlet port 116 so as to protrude outward from the inner wall surface 112a of the main channel 112. Even if the bearings of the inlet port 116 and the throttle shaft 132 overlap in the axial direction, the inlet port 116 protrudes to the outside of the main channel 112 (lower side in FIG. 19). A sufficient road cross-sectional area can be secured.
[0045] (第 2実施例) 第 2実施例の排気圧力制御弁を図面を参照して説明する。第 2実施 例の排気圧力制御弁は、第 1実施例の排気圧力制御弁と同様に構成され、メインバ ルブの弁体に連通孔が形成されている点で、第 1実施例と異なる。ここでは、第 1実 施例と相違する点についてのみ説明する。 Second Embodiment An exhaust pressure control valve according to the second embodiment will be described with reference to the drawings. Second implementation The exhaust pressure control valve in the example is configured in the same manner as the exhaust pressure control valve in the first embodiment, and differs from the first embodiment in that a communication hole is formed in the valve body of the main valve. Here, only the differences from the first embodiment will be described.
図 20, 21に示されるように、メインバルブ 230の弁体 237力 Sメイン流路 234を閉じた 状態では、弁体 237はメイン流路 234の軸線(中心軸線) Cに対して傾斜している。ま た、弁体 237の周縁とメイン流路 234の内壁面との間にクリアランス 234dが形成され ている。クリアランス 234dは、弁体 237の全周にわたって形成されている。クリアラン ス 234dは 0. 5mm以下とすることが好ましい。クリアランス 234d力 . 5mmを超える と、排気圧力を上昇させる効果を充分に発揮することができないためである。  As shown in FIGS. 20 and 21, the valve body 237 force of the main valve 230 S When the main flow path 234 is closed, the valve body 237 is inclined with respect to the axis (center axis) C of the main flow path 234. Yes. A clearance 234d is formed between the peripheral edge of the valve element 237 and the inner wall surface of the main flow path 234. The clearance 234d is formed over the entire circumference of the valve body 237. The clearance 234d is preferably 0.5 mm or less. This is because if the clearance exceeds 234d force .5mm, the effect of increasing the exhaust pressure cannot be fully exhibited.
また、弁体 237には、その表面力も裏面に向力つて貫通する 1つの連通孔 237aが 形成されている。連通孔 237aは、弁体 237がメイン流路 234を閉じた状態としたとき に回転軸 (スロットル軸) 238より下流側となる側に形成されている。連通孔 237aは、 弁体 237の表面に対して略垂直に設けられて!/、る。  The valve body 237 is formed with one communication hole 237a that penetrates the surface force of the valve body 237 by directing it toward the back surface. The communication hole 237a is formed on the downstream side of the rotary shaft (throttle shaft) 238 when the valve body 237 closes the main flow path 234. The communication hole 237a is provided substantially perpendicular to the surface of the valve body 237.
さらに、メイン流路 234の内壁面には、メインバルブ 236の下流側の位置に金網 29 0が配されている。金網 290は、メイン流路 234の内壁面の全周に亘つて配されてい る。  Further, a wire mesh 290 is disposed on the inner wall surface of the main flow path 234 at a position downstream of the main valve 236. The wire mesh 290 is arranged over the entire circumference of the inner wall surface of the main flow path 234.
メインバルブ 230カ^ィン流路 234を閉じた状態では、メインバルブ 230の上流側の 排気ガスは、弁体 237の周縁とメイン流路 234の内壁面とのクリアランス 234dと、弁 体 237の連通孔 237aからメインバルブ 230の下流側に流れ出る。この際、クリアラン ス 234dから流れ出る排気ガスは、メイン流路 234の軸線方向 Cと平行に流出する。 連通孔 237aから流れ出る排気ガスは、メイン流路 234の中心に向力つて流出する( すなわち、軸線方向 Cに対して傾斜する方向に流出する)。このため、クリアランス 23 4dから流れ出る排気ガスと連通孔 237aから流れ出る排気ガスが効率的に混合され 、その流速が低減される。  When the main valve 230 chain flow path 234 is closed, the exhaust gas upstream of the main valve 230 has a clearance 234d between the peripheral edge of the valve body 237 and the inner wall surface of the main flow path 234 and the valve body 237. It flows out from the communication hole 237a to the downstream side of the main valve 230. At this time, the exhaust gas flowing out from the clearance 234d flows out in parallel with the axial direction C of the main flow path 234. The exhaust gas flowing out from the communication hole 237a flows out toward the center of the main flow path 234 (that is, flows out in a direction inclined with respect to the axial direction C). For this reason, the exhaust gas flowing out from the clearance 234d and the exhaust gas flowing out from the communication hole 237a are mixed efficiently, and the flow velocity is reduced.
また、連通孔 237aから流れ出る排気ガスはメイン流路 234の中心に向力つて流れ 、かつ、連通孔 237aを 1つとすることで連通孔 237aの孔径が大きくされているため、 多量の排気ガスが連通孔 237aから流れ出る。このため、連通孔 237aから流出した 排気ガスはメイン流路 234の全体に拡散し易くなり、その流速が低減される。 さらに、メイン流路 234の内壁面のメインバルブ 230の下流側には金網 290が配さ れている。このため、クリアランス 234dから流れ出た排気ガスの流速は金網 290によ つて低減される。 Further, the exhaust gas flowing out from the communication hole 237a flows toward the center of the main flow path 234, and the diameter of the communication hole 237a is increased by using one communication hole 237a. It flows out from the communication hole 237a. For this reason, the exhaust gas flowing out from the communication hole 237a is easily diffused throughout the main flow path 234, and the flow velocity is reduced. Further, a wire mesh 290 is arranged on the inner wall surface of the main flow path 234 on the downstream side of the main valve 230. For this reason, the flow velocity of the exhaust gas flowing out from the clearance 234d is reduced by the wire mesh 290.
これらによって、メインバルブ 230でメイン流路 234を閉じたときの噴出音が低く抑 えられる。  As a result, the noise generated when the main flow path 234 is closed by the main valve 230 is suppressed to a low level.
[0047] 図 22は、本実施例の排気圧力制御弁について、メインバルブ 230を閉じたときの 排気ガスの流動状態をシミュレーションした結果を示している。図 23は、メインバルブ の弁体に連通孔を設けて ヽな 、排気圧力制御弁にっ 、て、メインノ レブを閉じたと きの排気ガスの流動状態をシミュレーションした結果を示している。  FIG. 22 shows the result of simulating the flow state of the exhaust gas when the main valve 230 is closed for the exhaust pressure control valve of the present embodiment. FIG. 23 shows the result of simulating the flow state of exhaust gas when the main valve is closed by the exhaust pressure control valve with a communication hole provided in the valve body of the main valve.
図 22,図 23の比較より明らかなように、本実施例の排気圧力制御弁では、連通孔 2 37aから流出する排気ガスによってメイン流路 234の全体に排気ガスが流れており、 クリアランス 234dから流出する排気ガスの流速が低く抑えられていることがわかる。  As is clear from the comparison between FIGS. 22 and 23, in the exhaust pressure control valve of the present embodiment, the exhaust gas flows out of the main flow path 234 by the exhaust gas flowing out from the communication hole 237a, and the clearance 234d It can be seen that the flow rate of the exhaust gas flowing out is kept low.
[0048] 第 2実施例の排気圧力制御弁では、メインバルブ 230を閉じたときにクリアランス 23 4dから流れ出る排気ガスと連通孔 237aから流れ出る排気ガスが効率的に混合し、 その流速が低く抑えられる。また、連通孔 237aからメイン流路 234に流れ出た排気 ガスは、メイン流路 234の中心に向かって流出し、メイン流路 234の全体に広がって ゆく。このため、連通孔 237aから流出する排気ガスの流速が低く抑えられる。さらに、 メイン流路 234の内壁面に設けた金網 290によって、クリアランス 234dから流れ出る 排気ガスの流速が低く抑えられる。これらによって、クリアランス 234dから流れ出るガ ス流及び連通孔 237aから流れ出るガス流と、その周囲の排気ガスとの流速差が小さ くなり、噴出音を低減することができる。  [0048] In the exhaust pressure control valve of the second embodiment, when the main valve 230 is closed, the exhaust gas flowing out from the clearance 234d and the exhaust gas flowing out from the communication hole 237a are mixed efficiently, and the flow velocity is kept low. . Further, the exhaust gas flowing out from the communication hole 237a into the main flow path 234 flows out toward the center of the main flow path 234 and spreads over the entire main flow path 234. For this reason, the flow velocity of the exhaust gas flowing out from the communication hole 237a can be kept low. Furthermore, the flow rate of the exhaust gas flowing out from the clearance 234d is kept low by the metal mesh 290 provided on the inner wall surface of the main flow path 234. As a result, the difference in flow velocity between the gas flow flowing out from the clearance 234d and the gas flow flowing out from the communication hole 237a and the surrounding exhaust gas is reduced, and the jet noise can be reduced.
[0049] なお、上述した実施例では、弁体 237に設けた連通孔 237aは 1つであった力 本 発明はこのような形態に限られない。例えば、弁体に設ける連通孔を複数とすること ができる。連通孔を複数設けることで、メイン流路全体に排気ガスを拡散することがで き、流速差の低減を図ることができる。なお、連通孔を複数設ける場合は、各連通孔 の孔径を小さくすることが好ましい。連通孔を小さくすることで、排気ガスの漏れ流量 を一定の値に抑えながら、連通孔から流出する排気ガスの速度を低く抑えることがで きる。 図 24は弁体に複数の連通孔を設けたときの流動状態をシミュレーションした結果を 示している。図 24から明らかなように、弁体に複数の連通孔を設けた場合でも、排気 ガスがメイン流路全体に拡散し、その流速が低く抑えられていることがわかる。なお、 図 24に示す例では、連通孔の下流端側を面取りし、また、弁体の周縁の下流端側を 面取りしている。これによつて、メインノ レブの上流側力も流れ出る排気ガスが拡散し 易くなり、その流速を低減することに寄与している。 [0049] In the embodiment described above, there is only one communication hole 237a provided in the valve body 237. The present invention is not limited to such a form. For example, a plurality of communication holes provided in the valve body can be provided. By providing a plurality of communication holes, exhaust gas can be diffused throughout the main flow path, and the flow velocity difference can be reduced. When providing a plurality of communication holes, it is preferable to reduce the diameter of each communication hole. By reducing the communication hole, it is possible to keep the exhaust gas flow rate from the communication hole low while keeping the exhaust gas leakage flow rate constant. Fig. 24 shows the simulation results of the flow state when a plurality of communication holes are provided in the valve body. As can be seen from FIG. 24, even when a plurality of communication holes are provided in the valve body, the exhaust gas diffuses throughout the main flow path, and the flow velocity is kept low. In the example shown in FIG. 24, the downstream end side of the communication hole is chamfered, and the downstream end side of the peripheral edge of the valve body is chamfered. This makes it easier for the exhaust gas flowing out of the upstream side of the main nozzle to diffuse, contributing to a reduction in the flow velocity.
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の 範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した 具体例を様々に変形、変更したものが含まれる。  Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合 わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせ に限定されるものではない。また、本明細書または図面に例示した技術は複数目的 を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有 用性を持つものである。  In addition, the technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of purposes at the same time, and attaining one of the purposes itself has technical usefulness.

Claims

請求の範囲 The scope of the claims
[1] エンジン力 排気される排気ガスの圧力を制御する排気圧力制御弁であって、 メイン流路とバイパス流路を備えるハウジングと、  [1] Engine power An exhaust pressure control valve for controlling the pressure of exhaust gas to be exhausted, a housing including a main flow path and a bypass flow path,
ハウジングに回転自在に支持されるスロットル軸と、スロットル軸に取付けられた弁 体とを備えており、スロットル軸を回転することにより弁体がメイン流路を閉じる閉状態 と弁体がメイン流路を開く開状態とに切換えるメインバルブと、  A throttle shaft rotatably supported by the housing and a valve body attached to the throttle shaft are provided. When the throttle shaft is rotated, the valve body closes the main flow path and the valve body is the main flow path. A main valve that switches to an open state that opens,
ノ ィパス流路を開閉するノ ィパスバルブと、を有しており、  A no-pass valve that opens and closes the no-pass flow path, and
メインバルブ上流側のメイン流路の内壁面には、バイパス流路の上流端が接続され る入口ポートが設けられており、  An inlet port to which the upstream end of the bypass channel is connected is provided on the inner wall surface of the main channel upstream of the main valve.
メインバルブ下流側のメイン流路の内壁面には、バイパス流路の下流端が接続され る出口ポートが設けられており、  An outlet port to which the downstream end of the bypass flow path is connected is provided on the inner wall surface of the main flow path on the downstream side of the main valve.
メインバルブが閉じられた状態では、出口ポートの位置と、スロットル軸の軸線から 弁体の周縁までの距離が最も長くなる弁体の周縁上の点の位置と力 周方向にずれ ている排気圧力制御弁。  When the main valve is closed, the position of the outlet port and the position of the point on the rim of the valve body where the distance from the axis of the throttle shaft to the rim of the valve body is the longest and the exhaust pressure deviated in the circumferential direction. Control valve.
[2] 出口ポートの周方向の位置力 メイン流路に設けられたスロットル軸を支持する部 位の周方向の位置と略一致する請求項 1の排気圧力制御弁。 [2] The exhaust pressure control valve according to claim 1, wherein the position force in the circumferential direction of the outlet port substantially coincides with the position in the circumferential direction of the portion supporting the throttle shaft provided in the main flow path.
[3] ハウジングに形成された貫通孔に収容されてスロットル軸の一端を支持する軸受け と、貫通孔力 ハウジングの外側に突出する側のスロットル軸の一端に取付けられて スロットル軸を回転駆動するァクチユエータと、スロットル軸と貫通孔の内壁面との間 をシールするシール部材と、をさらに有する請求項 1又は 2の排気圧力制御弁。 [3] A bearing that is accommodated in a through hole formed in the housing and supports one end of the throttle shaft, and an actuator that is attached to one end of the throttle shaft that protrudes outside the through hole force housing and rotates the throttle shaft The exhaust pressure control valve according to claim 1 or 2, further comprising: a seal member that seals between the throttle shaft and the inner wall surface of the through hole.
[4] 出口ポートには、排気ガスの流れ特性を変更する流れ特性変更手段が設けられて[4] The outlet port is provided with flow characteristic changing means for changing the exhaust gas flow characteristic.
V、る請求項 1〜3の 、ずれかの排気圧力制御弁。 V, the exhaust pressure control valve of any one of claims 1 to 3.
[5] 流れ特性変更手段が、出口ポートの下流側に形成された曲面状の壁面である請求 項 4の排気圧力制御弁。 5. The exhaust pressure control valve according to claim 4, wherein the flow characteristic changing means is a curved wall surface formed on the downstream side of the outlet port.
[6] 流れ特性変更手段が、出口ポートの下流側の壁面に取付けられて排気ガスの流れ を整流する整流部材である請求項 4の排気圧力制御弁。 6. The exhaust pressure control valve according to claim 4, wherein the flow characteristic changing means is a rectifying member that is attached to a wall surface on the downstream side of the outlet port and rectifies the flow of the exhaust gas.
[7] メインバルブが閉じられた状態では、弁体の周縁とメイン流路の内壁面には全周に わたって隙間が形成されており、 弁体には、その表面から裏面に貫通する連通孔が設けられており、その連通孔は、 メインバルブが閉じられた状態でその連通孔力 流れ出る排気ガスの流出方向がメ イン流路の軸線方向に対して傾斜するように設けられて 、る請求項 1〜6の 、ずれか の排気圧力制御弁。 [7] When the main valve is closed, a gap is formed around the entire circumference of the periphery of the valve body and the inner wall surface of the main flow path. The valve body is provided with a communication hole that penetrates from the front surface to the back surface. The communication hole is configured so that the direction of exhaust gas flowing out when the main valve is closed is the axis of the main flow path. The exhaust pressure control valve according to any one of claims 1 to 6, wherein the exhaust pressure control valve is provided to be inclined with respect to a direction.
[8] メインバルブが閉じられた状態では、弁体の表面がメイン流路の軸線方向に対して 傾斜しており、連通孔は、弁体の表面のうちスロットル軸より下流側となる位置に、弁 体の表面に対して略垂直方向に設けられて 、る請求項 7の排気圧力制御弁。  [8] When the main valve is closed, the surface of the valve body is inclined with respect to the axial direction of the main flow path, and the communication hole is located at a position downstream of the throttle shaft on the surface of the valve body. The exhaust pressure control valve according to claim 7, wherein the exhaust pressure control valve is provided in a direction substantially perpendicular to the surface of the valve body.
[9] メインバルブより下流側のメイン流路内壁面に設けられ、内壁面近傍の排気ガスの 流速を低減するガス流速低減手段をさらに有する請求項 1〜8のいずれかの排気圧 力制御弁。  [9] The exhaust pressure control valve according to any one of claims 1 to 8, further comprising a gas flow rate reducing means provided on an inner wall surface of the main flow channel downstream of the main valve, for reducing the flow rate of the exhaust gas in the vicinity of the inner wall surface. .
[10] ガス流速低減手段が金網であることを特徴とする請求項 9の排気圧力制御弁。  10. The exhaust pressure control valve according to claim 9, wherein the gas flow velocity reducing means is a wire mesh.
[11] エンジン力 排気される排気ガスの圧力を制御する排気圧力制御弁であって、 メイン流路とバイパス流路を備えるハウジングと、 [11] Engine power An exhaust pressure control valve for controlling the pressure of exhaust gas to be exhausted, comprising a housing having a main flow path and a bypass flow path,
ハウジングに回転自在に支持されるスロットル軸と、スロットル軸に取付けられた弁 体とを備えており、スロットル軸を回転することにより弁体がメイン流路を閉じる閉状態 と弁体がメイン流路を開く開状態とに切換えるメインバルブと、  A throttle shaft rotatably supported by the housing and a valve body attached to the throttle shaft are provided. When the throttle shaft is rotated, the valve body closes the main flow path and the valve body is the main flow path. A main valve that switches to an open state that opens,
ノ ィパス流路を開閉するノ ィパスバルブと、を有しており、  A no-pass valve that opens and closes the no-pass flow path, and
メインバルブ上流側のメイン流路の内壁面には、バイパス流路の上流端が接続され る入口ポートが設けられており、  An inlet port to which the upstream end of the bypass channel is connected is provided on the inner wall surface of the main channel upstream of the main valve.
メインバルブ下流側のメイン流路の内壁面には、バイパス流路の下流端が接続され る出口ポートが設けられており、  An outlet port to which the downstream end of the bypass flow path is connected is provided on the inner wall surface of the main flow path on the downstream side of the main valve.
出口ポートには、排気ガスの流れ特性を変更する流れ特性変更手段が設けられて いる排気圧力制御弁。  An exhaust pressure control valve provided with flow characteristic changing means for changing the flow characteristic of the exhaust gas at the outlet port.
[12] エンジン力 排気される排気ガスの圧力を制御する排気圧力制御弁であって、 排気流路が設けられるハウジングと、  [12] Engine power An exhaust pressure control valve for controlling the pressure of exhaust gas to be exhausted, a housing provided with an exhaust flow path,
ハウジングに回転自在に支持される回転軸と、回転軸に取付けられた弁体とを備え ており、回転軸を回転することにより弁体力排気流路を閉じる閉状態と排気流路を開 く開状態とに切換えるバルブと、を有しており、 弁体には、その表面から裏面に貫通する連通孔が設けられており、その連通孔は、 バルブが閉じられた状態でその連通孔力 流れ出る排気ガスの流出方向が排気流 路の軸線方向に対して傾斜するように設けられて 、る排気圧力制御弁。 A rotating shaft that is rotatably supported by the housing and a valve body attached to the rotating shaft are provided. By rotating the rotating shaft, the valve body force exhaust passage is closed and the exhaust passage is opened. A valve that switches to a state, The valve body is provided with a communication hole penetrating from the front surface to the back surface. The communication hole is configured so that the exhaust gas flowing out of the communication hole force is in the axial direction of the exhaust flow path when the valve is closed. An exhaust pressure control valve provided so as to be inclined with respect to the exhaust pressure control valve.
[13] エンジン力 排気される排気ガスの圧力を制御する排気圧力制御弁であって、 排気流路が設けられるハウジングと、 [13] Engine power An exhaust pressure control valve for controlling the pressure of exhaust gas to be exhausted, a housing provided with an exhaust flow path,
ハウジングに回転自在に支持される回転軸と、回転軸に取付けられた弁体とを備え ており、回転軸を回転することにより弁体力排気流路を閉じる閉状態と排気流路を開 く開状態とに切換えるバルブと、  A rotating shaft that is rotatably supported by the housing and a valve body attached to the rotating shaft are provided. By rotating the rotating shaft, the valve body force exhaust passage is closed and the exhaust passage is opened. A valve that switches to a state,
バルブより下流側の排気流路の内壁面に設けられ、内壁面近傍の排気ガスの流速 を低減するガス流速低減手段と、を有する排気圧力制御弁。  An exhaust pressure control valve having gas flow rate reducing means provided on the inner wall surface of the exhaust flow channel downstream of the valve and reducing the flow rate of exhaust gas in the vicinity of the inner wall surface.
[14] エンジン力 排気される排気ガスの圧力を制御する排気圧力制御弁であって、 メイン流路とバイパス流路を備えるハウジングと、 [14] Engine power An exhaust pressure control valve that controls the pressure of exhaust gas to be exhausted, a housing including a main flow path and a bypass flow path;
メイン流路を開閉するメインバルブと、  A main valve that opens and closes the main flow path;
メインバルブを開閉駆動する第 1のバルブ開閉装置と、  A first valve opening / closing device that opens and closes the main valve;
ノ ィパス流路を開閉するノ ィパスバルブと、  A noisy valve that opens and closes the noisy flow path,
ノ ィパスバルブを開閉駆動する第 2のバルブ開閉装置と、を有しており、 第 1のバルブ開閉装置は、メインバルブを閉状態力 開状態とするまでの時間がメ インバルブを開状態カも閉状態とするまでの時間に比して長くなるように設定されて いる排気圧力制御弁。  A first valve opening / closing device that opens and closes the noisy valve, and the first valve opening / closing device closes the main valve and opens the main valve. An exhaust pressure control valve that is set to be longer than the time it takes to reach a state.
[15] 第 1のバルブ開閉装置は、 [15] The first valve opening and closing device
メインバルブを開閉駆動するダイアフラム式のァクチユエータと、  A diaphragm type actuator that opens and closes the main valve;
そのァクチユエータの圧力室に気体の給排気を行う給排気手段と、  Supply / exhaust means for supplying / exhausting gas to / from the pressure chamber of the actuator;
その給排気手段とァクチユエータの圧力室とを接続する配管と、  Piping connecting the air supply / exhaust means and the pressure chamber of the actuator;
その配管の途中に設けられ、気体の通過断面積が大きな通過口となる第 1の状態 と、気体の通過断面積が小さな通過口となる第 2の状態とに切り替える流量調節手段 と、を有しており、  A flow rate adjusting means is provided in the middle of the pipe and switches between a first state where the gas passage cross-sectional area is a large passage port and a second state where the gas passage cross-sectional area is a small passage port. And
ァクチユエータは、圧力室の気体の圧力が所定圧力を超えるときはメインバルブを 閉じ、圧力室の圧力が所定圧力以下のときはメインバルブを開くように設定されてお り、 The actuator is set to close the main valve when the gas pressure in the pressure chamber exceeds a predetermined pressure, and to open the main valve when the pressure in the pressure chamber is lower than the predetermined pressure. The
流量調節手段は、圧力室から気体を排気するときは第 1の状態とし、圧力室に気体 を供給するときは第 2の状態とする請求項 14の排気圧力制御弁。  15. The exhaust pressure control valve according to claim 14, wherein the flow rate adjusting means is in a first state when exhausting gas from the pressure chamber and in a second state when supplying gas to the pressure chamber.
[16] 第 2のバルブ開閉装置は、メインバルブ上流側の排気ガスの圧力に応じて直線運 動する可動部材と、その可動部材の直線運動をバイパスバルブの開閉運動に変換 するリンク機構とを備えている請求項 14又は 15の排気圧力制御弁。 [16] The second valve opening / closing device includes a movable member that linearly moves according to the pressure of the exhaust gas upstream of the main valve, and a link mechanism that converts the linear motion of the movable member into the opening / closing motion of the bypass valve. The exhaust pressure control valve according to claim 14 or 15, further comprising:
[17] 第 2のバルブ開閉装置は、可動部材を収容する収容室と、可動部材によって仕切 られた収容室の一方にメインバルブ上流側の排気ガスを導入する導入管と、収容室 の他方に配されて可動部材を収容室の一方に向力つて付勢する付勢手段と、を備え ている請求項 16の排気圧力制御弁。 [17] The second valve opening / closing device includes a storage chamber that houses the movable member, an introduction pipe that introduces exhaust gas upstream of the main valve into one of the storage chambers partitioned by the movable member, and the other of the storage chambers. The exhaust pressure control valve according to claim 16, further comprising: an urging means arranged to urge the movable member toward one side of the accommodation chamber.
[18] ノ、ウジングの上流端には、 DPF装置が接続可能とされた接続口が設けられて 、る 請求項 16又は 17の排気圧力制御弁。 [18] The exhaust pressure control valve according to claim 16 or 17, wherein a connection port to which a DPF device can be connected is provided at the upstream end of the wing.
[19] ハウジングの下流端に設けられ、排気管が取付けられるフランジ部をさらに有して おり、そのフランジ部は、当該フランジ部と排気管とがフレキシブル結合されるように なっていることを特徴とする請求項 14〜18のいずれかの排気圧力制御弁。 [19] The flange further includes a flange portion provided at the downstream end of the housing to which the exhaust pipe is attached. The flange portion is configured so that the flange portion and the exhaust pipe are flexibly coupled. The exhaust pressure control valve according to any one of claims 14 to 18.
[20] エンジン力 排気される排気ガスの圧力を制御する排気圧力制御弁であって、 メイン流路とバイパス流路を備えるハウジングと、 [20] Engine power An exhaust pressure control valve for controlling the pressure of exhaust gas to be exhausted, comprising a housing having a main flow path and a bypass flow path,
メイン流路を開閉するメインバルブと、  A main valve that opens and closes the main flow path;
メインバルブを開閉駆動する第 1のバルブ開閉装置と、  A first valve opening / closing device that opens and closes the main valve;
ノ ィパス流路を開閉するノ ィパスバルブと、  A noisy valve that opens and closes the noisy flow path,
ノ ィパスバルブを開閉駆動する第 2のバルブ開閉装置と、を有しており、 ノ ィパスバルブは、バイノス流路の中間部でメイン流路力ら退避した位置に配設さ れており、  A second valve opening / closing device that drives the opening and closing of the noisy valve, and the noisy valve is disposed at a position retracted from the main channel force in the middle of the binos channel,
第 2のバルブ開閉装置は、メインバルブ上流側の排気ガスの圧力に応じて直線運 動する可動部材と、その可動部材の直線運動をバイパスバルブの開閉運動に変換 するリンク機構とを備えている排気圧力制御弁。  The second valve opening / closing device includes a movable member that linearly moves according to the exhaust gas pressure upstream of the main valve, and a link mechanism that converts the linear motion of the movable member into an opening / closing motion of the bypass valve. Exhaust pressure control valve.
PCT/JP2007/055272 2006-03-15 2007-03-15 Exhaust pressure control valve WO2007119379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07738722A EP2003313B1 (en) 2006-03-15 2007-03-15 Exhaust pressure control valve

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-070481 2006-03-15
JP2006070481A JP2007247488A (en) 2006-03-15 2006-03-15 Exhaust pressure control device
JP2006-082528 2006-03-24
JP2006082528A JP2007255351A (en) 2006-03-24 2006-03-24 Exhaust pressure control valve
JP2006-084510 2006-03-27
JP2006084510A JP2007255395A (en) 2006-03-27 2006-03-27 Exhaust pressure control valve

Publications (1)

Publication Number Publication Date
WO2007119379A1 true WO2007119379A1 (en) 2007-10-25

Family

ID=38609175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055272 WO2007119379A1 (en) 2006-03-15 2007-03-15 Exhaust pressure control valve

Country Status (2)

Country Link
EP (1) EP2003313B1 (en)
WO (1) WO2007119379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116620733A (en) * 2023-07-24 2023-08-22 琥崧智能装备(太仓)有限公司 Explosion-proof air bag for air disc and air disc device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207198B4 (en) * 2012-04-30 2023-02-02 Röchling Automotive AG & Co. KG Device for reducing noise emissions from air intake pipes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55170431U (en) * 1979-05-24 1980-12-06
JPS6125554U (en) * 1984-07-19 1986-02-15 愛三工業株式会社 Internal combustion engine intake system
JPH05209564A (en) * 1992-01-31 1993-08-20 Toyota Motor Corp Idling engine speed control device
JPH0814032A (en) * 1994-06-24 1996-01-16 Calsonic Corp Exhaust emission control device
JPH1113500A (en) * 1997-06-27 1999-01-19 Nippon Soken Inc Flow noise control system for throttle valve
JPH1141495A (en) 1997-07-24 1999-02-12 Yazaki Corp Image pickup area expanding member and vehicle periphery monitoring device using the same
JP2000002125A (en) * 1998-06-16 2000-01-07 Bosch Braking Systems Co Ltd Exhaust shutter valve for diesel engine
JP2005299457A (en) 2004-04-09 2005-10-27 Isuzu Motors Ltd Engine exhaust gas throttle valve
JP2006070481A (en) 2004-08-31 2006-03-16 Yanmar Co Ltd Tractor
JP2006082528A (en) 2004-09-17 2006-03-30 Sony Corp Dot pattern assigning method and device, printer, program and data structure
JP2006084510A (en) 2004-09-14 2006-03-30 Dainippon Printing Co Ltd Retardation plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1183954A (en) * 1967-05-18 1970-03-11 Rootes Motors Ltd Improvements in or relating to Internal Combustion Engines
US4231337A (en) * 1978-04-28 1980-11-04 Hitachi, Ltd. Air intake system for diesel engine
US6109027A (en) * 1998-02-17 2000-08-29 Diesel Engine Retarders, Inc. Exhaust restriction device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55170431U (en) * 1979-05-24 1980-12-06
JPS6125554U (en) * 1984-07-19 1986-02-15 愛三工業株式会社 Internal combustion engine intake system
JPH05209564A (en) * 1992-01-31 1993-08-20 Toyota Motor Corp Idling engine speed control device
JPH0814032A (en) * 1994-06-24 1996-01-16 Calsonic Corp Exhaust emission control device
JPH1113500A (en) * 1997-06-27 1999-01-19 Nippon Soken Inc Flow noise control system for throttle valve
JPH1141495A (en) 1997-07-24 1999-02-12 Yazaki Corp Image pickup area expanding member and vehicle periphery monitoring device using the same
JP2000002125A (en) * 1998-06-16 2000-01-07 Bosch Braking Systems Co Ltd Exhaust shutter valve for diesel engine
JP2005299457A (en) 2004-04-09 2005-10-27 Isuzu Motors Ltd Engine exhaust gas throttle valve
JP2006070481A (en) 2004-08-31 2006-03-16 Yanmar Co Ltd Tractor
JP2006084510A (en) 2004-09-14 2006-03-30 Dainippon Printing Co Ltd Retardation plate
JP2006082528A (en) 2004-09-17 2006-03-30 Sony Corp Dot pattern assigning method and device, printer, program and data structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003313A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116620733A (en) * 2023-07-24 2023-08-22 琥崧智能装备(太仓)有限公司 Explosion-proof air bag for air disc and air disc device

Also Published As

Publication number Publication date
EP2003313B1 (en) 2011-05-11
EP2003313A9 (en) 2009-04-22
EP2003313A4 (en) 2010-04-07
EP2003313A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US4916897A (en) Exhaust gas purifying apparatus built-in to a muffler for a diesel engine
JP2006017124A (en) Dynamic exhaust system for motor cycle
EP2199551B1 (en) Exhaust system of an internal combustion engine
JP4381868B2 (en) Exhaust muffler with engine exhaust purification function
US5647206A (en) Exhaust emission purification apparatus
WO2007119379A1 (en) Exhaust pressure control valve
JP2007255395A (en) Exhaust pressure control valve
JP2007247488A (en) Exhaust pressure control device
CN107835895B (en) Exhaust pressure control valve
KR100372548B1 (en) catalytic converter for disel engine
JP2007255351A (en) Exhaust pressure control valve
JP3521688B2 (en) Automotive exhaust silencer
CN107288732B (en) Selectively tunable exhaust noise attenuation device
JP2516297Y2 (en) Gas flow path switching device inside automobile silencer
JPH116417A (en) Exhaust muffler for automobile
JP2009174343A (en) Catalytic converter with adsorption member
JP4319816B2 (en) Exhaust gas purification device for internal combustion engine
JPH08165920A (en) Exhaust emission control device
JPH0286910A (en) Exhaust gas purification device for internal combustion engine using alcohol
KR100372706B1 (en) Silencer for an exhaust system in a motor vehicle
JPS6357817A (en) Air intake device for internal combustion engine
JP2555081Y2 (en) Smoke filter
KR20020056508A (en) An automotive exhaust system having variable flux
KR101189381B1 (en) Exhaust gas noise reducing device in vehicle
JPH07310521A (en) Engine muffler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007738722

Country of ref document: EP