WO2007116991A1 - 膨張弁及び空気調和機 - Google Patents

膨張弁及び空気調和機 Download PDF

Info

Publication number
WO2007116991A1
WO2007116991A1 PCT/JP2007/057806 JP2007057806W WO2007116991A1 WO 2007116991 A1 WO2007116991 A1 WO 2007116991A1 JP 2007057806 W JP2007057806 W JP 2007057806W WO 2007116991 A1 WO2007116991 A1 WO 2007116991A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
expansion valve
pipe
valve
valve body
Prior art date
Application number
PCT/JP2007/057806
Other languages
English (en)
French (fr)
Inventor
Tooru Yukimoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US12/224,889 priority Critical patent/US20090019871A1/en
Priority to AU2007236648A priority patent/AU2007236648B2/en
Priority to EP07741242A priority patent/EP2006617A4/en
Priority to CN2007800119165A priority patent/CN101416006B/zh
Publication of WO2007116991A1 publication Critical patent/WO2007116991A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an expansion valve that is used in a general refrigeration cycle and expands a high-temperature and high-pressure refrigerant into a low-temperature and low-pressure refrigerant and an air conditioner using the expansion valve.
  • Patent Document 1 proposes a configuration in which a hollow space communicating with the inside of the valve body is formed in the casing of the valve body of the expansion valve.
  • Patent Document 2 proposes a configuration in which an expansion chamber is provided between each of two pipes forming the inlet / outlet of the expansion valve and the throttle portion in the expansion valve.
  • Patent Document 3 proposes a configuration in which a sound deadening chamber is provided in components of an expansion valve such as a valve body, a valve seat, and a connecting pipe. In this configuration, when the opening degree of the expansion valve of some air conditioners is adjusted in the multi-air conditioner to cope with the fluctuation of the load, the inlet side of the expansion valve of the air conditioner in the other room is adjusted.
  • This silencer chamber is composed of a sealed space and a straight pipe having a predetermined length and a cross-sectional area communicating with the space, and has a configuration similar to a Helmholtz resonator.
  • Patent Document 1 JP-A-10-160290
  • Patent Document 2 Japanese Patent Laid-Open No. 11-325658
  • Patent Document 3 Japanese Patent Laid-Open No. 8-135842
  • the noise generation of the expansion valve is not a force in the above case.
  • the pipe connected to the throttle part of the expansion valve and filled with the substantially liquid refrigerant may have a bad sound due to the acoustic resonance in the pipe.
  • the pipe connected to the throttle and filled with the substantially liquid refrigerant corresponds to the upstream pipe of the expansion valve in normal operation.
  • the upstream side piping of such an expansion valve but also the downstream side piping may correspond to the piping connected to the throttle portion and filled with the substantially liquid refrigerant.
  • this corresponds to upstream piping and downstream piping of an indoor expansion valve provided in the indoor unit.
  • FIG. 8 shows the refrigerant circuit in a general heat pump type multi-air conditioner.
  • an indoor expansion valve 107 is connected to a single outdoor unit 106 containing a compressor 101, a four-way switching valve 102, an outdoor heat exchanger 103, an outdoor expansion valve 104, a receiver 105, and the like.
  • a plurality of indoor units 109 (for example, two in FIG. 8) containing the indoor heat exchanger 108 are connected.
  • a refrigerant circuit is formed in which refrigerant flows through the passages of the outdoor expansion valve 104, the liquid receiver 105, the indoor expansion valve 107, the indoor heat exchanger 108, the four-way switching valve 102, and the compressor 101.
  • the circuit portions of the indoor expansion valve 107 and the indoor heat exchanger 108 incorporated in each indoor unit 109 are connected in parallel.
  • the outdoor expansion valve 10 4 and the indoor expansion valve 107 control the refrigerant
  • the outdoor heat exchange 103 acts as a condenser
  • the indoor heat exchanger 108 acts as an evaporator.
  • the indoor air is cooled and dehumidified by the indoor heat exchange 108.
  • the pipe on the upstream side of the indoor expansion valve 107 is connected to the aforementioned throttle part and is filled with the substantially liquid refrigerant. It corresponds to. Further, the inventor has clarified that the refrigerant sound may be deteriorated by the acoustic resonance in the pipe in the pipe upstream of the indoor expansion valve 107 in the operation of the refrigerant circuit.
  • the four-way switching valve 102 is switched, so that the compressor 101, the four-way switching valve 102, the indoor heat exchanger 108, the indoor expansion valve 10 are switched as indicated by the broken arrows in FIG. 7.
  • a refrigerant circuit is formed in which refrigerant flows through the path of the liquid receiver 105, the outdoor expansion valve 104, the outdoor heat exchanger 103, the four-way switching valve 102, and the compressor 101.
  • the indoor side heat exchanger 108 housed in each indoor unit 109 and the circuit portion of the indoor expansion valve 107 are connected in parallel.
  • the refrigerant is controlled by the outdoor expansion valve 104 and the indoor expansion valve 107, the outdoor heat exchanger 103 acts as an evaporator, and the indoor heat exchange 108 acts as a condenser.
  • the indoor air is heated by the indoor heat exchange 108.
  • the upstream pipe of the outdoor expansion valve 104 corresponds to a pipe that is connected to the aforementioned throttle part and is filled with a substantially liquid refrigerant.
  • the refrigerant sound may be deteriorated by the acoustic resonance in the pipe in the upstream pipe of the outdoor expansion valve 104 in the operation of the refrigerant circuit.
  • the indoor unit when the heating operation is stopped is used.
  • the indoor expansion valve 107 in the G 109 is opened rather than fully closed, so that a small amount of liquid refrigerant is constantly circulated to prevent the liquid refrigerant from staying.
  • the upstream side piping and the downstream side piping of the indoor expansion valve 107 in this refrigerant circuit correspond to piping connected to the above-described throttle portion and filled with substantially liquid refrigerant.
  • the inventor has clarified that the refrigerant sound may be deteriorated by the acoustic resonance in the pipe in the upstream pipe and the downstream pipe of the indoor expansion valve 107 in the operation of the refrigerant circuit.
  • FIG. 9 shows an arrangement example of a pipe 112 connected to the throttle portion 111 of the expansion valve 110 and filled with a substantially liquid refrigerant.
  • a filter 113 is connected to the pipe 112.
  • the side wall 114a of the valve chamber 114 of the expansion valve 110 acts as a closed end and is connected to the pipe connecting section !, and the large-diameter portion 113a of the filter 113 in the pipe 112 has the open end.
  • a working resonance mode may occur. As shown in FIG.
  • the resonance mode amplitude becomes maximum (so-called antinode) at the closed end position, and the resonance mode amplitude becomes zero (so-called node) at the open end position.
  • the noise source in the expansion valve 110 is considered to be due to the disturbance of the refrigerant in the vicinity of the throttle 111.
  • the throttle 111 since the throttle 111 is located at the antinode of the resonance mode, it is easily vibrated! Therefore, the energy of the high-speed refrigerant passing through the throttle 111 is added, and the resonance mode is easily excited.
  • FIGS. 10 (a) to 10 (c) are schematic diagrams of resonance modes in which images of amplitudes are indicated by broken lines.
  • the secondary shown in FIGS. 10 (b) and 10 (c) which is only in the primary mode shown in FIG. 9 or FIG. 10 (a)
  • All resonance modes such as the third order are easily excited. Therefore, the inventor cannot change the position of the diaphragm 111, but can reduce the amplitude level in acoustic resonance by adjusting the resonance characteristics of the resonance space, particularly by adjusting the position of the antinode of the resonance mode. I found.
  • the resonance mode in the actual machine is the characteristics of all the cross-sectional area changing parts such as components connected to the expansion valve, such as filters, silencers, and heat exchangers. It has been determined that the resonance characteristics depend on the system design of the air conditioner because it depends on the state of the refrigerant. In other words, the inventors have clarified that the adjustment of the resonance characteristics differs depending on the system design of the air conditioner.
  • the above-described conventional noise countermeasures for expansion valves focus on noise caused by pressure fluctuations due to gas-liquid two-phase flow upstream of the expansion valve. It does not focus on the resulting noise.
  • the noise countermeasures described in each of the above-mentioned patent documents can affect acoustic resonance because a silencer is provided in the vicinity of the throttle, but it is not intended to focus on acoustic resonance. It is not intended to adjust the resonance characteristics. Therefore, there is no suggestion that the adjustment of resonance characteristics depends on the system design of the air conditioner.
  • the present invention provides an expansion valve that reduces noise due to acoustic resonance by adjusting resonance characteristics of a pipe connected to the throttle portion and filled with a substantially liquid refrigerant, and air using the expansion valve
  • the purpose is to provide a harmony machine.
  • a valve main body having a portion and at least one opening for opening a refrigerant flow path from a pipe connecting portion to which a pipe filled with a substantially liquid refrigerant is connected to a throttle portion to the outside of the valve body.
  • the valve body is configured so that a resonance adjuster having a resonance space for adjusting resonance characteristics of a pipe filled with a substantially liquid refrigerant can be attached to the outside of the valve body in a manner communicating with the opening.
  • the resonance of the pipe connected to the throttle portion of the expansion valve in the air conditioner and filled with the substantially liquid refrigerant A resonance regulator corresponding to the characteristics can be installed outside the valve body of the expansion valve.
  • the antinode position of the resonance mode can be adjusted, and the amplitude level of the resonance can be reduced to reduce noise.
  • the resonance adjuster is attached to the outside of the valve main body so as to communicate with the opening.
  • This configuration ensures that the resonance regulator is attached to the outside of the expansion valve Therefore, there is a degree of freedom in the installation space, and it can be equipped with one that is compatible with the air conditioner system design.
  • it is only necessary to change the resonance adjuster without changing the valve body and valve drive unit! It can be performed.
  • a plurality of the openings are provided, and a plurality of resonance adjusters are attached to the outside of the valve body so as to communicate with the openings.
  • a plurality of resonance spaces are formed in the pipe connected to the throttle portion of the expansion valve and filled with the substantially liquid refrigerant. May be.
  • a resonance space with the filter as the open end and a resonance space with the liquid receiver as the open end are formed.
  • the resonance adjuster is constituted by a container having a tubular shape.
  • the resonance adjuster includes a sealed space and a communication passage communicating with the space.
  • a member that hardly reflects sound waves is attached to the inside of the resonance adjuster. According to this configuration, since the resonance sound is reflected, it is possible to reduce the resonance sound by attaching a member that hardly reflects the sound wave.
  • the member does not reflect the sound wave, and the member has a porous physical strength.
  • an air conditioner using the expansion valve According to this configuration, an air conditioner having the above-described functions and effects can be obtained.
  • FIG. 1 is a longitudinal sectional view showing an expansion valve according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view showing an expansion valve according to Embodiment 2 of the present invention.
  • FIG. 3 is a longitudinal sectional view showing an expansion valve according to Embodiment 3 of the present invention.
  • FIG. 4 is a longitudinal sectional view showing an expansion valve according to Embodiment 4 of the present invention.
  • FIG. 5 is a longitudinal sectional view showing an expansion valve according to Embodiment 5 of the present invention.
  • FIG. 6 is a longitudinal sectional view showing an expansion valve according to Embodiment 6 of the present invention.
  • FIG. 7 is a longitudinal sectional view showing an expansion valve according to Embodiment 7 of the present invention.
  • FIG. 8 is a diagram showing a typical refrigerant circuit of a multi-type air conditioner.
  • FIG. 9 is a diagram for explaining a resonance space of a pipe that is connected to a conventional expansion valve and is filled with a liquid refrigerant.
  • FIG. 10 (a) Force and (c) are diagrams for explaining resonance modes in piping.
  • FIG. 1 is a longitudinal sectional view of an expansion valve according to Embodiment 1.
  • the expansion valve according to the present embodiment includes a valve body 1 and a valve drive unit 2 attached to the upper part of the valve body 1.
  • the valve body 1 has pipe connection portions 11 and 12 on the side surface and the lower surface of the valve body 1, respectively, and a refrigerant flow passage is formed between the pipe connection portions 11 and 12.
  • This refrigerant flow passage is partitioned by a valve seat 13, and a valve chamber 14 is formed above the valve seat 13.
  • a valve hole 15 is formed in the valve seat 13, and the one-dollar valve 17 formed at the tip of the valve stem 16 is configured so that an upward force can be driven forward and backward with respect to the valve hole 15.
  • the one-dollar valve 17 and the valve seat 13 form a throttle portion 18.
  • the pipe connecting portions 11 and 12 are constituted by joint pipes for facilitating the connection of the pipe 19 connected to the expansion valve.
  • the valve drive unit 2 is a drive unit for moving the valve stem 16 up and down.
  • the rotor 21 connected to the valve stem 16, the rotor case 22 surrounding the rotor 21, and the outside of the rotor case 22 are attached.
  • the stator 23 is formed.
  • the above configuration is a general configuration conventionally known as an expansion valve.
  • the expansion valve according to the present embodiment is configured such that the valve chamber 14 is located outside the valve body 14 at a position on the side of the valve chamber 14 and facing the pipe connection portion 11 in the valve body 1.
  • An opening 30 is provided at the top.
  • the opening 30 is formed in a circular hole having substantially the same diameter as the inner diameter of the pipe 19 connected to the pipe connecting portion 11.
  • a socket part 32 is formed so that a tubular resonance regulator 31 having the same diameter as the pipe 19 can be attached.
  • the resonance adjuster 31 is configured by a tubular container cover having substantially the same diameter as the pipe 19, and one end of the container is opened and the other end is closed.
  • the resonance adjuster 31 also having a tubular container force is brazed and attached to the socket portion 32 concentrically with the opening 30.
  • the resonance adjuster 31 When the resonance adjuster 31 is attached to the outside of the valve body 1, the open end of the resonance space is the large-diameter portion 35a of the filter 35 attached to the pipe 19, as shown in FIG.
  • the closed end is a closed end 31a of the resonance regulator 31 attached to the outside of the valve body 1.
  • a resonance space protrudes outside the valve chamber 14.
  • the antinodes and nodes of the resonance mode are adjusted so that the primary resonance mode in FIG.
  • the excitation energy generated in the throttle unit 18 is applied at a location deviated from the antinode of the resonance mode.
  • the attachment position of the resonance adjuster 31 that communicates with the opening 30 needs to be in front of the throttle portion with respect to the resonance space of the pipe 19, and is preferably as close as possible to the throttle portion 18. Since such a resonance adjuster also has an energy absorption effect, it is preferable to be located close to the energy generation source. For this reason, the resonance adjuster 31 is provided on the side surface of the valve chamber 14, but the position of the resonance adjuster 31 does not have to be opposed to the pipe connection 11. It may be a position that intersects with a predetermined angle.
  • the expansion valve of Embodiment 1 is an expansion valve configured as described above, an expansion valve to which the resonance regulator 31 is attached, and an expansion valve to which the resonance regulator 31 is not attached. It is illustrated as an embodiment of the above. Further, according to the expansion valve in the state where the resonance regulator 31 configured as described above is not attached, the resonance space formed by the pipe 19 connected to the throttle portion 18 of the expansion valve and filled with the substantially liquid refrigerant. A resonance adjuster 31 corresponding to the resonance characteristic can be attached to the outside of the valve body 1 of the expansion valve. As a result, the position of the antinode of the resonance mode can be adjusted, and the noise level can be reduced by reducing the amplitude level of the resonance. In addition, in the case of an expansion valve to which the resonance adjuster 31 is not attached as described above, the resonance adjuster 31 having the optimum characteristics determined by the system designer of the air conditioner himself / herself is used. It can be selected and attached to the expansion valve.
  • the resonance adjuster 31 corresponding to the resonance characteristic of the resonance space consisting of the piping 19 is attached in advance when designing the system of the air conditioner.
  • An expansion valve is provided.
  • the expansion valve capable of adjusting the resonance characteristics is employed in the air conditioner system, whereby the position of the antinode of the resonance mode can be adjusted, and the amplitude level of the resonance sound is reduced. Noise can be reduced.
  • a resonance adjuster 41 having a diameter smaller than the diameter of the pipe 19 is used instead of the resonance adjuster 31 according to the first embodiment, as shown in FIG.
  • the closed end of the resonance space is a closed end portion 41a of the resonance adjuster 41 attached to the outside of the valve body 1.
  • the basic concept of the resonance regulator 41 of the second embodiment is the same as that of the resonance regulator 31 of the first embodiment, and the resonance characteristics are adjusted by adjusting the length and diameter of the resonance regulator 41. It is possible to reduce the resonance level by lowering the amplitude level of noise due to acoustic resonance.
  • the resonance regulator 42 includes a sealed space (silence chamber) 43 and a communication path having a predetermined length and a predetermined cross-sectional area communicating with the space 43. 44.
  • a sealed space sience chamber
  • a communication path having a predetermined length and a predetermined cross-sectional area communicating with the space 43. 44.
  • a member 45 that hardly reflects sound waves is attached to the inside of the resonance regulator 31 according to the first embodiment.
  • the material of the member 45 that hardly reflects sound waves include porous materials such as metal fibers and sintered alloys.
  • a member 46 that hardly reflects sound waves is attached to the inside of the resonance regulator 31 according to the first embodiment, as in the fourth embodiment.
  • the member 46 that hardly reflects sound waves in the fifth embodiment is configured by a member that displaces a plate material 46b that is inertially supported by a spring 46a in response to pressure fluctuation.
  • the reflected sound of the resonance can be absorbed as in the fourth embodiment, and the noise can be further reduced by reducing the amplitude level of the resonance.
  • Embodiment 1 to Embodiment 5 relate to a resonance adjuster that adjusts the resonance characteristics of the pipe 19 connected to the side surface of the valve chamber 14
  • Embodiment 6 relates to the valve body 1 as shown in FIG.
  • the present invention relates to adjustment of the resonance mode of the pipe 52 connected to the pipe connection part 51 on the lower surface.
  • the pipe connection portion 51 on the lower surface of the valve body 1 in this embodiment is provided with a joint pipe as in the first embodiment.
  • the resonance adjuster 53 there is no place to attach the resonance adjuster 53 on the surface facing the pipe connecting portion 51 as in the first to fifth embodiments. Further, there is no valve chamber 14 between the throttle portion 18 and the pipe connection portion 51. For this purpose, a space 54 is provided in the lower part of the valve seat 13, and an opening 55 that opens the space 54 to the outside is provided on the side of the space 54. Further, a socket portion 56 is formed outside the opening 55. The resonance adjuster 53 is concentrically attached to the socket portion 56 by brazing.
  • the resonance space for the pipe 52 is bent.
  • the node of the resonance mode is, for example, the position of the large-diameter portion 57a when the large-diameter filter 57 is attached.
  • the closed end of the resonance mode is a closed end portion 53a of the resonance adjuster 53 attached to the outside of the valve body 1.
  • a resonance adjuster 62 is provided in the pipe connection portion 61 on the lower surface of the valve body 1. More specifically, as shown in FIG. 7, the pipe connection portion 61 is provided with a joint pipe according to the first embodiment.
  • the joint pipe of the pipe connection part 61 is provided with an opening 63 that opens a space in the pipe to the outside. A burring portion is bulged from the joint pipe in the opening 63, and a resonance regulator 62 having the same configuration as that of the resonance regulator 42 according to the third embodiment is arranged concentrically with the opening 63 and brazed. It is attached by.
  • the resonance space and the resonance mode for the pipe 52 are the same as those in the sixth embodiment, and have the same resonance characteristics as in the sixth embodiment. Adjustments are made.
  • the closed end of the resonance mode is the closed end 62a of the resonance regulator 62 attached to the outside of the valve body 1. Since the resonance adjuster 62 is attached, the expansion valve according to the seventh embodiment adjusts the same resonance characteristics as the expansion valve according to the sixth embodiment and reduces the low-frequency noise level. Can be made.
  • the resonance adjusters 31, 41, 42, 53, 62 are attached to the openings 30, 55, 63 by providing the socket portions 32, 56 or burring portions in the openings 30, 55, 63. This is done by brazing the socket part 32, 56 or the burring part.
  • the resonance regulators 31, 41, 42, 53, 62 may be attached by welding instead of brazing. If the thermal effects on the valve body 1 and valve drive unit 2 due to brazing and welding of the resonance adjusters 31, 41, 42, 53, 62 become a problem, the pipe connections 11, 12, 51, 61 Short pipes may be provided at the openings 30, 55 and 63 in the same manner as the pipes for joints are provided.
  • the expansion valve without the resonance regulators 31, 41, 42, 53, 62 is a finished product
  • the expansion valve with a short pipe provided in the openings 30, 55, 63 is used. It only has to be shipped.
  • Resonance adjusters 31, 41, 42, 53, 62 to openings 30, 55, 63 should be brazed and welded as described above if leakage does not occur and strength does not matter It is possible with a taper screw instead.
  • a plurality of resonance regulators 31, 41, 42, 53 that communicate with the openings 30, 55 may be attached to the outside of the valve body 1.
  • the pipes 19 and 51 that are connected to the expansion valve and are filled with a substantially liquid refrigerant are equipped with various devices in addition to the filters 35 and 57.
  • a mode may be formed.
  • a large-diameter filter 35 and a receiver (not shown) are connected in series to the pipe 19, the closed end is the valve chamber 14 and the open end is the filter 35.
  • a resonance space having a closed end as a valve chamber 14 and an open end as a liquid receiver.
  • a resonance adjuster 31 is attached to each of the resonance characteristics of the two resonance spaces.
  • the two resonance adjusters 31 can individually reduce the resonance level of the resonance amplitude due to each resonance space to reduce noise.
  • expansion valves have been described in the above embodiments, these expansion valves are used for all refrigeration devices such as home air conditioners, commercial air conditioners such as stores and office buildings, refrigerators, and freezers. The noise of the expansion valve in these devices can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)
  • Temperature-Responsive Valves (AREA)
  • Lift Valve (AREA)

Abstract

 絞り部に接続され、かつ略液状の冷媒で満たされる配管の共鳴特性を調整可能とすることにより、音響共鳴による騒音を低減する膨張弁及びこの膨張弁を用いた空気調和機を提供する。膨張弁は、弁本体1と、弁本体1の内部に形成される絞り部18と、この絞り部18の前後に連通する二つの配管接続部11、12と、略液状の冷媒で満たされる配管19が接続される配管接続部12から絞り部18に至る冷媒流通路を弁本体1の外部に開放する少なくとも一つの開口30とを有する。前記弁本体1は、略液状の冷媒で満たされる配管19の共鳴特性を調整する共鳴空間を備えた共鳴調整器31を、前記開口30に連通する態様で弁本体1の外部に取り付け可能に形成されている。

Description

明 細 書
膨張弁及び空気調和機
技術分野
[0001] 本発明は、一般の冷凍サイクルに用いられ、高温及び高圧の冷媒を膨張させて低 温及び低圧の冷媒にする膨張弁及びこれを用いた空気調和機に関する。
背景技術
[0002] 従来、空気調和装置において騒音の低下が望まれており、特に膨張弁における低 騒音化が必要とされている。この膨張弁における騒音問題として、主として、膨張弁 の上流に位置する冷媒流通抵抗の増加、凝縮器の能力不足などの要因により、膨 張弁に流入する冷媒流が気液二相流になった場合の騒音が着目されていた。この 騒音の発生メカニズムでは、密度の異なる冷媒が不規則に膨張弁の弁本体の内部 を通過することにより、膨張弁の内部における圧力の変動が激しくなり、圧力の変動 が膨張弁を形成するケースに伝播する。そして、膨張弁の圧力の変動により弁体自 体が加振され、その振動がシャフトを通してロータに伝わってケースが振動する。
[0003] このような問題に対し、特許文献 1では、弁本体の内部に連通する中空形状の空間 が膨張弁の弁本体の筐体内に形成された構成が提案されている。この構成では、筐 体内に形成された中空形状の空間における圧力の変動の周波数特性と、膨張弁の 弁本体の内部における減圧時の圧力の変動による周波数特性とを干渉させることに より、不快と感じられる周波数の騒音レベルが下げられる。特許文献 2では、膨張弁 内において、膨張弁の出入口を形成する二つの配管と絞り部との間に膨張室がそれ ぞれ設けられた構成が提案されている。この膨張弁は、冷媒が 2つの膨張室を通過 するときに冷媒の圧力の脈動を段階的に減衰することにより冷媒の通過音を低減さ せ、二つの膨張室を消音器として機能させている。特許文献 3では、弁体、弁座、接 続管などの膨張弁の構成部品内に消音室が設けられた構成が提案されている。この 構成は、マルチエアコンディショナにおいて、負荷の変動に対応するために一部の 空気調和機の膨張弁の弁開度が調整されたときに、他室の空気調和機の膨張弁の 入口側において過渡的に冷媒流が気液二相流状態となり、圧力の脈動が生ずる場 合の騒音対策として用いられている。この消音室は、密閉された空間と、該空間に連 通する、所定の長さ及び断面積を有する直管とからなり、ヘルムホルツ型共鳴器と近 似した構成を有している。
特許文献 1 :特開平 10— 160290号公報
特許文献 2:特開平 11― 325658号公報
特許文献 3:特開平 8 - 135842号公報
発明の開示
[0004] ところが、発明者の研究により、膨張弁の騒音発生は上記のような場合ば力りでなく
、膨張弁の絞り部に接続され、かつ略液状の冷媒で満たされる配管については、配 管内の音響共鳴により冷媒音が悪ィ匕する場合があることが解明された。絞り部に接 続される配管であり、かつ略液状の冷媒で満たされる配管としては、通常の運転にお ける膨張弁の上流側配管がこれに相当する。また、絞り部に接続され、かつ略液状 の冷媒で満たされる配管として、このような膨張弁の上流側配管のみならず下流側配 管が相当する場合もある。例えば、マルチエアコンディショナにおける暖房運転時に おいては、室内ユニットに設けられる室内膨張弁の上流側配管及び下流側配管がこ れに相当する。
[0005] このマルチエアコンディショナにおいて、どの配管が絞り部に接続され、かつ略液 状の冷媒で満たされる配管に相当するかについて説明する。図 8は、一般的なヒート ポンプ式マルチエアコンディショナにおける冷媒回路を示す。この冷媒回路では、圧 縮機 101、四路切換弁 102、室外側熱交換器 103、室外膨張弁 104、及び受液器 1 05などを収納した 1台の室外ユニット 106に、室内膨張弁 107及び室内側熱交換器 108を収納した複数台(例えば、図 8では 2台)の室内ユニット 109が接続されている 。この空気調和機においては、冷房運転時に、四路切換弁 102の切換により、図 8に おいて実線の矢印で示すように、圧縮機 101、四路切換弁 102、室外側熱交翻1 03、室外膨張弁 104、受液器 105、室内膨張弁 107、室内側熱交換器 108、四路 切換弁 102、及び圧縮機 101の経路で冷媒が流通する冷媒回路が形成される。各 室内ユニット 109に組み込まれている室内膨張弁 107、及び室内側熱交^^ 108の 回路部分は並列に接続されている。そして、冷房運転時においては、室外膨張弁 10 4及び室内膨張弁 107で冷媒が制御され、室外側熱交 l03が凝縮器として作 用し、室内側熱交換器 108が蒸発器として作用する。このような冷媒回路が形成され ることにより、室内の空気が室内側熱交 l08で冷却及び除湿される。この冷媒回 路においては、運転条件が定格冷房運転条件に近い状態の場合には、室内膨張弁 107の上流側配管が、前述の絞り部に接続され、かつ略液状の冷媒で満たされる配 管に該当する。また、この冷媒回路の運転における室内膨張弁 107の上流側配管で 、配管内の音響共鳴により冷媒音が悪ィヒする場合があることが発明者により解明され た。
[0006] 一方、暖房運転時には、四路切換弁 102の切換により、図 8において破線の矢印 で示すように、圧縮機 101、四路切換弁 102、室内側熱交換器 108、室内膨張弁 10 7、受液器 105、室外膨張弁 104、室外側熱交換器 103、四路切換弁 102、及び圧 縮機 101の経路で冷媒が流通する冷媒回路が形成される。この場合においても、各 室内ユニット 109に収納されている室内側熱交^^ 108、及び室内膨張弁 107の回 路部分は並列に接続されている。そして、暖房運転時においては、室外膨張弁 104 及び室内膨張弁 107で冷媒が制御され、室外側熱交換器 103が蒸発器として作用 し、室内側熱交 108が凝縮器として作用する。このような冷媒回路が形成される ことにより、室内の空気が室内側熱交 l08で加熱される。この冷媒回路において は、運転条件が定格暖房運転条件に近い状態の場合には、室外膨張弁 104の上流 側配管が、前述の絞り部に接続され、かつ略液状の冷媒で満たされる配管に該当す る。また、この冷媒回路の運転における室外膨張弁 104の上流側配管で、配管内の 音響共鳴により冷媒音が悪ィ匕する場合があることが発明者により解明された。
[0007] このような冷媒回路において、一部の室内ユニット 109が停止する場合、この室内 ユニット 109の室内側熱交^^ 108は高圧回路中に連通されている。このため、室 内側熱交換器 108の出口に位置する室内膨張弁 107が全閉の状態で長時間運転 が停止する場合は、高圧ガス冷媒が運転停止中の室内側熱交換器 108で凝縮及び 液ィ匕して貯留される。室内側熱交 108に冷媒が凝縮及び液ィ匕して貯留されると 冷媒回路内の冷媒量が不足し、正常な圧力で運転できなくなって暖房運転に支障を きたす可能性がある。そこで、これを回避するために、暖房運転停止中の室内ュ-ッ ト 109内の室内膨張弁 107が全閉でなく小さく開くことにより、少量の液状の冷媒を 絶えず流通させて液状の冷媒の滞留を抑制する。この状態では、膨張弁の上流側 配管が液状の冷媒で満たされるだけでなぐ下流側配管も液状の冷媒で満たされる 。したがって、この冷媒回路における室内膨張弁 107の上流側配管及び下流側配管 は、前述の絞り部に接続され、かつ略液状の冷媒で満たされる配管に該当する。ま た、この冷媒回路の運転における室内膨張弁 107の上流側配管及び下流側配管で 、配管内の音響共鳴により冷媒音が悪ィヒする場合があることが発明者により解明され た。
[0008] このような、絞り部に接続され、かつ略液状の冷媒で満たされる配管においては、 図 9に示すような共鳴空間が想定される。図 9は、膨張弁 110の絞り部 111に接続さ れ、かつ略液状の冷媒で満たされる配管 112の配置例であり、この配管 112にはフィ ルタ 113が接続されている。この場合における配管の共鳴空間では、膨張弁 110の 弁室 114の側壁 114aが閉端として作用し、配管接続部に接続されて!、る配管 112 におけるフィルタ 113の大口径部 113aが開放端とし作用する共鳴モードが生じる場 合がある。図 9に示されるように、閉端位置では共鳴モードの振幅が最大となり(所謂 腹となり)、開放端位置では共鳴モードの振幅が 0となる (所謂節となる)。一方、膨張 弁 110における騒音の発信源は絞り部 111付近の冷媒の乱れによると考えられるが 、この絞り部 111が上記共鳴モードの腹の位置に存在することから加振されやす!/、。 したがって、絞り部 111を通過する高速冷媒のエネルギが加えられて共鳴モードが 励起されやすい。
[0009] 図 10 (a)から(c)は、振幅の大小のイメージを破線で示した共鳴モードの模式図で ある。前記絞り部 111に接続されるとともに略液状の冷媒で満たされる配管 112では 、図 9又は図 10 (a)に示す 1次モードだけでなぐ図 10 (b)及び (c)に示す 2次、 3次 等のあらゆる共鳴モードが励起されやすい。そこで、発明者は、絞り部 111の位置を 変えることはできないが、共鳴空間の共鳴特性の調整、特に共鳴モードの腹の位置 を移動させる調整により、音響共鳴における振幅レベルを低減させることができること を見出した。また、実機における共鳴モードは、膨張弁に接続される部品、例えばフ ィルタ、消音器、及び熱交換器などのあらゆる断面積変化部の特性、及び流通する 冷媒の状態などによって決まることから、共鳴特性は空気調和機のシステム設計に 依存することが分力つてきた。すなわち、共鳴特性の調整は空気調和機のシステム 設計により異なることが発明者により解明された。
[0010] ところで、前述の従来の膨張弁の騒音対策は、膨張弁の上流側の気液二相流によ る圧力の変動に起因する騒音に着目したものであり、このような音響共鳴に起因する 騒音に着目したものではない。また、音響共鳴に起因する騒音に着目したものは未 だ発表されていない。前記各特許文献に記載されている騒音対策は、絞り部の近傍 に消音器が設けられていることから、音響共鳴に影響を与えることはできるが、もとも と音響共鳴に着目したものではなぐ共鳴特性の調整を考えたものではない。したが つて、共鳴特性の調整が空気調和機のシステム設計に依存する点は示唆されて 、な い。
[0011] 本発明は、絞り部に接続され、かつ略液状の冷媒で満たされる配管の共鳴特性を 調整可能とすることにより、音響共鳴による騒音を低減する膨張弁及びこの膨張弁を 用いた空気調和機を提供することを目的とする。
[0012] 上記の課題を解決するため、本発明の第一の態様によれば、弁本体と、弁本体の 内部に形成される絞り部と、この絞り部の前後に連通する二つの配管接続部と、略液 状の冷媒で満たされる配管が接続される配管接続部から絞り部に至る冷媒流通路を 弁本体の外部に開放する少なくとも一つの開口とを有する膨脹弁が提供される。前 記弁本体は、略液状の冷媒で満たされる配管の共鳴特性を調整する共鳴空間を備 えた共鳴調整器を、前記開口に連通する態様で弁本体の外部に取り付け可能に形 成されている。
[0013] このように構成された膨張弁を用いて空気調和機のシステム設計を行うことにより、 空気調和機における膨張弁の絞り部に接続され、かつ略液状の冷媒で満たされる配 管の共鳴特性に対応した共鳴調整器を、膨張弁の弁本体の外部に取り付けることが できる。これにより、共鳴モードの腹の位置を調整することができ、共鳴音の振幅レべ ルを低減して騒音を低減することができる。
[0014] 好ましくは、共鳴調整器が、前記開口に連通する態様で弁本体の外部に取り付け られている。この構成により、共鳴調整器が膨張弁の外部に取り付けられていること から、取り付けスペースに自由度があり、空気調和機のシステム設計に対応したもの が装備されることができる。また、空気調和機のシステムにより共鳴特性が異なること に対応するために、弁本体及び弁駆動部を変更せずに共鳴調整器のみを変更する だけでよ!、ことから、膨張弁の共用化を行うことができる。
[0015] また、好ましくは、複数の前記開口が設けられており、これらの開口に連通するよう に複数の共鳴調整器が弁本体の外部に取り付けられている。この構成によれば、膨 張弁の絞り部に接続され、かつ略液状の冷媒で満たされる配管には、前述のように 1 個の共鳴空間が形成されるだけでなく複数の共鳴空間が形成される場合がある。例 えば、この配管に大口径のフィルタと受液器とが直列に接続されている場合、フィル タを開放端とする共鳴空間と、受液器を開放端とする共鳴空間とが形成される場合 がある。このような場合、複数の共鳴調整器が取り付けられることにより、個々の共鳴 空間毎の共鳴特性を個々の共鳴調整器で調整することができる。好ましくは、前記共 鳴調整器は、管状を有する容器により構成されている。また、好ましくは、前記共鳴 調整器は、密閉された空間と、該空間に連通する連通路とを備えている。
[0016] 好ましくは、前記共鳴調整器の内部には、音波を反射しにくい部材が取り付けられ ている。この構成によれば、共鳴音は反射されることから、音波を反射しにくい部材が 取り付けられることにより、共鳴音を低減することが可能となる。好ましくは、前記音波 を反射しにく 、部材は多孔質体力 なる。
[0017] 本発明の第二の態様によれば、前記膨脹弁を用いた空気調和機が提供される。こ の構成によれば、前述の作用及び効果を奏する空気調和機が得られる。
図面の簡単な説明
[0018] [図 1]本発明の実施の形態 1に係る膨張弁を示す縦断面図である。
[図 2]本発明の実施の形態 2に係る膨張弁を示す縦断面図である。
[図 3]本発明の実施の形態 3に係る膨張弁を示す縦断面図である。
[図 4]本発明の実施の形態 4に係る膨張弁を示す縦断面図である。
[図 5]本発明の実施の形態 5に係る膨張弁を示す縦断面図である。
[図 6]本発明の実施の形態 6に係る膨張弁を示す縦断面図である。
[図 7]本発明の実施の形態 7に係る膨張弁を示す縦断面図である。 [図 8]マルチ型空気調和機の代表的な冷媒回路を示す図である。
[図 9]従来の膨張弁に接続される、液状の冷媒で満たされている配管の共鳴空間を 説明するための図である。
[図 10] (a)力も (c)は配管における共鳴モードを説明するための図である。
発明を実施するための最良の形態
[0019] 以下、本発明の各実施の形態に係る膨張弁について、図面に基づき説明する。
実施の形態 2〜7において、実施例の形態 1に共通する構成要素には同一の符号を 付してその説明を省略する。
[0020] (実施の形態 1)
以下、この発明の実施の形態 1に係る膨張弁について、図 1に基づき説明する。図
1は実施の形態 1に係る膨張弁の縦断面図である。本実施の形態に係る膨張弁は、 図 1に示すように、弁本体 1と、弁本体 1の上部に取り付けられた弁駆動部 2からなる
[0021] 弁本体 1は、該弁本体 1の側面及び下面に配管接続部 11、 12をそれぞれ有して おり、両配管接続部 11、 12間に冷媒流通路が形成されている。この冷媒流通路は 弁座 13により仕切られており、該弁座 13の上部に弁室 14が形成されている。弁座 1 3には弁孔 15が形成されており、弁棒 16の先端に形成された-一ドル弁 17は、弁孔 15に対して上方力も進退自在に駆動されるように構成されて 、る。この-一ドル弁 1 7と弁座 13とにより絞り部 18が形成されている。前記配管接続部 11、 12は、膨張弁 に接続される配管 19の接続を容易にするために継手用配管により構成されている。
[0022] 弁駆動部 2は弁棒 16を上下動させるための駆動部であり、例えば弁棒 16に連結す るロータ 21、ロータ 21を囲うロータケース 22、及びロータケース 22の外方に取り付け られたステータ 23から構成されている。以上の構成は、膨張弁として従来公知の一 般的な構成である。
[0023] 本実施の形態に係る膨張弁は、このような構成において、弁本体 1における弁室 1 4の側方であって、かつ配管接続部 11に対向する位置に、弁室 14を外部に開口す る開口 30が設けられている。この開口 30は、配管接続部 11に接続される配管 19の 内径と略同一の直径を有する円形孔に形成されている。弁本体 1の外部には、前記 配管 19と同一の直径を有する管状の共鳴調整器 31を取り付け可能とするために、ソ ケット部 32が形成されて 、る。
[0024] 共鳴調整器 31は、配管 19と略同一の直径を有する管状の容器カゝら構成されてお り、該容器の一端が開放されているとともに他端が閉鎖されている。この管状の容器 力もなる共鳴調整器 31は、開口 30と同心状にソケット部 32にろう付けされて取り付け られている。
[0025] 共鳴調整器 31が弁本体 1の外部に取り付けられると、図 1に示すように、共鳴空間 の開放端は配管 19に取り付けられたフィルタ 35の大口径部 35aであり、共鳴空間の 閉端は弁本体 1の外部に取り付けられた共鳴調整器 31の閉鎖された端部 31aとなる 。これにより、共鳴空間が弁室 14の外部にはみ出して形成される。この結果、図 1に おける 1次共鳴モードを破線で示すように、共鳴モードの腹及び節が調整される。こ のように共鳴特性が調整されると、絞り部 18で発生する加振エネルギは、共鳴モード の腹からずれた個所で加えられることになる。
[0026] 開口 30に連通する共鳴調整器 31の取り付け位置は、配管 19の共鳴空間につい ては絞り部の手前である必要があり、絞り部 18にできるだけ近いことが好ましい。この ような共鳴調整器はエネルギ吸収効果も有することから、エネルギ発生源に近 ヽとこ ろに位置することが好ましい。このようなことから共鳴調整器 31は弁室 14の側面に設 けられているが、共鳴調整器 31の位置は配管接続部 11に対向する位置でなくても よぐ配管接続部 11の軸線に対して所定の角度で交差する位置でもよい。
[0027] 実施の形態 1の膨張弁は、上記のように構成された膨張弁であって、共鳴調整器 3 1が取り付けられた膨張弁と、共鳴調整器 31が取り付けられていない膨張弁との実 施の形態として例示されるものである。また、このように構成された共鳴調整器 31の 取り付けられていない状態の膨張弁によれば、膨張弁の絞り部 18に接続され、かつ 略液状の冷媒で満たされる配管 19からなる共鳴空間の共鳴特性に対応した共鳴調 整器 31を、膨張弁の弁本体 1の外部に取り付けることができる。これにより、共鳴モー ドの腹の位置を調整することができ、共鳴音の振幅レベルを低減して騒音を低減す ることができる。また、このように共鳴調整器 31が取り付けられていない膨張弁の場 合は、空気調和機のシステム設計者が各自で定める最適特性の共鳴調整器 31を自 由に選択して膨張弁に取り付けることができる。
[0028] また、共鳴調整器 31の取り付けられた状態の膨張弁の場合は、空気調和機のシス テム設計に際し、予め配管 19からなる共鳴空間の共鳴特性に対応する共鳴調整器 31が取り付けられた膨張弁が用意される。このようにして、共鳴特性を調整すること が可能な膨張弁が空気調和機のシステムに採用されることにより、共鳴モードの腹の 位置を調整することができ、共鳴音の振幅レベルを低減して騒音を低減することがで きる。
[0029] (実施の形態 2)
実施の形態 2に係る膨張弁では、実施形態 1に係る共鳴調整器 31の代わりに、図 2 に示すように、配管 19の直径よりも小さい直径を有する共鳴調整器 41が用いられて いる。この場合の共鳴空間の閉端は、弁本体 1の外部に取り付けられた、共鳴調整 器 41の閉鎖された端部 41aとなる。実施の形態 2の共鳴調整器 41の基本的な考え 方は実施の形態 1の共鳴調整器 31と同一であり、共鳴調整器 41の長さ及び直径を 調整することにより共鳴特性を調整することができ、音響共鳴による騒音の振幅レべ ルを下げて共鳴音を低減することができる。
[0030] (実施の形態 3)
実施の形態 3に係る共鳴調整器 42は、図 3に示すように、密閉された空間(消音室 ) 43と、該空間 43に連通する、所定の長さ及び所定の断面積を有する連通路 44とを 備えている。この共鳴調整器 42が弁室 14の側方に連結されることにより、共鳴空間 の閉端が弁本体 1の外部に取り付けられた共鳴調整器 42の閉鎖された端部 42aとな る。実施の形態 3に係る膨張弁は、前記構成を有する共鳴調整器 42が取り付けられ ることにより、配管 19の共鳴特性を調整するとともに、低周波数の騒音レベルを低減 させることができる。したがって、共鳴音の振幅レベルがより一層低減される。
[0031] (実施の形態 4)
実施の形態 4に係る膨張弁では、図 4に示すように、実施の形態 1に係る共鳴調整 器 31の内部に音波を反射しにくい部材 45が取り付けられている。音波を反射しにく ぃ部材 45の材質としては、金属繊維、焼結合金などの多孔質材料が挙げられる。音 波を反射しにくい部材 45が共鳴調整器 31の内部に取り付けられることにより、共鳴 音の反射音を低減することができ、共鳴音の振幅レベルを低減して騒音をより低減 することができる。
[0032] (実施の形態 5)
実施の形態 5に係る膨張弁では、図 5に示すように、実施の形態 4と同様に、実施 の形態 1に係る共鳴調整器 31の内部に音波を反射しにくい部材 46が取り付けられ ている。実施の形態 5における音波を反射しにくい部材 46は、ばね 46aにより弹性的 に支持された板材 46bを圧力変動に反応して変位させる部材により構成されている。 この場合も実施の形態 4と同様に共鳴音の反射音を吸収することができ、共鳴音の 振幅レベルを低減して騒音をより低減することができる。
[0033] (実施の形態 6)
実施の形態 1〜実施の形態 5は、弁室 14の側面に接続される配管 19の共鳴特性 を調整する共鳴調整器に関するが、実施の形態 6は、図 6に示すように、弁本体 1の 下面の配管接続部 51に接続される配管 52の共鳴モードの調整に関する。この実施 の形態における弁本体 1の下面の配管接続部 51には、実施の形態 1の場合のような 継手用配管が設けられて 、な 、。
[0034] 実施の形態 6では、実施の形態 1〜5の場合のように配管接続部 51に対向する面 に共鳴調整器 53を取り付ける場所がない。また、絞り部 18と配管接続部 51との間に 弁室 14もない。このために、弁座 13の下方部分に空間部 54が設けられるとともに、 空間部 54を外部に開口する開口 55が空間部 54の側方に設けられる。さらに、開口 55の外部にソケット部 56が形成されている。そして、このソケット部 56に、ろう付けに より同心状に共鳴調整器 53が取り付けられて 、る。
[0035] この場合の配管 52についての共鳴空間は、折れ曲がつたような形態になる。そして 、共鳴モードの節は、例えば大口径のフィルタ 57が取り付けられている場合は、その 大口径部 57aの位置となる。また、共鳴モードの閉端は、弁本体 1の外部に取り付け られた共鳴調整器 53の閉鎖された端部 53aとなる。このように共鳴特性が調整される ことにより、絞り部 18で発生する加振エネルギは共鳴モードの腹力もずれた個所で加 えられることになり、共鳴音の振幅を低減することができ、騒音を低下させることがで きる。 [0036] (実施の形態 7)
実施の形態 7に係る膨張弁では、実施の形態 6の場合と同様に、弁本体 1の下面の 配管接続部 61に共鳴調整器 62が設けられている。より具体的には、図 7に示すよう に、配管接続部 61には実施の形態 1に係るような継手用配管が設けられている。配 管接続部 61の継手用配管には、配管内の空間を外部に開口する開口 63が設けら れている。開口 63には継手用配管からバーリング部が膨出されており、実施の形態 3 に係る共鳴調整器 42と同一の構成を有する共鳴調整器 62が開口 63と同心状に配 置され、ろう付けにより取り付けられている。
[0037] このように構成された実施の形態 7では、配管 52についての共鳴空間及び共鳴モ ードは実施の形態 6の場合と同様になり、実施の形態 6の場合と同様の共鳴特性の 調整が行われる。共鳴モードの閉端は、弁本体 1の外部に取り付けられた共鳴調整 器 62の閉鎖された端部 62aとなる。また、共鳴調整器 62が取り付けられていることか ら、実施の形態 7に係る膨張弁は、実施の形態 6に係る膨張弁と同様の共鳴特性を 調整するとともに、低周波数の騒音レベルを低減させることができる。
[0038] (変形例)
(1)各実施の形態において、共鳴調整器 31、 41、 42、 53、 62の開口 30、 55、 63 への取り付けは、開口 30、 55、 63にソケット部 32、 56又はバーリング部が設けられ、 このソケット部 32、 56又はバーリング部へのろう付けにより行われている。しかしなが ら、ろう付けでなく溶接により共鳴調整器 31、 41、 42、 53、 62が取り付けられてもよ い。また、共鳴調整器 31、 41、 42、 53、 62のろう付け及び溶接による弁本体 1及び 弁駆動部 2への熱影響が問題になる場合には、配管接続部 11、 12、 51、 61に継手 用配管が設けているのと同様に、開口 30、 55、 63に短い配管が設けられてもよい。 この場合、共鳴調整器 31、 41、 42、 53、 62が取り付けられていない状態の膨張弁 を完成品とする場合は、開口 30、 55、 63に短い配管が設けられた状態の膨脹弁が 出荷されればよい。共鳴調整器 31、 41、 42、 53、 62の開口 30、 55、 63への取り付 けは、漏れが生じずに強度が問題にならないものであれば、上記のようなろう付け及 び溶接ではなくテーパねじによっても可能である。
[0039] (2)各実施の形態においては、開口 30、 55が 1個しか明示されていないが、複数 の開口 30、 55力設けられるととも〖こ、各開口 30、 55に連通する複数の共鳴調整器 3 1、 41、 42、 53が弁本体 1の外部に取り付けられてもよい。膨張弁に接続される、略 液状の冷媒で満たされる配管 19、 51には、フィルタ 35、 57だけではなく各種機器が 設けられることから、弁室 14部分を共鳴モードの腹とする複数の共鳴モードが形成さ れることがある。例えば、実施の形態 1において、配管 19に大口径のフィルタ 35と受 液器 (図示せず)とが直列に接続されているような場合、閉端を弁室 14とし、開放端 をフィルタ 35とする共鳴空間と、閉端を弁室 14とし、開放端を受液器とする共鳴空間 とが形成される場合がある。このような場合、例えば、同一水平面上において、配管 接続部 11の軸線に対しそれぞれ 45度傾 、た位置の弁室 14の壁に二つの開口 30 力 S設けられ、二つの開口 30に対し、前記二つの共鳴空間の共鳴特性に見合った共 鳴調整器 31がそれぞれ取り付けられる。この構成により、二つの共鳴調整器 31が各 共鳴空間による共鳴振幅の共鳴レベルを個別に低減して騒音を低下させることがで きる。
(3)上記各実施の形態では膨張弁について説明されているが、これら膨張弁は、 家庭用空気調和機、店舗、オフィスビルなどの業務用エアコンディショナ、冷蔵庫、 冷凍庫などあらゆる冷凍装置に使用されることができ、これら装置における膨張弁の 騒音を低減することができる。

Claims

請求の範囲
[1] 弁本体と、弁本体の内部に形成される絞り部と、この絞り部の前後に連通する二つ の配管接続部と、略液状の冷媒で満たされる配管が接続される配管接続部から絞り 部に至る冷媒流通路を弁本体の外部に開放する少なくとも一つの開口とを有し、前 記弁本体は、略液状の冷媒で満たされる配管の共鳴特性を調整する共鳴空間を備 えた共鳴調整器を、前記開口に連通する態様で弁本体の外部に取り付け可能に形 成されて!/ゝることを特徴とする膨張弁。
[2] 共鳴調整器が、前記開口に連通する態様で弁本体の外部に取り付けられているこ とを特徴とする請求項 1に記載の膨張弁。
[3] 複数の前記開口が設けられており、これらの開口に連通するように複数の共鳴調整 器が弁本体の外部に取り付けられていることを特徴とする請求項 1に記載の膨張弁。
[4] 前記共鳴調整器は、管状を有する容器により構成されて!ヽる特徴とする請求項 1か ら請求項 3の何れか一項に記載の膨張弁。
[5] 前記共鳴調整器は、密閉された空間と、該空間に連通する連通路とを備えているこ とを特徴とする請求項 1から請求項 3の何れか一項に記載の膨張弁。
[6] 前記共鳴調整器の内部には、音波を反射しにくい部材が取り付けられていることを 特徴とする請求項 1から請求項 5の何れか一項に記載の膨張弁。
[7] 前記音波を反射しにくい部材は多孔質体力 なることを特徴とする請求項 6に記載 の膨張弁。
[8] 請求項 1から請求項 7の何れか一項に記載の膨張弁を用いたことを特徴とする空気 調和機。
PCT/JP2007/057806 2006-04-07 2007-04-09 膨張弁及び空気調和機 WO2007116991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/224,889 US20090019871A1 (en) 2006-04-07 2007-04-09 Expansion Valve and Air Conditioner
AU2007236648A AU2007236648B2 (en) 2006-04-07 2007-04-09 Expansion valve and air conditioner
EP07741242A EP2006617A4 (en) 2006-04-07 2007-04-09 EXPANSION VALVE AND AIR CONDITIONING
CN2007800119165A CN101416006B (zh) 2006-04-07 2007-04-09 膨胀阀和空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-106975 2006-04-07
JP2006106975A JP4079177B2 (ja) 2006-04-07 2006-04-07 膨張弁及びこれを用いた空気調和機

Publications (1)

Publication Number Publication Date
WO2007116991A1 true WO2007116991A1 (ja) 2007-10-18

Family

ID=38581264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057806 WO2007116991A1 (ja) 2006-04-07 2007-04-09 膨張弁及び空気調和機

Country Status (7)

Country Link
US (1) US20090019871A1 (ja)
EP (1) EP2006617A4 (ja)
JP (1) JP4079177B2 (ja)
KR (1) KR20080096838A (ja)
CN (1) CN101416006B (ja)
AU (1) AU2007236648B2 (ja)
WO (1) WO2007116991A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471294A (zh) * 2013-09-06 2013-12-25 青岛海信日立空调系统有限公司 基于多联式空调系统降噪的分流装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925782B2 (ja) * 2006-10-13 2012-05-09 株式会社不二工機 流量制御弁
JP5045536B2 (ja) * 2008-04-28 2012-10-10 コベルコ建機株式会社 油圧建設機械の圧力脈動吸収装置
EP2722616B1 (en) * 2011-06-14 2020-04-22 Mitsubishi Electric Corporation Air conditioner
DE102011085017A1 (de) * 2011-10-21 2013-04-25 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Geräuschdämpfung
JP6302717B2 (ja) * 2014-03-27 2018-03-28 株式会社不二工機 電動弁
CN104033993B (zh) * 2014-06-20 2017-01-18 四川长虹电器股份有限公司 一种信息处理方法及空调
US10401065B2 (en) 2014-10-08 2019-09-03 Mitsubishi Electric Corporation Expansion valve, and refrigeration cycle system using expansion valve
JP6478958B2 (ja) * 2016-09-02 2019-03-06 株式会社不二工機 制御弁
CN107166822A (zh) * 2017-07-06 2017-09-15 中国计量大学 空调电子膨胀阀噪音的调节方法
CN111247379B (zh) 2017-10-25 2022-03-08 三菱电机株式会社 制冷循环装置用单元、制冷循环装置及电气设备
JP6633121B2 (ja) * 2018-04-12 2020-01-22 三菱電機株式会社 膨張弁、および、膨張弁を用いる冷凍サイクル装置
CN113601116B (zh) * 2021-08-11 2022-04-19 上海盈达空调设备股份有限公司 一种用于圆形风阀阀体的生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068368U (ja) * 1983-10-17 1985-05-15 カルソニックカンセイ株式会社 膨張弁
JPH08135842A (ja) 1994-11-15 1996-05-31 Toshiba Corp 弁装置
JPH10160290A (ja) 1996-11-28 1998-06-19 Matsushita Seiko Co Ltd 電動膨張弁
JPH11325658A (ja) 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd 膨張弁
JP2004293797A (ja) * 2003-02-06 2004-10-21 Saginomiya Seisakusho Inc 絞り弁装置および空気調和機
JP2005331154A (ja) * 2004-05-19 2005-12-02 Saginomiya Seisakusho Inc 絞り弁装置および空気調和機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319938A (en) * 1992-05-11 1994-06-14 Macrosonix Corp. Acoustic resonator having mode-alignment-canceled harmonics
US5341654A (en) * 1993-04-16 1994-08-30 Copeland Corporation Suction gas conduit
JPH11325655A (ja) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd 消音器および空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068368U (ja) * 1983-10-17 1985-05-15 カルソニックカンセイ株式会社 膨張弁
JPH08135842A (ja) 1994-11-15 1996-05-31 Toshiba Corp 弁装置
JPH10160290A (ja) 1996-11-28 1998-06-19 Matsushita Seiko Co Ltd 電動膨張弁
JPH11325658A (ja) 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd 膨張弁
JP2004293797A (ja) * 2003-02-06 2004-10-21 Saginomiya Seisakusho Inc 絞り弁装置および空気調和機
JP2005331154A (ja) * 2004-05-19 2005-12-02 Saginomiya Seisakusho Inc 絞り弁装置および空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006617A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471294A (zh) * 2013-09-06 2013-12-25 青岛海信日立空调系统有限公司 基于多联式空调系统降噪的分流装置
CN103471294B (zh) * 2013-09-06 2015-12-02 青岛海信日立空调系统有限公司 基于多联式空调系统降噪的分流装置

Also Published As

Publication number Publication date
US20090019871A1 (en) 2009-01-22
JP2007278625A (ja) 2007-10-25
EP2006617A4 (en) 2010-02-17
CN101416006B (zh) 2010-12-08
EP2006617A9 (en) 2009-07-29
AU2007236648A1 (en) 2007-10-18
EP2006617A2 (en) 2008-12-24
AU2007236648B2 (en) 2010-05-13
JP4079177B2 (ja) 2008-04-23
CN101416006A (zh) 2009-04-22
KR20080096838A (ko) 2008-11-03

Similar Documents

Publication Publication Date Title
WO2007116991A1 (ja) 膨張弁及び空気調和機
CN106352139B (zh) 电动阀以及冷冻循环系统
US6148631A (en) Silencer and air conditioner
JP2008039276A (ja) 冷媒流路切換ユニット及びそれを用いた空気調和機
JP6311830B2 (ja) マフラ機能を有する圧縮機
JP6460073B2 (ja) 空気調和装置
JPH08135842A (ja) 弁装置
EP2048457B1 (en) Refrigeration device
CN210861845U (zh) 空调器的降噪装置和具有其的空调器
US11739956B2 (en) Air conditioning apparatus
JP6587017B2 (ja) 空調機
JP2009180419A (ja) 膨張弁
CN105864478B (zh) 膨胀阀及其配管安装构造
CN101776176A (zh) 热力膨胀阀
JP2011133157A (ja) 膨張弁
JP6325681B2 (ja) 膨張弁、および、膨張弁を用いる冷凍サイクル装置
JP6633121B2 (ja) 膨張弁、および、膨張弁を用いる冷凍サイクル装置
JP2003130501A (ja) 膨張弁
JP2020106131A (ja) 脈動減衰装置およびこれを備えた空気調和装置
JPH10266899A (ja) 圧力変動吸収装置および流体消費機器
JP6799974B2 (ja) 冷凍サイクル装置
WO2019207717A1 (ja) 空気調和機
CN115143554A (zh) 空气调节装置
JP2005076894A (ja) 蓄冷型冷凍機
CN118310205A (zh) 热管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12224889

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007236648

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020087022885

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007741242

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780011916.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007236648

Country of ref document: AU

Date of ref document: 20070409

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE