JPH08165920A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JPH08165920A
JPH08165920A JP7192795A JP7192795A JPH08165920A JP H08165920 A JPH08165920 A JP H08165920A JP 7192795 A JP7192795 A JP 7192795A JP 7192795 A JP7192795 A JP 7192795A JP H08165920 A JPH08165920 A JP H08165920A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
flow path
flow
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7192795A
Other languages
Japanese (ja)
Other versions
JP3656268B2 (en
Inventor
Mamoru Mabuchi
衛 馬渕
Hiroyuki Usami
宏行 宇佐美
Masaichi Tanaka
政一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP07192795A priority Critical patent/JP3656268B2/en
Publication of JPH08165920A publication Critical patent/JPH08165920A/en
Application granted granted Critical
Publication of JP3656268B2 publication Critical patent/JP3656268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Abstract

PURPOSE: To improve the adsorption efficiency of HC to an adsorber in an exhaust emission control device having a switching valve for switching between a passage of an adsorber and an exhaust passage installed parallel thereto. CONSTITUTION: The expanding angle θ of an expanded pipe 31 positioned on the upstream side of an adsorber 5 is set within a range (50-80 degrees) as to cause one-sided wall surface separation. At the time of cold after the start of an engine 1, a switching valve 8 is operated to a broken line position to let exhaust gas flow through a passage 5a of an adsorber 5 side. At that time, a quick flow of exhaust gas is biased to the adsorber 5 side by one-sided wall surface separation to equalize the exhaust gas inflow speed to the adsorber 5, so that the adsorption efficiency of HC or the like can be improved. After warming-up of the engine 1, the switching valve 8 is switched to the solid line position for opening the exhaust passage 34 side so that exhaust gas flows through the exhaust passage 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車等に搭載されるエ
ンジン(内燃機関)の排気ガス浄化装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an engine (internal combustion engine) mounted on an automobile or the like.

【0002】[0002]

【従来の技術】自動車エンジンの排気ガスを浄化する浄
化装置の一つの方式として、貴金属(白金、ロジウム
等)などを触媒として担持した担体を用いる排気ガス浄
化装置が知られている。この方式による炭化水素化合物
(以下HCと略す)の浄化には、一般に触媒活性化温度
350℃以上を必要とする。
2. Description of the Related Art As one method of purifying exhaust gas of an automobile engine, an exhaust gas purifying apparatus using a carrier carrying a precious metal (platinum, rhodium, etc.) as a catalyst is known. Purification of a hydrocarbon compound (hereinafter abbreviated as HC) by this method generally requires a catalyst activation temperature of 350 ° C. or higher.

【0003】しかしながら、エンジン始動直後において
は、上記触媒が触媒活性温度に達していないため、HC
浄化は、ほとんど行なわれないという問題がある。そこ
で、上記の問題を解決するため、エンジンの排気系に触
媒装置を配備し、かつその上流側または下流側に、エン
ジン冷間時に排出されたHC(以下コールドHCと呼
ぶ)を吸着するための吸着剤を納めたHCトラッパーを
配備した浄化装置が特開平2−135126号公報、特
開平4ー17710号公報、特開平4ー311618号
公報等で提案されている。
However, since the catalyst has not reached the catalyst activation temperature immediately after the engine is started, the HC
The problem is that purification is rarely performed. Therefore, in order to solve the above problem, a catalyst device is provided in the exhaust system of the engine, and HC (hereinafter referred to as cold HC) exhausted during cold engine operation is adsorbed on the upstream side or the downstream side thereof. Purification devices equipped with an HC trapper containing an adsorbent have been proposed in JP-A-2-135126, JP-A-4-177710, JP-A-4-31618 and the like.

【0004】上記特開平2−135126号公報の浄化
装置は、触媒装置の上流側にゼオライト系吸着剤を用い
た吸着剤装置を配して、吸着剤装置と触媒装置とを併用
し、排気ガス低温時には吸着剤にコールドHCを吸着さ
せ、排気ガス高温時には吸着剤から脱離したHCおよび
エンジンからの排気HCを触媒で浄化させるものであ
る。
In the purifying device of the above-mentioned Japanese Patent Laid-Open No. 2-135126, an adsorbent device using a zeolite-based adsorbent is arranged on the upstream side of the catalyst device, and the adsorbent device and the catalyst device are used together to produce exhaust gas. Cold HC is adsorbed on the adsorbent at a low temperature, and HC desorbed from the adsorbent and exhaust HC from the engine are purified by a catalyst at a high exhaust gas temperature.

【0005】また、上記特開平4ー17710号公報、
特開平4ー311618号公報の浄化装置は、吸着剤を
含むHCトラッパーを触媒装置の下流側に、メイン排気
管と並列に配置するとともに、このHCトラッパーを含
むバイパス通路とメイン排気管にはそれぞれ流路切替弁
を設けている。そして、エンジン始動直後から所定時
間、上記弁を操作し、排気ガスをバイパス通路へ流し、
その間、コールドHCはトラッパーに吸着される。エン
ジン始動後から所定時間経過して、排気ガス温度が上昇
し、HCトラッパーの吸着剤からコールドHCが脱離す
る状態になると、上記弁はメイン排気管に排気ガスを流
す位置に切り替わり、この時、トラッパー下流側とエン
ジン吸気管とをつなぐ脱離用配管にエンジンの吸気管負
圧が加わり、脱離したHCは上記吸気管へ吸い込まれて
再びエンジン内で燃焼するようになっている。
Further, the above-mentioned JP-A-4-17710,
In the purification device of Japanese Patent Laid-Open No. 4-311618, an HC trapper containing an adsorbent is arranged downstream of the catalyst device in parallel with the main exhaust pipe, and the bypass passage containing the HC trapper and the main exhaust pipe are respectively arranged. A flow path switching valve is provided. Then, immediately after the engine is started, the valve is operated for a predetermined time to allow exhaust gas to flow to the bypass passage,
Meanwhile, cold HC is adsorbed by the trapper. When the exhaust gas temperature rises and cold HC is desorbed from the adsorbent of the HC trapper after a lapse of a predetermined time after the engine is started, the valve is switched to a position where the exhaust gas flows through the main exhaust pipe. The negative pressure of the intake pipe of the engine is applied to the desorption pipe connecting the trapper downstream side and the engine intake pipe, and the desorbed HC is sucked into the intake pipe and burned again in the engine.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来の
コールドHC吸着技術のうち、触媒装置の上流側にHC
トラッパーを配備するものでは、エンジンから排出直後
の高温排気ガスがHCトラッパーに流入するので、吸着
剤の耐熱性が問題となる。そこで、特開平2ー1351
26号公報では、耐熱性の高いゼオライト系吸着剤を使
用している。しかし、吸着剤は一般に低温ほど吸着性能
が高く、ゼオライトでも触媒が活性温度になる前にHC
が脱離してしまうので、せっかく吸着したHCが浄化さ
れずに大気へ放出されるという問題が生じる。
However, among the above-mentioned conventional cold HC adsorption techniques, HC is provided upstream of the catalyst device.
In the case where the trapper is provided, the high temperature exhaust gas immediately after being discharged from the engine flows into the HC trapper, so that the heat resistance of the adsorbent becomes a problem. Therefore, JP-A-2-1351
In Japanese Patent No. 26, a zeolite adsorbent having high heat resistance is used. However, adsorbents generally have higher adsorbing performance at lower temperatures, and even with zeolite, the HC
Are desorbed, so that the problem arises that the adsorbed HC is released to the atmosphere without being purified.

【0007】また、触媒装置の上流にHCトラッパーを
配備すると、HCトラッパーそれ自体が大きな熱容量に
なるため、触媒の活性化、即ち触媒が活性温度に達する
までの時間を遅らせるという問題も生じる。一方、触媒
装置の下流側にHCトラッパーを配備した特開平4ー1
7710号公報や特開平4ー311618号公報では、
コールドHCの吸着性能および触媒の活性化について
は、上記問題は解決される。
Further, when the HC trapper is arranged upstream of the catalyst device, the HC trapper itself has a large heat capacity, so that there is a problem that the activation of the catalyst, that is, the time until the catalyst reaches the activation temperature is delayed. On the other hand, JP-A-4-1, in which an HC trapper is provided on the downstream side of the catalyst device
In Japanese Patent No. 7710 and Japanese Patent Laid-Open No. 4-311618,
Regarding the adsorption performance of cold HC and the activation of the catalyst, the above problems are solved.

【0008】しかし、上記両公報のものでは、HCトラ
ッパーに流入する排気ガスの速度分布について何ら考慮
していないが、本発明者らの実験検討によれば、HCト
ラッパーへの流入排気ガスの速度分布が不均一になるこ
とにより、吸着剤によるHC吸着効率が大幅に低下する
という問題が生じることが分かった。そこで、本発明は
上記の事情に鑑み、吸着装置の流路と、この吸着装置を
通過しない排気ガスの流れを形成する排気流路とを切り
替える排気ガス流路切替手段を有する排気ガス浄化装置
において、この排気ガス流路切替手段を吸着装置の下流
側の1箇所に設置して、構造を簡略化できるとともに、
吸着装置の上流に位置する拡大管の構成を工夫して、吸
着装置への流入排気ガスの速度分布を均一化し、吸着装
置による吸着効率を向上できる排気ガス浄化装置を提供
することを目的とする。
However, in both of the above publications, the velocity distribution of the exhaust gas flowing into the HC trapper is not considered at all, but according to the experiments conducted by the present inventors, the velocity of the exhaust gas flowing into the HC trapper. It has been found that the non-uniform distribution causes a problem that the HC adsorption efficiency of the adsorbent is significantly reduced. Therefore, in view of the above circumstances, the present invention provides an exhaust gas purifying apparatus that has an exhaust gas flow path switching unit that switches a flow path of an adsorption device and an exhaust flow path that forms a flow of exhaust gas that does not pass through the adsorption device. The exhaust gas flow path switching means can be installed at one location on the downstream side of the adsorption device to simplify the structure, and
It is an object of the present invention to provide an exhaust gas purifying device that can improve the adsorption efficiency of the adsorption device by devising the structure of the expansion pipe located upstream of the adsorption device to make the velocity distribution of the exhaust gas flowing into the adsorption device uniform. .

【0009】また、本発明は、車両への搭載が容易な排
気ガス浄化装置を提供することを他の目的とする。
Another object of the present invention is to provide an exhaust gas purifying device which can be easily mounted on a vehicle.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、以下の技術的手段を採用する。請求項1の発
明では、エンジン(1)の排気管(3)内に配設された
触媒装置(4)と、この触媒装置(4)より下流の前記
排気管(3)内に配設され、排気ガス有害成分を吸着す
る吸着剤を担持した吸着装置(5)と、前記触媒装置
(4)より下流の前記排気管(3)内に、前記吸着装置
(5)を通過しない排気ガスの流れを形成する排気流路
(34)と、前記吸着装置(5)に吸着された前記排気
ガス有害成分を前記触媒装置(4)の上流側に還流させ
る還流流路(6a、6b)と、前記吸着装置(5)の下
流に設けられ、排気ガスの流通を前記吸着装置(5)の
流路と前記排気流路(34)とに選択的に切替可能な排
気ガス流路切替手段(8)と、前記吸着装置(5)およ
び前記排気流路(34)の上流に設けられ、前記排気管
(3)に比して流路断面積を拡大するように形成され、
排気ガスを前記吸着装置(5)または前記排気流路(3
4)に導く拡大管(31)と、前記切替手段(8)をエ
ンジン(1)冷間時には排気ガスを前記吸着装置(5)
に流通せしめる位置に切替え、エンジン(1)暖機時に
は排気ガスを前記排気流路(34)に流通せしめる位置
に切替制御する制御手段(10)とを具備し、前記拡大
管(31)の広がり角度(θ)は、その内部の排気ガス
の流れが片面壁面剥離となる範囲に設定されている排気
ガス浄化装置を特徴としている。
In order to achieve the above object, the present invention employs the following technical means. According to the invention of claim 1, the catalyst device (4) is arranged in the exhaust pipe (3) of the engine (1), and is arranged in the exhaust pipe (3) downstream of the catalyst device (4). An adsorbing device (5) carrying an adsorbent for adsorbing exhaust gas harmful components, and exhaust gas not passing through the adsorbing device (5) in the exhaust pipe (3) downstream of the catalyst device (4). An exhaust flow path (34) forming a flow, and a return flow path (6a, 6b) for returning the exhaust gas harmful components adsorbed by the adsorption device (5) to the upstream side of the catalyst device (4), An exhaust gas flow passage switching means (8) provided downstream of the adsorption device (5) and capable of selectively switching the flow of exhaust gas between the flow passage of the adsorption device (5) and the exhaust flow passage (34). ), And the exhaust pipe (3) provided upstream of the adsorption device (5) and the exhaust flow path (34). Is formed so as to enlarge the flow passage cross-sectional area than,
Exhaust gas is adsorbed to the adsorption device (5) or the exhaust flow path (3).
4) the expansion pipe (31) and the switching means (8), the exhaust gas is adsorbed (5) when the engine (1) is cold.
And a control means (10) for switching to a position where the exhaust gas is allowed to flow into the exhaust flow passage (34) when the engine (1) is warmed up, and the expansion pipe (31) is expanded. The angle (θ) is characteristic of the exhaust gas purifying device in which the flow of the exhaust gas inside is set in a range where the one-sided wall surface is separated.

【0011】請求項2記載の発明では、請求項1に記載
の排気ガス浄化装置において、前記拡大管(31)の広
がり角度は、50〜80度の範囲に設定されていること
を特徴とする。請求項3記載の発明では、請求項1また
は2に記載の排気ガス浄化装置において、前記吸着装置
(5)の流路(5d)と前記排気流路(34)は隣接し
て配置されており、この両流路(5d、34)を合わせ
た全体の流路断面形状は楕円状に構成されていることを
特徴とする。
According to a second aspect of the present invention, in the exhaust gas purifying apparatus according to the first aspect, the expansion angle of the expansion pipe (31) is set in the range of 50 to 80 degrees. . According to a third aspect of the invention, in the exhaust gas purifying apparatus according to the first or second aspect, the flow passage (5d) of the adsorption device (5) and the exhaust flow passage (34) are arranged adjacent to each other. The cross-sectional shape of the entire flow path, which is a combination of both flow paths (5d, 34), is elliptical.

【0012】請求項4記載の発明では、請求項3に記載
の排気ガス浄化装置において、前記吸着装置(5)の流
路(5d)と前記排気流路(34)は、前記楕円状の長
軸方向に隣接して配置されていることを特徴とする。請
求項5記載の発明では、請求項3または4に記載の排気
ガス浄化装置において、前記吸着装置(5)および前記
排気流路(34)は、前記楕円状の長軸方向が略水平方
向となるようにして、車両の車体下方に配置されるよう
にしたことを特徴とする。
According to a fourth aspect of the present invention, in the exhaust gas purifying apparatus according to the third aspect, the flow passage (5d) and the exhaust flow passage (34) of the adsorption device (5) have the elliptical shape. It is characterized in that they are arranged adjacent to each other in the axial direction. According to a fifth aspect of the present invention, in the exhaust gas purifying apparatus according to the third or fourth aspect, the ellipse-shaped major axis direction of the adsorption device (5) and the exhaust passage (34) is substantially horizontal. In this way, it is arranged below the vehicle body of the vehicle.

【0013】請求項6記載の発明では、請求項1ないし
5のいずれか1つに記載の排気ガス浄化装置において、
前記切替手段(8)をエンジン吸気負圧により駆動する
アクチュエータ(9)と、このアクチュエータ(9)に
エンジン吸気負圧を導入する吸気負圧導入流路(15
a、15b)と、この吸気負圧導入流路(15a、15
b)に設けられ、前記制御手段(10)により開閉制御
される開閉弁(13)と、前記吸気負圧導入流路(15
a、15b)に設けられ、前記アクチュエータ(9)か
らエンジン吸気側への一方向のみに流体を流す一方向弁
(14)とを具備することを特徴とする。
According to a sixth aspect of the present invention, in the exhaust gas purification device according to any one of the first to fifth aspects,
An actuator (9) for driving the switching means (8) by engine intake negative pressure, and an intake negative pressure introduction flow path (15) for introducing engine intake negative pressure to the actuator (9).
a, 15b) and the intake negative pressure introducing passages (15a, 15b)
b), an on-off valve (13) that is opened and closed by the control means (10), and the intake negative pressure introduction flow path (15)
a, 15b), and a one-way valve (14) for flowing fluid in only one direction from the actuator (9) to the engine intake side.

【0014】なお、上記各手段の括弧内の符号は、後述
する実施例記載の具体的手段との対応関係を示すもので
ある。
The reference numerals in parentheses of the above means indicate the correspondence with the concrete means described in the embodiments described later.

【0015】[0015]

【発明の作用効果】請求項1〜6記載の発明によれば、
上記技術的手段を有しているため、エンジン始動後の冷
間時、排気ガスは排気ガス流路切替手段(8)の流路切
替作用により触媒装置(4)から吸着装置(5)の流路
(5d)を経て放出される。この場合、触媒装置(4)
では浄化されない排気ガス中のHCは、吸着装置5の吸
着剤に吸着される。
According to the inventions of claims 1 to 6,
Since the above technical means is provided, during the cold after the engine is started, the exhaust gas flows from the catalyst device (4) to the adsorption device (5) by the flow passage switching action of the exhaust gas flow passage switching means (8). It is discharged via the path (5d). In this case, the catalytic device (4)
The HC in the exhaust gas that is not purified by is adsorbed by the adsorbent of the adsorption device 5.

【0016】一方、エンジンの暖機後は排気ガス流路切
替手段(8)の流路切替作用により、排気ガスは触媒装
置(4)から、吸着装置(5)の存在しない排気流路
(34)を経て放出される。このとき、排気ガス中のH
Cは、高温となり活性化した触媒装置(4)により浄化
される。また、吸着装置(5)の吸着剤に吸着されたH
Cが脱離し、その脱離HCは還流流路(6a、6b)か
ら、触媒装置(4)上流側に還流されて、触媒装置
(4)により脱離HCを速やかに浄化できる。
On the other hand, after the engine is warmed up, the exhaust gas flow path switching means (8) switches the flow path so that the exhaust gas flows from the catalyst device (4) to the exhaust flow path (34) where the adsorption device (5) does not exist. ) Is released through. At this time, H in the exhaust gas
C is purified by the activated catalyst device (4) due to high temperature. In addition, H adsorbed by the adsorbent of the adsorption device (5)
C is desorbed, and the desorbed HC is recirculated to the upstream side of the catalyst device (4) from the reflux flow paths (6a, 6b), and the desorbed HC can be promptly purified by the catalyst device (4).

【0017】しかも、吸着装置(5)の上流側に位置す
る拡大管(31)の広がり角度をその内部の排気ガスの
流れが片面壁面剥離となる範囲に設定しているから、H
C吸着時には、吸着装置(5)側の流路(5d)に排気
ガスの速い流れを偏らせることが可能となり、その結果
吸着装置(5)に流入する排気ガスの流入速度を均一化
できるので、吸着装置全体をHC吸着のために有効活用
でき、吸着効率を格段と向上できる。
Moreover, since the expansion angle of the expansion pipe (31) located on the upstream side of the adsorption device (5) is set within the range in which the flow of exhaust gas inside the expansion pipe (31) causes single-sided wall separation, H
At the time of C adsorption, it becomes possible to bias the fast flow of exhaust gas in the flow path (5d) on the adsorption device (5) side, and as a result, the inflow speed of the exhaust gas flowing into the adsorption device (5) can be made uniform. The entire adsorption device can be effectively used for adsorbing HC, and the adsorption efficiency can be significantly improved.

【0018】また、HC脱離時には、排気流路(34)
側に排気ガスの速い流れを偏らせることができるので、
吸着装置(5)上流側に渦が発生するのを抑制でき、そ
のため、一旦吸着されたHCが排気流路(34)側へ流
出するのを防止でき、排気浄化効果を一層高めることが
できる。また、吸着装置(5)の流路(5a)と、この
吸着装置(5)を通過しない排気ガスの流れを形成する
排気流路(34)とを切り替える排気ガス流路切替手段
(8)を、吸着装置(5)の下流側の1箇所に設置する
だけでよいので、構造を簡略化できる。
When desorbing HC, the exhaust flow path (34)
Since the fast flow of exhaust gas can be biased to the side,
It is possible to suppress the generation of vortices on the upstream side of the adsorption device (5), so that the once adsorbed HC can be prevented from flowing out to the exhaust flow path (34) side, and the exhaust gas purification effect can be further enhanced. Further, an exhaust gas flow passage switching means (8) for switching the flow passage (5a) of the adsorption device (5) and the exhaust flow passage (34) forming a flow of exhaust gas that does not pass through the adsorption device (5). The structure can be simplified because it only has to be installed at one location on the downstream side of the adsorption device (5).

【0019】上記作用効果に加えて、 請求項5記載の
発明では、吸着装置(5)および排気流路(34)を、
前記楕円状の長軸方向が略水平方向となるようにして、
車両の車体(12)下方に配置しているから、吸着装置
(5)および排気流路(34)の全体形状が上下方向に
対して偏平な形状となり、高さを低くでき、車両への搭
載が容易である。
In addition to the above function and effect, in the invention according to claim 5, the adsorption device (5) and the exhaust passage (34) are
With the major axis direction of the ellipse being substantially horizontal,
Since it is arranged below the vehicle body (12) of the vehicle, the overall shape of the adsorption device (5) and the exhaust flow path (34) is flat in the vertical direction, and the height can be reduced, so that it can be mounted on the vehicle. Is easy.

【0020】請求項6記載の発明では、前記切替手段
(8)をエンジン吸気負圧により駆動するアクチュエー
タ(9)を具備し、このアクチュエータ(9)に対し
て、エンジン吸気負圧を導入する吸気負圧導入流路(1
2a、12b)に、前記制御手段(10)により開閉制
御される開閉弁(13)と、前記アクチュエータ(9)
からエンジン吸気側への一方向のみに流体を流す一方向
弁(14)を設けているから、エンジン(1)のスロッ
トル弁(2b)が開放されて吸気マニホルド(2a)内
の吸気負圧が減少したときには、一方向弁(14)が閉
弁して、アクチュエータ(9)内の負圧が直ちに減少す
るのを防止できる。
According to a sixth aspect of the present invention, there is provided an actuator (9) for driving the switching means (8) by the engine intake negative pressure, and an intake air introducing the engine intake negative pressure to the actuator (9). Negative pressure introduction flow path (1
2a, 12b), an on-off valve (13) controlled to be opened and closed by the control means (10), and the actuator (9).
Since the one-way valve (14) that allows the fluid to flow only in one direction from the engine to the engine intake side is opened, the throttle valve (2b) of the engine (1) is opened and the intake negative pressure in the intake manifold (2a) is reduced. When the pressure decreases, the one-way valve (14) is closed to prevent the negative pressure in the actuator (9) from immediately decreasing.

【0021】そのため、アクチュエータ(9)内の大き
な負圧を保持できるので、エンジン吸気負圧の減少時に
排気圧力脈動、車体の振動等の影響を受けて、前記切替
手段が変位してしまうという不具合が生じない。それ
故、アクチュエータ(9)をエンジン吸気負圧の減少時
にも対応できるように大きなものに設定する必要がな
く、アクチュエータ(9)の小型化を実現でき、車両へ
の搭載上、極めて有利である。
Therefore, since a large negative pressure in the actuator (9) can be maintained, the switching means is displaced under the influence of exhaust pressure pulsation, vibration of the vehicle body, etc. when the engine intake negative pressure is reduced. Does not occur. Therefore, it is not necessary to set the actuator (9) to a large size so as to cope with a decrease in engine intake negative pressure, and the actuator (9) can be downsized, which is extremely advantageous for mounting on a vehicle. .

【0022】[0022]

【実施例】以下本発明を図に示す実施例について説明す
る。図1は本発明を自動車用エンジンの排気ガス浄化装
置に適用した一実施例を示しており、自動車のガソリン
エンジン1の排気管3には、排気マニホルド2の直後の
位置に触媒装置4が介設してある。この触媒装置4は、
白金、ロジウムといった貴金属を主成分とする三元触媒
を担持したコージェライトからなるハニカム状の担体を
内部に具備して構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to an exhaust gas purifying apparatus for an automobile engine, and a catalyst device 4 is provided at a position immediately after an exhaust manifold 2 in an exhaust pipe 3 of a gasoline engine 1 for an automobile. It is set up. This catalytic device 4 is
A honeycomb carrier made of cordierite carrying a three-way catalyst containing a noble metal such as platinum or rhodium as a main component is provided therein.

【0023】排気管3には触媒装置4の下流に流路断面
積を拡大する拡大管31が設けてあり、この拡大管31
に連続して構成される楕円筒状または円筒状の吸着筒5
0の中にハニカム構造の吸着装置5が収納してある。吸
着装置5はステンレス鋼またはコージェライト等のセラ
ミックからハニカム構造に構成されている。そして、吸
着装置5は、本例では楕円筒状の吸着筒50の半断面形
状、すなわち吸着筒50に合致する半楕円筒状に形成さ
れている。吸着装置5はその半楕円筒形状の平坦面が吸
着筒50の中心側を向くように配置されている。
The exhaust pipe 3 is provided with an expansion pipe 31 downstream of the catalyst device 4 for expanding the flow passage cross-sectional area.
Elliptic cylindrical or cylindrical adsorption cylinder 5 formed continuously with
In 0, the adsorption device 5 having a honeycomb structure is housed. The adsorption device 5 has a honeycomb structure made of stainless steel or ceramic such as cordierite. Then, the suction device 5 is formed in a half cross-sectional shape of the suction cylinder 50 having an elliptic cylinder shape in this example, that is, a semi-elliptical cylinder shape that matches the suction cylinder 50. The suction device 5 is arranged such that the flat surface of the semi-elliptical cylinder shape faces the center side of the suction cylinder 50.

【0024】この吸着装置5は、平行な多数の通孔51
を有しており、その上流端を除く他の部分全体にわたっ
て形成された吸着剤担持層5aにはゼオライト系吸着剤
が担持されている。ここで、吸着装置5の上流端側には
所定幅の吸着剤無担持層5bが設けられている。また、
吸着装置5の吸着剤担持層5aの下流端(後端)直後に
は排気ガス流路切替弁8が配設してある。この切替弁8
は、支点8aを中心として開閉操作されるもので、前記
ハニカム構造の吸着装置5の流路5dと、この流路5d
の側方に隣接して形成された排気流路34とを切替開閉
するものである。
This suction device 5 has a large number of parallel through holes 51.
The zeolite-based adsorbent is supported on the adsorbent-supporting layer 5a formed over the entire portion other than the upstream end thereof. Here, an adsorbent-free layer 5b having a predetermined width is provided on the upstream end side of the adsorption device 5. Also,
An exhaust gas flow passage switching valve 8 is provided immediately after the downstream end (rear end) of the adsorbent carrying layer 5a of the adsorption device 5. This switching valve 8
Is operated to open and close around the fulcrum 8a, and the flow path 5d of the adsorption device 5 having the honeycomb structure and the flow path 5d
Is opened and closed by switching to and from the exhaust passage 34 formed adjacent to the side of the.

【0025】前記した拡大管31は図2に示すように、
本例では、楕円状の断面形状を有するものであって、そ
の断面の長軸方向が板状の隔壁33により2分割され、
その2分割された流路の一方31a側に吸着装置5の流
路5dを形成し、他方の流路31b側に排気流路34を
形成している。さらに、上記拡大管31の広がり角度θ
(図2の楕円形状の場合には楕円の長軸方向の広がり角
度)は、図3(c)に示す片面壁面剥離状態が生じる角
度に設定されている。具体的には、この片面壁面剥離状
態が生じる角度θは50度〜80度の範囲である。この
ような拡大管31の広がり角度θの設定により、排気ガ
スが吸着装置5に流れる時に、吸着装置5における排気
ガスの流速分布を均一できるようにしてある。
As shown in FIG. 2, the expanding tube 31 has the following structure.
In this example, the cross section has an elliptical cross section, and the long axis direction of the cross section is divided into two by a plate-like partition wall 33.
The flow path 5d of the adsorption device 5 is formed on one side 31a of the two divided flow paths, and the exhaust flow path 34 is formed on the other flow path 31b side. Further, the spread angle θ of the expansion tube 31
(In the case of the elliptical shape in FIG. 2, the spread angle in the long axis direction of the ellipse) is set to an angle at which the one-sided wall surface peeling state shown in FIG. 3C occurs. Specifically, the angle θ at which this single-sided wall surface peeling state occurs is in the range of 50 degrees to 80 degrees. By setting the spread angle θ of the expansion tube 31 as described above, the flow velocity distribution of the exhaust gas in the adsorption device 5 can be made uniform when the exhaust gas flows into the adsorption device 5.

【0026】一方、触媒装置4と吸着装置5との間の距
離は、触媒装置4が排気ガスにより加熱されて活性化温
度に達するタイミングと、吸着装置5に担持された吸着
剤が加熱されて吸着機能を失うタイミングとがほぼ一致
する距離に設定される。すなわち、触媒装置4の触媒活
性化温度(350°C)より、吸着装置5に担持された
吸着剤が吸着機能を失う温度(換言すれば、吸着剤のH
C脱離開始温度で、100°C〜200°C)の方が低
いので、触媒装置4より所定距離下流に吸着装置5を設
定することにより、上記両タイミングを一致させること
ができる。
On the other hand, the distance between the catalyst device 4 and the adsorption device 5 depends on the timing at which the catalyst device 4 is heated by the exhaust gas and reaches the activation temperature, and the adsorbent carried on the adsorption device 5 is heated. The distance is set so as to almost coincide with the timing of losing the suction function. That is, the temperature at which the adsorbent carried by the adsorption device 5 loses its adsorption function from the catalyst activation temperature (350 ° C.) of the catalyst device 4 (in other words, the H
Since the C desorption start temperature is lower at 100 ° C. to 200 ° C., by setting the adsorption device 5 at a predetermined distance downstream from the catalyst device 4, both timings can be matched.

【0027】吸着装置5は排気流路34との間に前記板
状の隔壁33を有し、この隔壁33によって吸着装置5
は排気流路34と分離され、かつ吸着筒50に押しつけ
られ保持されている。なお、隔壁33には図示しない穴
が設けられており、この穴によって排気流路34内の排
気ガスが直接吸着装置5に接触し得るようになってい
る。
The adsorbing device 5 has the plate-shaped partition 33 between the adsorbing device 5 and the exhaust passage 34.
Is separated from the exhaust passage 34, and is pressed and held by the adsorption cylinder 50. It should be noted that the partition wall 33 is provided with a hole (not shown) so that the exhaust gas in the exhaust passage 34 can directly contact the adsorption device 5 through the hole.

【0028】一方、吸着装置5の下流端に近接する位置
で、かつ切替弁8より上流の位置から還流流路6aが分
岐し、この流路6aはリード弁7を介して、排気マニホ
ールド2に連通する還流流路6bに連結されている。リ
ード弁7は、前記流路6a、6bの流通を一方向すなわ
ち吸着装置5の下流端から排気マニホルド2側へ向かう
一方向のみに制御する流通調整手段をなすものであっ
て、後記する一方向弁7aおよび開閉弁7bよりなる。
On the other hand, the reflux flow passage 6a branches from a position close to the downstream end of the adsorption device 5 and upstream from the switching valve 8, and this flow passage 6a passes through the reed valve 7 to the exhaust manifold 2. It is connected to the recirculating flow path 6b which communicates. The reed valve 7 constitutes a flow adjusting means for controlling the flow of the flow paths 6a and 6b in only one direction, that is, one direction from the downstream end of the adsorption device 5 toward the exhaust manifold 2 side, and the one-way described later. It comprises a valve 7a and an on-off valve 7b.

【0029】前記切替弁8は吸着筒50の外面に設置さ
れたアクチュエータ9によりアーム9a、図示しないリ
ンク機構等を介して駆動されるようになっている。この
アクチュエータ9は、本例ではダイヤフラムと、このダ
イヤフラムを作動させるエンジン吸気負圧を断続する電
磁弁とから構成されている。前述したリード弁7の一方
向弁7aは触媒装置4の上流側および吸着装置5下流側
の、排気脈動の差圧で作動して、還流流路6a側から還
流流路6b側への流体の流通のみ許容するものである。
また、開閉弁7bは、弁体を駆動するダイヤフラムと、
このダイヤフラムを作動させるエンジン吸気負圧を断続
する電磁弁とから構成されている。
The switching valve 8 is driven by an actuator 9 installed on the outer surface of the adsorption cylinder 50 via an arm 9a, a link mechanism (not shown) and the like. In this example, the actuator 9 is composed of a diaphragm and an electromagnetic valve that connects and disconnects the engine intake negative pressure that operates the diaphragm. The above-described one-way valve 7a of the reed valve 7 operates by the differential pressure of the exhaust pulsation on the upstream side of the catalyst device 4 and the downstream side of the adsorption device 5, so that the fluid flowing from the reflux flow passage 6a side to the reflux flow passage 6b side is discharged. Only distribution is allowed.
The on-off valve 7b includes a diaphragm that drives the valve body,
It is composed of an electromagnetic valve that connects and disconnects an engine intake negative pressure that operates this diaphragm.

【0030】10はマイクロコンピュータ内蔵の制御装
置(制御手段)で、エンジン1や排気温センサ11から
の信号を受け、エンジン1の運転状態に応じて開閉弁7
bおよびアクチュエータ9の電磁弁を開閉制御し、これ
により切替弁8や開閉弁7bを制御するようになってい
る。次に、上記構成において本実施例装置の作動を説明
する。図4は作動説明用のフローチャートであり、エン
ジン1のイグニッションスイッチが投入され、エンジン
1が始動すると、制御装置10のマイクロコンピュータ
がスタートし(ステップS1)、次に初期化処理(S
2)をした後に、S3にて、制御装置10により開閉弁
7bを閉じるとともに、アクチュエータ9を作動させて
アーム9aを介して切替弁8を破線に示す閉弁位置に回
動操作する。その結果、排気流路34を閉じ、吸着装置
5の流路5dを開く。
Reference numeral 10 is a control device (control means) having a built-in microcomputer, which receives signals from the engine 1 and the exhaust temperature sensor 11 and opens and closes the open / close valve 7 according to the operating state of the engine 1.
b and the solenoid valve of the actuator 9 are controlled to be opened and closed, and thereby the switching valve 8 and the on-off valve 7b are controlled. Next, the operation of the apparatus of this embodiment having the above configuration will be described. FIG. 4 is a flow chart for explaining the operation. When the ignition switch of the engine 1 is turned on and the engine 1 is started, the microcomputer of the control device 10 is started (step S1), and then the initialization process (S).
After step 2), in S3, the control device 10 closes the on-off valve 7b and actuates the actuator 9 to rotate the switching valve 8 to the closed position shown by the broken line via the arm 9a. As a result, the exhaust passage 34 is closed and the passage 5d of the adsorption device 5 is opened.

【0031】エンジン1の始動直後は排気ガス温度が低
く、エンジン1は多量のコールドHCを含んだ排気ガス
を排出する。排気ガス温度が低い間は触媒が活性化温度
に達していないため、コールドHCは触媒装置4でほと
んど浄化されずに排気管3を流れる。このとき、排気ガ
ス温度は排気温センサ11により検知されている。この
排気ガス流は、切替弁8の閉弁により排気流路(主流
路)34側には流れず、吸着装置5の流路5dに流れ
る。その際、まずゼオライトを担持してない吸着剤無担
持層5bを通り、次いでゼオライトを担持した吸着剤担
持層5aを流れ、ここでコールドHCは吸着剤に吸着さ
れる。
Immediately after the engine 1 is started, the exhaust gas temperature is low, and the engine 1 discharges exhaust gas containing a large amount of cold HC. Since the catalyst has not reached the activation temperature while the exhaust gas temperature is low, the cold HC flows through the exhaust pipe 3 without being substantially purified by the catalyst device 4. At this time, the exhaust gas temperature is detected by the exhaust temperature sensor 11. This exhaust gas flow does not flow to the exhaust flow path (main flow path) 34 side due to the closing of the switching valve 8, but flows to the flow path 5d of the adsorption device 5. In that case, first, it passes through the adsorbent-free layer 5b which does not support zeolite, and then flows through the adsorbent-supporting layer 5a which supports zeolite, where cold HC is adsorbed by the adsorbent.

【0032】そして、コールドHCが除去された排気ガ
スは図示しないマフラーを経て大気中に放出される。こ
の時、拡大管31の広がり角度θを前述したように図3
(c)の片面壁面剥離が生じる範囲の角度(θ=50〜
80度)に設定しているため、排気ガスは均一な流速分
布となって、吸着装置5内へ流入するので、吸着装置5
のハニカム担持体全体に対してコールドHCが均一に吸
着され、吸着効率が向上する。
Then, the exhaust gas from which the cold HC has been removed is discharged into the atmosphere through a muffler (not shown). At this time, the spread angle θ of the expansion tube 31 is set as shown in FIG.
The angle (θ = 50-
(80 degrees), the exhaust gas has a uniform flow velocity distribution and flows into the adsorption device 5, so that the adsorption device 5
The cold HC is uniformly adsorbed on the entire honeycomb carrier, and the adsorption efficiency is improved.

【0033】因みに、図3の(a)、(b)は上記角度
範囲よりθが小さい場合であり、また(d)は上記角度
範囲よりθが大きい場合であり、この(a)、(b)、
(d)に示す流れ形態では、いずれも、拡大管31の片
側の流路31aのみに速い流れを偏らせることができな
いので、この片側の流路31aの下流に設置された吸着
装置5内への流入排気ガスの流速分布が不均一になって
しまう。
Incidentally, FIGS. 3A and 3B show the case where θ is smaller than the above angle range, and FIG. 3D shows the case where θ is larger than the above angle range. ),
In any of the flow configurations shown in (d), since it is not possible to bias the fast flow only to the flow passage 31a on one side of the expansion tube 31, the inside of the adsorption device 5 installed downstream of the flow passage 31a on this one side is not allowed. The flow velocity distribution of the inflowing exhaust gas becomes uneven.

【0034】次に、エンジン1が暖機して、排気ガス温
度が吸着剤のHC吸着可能温度を越えるに至る所定時間
(ta)を経過すると(t>ta)、図4のS4の判定
がYESとなり、S5に移行する。これにより、制御装
置10からの信号でアクチュエータ9が作動し、アクチ
ュエータ9はアーム9aを介して、切替弁8を反時計方
向に回動して、実線に示す開弁位置に移動し、排気流路
(主流路)34が開通する。そのため、排気ガスは流路
が切換えられ吸着装置5の存在しない排気流路34側を
主に流れる。このとき、触媒は活性化温度に達している
ので、排気ガス中のHCは触媒装置4で浄化され、HC
をほとんど含まない排気ガスが上記排気流路34を経て
大気中に放出される。
Next, when the engine 1 is warmed up and a predetermined time (ta) until the exhaust gas temperature exceeds the HC adsorbable temperature of the adsorbent has passed (t> ta), the determination of S4 in FIG. 4 is made. If YES, the process proceeds to S5. As a result, the actuator 9 is actuated by a signal from the control device 10, the actuator 9 rotates the switching valve 8 counterclockwise via the arm 9a, moves to the valve opening position shown by the solid line, and the exhaust flow The path (main flow path) 34 is opened. Therefore, the exhaust gas mainly flows through the exhaust flow path 34 side where the flow paths are switched and the adsorption device 5 does not exist. At this time, since the catalyst has reached the activation temperature, the HC in the exhaust gas is purified by the catalyst device 4,
Exhaust gas containing almost no gas is discharged into the atmosphere through the exhaust flow path 34.

【0035】また、上記ステップS5において、切替弁
8が開弁された直後、S6にて制御装置10からの信号
で開閉弁7bが開弁する。一方、吸着装置5の側面で
は、既に高温となった排気ガスが排気流路34を流通し
ている。この高温の排気ガスは隔壁33の穴を介し、吸
着装置5の吸着剤担持層5aと接している。そのため、
排気ガスの熱は吸着剤担持層5aに良好に伝えられ吸着
剤が速やかに昇温してHCの脱離を促進する。
Immediately after the switching valve 8 is opened in step S5, the on-off valve 7b is opened by a signal from the control device 10 in step S6. On the other hand, on the side surface of the adsorption device 5, the exhaust gas that has already become hot flows through the exhaust passage 34. This high-temperature exhaust gas is in contact with the adsorbent support layer 5a of the adsorption device 5 through the holes of the partition wall 33. for that reason,
The heat of the exhaust gas is satisfactorily transferred to the adsorbent-supporting layer 5a and the adsorbent is quickly heated to promote desorption of HC.

【0036】このとき、上記のように開閉弁7bは開弁
されているから排気マニホールド31内に発生する排気
ガス脈動圧は還流流路6bを介して一方向弁7aの裏面
に加わる。さらに、吸着装置5の下流に発生する排気ガ
ス脈動圧は還流流路6aを介して一方向弁7aの表面に
加わり、一方向弁7aを断続的に開弁させる。これによ
り、吸着装置5の吸着剤担持層5aの吸着剤から脱離し
たHCは還流流路6a,6bを経て排気マニホールド2
に速やかに流入する。そしてエンジン1からの排気ガス
中のHCとともに触媒装置4で浄化されるのである。
At this time, since the on-off valve 7b is opened as described above, the exhaust gas pulsating pressure generated in the exhaust manifold 31 is applied to the back surface of the one-way valve 7a via the recirculation passage 6b. Further, the pulsating pressure of exhaust gas generated downstream of the adsorption device 5 is applied to the surface of the one-way valve 7a via the recirculation flow path 6a to intermittently open the one-way valve 7a. As a result, the HC desorbed from the adsorbent of the adsorbent-supporting layer 5a of the adsorber 5 passes through the return flow paths 6a and 6b, and then the exhaust manifold 2
Quickly flows into. Then, it is purified by the catalyst device 4 together with HC in the exhaust gas from the engine 1.

【0037】上記のごとくHCの脱離時には、吸着装置
5を通過する排気ガスの流れが微少となるため、一旦吸
着されたHCが吸着装置5の上流側へ引きずり出される
という現象が生じることがあるが、本例では、吸着装置
5の上流側に吸着剤無担持層5cが形成されているの
で、吸着装置5の吸着HCの排気流路34側への流出が
防止される。
As described above, when desorbing HC, the flow of the exhaust gas passing through the adsorption device 5 becomes very small, so that the HC once adsorbed may be dragged out to the upstream side of the adsorption device 5. However, in this example, since the adsorbent-free layer 5c is formed on the upstream side of the adsorption device 5, the adsorption HC of the adsorption device 5 is prevented from flowing out to the exhaust flow path 34 side.

【0038】また、上記HCの脱離時においても、排気
ガスの流れに片面壁面剥離の状態が生じて、排気流路3
4側に排気ガスの速い流れが偏るので、吸着装置5の上
流部に排気ガスの渦が発生することを抑制できる。従っ
て、この渦により吸着HCが排気流路34側に引きずり
出されるという不具合も防止できる。以上のことから、
吸着装置5から脱離したHCは、確実に還流流路6a,
6bを経て排気マニホールド2に速やかに流入し、触媒
装置4で浄化できるので、HCの浄化効率をより一層向
上できる。
Even when the HC is desorbed, the exhaust gas flow is separated from the one-sided wall surface, and the exhaust passage 3
Since the fast flow of the exhaust gas is biased to the 4 side, it is possible to suppress the generation of the swirl of the exhaust gas in the upstream portion of the adsorption device 5. Therefore, it is possible to prevent the problem that the adsorbed HC is dragged to the exhaust flow path 34 side by this vortex. From the above,
The HC desorbed from the adsorption device 5 is surely returned to the reflux flow path 6a,
Since it rapidly flows into the exhaust manifold 2 via 6b and can be purified by the catalyst device 4, the purification efficiency of HC can be further improved.

【0039】また、脱離HCをエンジン1の排気マニホ
ルド2側に還流して、吸気マニホルド2aには還流して
いないので、脱離HCの還流によるエンジン制御への影
響を極力小さくできる。一方、切替弁8が開位置(実線
図示)に切換えられてHC脱離浄化行程に入った後、H
Cの脱離が完了する時間(tb)が経過すると〔t>
(ta+tb)〕、S7の判定がYESとなり、S8に
移行して、制御装置10からの信号で開閉弁7bが閉じ
られる。
Further, since the desorbed HC is recirculated to the exhaust manifold 2 side of the engine 1 and is not recirculated to the intake manifold 2a, the influence of the recirculated desorbed HC on the engine control can be minimized. On the other hand, after the switching valve 8 is switched to the open position (shown by the solid line) to enter the HC desorption purification process, H
When the time (tb) at which desorption of C is completed elapses, [t>
(Ta + tb)], the determination in S7 is YES, the process proceeds to S8, and the opening / closing valve 7b is closed by a signal from the control device 10.

【0040】なお、上記実施例では、制御装置10から
の信号で切替弁8をHC脱離・浄化行程側(実線の開弁
位置)へ切換えるタイミングをエンジン始動から所定時
間経過後としたが、この所定時間経過を判定する代わり
に、排気ガス温度が所定の高温に達した時点としてもよ
い。また、上記実施例では、リード弁7には一方向弁7
aと開閉弁7bとを合わせ持つ構成としたが、一方向弁
7aのみとしてもよい。
In the above embodiment, the timing of switching the switching valve 8 to the HC desorption / cleaning stroke side (the valve opening position indicated by the solid line) by the signal from the control unit 10 is set to be after a predetermined time has elapsed from the engine start. Instead of determining the elapse of this predetermined time, it may be the time when the exhaust gas temperature reaches a predetermined high temperature. In the above embodiment, the reed valve 7 is a one-way valve 7.
Although it is configured to have both a and the on-off valve 7b, the one-way valve 7a may be used alone.

【0041】ところで、本実施例の排気ガス浄化装置で
は、触媒が活性化温度に達するまでのエンジン冷間時に
もコールドHCを吸着装置5で吸着して、コールドHC
の大気への放出が防止される。そして、本装置では特
に、吸着されたHCが脱離している時、一方向弁7aの
表面・裏面に加わる排気ガスの脈動圧により一方向弁7
aを断続的に開弁して、脱離したHCを還流流路6a、
6bを通して、触媒装置4の上流側に還流して、効果的
にHCの循環、浄化を行うことができる。
By the way, in the exhaust gas purifying apparatus of this embodiment, cold HC is adsorbed by the adsorbing apparatus 5 even when the engine is cold until the catalyst reaches the activation temperature.
Is prevented from being released into the atmosphere. Further, particularly in the present device, when the adsorbed HC is desorbed, the one-way valve 7 is operated by the pulsating pressure of the exhaust gas applied to the front and back surfaces of the one-way valve 7a.
a is intermittently opened to release the desorbed HC from the reflux flow path 6a,
It is possible to effectively circulate and purify HC by refluxing to the upstream side of the catalyst device 4 through 6b.

【0042】次に、前述の実施例装置を車両(自動車)
への搭載に当たっての具体的工夫点を述べる。図5は本
発明の要部をなす吸着筒50部分の車両への搭載状態を
示すもので、吸着筒50はその断面形状の楕円の長軸方
向が略水平となるようにして、車両の車体12の凹状部
12a下方(車両床下)に搭載されている。また、アク
チュエータ9のアーム9aを図示のように金属板材で形
成するとともに吸着筒50上部の切替弁8側連結部から
下方に向かって曲げた曲げ形状にして、アクチュエータ
9が吸着筒50の上方へ突出しないようにしてある。
Next, the apparatus of the above-mentioned embodiment is applied to a vehicle (automobile).
The specific points to be considered for mounting on the board are described below. FIG. 5 shows a state in which a suction cylinder 50 portion, which is an essential part of the present invention, is mounted on a vehicle. The suction cylinder 50 is designed so that the major axis direction of the ellipse of its cross section is substantially horizontal. It is mounted below the concave portion 12a of 12 (under the vehicle floor). Further, the arm 9a of the actuator 9 is formed of a metal plate material as shown in the figure, and is bent downward from the switching valve 8 side connecting portion in the upper part of the adsorption cylinder 50 so that the actuator 9 is positioned above the adsorption cylinder 50. It doesn't stick out.

【0043】このような搭載レイアウトにすることによ
り、吸着筒50部分の全体高さが小となり、車両への搭
載が容易になる。また、アクチュエータ9のアーム9a
を図示するように吸着筒50の上方側に配置しているの
で、車両走行時の飛び石がアーム9aに衝突することを
大幅に低減でき、従ってアーム9aの損傷、変形による
アクチュエータ9の故障を低減できる。
By adopting such a mounting layout, the overall height of the suction cylinder 50 portion becomes small, and mounting on a vehicle becomes easy. Also, the arm 9a of the actuator 9
Is arranged on the upper side of the adsorption cylinder 50 as shown in the figure, it is possible to greatly reduce the collision of flying stones with the arm 9a during traveling of the vehicle. it can.

【0044】なお、図5では、吸着筒50の図示左側部
分に吸着装置5が配置され、図示右側部分に排気流路3
4が配置されている。そして、50aは切替弁8の下流
側の排気出口管である。図6はアクチュエータ9および
還流流路6aの配置位置を示すもので、この両者9、6
aを近接して配置しているので、この両者9、6aの設
置スペースを低減できる。
In FIG. 5, the adsorption device 5 is arranged on the left side of the adsorption cylinder 50 in the drawing, and the exhaust passage 3 is disposed on the right side of the drawing.
4 are arranged. And 50a is an exhaust outlet pipe on the downstream side of the switching valve 8. FIG. 6 shows the arrangement positions of the actuator 9 and the return flow path 6a.
Since a is arranged close to each other, it is possible to reduce the installation space for both 9 and 6a.

【0045】さらに、図6に図示するように、吸着筒5
0の排気ガス下流側の端部に斜面50bを形成し、この
斜面50bに上記9、6aを近接して配置しているの
で、吸着筒50の排気流れ方向の長さ(図6の左右方向
長さ)も短縮でき、より一層車両への搭載が容易にな
る。図7は本発明の他の実施例を示すもので、排気ガス
流路切替弁8を駆動するアクチュエータ9をエンジン1
の吸気負圧により作動するダイヤフラム9bで構成する
場合に、このアクチュエータ9を小型化するための工夫
をしたものである。
Further, as shown in FIG. 6, the suction cylinder 5
Since a slope 50b is formed at the end of the exhaust gas on the downstream side of the exhaust gas 0, and the slopes 9b and 6a are arranged close to the slope 50b, the length of the adsorption cylinder 50 in the exhaust flow direction (the horizontal direction in FIG. 6). (Length) can be shortened, and mounting on a vehicle becomes easier. FIG. 7 shows another embodiment of the present invention, in which the actuator 9 for driving the exhaust gas flow path switching valve 8 is connected to the engine 1
When the actuator 9 is composed of the diaphragm 9b which is operated by the intake negative pressure, the actuator 9 is designed to be downsized.

【0046】すなわち、図7に示すように、アクチュエ
ータ9の圧力室9cに接続された吸気負圧導入管15a
と、エンジン1の吸気マニホルド(サージタンク)2a
に接続された吸気負圧導入管15bとの間に、制御装置
10により開閉制御される開閉弁(電磁弁)13、およ
びアクチュエータ9からエンジン吸気側への一方向のみ
に流体を流す一方向弁14を直列に配設している。
That is, as shown in FIG. 7, the intake negative pressure introducing pipe 15a connected to the pressure chamber 9c of the actuator 9 is shown.
And the intake manifold (surge tank) 2a of the engine 1
Between the intake negative pressure introducing pipe 15b connected to the control valve 10 and the on-off valve (electromagnetic valve) 13 controlled by the control device 10, and a one-way valve for flowing the fluid from the actuator 9 to the intake side of the engine only in one direction. 14 are arranged in series.

【0047】なお、開閉弁13は、吸気負圧導入管15
a、15bの間の通路の開閉と、吸気負圧導入管15a
と大気開放口(図示せず)間の開閉を行う3方弁タイプ
のものである。図7の実施例による作動も図4に示す作
動と同じであって、エンジン1の始動直後では、図4の
ステップS3において、制御装置10から開閉弁13に
通電され、この開閉弁13は吸気負圧導入管15a、1
5bの間を連通させる。これにより、エンジン1の吸気
負圧が一方向弁14を通ってアクチュエータ9の圧力室
9cに加わり、ダイヤフラム9bがアーム9aを介し
て、排気ガス流路切替弁8を図示破線位置(閉弁位置)
に駆動する。
The on-off valve 13 is the intake negative pressure introducing pipe 15
opening and closing of the passage between a and 15b, and the intake negative pressure introducing pipe 15a
This is a three-way valve type that opens and closes between the air vent and an atmosphere opening port (not shown). The operation according to the embodiment of FIG. 7 is also the same as that shown in FIG. 4. Immediately after the engine 1 is started, the on-off valve 13 is energized from the control device 10 in step S3 of FIG. Negative pressure introducing pipe 15a, 1
Connect between 5b. As a result, the intake negative pressure of the engine 1 is applied to the pressure chamber 9c of the actuator 9 through the one-way valve 14, and the diaphragm 9b moves the exhaust gas flow path switching valve 8 to the broken line position (closed position in the drawing) via the arm 9a. )
Drive to.

【0048】そして、エンジン1が暖機して、図4のス
テップS4の判定がYESとなると、ステップS5で制
御装置10から開閉弁13への通電が遮断されるので、
この開閉弁13は吸気負圧導入管15a、15bの間を
遮断する。これと同時に、開閉弁13はその大気開放口
を吸気負圧導入管15aに連通させるので、アクチュエ
ータ9の圧力室9cの負圧は急速に減少し、ダイヤフラ
ム9bがスプリング9dの力により変位して、アーム9
aを介して、排気ガス流路切替弁8を図示実線位置(開
弁位置)に駆動する。
When the engine 1 is warmed up and the determination in step S4 in FIG. 4 is YES, the energization from the control device 10 to the on-off valve 13 is cut off in step S5.
The on-off valve 13 shuts off the connection between the intake negative pressure introducing pipes 15a and 15b. At the same time, since the opening / closing valve 13 communicates its atmosphere opening port with the intake negative pressure introducing pipe 15a, the negative pressure in the pressure chamber 9c of the actuator 9 is rapidly reduced, and the diaphragm 9b is displaced by the force of the spring 9d. , Arm 9
The exhaust gas passage switching valve 8 is driven to the solid line position (valve opening position) in the figure via a.

【0049】ところで、図7の実施例では、上記したよ
うに、アクチュエータ9への吸気負圧導入管15a、1
5bの途中に、開閉弁13の他に、一方向弁14を配設
しているから、エンジン1のスロットル弁2bが開放さ
れて吸気マニホルド2a内の吸気負圧が減少したときに
は、一方向弁14が閉弁して、吸気マニホルド2a側か
らアクチュエータ9の圧力室9cに空気が流入するのを
阻止できる。
By the way, in the embodiment of FIG. 7, as described above, the intake negative pressure introducing pipes 15a, 1a to the actuator 9 are provided.
Since the one-way valve 14 is arranged in addition to the on-off valve 13 in the middle of 5b, the one-way valve is opened when the throttle valve 2b of the engine 1 is opened and the intake negative pressure in the intake manifold 2a decreases. The valve 14 is closed to prevent air from flowing into the pressure chamber 9c of the actuator 9 from the intake manifold 2a side.

【0050】従って、エンジン1のスロットル弁2bが
開放された時にも、アクチュエータ9の圧力室9c内の
負圧が直ちに減少するのが一方向弁14によって防止さ
れ、アクチュエータ9の大きな負圧を保持できる。その
ため、排気ガス流路切替弁8がスロットル弁2bの開放
時(エンジン吸気負圧の減少時)に排気圧力脈動、車体
の振動等の影響を受けて、破線で示す閉弁位置から開い
てしまうという不具合が生じない。
Therefore, even when the throttle valve 2b of the engine 1 is opened, the negative pressure in the pressure chamber 9c of the actuator 9 is prevented from immediately decreasing by the one-way valve 14, and the large negative pressure of the actuator 9 is maintained. it can. Therefore, when the throttle valve 2b is opened (when the engine intake negative pressure is reduced), the exhaust gas flow path switching valve 8 is affected by exhaust pressure pulsation, vibration of the vehicle body, and the like, and opens from the closed position shown by the broken line. That problem does not occur.

【0051】それ故、アクチュエータ9をエンジン吸気
負圧の減少時にも対応できるように大きなものに設定す
る必要がなく、アクチュエータ9の小型化を実現でき、
車両への搭載上、極めて有利である。なお、本発明は上
述の図示の実施例に限定されず、種々変形可能であり、
例えば、還流流路6a、6bを触媒装置4の直ぐ上流の
排気流路に接続せず、エンジン1の吸気マニホルド2a
側へ接続するタイプにも本発明は適用できる。
Therefore, it is not necessary to set the actuator 9 to a large size so as to cope with the reduction of the engine intake negative pressure, and the actuator 9 can be downsized.
It is extremely advantageous for mounting on a vehicle. The present invention is not limited to the illustrated embodiments described above, and various modifications are possible.
For example, the recirculation flow paths 6a and 6b are not connected to the exhaust flow path immediately upstream of the catalyst device 4 and the intake manifold 2a of the engine 1 is not connected.
The present invention can be applied to the type of connecting to the side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例装置の全体構成図である。FIG. 1 is an overall configuration diagram of an apparatus according to an embodiment of the present invention.

【図2】図1の実施例装置における拡大管および吸着筒
の形状を示す図である。
FIG. 2 is a diagram showing the shapes of an expansion tube and a suction tube in the apparatus of the embodiment shown in FIG.

【図3】(a)〜(d)は図2の拡大管における広がり
角度と排気ガスの流れ形態との関係を示す説明図であ
る。
3 (a) to 3 (d) are explanatory views showing the relationship between the spread angle and the flow form of exhaust gas in the expansion tube of FIG.

【図4】一実施例装置の作動を示すフローチャートであ
る。
FIG. 4 is a flow chart showing the operation of the apparatus of one embodiment.

【図5】一実施例装置の車両への搭載図である。FIG. 5 is a diagram showing how the apparatus according to the embodiment is mounted on a vehicle.

【図6】一実施例装置におけるアクチュエータ等の取付
位置を示す説明図である。
FIG. 6 is an explanatory diagram showing attachment positions of actuators and the like in the apparatus of one embodiment.

【図7】本発明の他の実施例を示す装置全体の構成図で
ある。
FIG. 7 is a configuration diagram of an entire apparatus showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…エンジン、2…排気マニホルド、2a…吸気マニホ
ルド、3…排気管、31…拡大管、34…排気流路、4
…触媒装置、5…吸着装置、6a,6b…還流流路、8
…排気ガス流路切替弁、9…アクチュエータ、10…制
御装置、15a、15b…吸気負圧導入管、13…開閉
弁、14…一方向弁。
DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Exhaust manifold, 2a ... Intake manifold, 3 ... Exhaust pipe, 31 ... Expansion pipe, 34 ... Exhaust flow path, 4
... Catalyst device, 5 ... Adsorption device, 6a, 6b ... Reflux flow path, 8
... Exhaust gas flow path switching valve, 9 ... Actuator, 10 ... Control device, 15a, 15b ... Intake negative pressure introducing pipe, 13 ... Open / close valve, 14 ... One-way valve.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの排気管内に配設された触媒装
置と、 この触媒装置より下流の前記排気管内に配設され、排気
ガス有害成分を吸着する吸着剤を担持した吸着装置と、 前記触媒装置より下流の前記排気管内に、前記吸着装置
を通過しない排気ガスの流れを形成する排気流路と、 前記吸着装置に吸着された前記排気ガス有害成分を前記
触媒装置の上流側に還流させる還流流路と、 前記吸着装置の下流に設けられ、排気ガスの流通を前記
吸着装置の流路と前記排気流路とに選択的に切替可能な
排気ガス流路切替手段と、 前記吸着装置および前記排気流路の上流に設けられ、前
記排気管に比して流路断面積を拡大するように形成さ
れ、排気ガスを前記吸着装置または前記排気流路に導く
拡大管と、 前記切替手段をエンジン冷間時には排気ガスを前記吸着
装置に流通せしめる位置に切替え、エンジン暖機時には
排気ガスを前記排気流路に流通せしめる位置に切替制御
する制御手段とを具備し、 前記拡大管の広がり角度は、その内部の排気ガスの流れ
が片面壁面剥離となる範囲に設定されてていることを特
徴とする排気ガス浄化装置。
1. A catalyst device provided in an exhaust pipe of an engine, an adsorption device provided in the exhaust pipe downstream of the catalyst device and carrying an adsorbent for adsorbing exhaust gas harmful components, and the catalyst. An exhaust flow path that forms a flow of exhaust gas that does not pass through the adsorption device in the exhaust pipe downstream of the device, and a reflux that recirculates the exhaust gas harmful components adsorbed by the adsorption device to the upstream side of the catalyst device. A flow path, an exhaust gas flow path switching unit that is provided downstream of the adsorption device and is capable of selectively switching the flow of exhaust gas between the flow path of the adsorption device and the exhaust flow path, the adsorption device and the An expansion pipe, which is provided upstream of the exhaust flow passage, is formed so as to have a larger flow passage cross-sectional area than the exhaust pipe, and guides the exhaust gas to the adsorption device or the exhaust flow passage, and the switching means is an engine. Exhaust gas when cold And a control means for switching the exhaust gas to a position that allows the exhaust gas to flow to the exhaust passage when the engine is warmed up. An exhaust gas purifying device, characterized in that the flow of gas is set in a range such that one side wall surface is separated.
【請求項2】 前記拡大管の広がり角度は、50〜80
度の範囲に設定されていることを特徴とする請求項1に
記載の排気ガス浄化装置。
2. The spread angle of the expansion tube is 50-80.
The exhaust gas purifying apparatus according to claim 1, wherein the exhaust gas purifying apparatus is set in a range of degrees.
【請求項3】 前記吸着装置の流路と前記排気流路は隣
接して配置されており、 この両流路を合わせた全体の流路断面形状は楕円状に構
成されていることを特徴とする請求項1または2に記載
の排気ガス浄化装置。
3. The flow path of the adsorption device and the exhaust flow path are arranged adjacent to each other, and the overall cross-sectional shape of the flow path, which is a combination of both flow paths, is formed into an elliptical shape. The exhaust gas purification device according to claim 1 or 2.
【請求項4】 前記吸着装置の流路と前記排気流路は、
前記楕円状の長軸方向に隣接して配置されていることを
特徴とする請求項3に記載の排気ガス浄化装置。
4. The flow path of the adsorption device and the exhaust flow path are
The exhaust gas purifying apparatus according to claim 3, wherein the ellipse is arranged adjacent to each other in the major axis direction.
【請求項5】 前記吸着装置および前記排気流路は、前
記楕円状の長軸方向が略水平方向となるようにして、車
両の車体下方に配置されるようにしたことを特徴とする
請求項3または4に記載の排気ガス浄化装置。
5. The adsorption device and the exhaust passage are arranged below the vehicle body of the vehicle such that the major axis direction of the elliptical shape is substantially horizontal. The exhaust gas purification device according to 3 or 4.
【請求項6】 前記切替手段をエンジン吸気負圧により
駆動するアクチュエータと、 このアクチュエータにエンジン吸気負圧を導入する吸気
負圧導入流路と、 この吸気負圧導入流路に設けられ、前記制御手段により
開閉制御される開閉弁と、 前記吸気負圧導入流路に設けられ、前記アクチュエータ
からエンジン吸気側への一方向のみに流体を流す一方向
弁とを具備することを特徴とする請求項1ないし5のい
ずれか1つに記載の排気ガス浄化装置。
6. An actuator for driving the switching means by engine intake negative pressure, an intake negative pressure introducing passage for introducing engine intake negative pressure to the actuator, and an intake negative pressure introducing passage provided in the intake negative pressure introducing passage. An on-off valve controlled to be opened and closed by means, and a one-way valve provided in the intake negative pressure introduction flow path and allowing the fluid to flow only in one direction from the actuator to the engine intake side. The exhaust gas purification device according to any one of 1 to 5.
JP07192795A 1994-10-12 1995-03-29 Exhaust gas purification device Expired - Fee Related JP3656268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07192795A JP3656268B2 (en) 1994-10-12 1995-03-29 Exhaust gas purification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-246358 1994-10-12
JP24635894 1994-10-12
JP07192795A JP3656268B2 (en) 1994-10-12 1995-03-29 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH08165920A true JPH08165920A (en) 1996-06-25
JP3656268B2 JP3656268B2 (en) 2005-06-08

Family

ID=26413046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07192795A Expired - Fee Related JP3656268B2 (en) 1994-10-12 1995-03-29 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3656268B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827784B2 (en) 2006-08-03 2010-11-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine and method of controlling same
CN112412584A (en) * 2019-08-23 2021-02-26 上海汽车集团股份有限公司 Method for reducing engine emission, VCU, and control system and vehicle with VCU
JP2021107700A (en) * 2019-12-27 2021-07-29 株式会社豊田自動織機 Exhaust gas cleaning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120204539A1 (en) * 2011-02-10 2012-08-16 GM Global Technology Operations LLC Hybrid vehicle thermal management using a bypass path in a catalytic converter unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827784B2 (en) 2006-08-03 2010-11-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine and method of controlling same
CN112412584A (en) * 2019-08-23 2021-02-26 上海汽车集团股份有限公司 Method for reducing engine emission, VCU, and control system and vehicle with VCU
CN112412584B (en) * 2019-08-23 2022-03-25 上海汽车集团股份有限公司 Method for reducing engine emission, VCU, and control system and vehicle with VCU
JP2021107700A (en) * 2019-12-27 2021-07-29 株式会社豊田自動織機 Exhaust gas cleaning system

Also Published As

Publication number Publication date
JP3656268B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
US5761902A (en) Change-over valve unit for switching exhaust gas passages and exhaust gas purifying system
JP3307502B2 (en) Exhaust gas purification device
JPH0814034A (en) Exhaust emission control device
US5634332A (en) Exhaust gas purification apparatus
JP3518338B2 (en) Exhaust gas purification device for internal combustion engine
JP3656268B2 (en) Exhaust gas purification device
JP3668988B2 (en) Exhaust gas purification device
JPH04311618A (en) Exhaust purifier of engine
JP3456008B2 (en) Exhaust gas purification device for internal combustion engine
JP3587670B2 (en) Exhaust gas purification equipment for automobiles
JP3689917B2 (en) Exhaust gas purification device
JP3590995B2 (en) Exhaust gas purification device
JP3496260B2 (en) Automotive exhaust gas purification equipment
JPH06101461A (en) Exhaust gas purifying device for internal combustion engine
EP0677648B1 (en) Exhaust gas purification apparatus
JP3629953B2 (en) Exhaust gas purification device for internal combustion engine
JPH1047044A (en) Emission control device
JPH08128319A (en) Exhaust emission control device
JP3774918B2 (en) Exhaust gas purification equipment for automobiles
JP2008215277A (en) Exhaust emission control catalyst system
JP3343948B2 (en) Exhaust gas purification device
JPH1193648A (en) Exhaust emission control device for automobile
JP4410976B2 (en) Exhaust purification device
JPH0557138A (en) Exhaust gas purifying system of engine
JP3306914B2 (en) Engine exhaust purification device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees