WO2007116437A1 - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
WO2007116437A1
WO2007116437A1 PCT/JP2006/306635 JP2006306635W WO2007116437A1 WO 2007116437 A1 WO2007116437 A1 WO 2007116437A1 JP 2006306635 W JP2006306635 W JP 2006306635W WO 2007116437 A1 WO2007116437 A1 WO 2007116437A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
electrodes
address
gas discharge
unit
Prior art date
Application number
PCT/JP2006/306635
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Awamoto
Manabu Ishimoto
Hitoshi Hirakawa
Koji Shinohe
Original Assignee
Shinoda Plasma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinoda Plasma Co., Ltd. filed Critical Shinoda Plasma Co., Ltd.
Priority to JP2008509589A priority Critical patent/JPWO2007116437A1/en
Priority to PCT/JP2006/306635 priority patent/WO2007116437A1/en
Publication of WO2007116437A1 publication Critical patent/WO2007116437A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • G09G3/2932Addressed by writing selected cells that are in an OFF state
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared

Definitions

  • the present invention relates to a large display device having a plurality of partial forces, and more particularly to application of a voltage to a signal electrode in accordance with the position of a display electrode of a plasma 'tube' array in the display device.
  • Plasma display panels emit light by exciting phosphors with ultraviolet light of 147nm, which generates plasma discharge in a closed discharge space of a large number of vertical and horizontal small cells, and discharges plasma power. Let The cell space is formed between two stacked glass sheets.
  • PTA plasma tube array
  • Patent Document 1 a phosphor layer is formed in an elongated glass glass tube. A large number of cell spaces are formed in the tube. By arranging a large number of such plasma tubes, a large display screen of, for example, 6 m x 3 m can be formed.
  • the wall voltage due to the address voltage in the cells of the first scan line is often not sufficient, so the cells in the first line may not emit completely during the sustain voltage display period. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-92085
  • Patent Document 2 Japanese Patent Laid-Open No. 10-171377 (Patent Document 2) (corresponding to Japanese Patent No. 3624596) describes an image display device.
  • the driving substrate is connected to the display panel via a plurality of wiring substrates, and among the three wiring substrates adjacent to each other, the outermost electrode on the adjacent side of one wiring substrate is positioned outside. A dummy electrode connected to the outermost electrode on the adjacent side of the other wiring board is provided.
  • the coupling capacitance between adjacent electrodes can be made uniform.
  • Patent Document 3 describes a method of driving a plasma 'display' panel.
  • the discharge space is within the effective display area.
  • a cell to be displayed is selected by applying a voltage of opposite polarity to the two electrodes facing each other across the electrode, it is constant during the address period in which the cell is selected for the dummy electrode arranged outside the effective display area. Supply voltage.
  • Patent Document 4 describes a plasma display device.
  • the plasma display device includes a first substrate on which a plurality of first electrodes and second electrodes forming a pair are arranged, and a plurality of third electrodes substantially orthogonal to the first electrode and the second electrode. And a second substrate disposed opposite to each other with the discharge space interposed therebetween.
  • a panel is configured by providing at least one dummy electrode outside the display area on the first substrate so as to be parallel to the first electrode or the second electrode and substantially perpendicular to the third electrode.
  • the address pulse is applied to the dummy electrode prior to the address discharge in the first line, and the dummy electrode and the third electrode are applied. Discharge occurs between electrodes. As a result, the display quality of the plasma display device is improved.
  • Patent Document 2 Japanese Patent Laid-Open No. 10-171377
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-29705
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-37884
  • a large plasma tube array display with a height of 2 m can be stretched by two plasma 'tube' arrays each having a height of 1 m.
  • the wall voltage is not sufficiently formed by the address discharge, so that the sustain discharge may not occur.
  • the first address discharge in one plasma tube array occurs in a cell in a line near the joint between the tube ends of the two plasma tube arrays, many sustain discharge failures or errors occur in that line. This is a nuisance for those who view the display device.
  • the address voltage generation circuit is configured to increase only the address discharge voltage of the first cell in the plasma tube, The cost of the dressing voltage generation circuit increases.
  • the inventors reduced the number of display electrode pairs in one plasma tube array of two plasma tube arrays to be less than the number of display electrode pairs in the other plasma tube array, and one of them.
  • By increasing the duration of the first address voltage applied to the signal electrode of the cell in the first line adjacent to the other plasma 'tube' array in the other plasma 'tube' array We realized that sustain discharge failures could be greatly reduced.
  • An object of the present invention is to prevent display defects that may occur near the joint between two plasma 'tube' arrays.
  • Another object of the present invention is to prevent display discharge failures that can occur near the joint of two plasma 'tube' arrays.
  • a display device includes a plurality of m gas discharge tubes each having a phosphor layer formed therein, a discharge gas sealed therein, and a plurality of light emitting points in the longitudinal direction.
  • the first plurality of ne pair display electrodes are arranged on the display surface side of the plurality of m gas discharge tubes, and the plurality of m signal electrodes are arranged on the back side of the plurality of m gas discharge tubes.
  • a plurality of m gas discharge tubes each having a plurality of light emitting points in the longitudinal direction are arranged side by side, and a phosphor layer is formed and a discharge gas is enclosed therein.
  • a second multi-nc pair of display electrodes is arranged on the display surface side of one gas discharge tube, and a plurality of m signal electrodes are arranged on the back side of the plurality of m gas discharge tubes.
  • a first display electrode driving circuit that sequentially applies a scanning voltage to one of the display electrodes and applies a sustain voltage pulse to the first plurality of ne display electrodes in the second period;
  • a first address voltage circuit for applying an address voltage pulse to the plurality of m signal electrodes in accordance with the scan voltage sequentially applied to the one display electrode of the first unit in a period of one; the first unit;
  • a scanning voltage is sequentially applied to one display electrode of each display electrode pair of the second plurality of nc pairs of the second unit in the second unit, and the second plurality of display electrodes in the second period.
  • the number of the second multiple nc is less than the number of the first multiple ne.
  • the longitudinal ends of the plurality of m gas discharge tubes of the first unit and the longitudinal ends of the plurality of m gas discharge tubes of the second unit are adjacent to each other along the joint. Are arranged.
  • the second address voltage circuit is configured such that, during the first period, when a first scanning voltage is applied to a certain display electrode of the display electrode pairs of the second plurality of nc pairs, The first set of address voltage pulses having a duration longer than the duration of the other address voltage pulses is applied to the m signal electrodes of the second unit.
  • FIG. 1 illustrates a schematic partial structure of a normal plasma 'tube' array unit (hereinafter referred to as a PTA unit) 10 plasma 'tube or gas discharge tubes 11R, 11G and 1 IB arrays is doing.
  • the PTA unit 10 is composed of an array of transparent elongated color 'plasma' tubes 11R, 11G and 11B arranged in parallel with each other, a transparent front support sheet or a front support substrate 31 with a thin substrate force, It includes a transparent or non-transparent back support sheet or thin substrate force back support substrate 32, a plurality of display electrode pairs or main electrode pairs 2, and a plurality of signal electrodes or address electrodes 3.
  • a PTA unit 10 is composed of an array of transparent elongated color 'plasma' tubes 11R, 11G and 11B arranged in parallel with each other, a transparent front support sheet or a front support substrate 31 with a thin substrate force, It includes a transparent or non-transparent back support sheet or thin substrate force back support substrate 32, a
  • the support substrates 31 and 32 are made of, for example, a flexible PET film or glass.
  • Elongated plasma 'tubes 11R, 11G and 11B tubules 20 are made of a transparent insulator, such as borosilicate glass, Pyrex®, soda glass, quartz glass or zerodur, typically The tube diameter is 2 mm or less.
  • the tube has a cross-sectional width of about 1 mm and a height of about 0.55 mm, a length of 300 mm or more, and a tube wall thickness of about 0.1 mm.
  • Plasma 'tubes 11R, 11G, and 1 IB have support members formed with phosphor layers 4 of red, green, and blue (R, G, B) inserted and arranged on the back side of the inside, respectively. Gas is introduced and both ends are sealed. On the inner surfaces of the plasma tubes 11R, 11G, and 11B, an electron emission film 5 having MgO force is formed.
  • the phosphor layers R, G, B typically have a thickness in the range of about 10 m to about 30 ⁇ m.
  • the support member is made of an insulating material such as borosilicate glass, Neurex (registered trademark), quartz glass, soda glass, lead glass, and the like on the plasma 'tubes 11R, 11G, and 11B.
  • the phosphor layer 4 is formed on the substrate.
  • the support member is an outer portion of the glass tube. After the phosphor paste is applied on the support member and baked to form the phosphor layer 4 on the support member, the support member is inserted into the glass tube. Can be arranged. Various phosphor pastes known in the art can be used as the phosphor paste.
  • the electron emission film 5 generates charged particles by collision with the discharge gas.
  • FIG. 2A shows a front support substrate 31 on which a plurality of transparent display electrode pairs 2 are formed.
  • FIG. 2B shows a back side support substrate 32 on which a plurality of signal electrodes 3 are formed.
  • the signal electrode 3 is formed on the front surface, that is, the inner surface of the back-side support substrate 32, and is provided along the longitudinal direction of the plasma tubes 11R, 11G, and 1IB.
  • the pitch between the adjacent signal electrodes 3 is the same as the width of each of the plasma tubes 11R, 11G, and 1IB, for example, lmm.
  • the plurality of display electrode pairs 2 are formed on the back surface, that is, the inner surface of the front-side support substrate 31 in a well-known form, and are arranged in a direction perpendicular to the signal electrode 3.
  • the width of the display electrode 2 is, for example, 0.75 mm, and between the edges of each pair of display electrodes 2 The distance is for example 0.4 mm.
  • a distance or non-discharge gap as a non-discharge region is secured, and the distance is, for example, 1.1 mm.
  • the signal electrode 3 and the display electrode pair 2 have a PTA When the unit 10 is assembled, it is brought into close contact with the lower outer peripheral surface portion and the upper outer peripheral surface portion of the plasma tubes 11R, 11G and 1IB. In order to improve the adhesion, an adhesive may be interposed between each electrode and the plasma tube surface to bond them.
  • the intersection of the signal electrode 3 and the display electrode pair 2 becomes a unit light emitting region.
  • one of the display electrode pairs 2 is used as a scanning electrode, a selective discharge is generated at the intersection of the scanning electrode and the signal electrode 3, and a light emitting region is selected.
  • a display discharge is generated at the display electrode pair 2 and the phosphor layer is caused to emit light.
  • the selective discharge is a counter discharge generated in the plasma tubes 11R, 11G, and 1IB between the scanning Y electrode and the signal electrode 3 opposed in the vertical direction.
  • the display discharge is a surface discharge generated in the plasma tubes 11R, 11G, and 11B between a pair of display electrodes arranged in parallel on a plane.
  • the display electrode pair 2 and the signal electrode 3 can generate a discharge in the discharge gas inside the tube by applying a voltage.
  • the electrode structure of plasma 'tubes 11R, 11G and 11B is a structure in which three electrodes are arranged in one light emitting part, and the display discharge is generated by a pair of display electrodes.
  • a structure in which display discharge is generated between the display electrode 2 and the signal electrode 3 is not limited thereto. That is, the display electrode pair 2 may be one, and the display electrode 2 may be used as a scanning electrode to generate a selective discharge and a display discharge (opposite discharge) between the display electrode 2 and the signal electrode 3. ⁇ .
  • FIG. 3 shows a cross-sectional structure perpendicular to the longitudinal direction of the tubes of the plasma “tube” array 11 of the PTA unit 10.
  • the plasma tubes 11R, 11G, and 1IB have phosphor layers 4R, 4G, and 4B formed on the inner surfaces of the back support members 6R, 6G, and 6B, and have a cross-sectional width of 1. It consists of thin tubes with Omm, cross-sectional height of 0.55 mm, tube wall thickness of 0.1 mm, and length of lm to 3 m.
  • the red phosphor 4R Green phosphor 4G containing Zutria ((Y. Ga) BO: Eu) material is zinc silicate (Z
  • n Phosphorus 4M is a BAM-based (BaMgAl 2 O 3: Eu) material.
  • signal electrodes 3R, 3G, and 3B are arranged on the bottom surfaces of the plasma tubes 11R, 11G, and 11B, and a back-side support substrate 32 is bonded via an adhesive layer.
  • the signal electrode pair 2 is disposed on the upper surfaces of the plasma tubes 11R, 11G, and 11B, and the front-side support substrate 31 is adhered via the adhesive layer!
  • FIG. 4 shows a conventional plasma tube array type display device 100 comprising a PTA unit 10, an address (A) electrode driver device 400, an X electrode driver device 500 and a Y electrode driver device 600.
  • the X electrodes in the n pairs of display electrodes 2 (XI, Yl), ..., (Xj, Yj), ... (Xn, Yn) are the X electrodes of the X electrode driver device 500.
  • SST sustain voltage pulse circuit
  • SCN scan pulse circuit
  • the X electrode driver device 500 further includes a reset circuit 51.
  • the Y electrode driver device 600 further includes a sustain voltage pulse circuit 60 and a reset circuit 61.
  • a driver control circuit (CTRL) 42 is connected to the A electrode driver device 400, the X electrode driver device 500, and the Y electrode driver device 600.
  • One picture is typically composed of one frame period.
  • one frame is composed of two fields, and in progressive scanning, one frame is composed of one field. .
  • 30 frames per second are required for video display using the normal television system. Therefore, in this type of display device 100, in order to perform color reproduction with gradation by binary light emission control, typically such one field F is replaced with a set of q subfields SF. .
  • the number of display discharges in each subfield SF is set by giving different weights such as 2 °, 2 1 , 2 2 , ...
  • the field period Tf which is a field transfer period is divided into q subfield periods Tsf, and one subfield period Tsf is assigned to each subfield SF. Further, the subfield period Tsf is divided into a reset period TR for initialization, an address period TA for addressing, and a display period TS for light emission by sustain discharge.
  • the length of the reset period TR and the address period TA is constant regardless of the weight, whereas the number of pulses in the display period TS is larger and the length of the display period TS is The greater the weight, the longer.
  • the length of the subfield period Tsf is longer as the weight of the corresponding subfield SF is larger.
  • FIG. 5 illustrates a schematic drive sequence of output drive voltage waveforms of the A electrode driver device 400, the X electrode driver device 500, and the Y electrode driver device 600 in the normal display device 100.
  • the illustrated waveform is an example, and the amplitude, polarity, and timing can be changed in various ways.
  • the order of the reset period TR, the address period TA, and the sustain period TS is the same in the q subfields SF, and the drive sequence is repeated for each subfield SF.
  • a negative polarity pulse Prxl and a positive polarity pulse Prx2 are sequentially applied to all the display electrodes X, and a positive polarity pulse Pry is applied to all the display electrodes Y. 1 and negative polarity pulse Pry2 are applied in order.
  • Pulses Prxl, P ryl and Pry2 are ramp waveforms or blunt pulses whose amplitude gradually increases with the rate of change at which a microdischarge occurs.
  • the first applied pulses Prxl and Pryl are applied once to generate moderate wall charges of the same polarity in all discharge cells regardless of light emission Z non-light emission in the previous subfield SF. Subsequently, by applying pulses Prx2 and Pry2 to the discharge cells where moderate wall charges are present, the wall charges are adjusted so as to be reduced to a level where they are not redischarged by the sustain pulses (erased state).
  • the drive voltage applied to the cell is a composite voltage representing the difference in the amplitude of the pulses applied to the display electrodes X and Y.
  • the wall charge necessary for maintaining the discharge is formed only in the discharge cells that emit light.
  • All the display electrodes Xl to Xn and all the display electrodes Yl to Yn are biased to a predetermined potential and correspond to the selected row for each row selection period (one row scan time).
  • the address pulse Va is applied only to the address electrode Ai corresponding to the selected cell that is to generate the address discharge. That is, the potentials of the address electrodes A to A are binary-controlled for each scanning line based on the subfield data Dsf for m columns of the selected row j. This allows the selected cell to
  • An address discharge is generated in the discharge tube between the display electrode Yj and the address electrode Ai.
  • the display data written by the address discharge is stored in the form of wall charges on the cell inner wall of the discharge tube, and the surface discharge between the display electrodes X and Y is generated by the subsequent application of the sustain pulse.
  • a sustain pulse Ps having a polarity (positive polarity in the example shown in the figure) that is first added to the wall charge generated in the previous address discharge to generate a sustain discharge is applied. Thereafter, the sustain pulse Ps is alternately applied to the display electrode X and the display electrode Y.
  • the amplitude of the sustain pulse Ps is the sustain voltage Vs.
  • the sustain pulse Ps By applying the sustain pulse Ps, a surface discharge is generated in the discharge cell in which a predetermined wall charge remains.
  • the number of times that the sustain pulse Ps is applied corresponds to the weight of the subfield SF as described above.
  • the address electrode A In order to prevent unnecessary counter discharge throughout the sustain period TS, the address electrode A is biased to a voltage Vas having the same polarity as the sustain pulse Ps.
  • FIGS. 6A and 6B show the address voltage Va and the scan voltage Vy applied to the address electrode A and the scan electrode Y of the cells in one line
  • FIG. 6C shows the address discharge generated in response thereto. It shows the change in light emission due to FIG. 6D shows the arrangement of A electrode, X electrode and Y electrode in each cell.
  • the pulse width Twa of the address voltage must be sufficiently longer than the delay Td. If the pulse width Twa is not sufficient, an address discharge failure or error will occur, the required sustain discharge will not occur in the subsequent sustain period TS, and the display image will flicker and become unsightly.
  • Figure 7A shows a plasma tube array with one line spacing for one or more lines of 1 line, 2 lines, 4 lines and 8 lines for different scan voltages Vy.
  • the address discharge delay Td when address discharge is generated between the corresponding Y electrode Yj and A electrodes Al to Am is shown.
  • FIG. 7B shows the address discharge delay Td when address discharge is generated between the Y electrode Yj and the A electrodes Al to Am for different address voltages Va.
  • the address discharge delay Td is the shortest address discharge line interval between 2 lines, 4 lines, As the value increases, the address discharge delay Td increases.
  • the priming effect of the address discharge about 4 lines before remains somewhat strong, but the effect disappears in the line farther away.
  • Some display cells are closer, due to the presence of priming particles or space charges due to the address discharge of the adjacent display cell before the position, thereby reducing the display cell address discharge delay Td and the required scanning.
  • the voltage Vy becomes lower, and therefore address discharge is more likely. Accordingly, in the plasma tube, the address discharge is most likely to fail in the cell at the end of the tube at the head position of the scan when there is no previous address discharge in the adjacent adjacent display cell.
  • FIG. 8 shows a typical display device 102 having two plasma 'tube' arrays.
  • Display device 102 includes PTA unit 10 connected to A electrode driver device 400, X electrode driver device 500, and Y electrode driver device 600, A electrode driver device 408, X electrode driver device 508, and Y electrode driver device 608.
  • the PTA units 10 and 18 are arranged so that the lower end of the tube of the PTA unit 10 and the upper end of the tube of the PTA unit 10 are in contact with each other at the joint 183.
  • the A electrode driver device 400 sequentially applies the address voltage Va in the direction from the upper end 181 of the PTA unit 10 to the joint 183 in accordance with the scanning voltage Vy sequentially applied by the Y electrode driver device 600.
  • the A electrode driver device 408 sequentially applies the address voltage Vad in the direction from the joint 183 to the lower end 188 of the PTA unit 18 according to the scanning voltage Vy sequentially applied by the Y electrode driver device 608. According to it, the address The period can be cut in half.
  • the cells on the top line of the upper end 181 of the PTA unit 10 tend to fail in address discharge, so they are covered with a cover and hidden. It is only necessary to prevent the address discharge failure of the cells in the subsequent lines, thereby preventing the display from becoming unsightly.
  • the cell of the top line near the joint 183 of the PTA unit 18 is located in the center of the display screen and cannot be obscured. In the vicinity of the joint 183 of the PTA units 10 and 18, the internal space of both plasma tubes is separated, and the effect of priming particles is interrupted.
  • the cell in the lowermost line of the lower end 188 of the PTA unit 18 is covered with a force bar and hidden, and the PTA unit 18 is sequentially applied in the reverse direction by the Y electrode driver device 608 according to the scanning voltage Vy.
  • the address voltage Va may be sequentially applied in the direction from the lower end 188 of 18 to the joint 183.
  • the central PTA unit cannot cover any end of the tube.
  • the leading line at the end of the tube has less priming charge from the previous line, so the probability of successful address discharge is low, for example about 50%.
  • the address discharge of a cell in a lie gives a sufficient priming effect to the address discharge of a cell in an adjacent line.
  • the priming effect on the address discharge in the address period TA is small.
  • the address voltage is increased, the address voltage pulse width is increased, the address electrode area is increased, and the gap between the address electrode and the scan electrode is decreased.
  • it entails an increase in the power supply voltage, an increase in the withstand voltage of the circuit and an increase in power consumption, an increase in the address period, a decrease in light emission efficiency, and an increase in cost.
  • the priming charge is generated without address discharge of the previous line.
  • the address discharge delay time Td is 1.5 s and 1.0 s, respectively, when there is priming charge due to the address discharge of the previous line, and there is a difference of about 1.5 times. . Therefore, address discharge failure can be prevented by increasing the address voltage pulse width when there is no priming charge by a factor of 1.5, for example.
  • FIG. 9 shows a schematic configuration of a display device 104 having three PTA units 10, 12, and 18 arranged vertically adjacent to each other according to an embodiment of the present invention.
  • the PTA unit 10 includes m plasma 'tubes 111, m signal electrodes Al to Am arranged on the rear support substrate 320, and ne pair display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2),... (Xne, Yne), where ne is a positive integer.
  • the A driver device 400 applies address voltage pulses to the signal electrodes Al to Am of the PTA unit 10.
  • the Y driver device 600 applies scanning voltage pulses to the display electrodes Yl, ⁇ 2,... Yne of the PTA unit 10 in ascending order.
  • the X driver device 500 of FIG. 8 similar to FIG. 4 is used for the PTA unit 10.
  • the PTA unit 12 includes m plasma 'tubes 112, m signal electrodes Al to Am arranged on the rear support substrate 322, and nc pairs of display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2),... (Xnc, Ync), where nc is a positive integer less than ne.
  • the difference between ne and nc (ne ⁇ nc) is preferably 1 to 4.
  • the A driver device 402 applies address voltage pulses to the signal electrodes Al to Am of the PTA unit 12.
  • the Y driver device 602 displays the scanning voltage pulses in ascending order on the display electrodes Yl, Y2,... Ync of the PTA unit 12 as shown in FIG.
  • the same X driver device as in Fig. 4 (502 in Fig. 10) is used.
  • the plasma 'tube 112 may be shorter than the plasma tube 111 to accommodate the difference ne-nc pair electrode.
  • the PTA unit 18 includes m signal electrodes Al to Am arranged on the rear support substrate 328, and ne pairs of display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2) arranged on the front support substrate 318, (Xne, Yne).
  • the A driver device 408 applies address voltage pulses to the signal electrodes Al to Am of the PTA unit 18.
  • the Y driver device 608 applies scanning voltage pulses to the display electrodes Yl, ⁇ 2,... Yne of the PTA unit 18 in descending order.
  • the PTA unit 18 uses the X driver device 508 shown in FIG.
  • the signal electrodes Al to Am of each set of the PTA units 10, 12 and 18 are electrically separated from each other. In the address period, the A driver device 400 and the Y driver device 600, the A driver device 402 and the Y driver device 602, and the A driver device 408 and the Y driver device 608 operate simultaneously in parallel.
  • FIG. 10 shows a configuration of the A driver device 402, the X driver device 402, and the Y driver device 502 used for the PTA unit 12 of the display device 104 of FIG.
  • a signal processing circuit 51 receives field data Df indicating the emission intensities of the three primary colors R, G, and B together with a synchronization signal from an external device such as a TV tuner or a computer.
  • the signal processing circuit 51 converts the field data Df into subfield data Dsf for gradation display, and supplies the subfield data Dsf to the driver control circuit 52.
  • the subfield data Dsf is a set of 1-bit display data per cell, and the value of each bit indicates whether or not each cell needs to emit light in the corresponding subfield SF.
  • the driver control circuit 52 supplies the subfield data Dsf and the control signal CTRL—A to the A driver device 402.
  • the driver control circuit 52 further supplies the scan data and the shift clock pulse cp to the scan circuit 70 of the Y driver device 602, and the control signal
  • CTRL — Y is supplied to the control circuit of Y driver device 602.
  • the driver control circuit 52 further supplies a control signal CTRL_X to the X driver device 502.
  • FIGS. 11A to 11D show the shift clock pulse cp from the driver control circuit 52 used in the PTA unit 12 of FIG. 9 in the address period TA and the head of the scan data.
  • Each of the address voltage pulses Val to Vanc represents a set of m voltage pulses of high level (1) and low level (0) applied to the address electrodes Al to Am according to sequential scanning.
  • Fig. 11A ⁇ First address voltage pulse applied to address electrodes Al ⁇ Am at L 1D!
  • the width W1 of the pulse Val is the remaining address voltage pulse Va2 ⁇ applied to the address electrodes Al ⁇ Am.
  • the width of the remaining address voltage pulses Va2 to Vanc which is larger than the normal width Wnc of Vanc, preferably has a predetermined width of 1.5 to 2 times Wnc. Therefore, mark the scan electrode Y1.
  • the width Wl of the first scan voltage pulse Vyl applied is larger than the normal width Wnc of the remaining scan voltage pulses Vy2 to Vync applied to the scan electrodes Y2 to Ync (Wl> Wnc), and the remaining scan voltage pulse Vy2 ⁇ Vync width Wnc preferably has a predetermined width in the range of 1.5 to 2 times.
  • the first address voltage pulse of width W1 can successfully generate an address discharge between the signal electrodes Al to Am of the PTA unit 12 and the first scan electrode Y1.
  • the A driver device 402 generates the address voltage pulses Val to Vane according to the shift clock pulse cp adjusted to have the widths W1 and Wnc as described above.
  • the Y driver device 502 When the Y driver device 502 receives the head scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync, and the scan voltage pulse at the level Vyal according to the shift clock pulse cp.
  • Rus Vyl ⁇ Vync is sequentially applied to the scan electrodes Yl ⁇ Ync.
  • FIGS. 12A to 12D show the shift clock pulse cp from the driver control circuit 52 used in the PTA unit 12 of FIG. 9 in the address period TA and the head of the scan data.
  • FIG. 7 shows an alternative time chart of the address voltage pulses Val to Vanc from the A driver device 402 and the scanning voltage pulses Vyl to Vync from the Y driver device 502.
  • FIG 11A ⁇ The first address voltage pulse applied to the address electrodes Al ⁇ Am at L1D!
  • the width W1 of the pulse Val is the width W2 of the address voltage pulse Va2 applied to the address electrodes Al ⁇ Am.
  • the width of the remaining address voltage pulses Va3 to Vanc which is larger than the normal width Wnc of the remaining address voltage pulses Va3 to Vanc, preferably has a predetermined width of 1.5 to 2 times the width Wnc.
  • the width W2 of the second address voltage pulse Va2 applied to the address electrodes Al to Am is smaller than the width W1 of the address voltage pulse Val applied to the address electrodes Al to Am, and the remaining address voltage pulses Va3 to Vanc.
  • the width W1 of the first scan voltage pulse Vyl applied to the scan electrode Y1 is larger than the width W2 of the second scan voltage pulse Vy2 applied to the scan electrode Y2, and the remaining scan voltage pulses Vy3 to Vync
  • the width W2 of the second scan voltage pulse Vy2 has a predetermined width in the range of 1.5 to 2 times the width Wnc.
  • the width of the remaining scanning voltage pulses Vy3 to Vync which is larger than the normal width Wnc of the remaining scanning voltage pulses Vy3 to Vync applied to the electrodes Y3 to Ync, preferably in the range of 1.25 times to 1.5 times the width Wnc Having a predetermined width.
  • the first two address voltage pulses Val and Va2 of width W1 and W2 can successfully generate an address discharge between the signal electrodes Al to Am of the PTA unit 12 and the first scanning electrodes Y1 and Y2.
  • the A driver device 402 applies the address voltage pulses Val to Vanc according to the shift clock pulse cp adjusted to have the intervals of the widths Wl, W2, and Wnc as described above.
  • the Y driver device 502 receives the head scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync, and scans the Revenor Vval according to the shift clock pulse cp.
  • Voltage pulses Vyl to Vync are sequentially applied to the scan electrodes Yl to Ync.
  • FIG. 13 shows a schematic configuration of a display device 106 having four PTA units 10, 12, 14 and 18 arranged vertically adjacent to each other according to another embodiment of the present invention.
  • the PTA units 10, 12 and 18 have the same configuration as that of FIG.
  • the PTA unit 14 is arranged on the m plasma tubes 114, the m signal electrodes Al to Am arranged on the back side support substrate 324, and the front side support substrate 314. nc pairs of display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2), ... (Xnc, Ync).
  • the A driver device 404 applies an address voltage pulse to the signal electrodes Al to Am of the PTA unit 14.
  • the Y driver device 604 applies scanning voltage pulses to the display electrodes Yl, ⁇ 2,... Ync of the PTA unit 12 in ascending order.
  • the PTA unit 14 uses the X driver device 504 shown in FIG.
  • the A driver device 402, the X driver device 502, and the Y driver device 602 are used for the PTA unit 12, and similarly, the A driver device 404, X A driver device 504 and a Y driver device 604 are used.
  • the time charts of FIGS. 11A-1 ID and FIGS. 12A-12D apply to the A driver device 404 and Y driver device 504 of FIG. 13 as well as the A driver device 402 and the driver device 502. Accordingly, similarly to the PTA unit 12, the address discharge can be successfully generated between the signal electrode Al to Am of the PTA unit 14 and the first scan electrode Y1 or the signal electrode Al to Am and Y1 and Y2. .
  • FIG. 14 is a variation of the embodiment of FIG. 9, and includes three PTA units 10 ′, 12 ′ and 18 ′ arranged vertically adjacent, according to yet another embodiment of the invention.
  • 1 shows a schematic configuration of a display device 108 having the display device 108.
  • PTA units 10 'and 12' share the longer m plasma tubes 111 '
  • PTA units 12' and 18 ' share the longer V, m plasma' tubes 118 '.
  • the PTA unit 10 includes a large upper portion of m plasma' tubes 111 ', address electrodes Al to Am arranged on the back side support substrate 320, and ne arranged on the front side support substrate 310.
  • the PTA unit 18 'includes a large lower part of m plasma' tubes 118 ', address electrodes Al to Am arranged on the back side support substrate 328, and ne arranged on the front side support substrate 318.
  • the PTA unit 12 includes the remaining lower part of the m plasma 'tubes 111, the remaining upper part of the m plasma' tubes 118 ', and the address electrodes Al ⁇ disposed on the rear support substrate 322. Am, and nc pairs of display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2),... (Xnc, Ync) disposed on the front support substrate 312. The display electrodes (Xj, Yj) in the jth row pair correspond to the cells in the uppermost row of m plasma 'tubes 118'.
  • FIGS. 15A to 15D show the shift clock pulse cp from the driver control circuit 52 used in the PTA unit 12 of FIG. 14 in the address period TA and the head in the scan data.
  • the time chart of the address voltage pulses Val to Vanc from the A driver device 402 and the scanning voltage pulses Vyl to Vync from the Y driver device 502 is shown in FIG. 15A to 15D! /,
  • the width W1 of Val and Vaj is the remaining address voltage pulse applied to the address electrodes Al to Am.
  • the remaining large address voltage pulses Va2 to Vaj—1 and Vaj + 1 to Vanc have a predetermined width of preferably 1.5 to 2 times the width Wnc.
  • the width W1 of the first and jth scan voltage pulses Vyl and Vyj applied to the scan electrodes Y1 and Yj is the remaining scan voltage applied to the scan electrodes Y2 to Yj-1 and Yj + l to Ync.
  • remaining scan voltage pulses Vy2 to Vyj-1 and Vyj + l to Vync width Wnc preferably 1 It has a predetermined width in the range of 5 to 2 times.
  • Address voltage pulses Val and Vaj of width W1 can generate an address discharge between the signal electrodes Al to Am of the PTA unit 12 and the first and jth scan electrodes Y1.
  • the A driver device 402 generates the address voltage pulses Val to Vane according to the shift clock pulse cp adjusted to have the widths W1 and Wnc as described above.
  • the Y driver device 502 When the Y driver device 502 receives the head scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync, and the scan voltage pulse at the level Vyal according to the shift clock pulse cp.
  • Rus Vyl ⁇ Vync is sequentially applied to the scan electrodes Yl ⁇ Ync. Therefore, the address discharge between the signal electrodes Al ⁇ Am and the first scan electrodes Y1 and Yj or the signal electrodes A1 ⁇ Am and Y1 and Yj and Y2 and Yj + 1 of the PTA mute 12 'is successfully performed. Can be generated.
  • a driver devices ⁇ , 402 and 408, the X driver devices 500, 502 and 508, and the Y driver devices 600, 602 and 608 are the same as those of the embodiment of FIG.
  • FIGS. 16A to 16D are used for the PTA unit 12 of FIG. 14 in the address period TA, and are shifted from the driver control circuit 52, the clock pulse cp and the head in the scan data.
  • FIGS. 16A to 16D show another time chart of address voltage pulses Val to Vanc from the A driver device 402 and scanning voltage pulses Vyl to Vync from the Y driver device 502.
  • the width W1 of the first and jth address voltage pulses Val applied to the address electrodes Al to Am is the width W2 of the address voltage pulses Va2 and Vaj + 1 applied to the address electrodes Al to Am.
  • the width of Vaj 1 and Vaj + 2 to Vanc preferably has a predetermined width of 1.5 to 2 times Wnc.
  • the width W2 of the second and first address voltage pulses Va2 and Vaj + 1 applied to the address electrodes Al to Am is smaller than the width W1 of the address voltage pulse Val applied to the address electrodes Al to Am.
  • the remaining address voltage pulses Va3 to Vaj—L and Vaj + 2 to Vanc normal width Wnc (Wl>W2> Wnc), remaining address voltage pulses Va3 to Vaj-1 and Vaj + 2 ⁇ Vanc width Wnc preferably has a predetermined width of 1.25 to 1.5 times.
  • the width W1 of the first and jth scan voltage pulses Vyl and Vyj applied to the scan electrodes Y1 and Yj is equal to the second and j + 1st scan voltage pulses Vy2 and Vyj + applied to the scan electrode Y2.
  • the remaining scan voltage pulse larger than the width W2 of 1 Vy3 to Vaj— 1 and Vaj + 2 to Vync width Wnc preferably has a predetermined width in the range of 1.5 times to 2 times, and the second And j + 1st scan voltage pulse Vy2 and Vyj + 1 width W2 is determined by the remaining scan voltage pulses Vy3 to Vaj-1 and Vaj applied to scan electrodes Y3 to Yj—1 and Yj + l to Ync. + 2 to Vync normal width Wnc greater than the remaining scan voltage pulse Vy3 to Vaj— 1 and Vaj + 2 to Vync width Wnc preferably with a predetermined width in the range of 1.25 to 1.5 times Have. Address discharge pulses of width W1 and W2 Val and Va2 and Vaj and Vaj + 1 enable address discharge between PTA unit 12 signal electrodes Al to Am and scan electrodes Yl, Y2, Yj and Yj + 1. Can be generated.
  • the A driver device 402 applies the address voltage pulses Val to Vanc according to the shift clock pulse cp adjusted to have the intervals of the widths Wl, W2, and Wnc as described above.
  • the Y driver device 502 receives the first scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync and scans the Revenor Vyal according to the shift clock pulse cp.
  • Voltage pulses Vyl to Vync are sequentially applied to the scan electrodes Yl to Ync.
  • a driver devices ⁇ , 402 and 408, the X driver devices 500, 502 and 508, and the Y driver devices 600, 602 and 608 are the same as those of the embodiment of FIG.
  • the application sequence of the address voltage pulses Val to Vaj-1 and Vaj to Vanc is Vaj to Vane and Val. ⁇ Vaj—1 and scan voltage pulses Vyl ⁇ Vyj—1 and Vyj ⁇ Vync applied from Vyj ⁇ Vync and Vyl ⁇ Vyj-1 starting from the top of plasma 'tube 118.
  • FIG. 17 is a variation of the embodiment of FIG. 13 and includes four PTA units 10 ′, 12 ′, 14 ′ and 18 arranged vertically adjacent, according to yet another embodiment of the invention.
  • 1 shows a schematic configuration of a display device 110 having '.
  • PTA units 10 'and 12' share a longer m plasma 'tube 111
  • PTA units 12 and 14 share a longer m plasma' tube 113
  • the PTA units 14 'and 18' are longer! They share m plasma tubes 118 '.
  • PTA units 10 and 18 are the same as in FIG.
  • the PTA unit 12 includes m plasma 'tubes 111, the lower part, m plasmas' tube 113 upper part, address electrodes A1 to Am arranged on the rear support substrate 322, and the front surface. Nc pairs of display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2),... (Xnc, Ync) arranged on the side support substrate 312. The display electrodes (Xj, Yj) in the j-th row pair correspond to the cells in the uppermost row of m plasma 'tubes 113.
  • PTA unit 14 includes m plasma 'tube 113 lower part, m plasma' tube 118 'upper part, address electrodes Al to Am arranged on back support substrate 322, front side Nc pairs of display electrodes (XI, Yl), ( ⁇ 2, ⁇ 2),... (Xnc, Ync) disposed on the support substrate 312.
  • the display electrodes (Xj, Yj) in the jth row pair correspond to the cells in the uppermost row of m plasma tubes 118 '.
  • FIGS. 15A to 15D and FIGS. 16A to 16D apply to the A driver device 404 and the Y driver device 504 as well as the A driver device 402 and the driver device 502. Therefore, the address discharge between the signal electrodes Al to Am of the PTA unit 14 'and the first scan electrodes Y1 and Yj or the signal electrodes Al to Am and Y1 and Yj and Y2 and Yj + 1 can be successfully generated. Can do.
  • the number of plasma 'tube' arrays is less than the number of PTA units, but the number of plasma 'tube' arrays may be greater than the number of SPTA units.
  • the pulse width of the kth address voltage pulse may be increased.
  • FIG. 1 illustrates a schematic partial structure of an array of plasma 'tubes or gas discharge tubes of a conventional plasma' tube 'array unit (PTA unit).
  • PTA unit plasma' tube 'array unit
  • FIG. 2A shows a front-side support substrate on which a plurality of transparent display electrode pairs are formed.
  • FIG. 2B shows a backside support substrate on which a plurality of signal electrodes or signal electrodes are formed.
  • FIG. 3 shows the structure of a cross section perpendicular to the longitudinal direction of the tubes of the plasma 'tube' array of the PTA unit.
  • FIG. 4 shows a conventional plasma tube array type display device including a PTA unit, an A electrode driver device, an X electrode driver device, and a Y electrode driver device.
  • FIG. 5 illustrates a schematic drive sequence of output drive voltage waveforms of an A electrode driver device, an X electrode driver device, and a Y electrode driver device in a normal display device.
  • FIGS. 6A and 6B show the address voltage and scan voltage applied to the address electrode A and the scan electrode Y of the cell in one line, and FIG. 6C shows the address discharge generated in response thereto. The change in luminescence is shown.
  • FIG. 6D shows the arrangement of the A, X, and Y electrodes in each cell.
  • Fig. 7A shows an address discharge between the corresponding Y electrode and A electrode in the plasma tube array at intervals of 1 line for each number of lines of 1 or more for different scanning voltages.
  • the address discharge delay in the case of being performed is shown.
  • Figure 7B shows different address voltages In contrast, the address discharge delay when address discharge is generated between the Y electrode and the A electrode is shown.
  • Figure 8 shows a typical display device with two plasma tube arrays! /
  • FIG. 9 shows a schematic configuration of a display device having three PTA units arranged adjacent to each other in the vertical direction according to an embodiment of the present invention.
  • FIG. 10 shows configurations of an A driver device, an X driver device, and a Y driver device used in the PTA unit of the display device of FIG.
  • FIGS. 11A to 11D show the shift clock pulse from the driver control circuit used in the PTA unit of FIG. 9 in the address period and the head part in the scan data, the address voltage pulse from the A driver device. , And show a time chart of the scanning voltage pulse from the Y driver device!
  • FIGS. 12A to 12D show the shift clock pulse from the driver control circuit used in the PTA unit of FIG. 9 during the address period and the head part of the scan data, the address voltage pulse from the A driver device. And an alternative time chart of scan voltage pulses from the Y driver device.
  • FIG. 13 shows a schematic configuration of a display device having four PTA units arranged adjacent to each other in the vertical direction according to another embodiment of the present invention.
  • FIG. 14 is a modification of the embodiment of FIG. 9, and shows a schematic configuration of a display device having three PTA units arranged vertically adjacent to each other according to still another embodiment of the present invention. Show.
  • FIGS. 15A to 15D show a shift clock pulse from the driver control circuit used in the PTA unit of FIG. 14 in the address period and the head part in the scan data, an address voltage pulse from the A driver device. , And show a time chart of the scanning voltage pulse from the Y driver device!
  • FIGS. 16A to 16D show the shift clock pulse from the driver control circuit used in the PTA unit of FIG. 14 in the address period and the head part in the scan data, the address voltage pulse from the A driver device. , And scan voltage pulse from Y driver device Show another time chart.
  • FIG. 17 is a modification of the embodiment of FIG. 13, and shows a schematic configuration of a display device having four PTA units arranged adjacent to each other in the vertical direction according to still another embodiment of the present invention. Show.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

A display apparatus (104) has a first unit (10) and a second unit (12). The first unit (10) has m gas discharge lamps (111), ne pairs of display electrodes (X1-Xne, Y1-Yne), and m signal electrodes (A1-Am). The second unit (12) has m gas discharge lamps (112), nc pairs of display electrodes (X1-Xnc, Y1-Ync), and m signal electrodes (A1-Am). When a first scan voltage is applied to a particular display electrode (Y1) of the nc pairs of display electrodes during a first interval, a second address voltage circuit (402) applies, to the m signal electrodes of the second unit (12), a first set of address voltage pulses having a longer duration than the other address voltage pulses.

Description

明 細 書  Specification
表示装置  Display device
技術分野  Technical field
[0001] 本発明は、複数の部分力 なる大型の表示装置に関し、特に、表示装置における プラズマ 'チューブ'アレイの表示電極の位置に応じた信号電極に対する電圧の印 加に関する。  TECHNICAL FIELD [0001] The present invention relates to a large display device having a plurality of partial forces, and more particularly to application of a voltage to a signal electrode in accordance with the position of a display electrode of a plasma 'tube' array in the display device.
背景技術  Background art
[0002] プラズマ .ディスプレイ .パネル (PDP)は、縦横の多数の小セルの閉じた放電空間 内でプラズマ放電を生じさせ、放電プラズマ力も放出される 147nmの紫外光で蛍光 体を励起して発光させる。そのセル空間は、重ね合わせた 2枚の平板のガラスの間に 形成される。一方、例えば特開 2003— 92085号公報 (A) (特許文献 1)に記載され て ヽるようなプラズマ ·チューブ ·アレイ (PTA)では、細長 ヽガラス ·チューブ内に蛍 光体層を形成し、そのチューブ内に多数のセル空間を形成する。そのようなプラズマ •チューブを多数並置することによって、例えば 6m X 3mの大型の表示画面を形成 することができる。通常のプラズマ 'チューブ 'アレイでは、最初の走査ラインのセルに おけるアドレス電圧による壁電圧の形成がしばしば充分でないので、最初のラインの セルがサスティン電圧による表示期間に完全には発光しないことがある。  [0002] Plasma display panels (PDPs) emit light by exciting phosphors with ultraviolet light of 147nm, which generates plasma discharge in a closed discharge space of a large number of vertical and horizontal small cells, and discharges plasma power. Let The cell space is formed between two stacked glass sheets. On the other hand, in the plasma tube array (PTA) described in, for example, Japanese Patent Laid-Open No. 2003-92085 (A) (Patent Document 1), a phosphor layer is formed in an elongated glass glass tube. A large number of cell spaces are formed in the tube. By arranging a large number of such plasma tubes, a large display screen of, for example, 6 m x 3 m can be formed. In a normal plasma 'tube' array, the wall voltage due to the address voltage in the cells of the first scan line is often not sufficient, so the cells in the first line may not emit completely during the sustain voltage display period. .
特許文献 1:特開 2003 - 92085号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-92085
[0003] 特開平 10— 171377号公報 (特許文献 2) (特許第 3624596号に対応)には、画 像表示装置が記載されている。その画像表示装置は、駆動基板が複数の配線基板 を介して表示パネルに接続されており、互いに隣接する 3つの配線基板のうち、一方 の配線基板の隣接側の最外部電極の外側位置に、他方の配線基板の隣接側の最 外部電極と接続されるダミー電極が設けられている。それによつて、複数枚の配線基 板により駆動基板を表示パネルと接続した場合にも、隣接電極間の結合容量を均一 ィ匕することがでさる。  Japanese Patent Laid-Open No. 10-171377 (Patent Document 2) (corresponding to Japanese Patent No. 3624596) describes an image display device. In the image display device, the driving substrate is connected to the display panel via a plurality of wiring substrates, and among the three wiring substrates adjacent to each other, the outermost electrode on the adjacent side of one wiring substrate is positioned outside. A dummy electrode connected to the outermost electrode on the adjacent side of the other wiring board is provided. As a result, even when the drive substrate is connected to the display panel using a plurality of wiring boards, the coupling capacitance between adjacent electrodes can be made uniform.
特開 2003— 29705号公報(特許文献 3)には、プラズマ 'ディスプレイ 'パネルの駆 動方法が記載されている。その駆動方法において、有効表示領域の内で放電空間 を挟んで対向する 2電極に反対の極性の電圧を印加して表示すべきセルを選択する 際に、有効表示領域の外側に配置されたダミー電極にセルを選択するアドレス期間 の間に一定の電圧を供給する。それによつて、プラズマ 'ディスプレイ 'パネルにおけ る有効表示領域の上側の縁部と下側の縁部で発生する異常放電が防止される。 特開 2004— 37884号公報 (特許文献 4)には、プラズマ 'ディスプレイ装置が記載 されている。そのプラズマ 'ディスプレイ装置は、対をなす複数の第 1電極および第 2 電極を配置した第 1基板と、第 1電極および第 2電極とほぼ直交する複数の第 3電極 が設けられかつ第 1基板と放電空間を挟んで対向配置される第 2基板とを有する。第 1基板上の表示領域外に第 1電極または第 2電極と平行でかつ第 3電極とほぼ直交 するように少なくとも 1つのダミー電極を設けてパネルが構成される。 1フレームを構成 する複数のサブフィールドのうち、少なくとも 1つのサブフィールドの書込み期間にお V、て、第 1ラインの書込み放電に先立ってダミー電極に書込みパルスが印加されてダ ミー電極と第 3電極間で放電を起こす。それによつて、プラズマ 'ディスプレイ装置の 表示品位が向上する。 Japanese Unexamined Patent Publication No. 2003-29705 (Patent Document 3) describes a method of driving a plasma 'display' panel. In the driving method, the discharge space is within the effective display area. When a cell to be displayed is selected by applying a voltage of opposite polarity to the two electrodes facing each other across the electrode, it is constant during the address period in which the cell is selected for the dummy electrode arranged outside the effective display area. Supply voltage. As a result, abnormal discharge occurring at the upper and lower edges of the effective display area of the plasma 'display' panel is prevented. Japanese Patent Application Laid-Open No. 2004-37884 (Patent Document 4) describes a plasma display device. The plasma display device includes a first substrate on which a plurality of first electrodes and second electrodes forming a pair are arranged, and a plurality of third electrodes substantially orthogonal to the first electrode and the second electrode. And a second substrate disposed opposite to each other with the discharge space interposed therebetween. A panel is configured by providing at least one dummy electrode outside the display area on the first substrate so as to be parallel to the first electrode or the second electrode and substantially perpendicular to the third electrode. In the address period of at least one subfield of a plurality of subfields constituting one frame, the address pulse is applied to the dummy electrode prior to the address discharge in the first line, and the dummy electrode and the third electrode are applied. Discharge occurs between electrodes. As a result, the display quality of the plasma display device is improved.
特許文献 2 :特開平 10— 171377号公報 Patent Document 2: Japanese Patent Laid-Open No. 10-171377
特許文献 3:特開 2003 - 29705号公報 Patent Document 3: Japanese Patent Laid-Open No. 2003-29705
特許文献 4:特開 2004 - 37884号公報 Patent Document 4: Japanese Patent Application Laid-Open No. 2004-37884
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
例えば高さ 2mの大型のプラズマ ·チューブ ·アレイの表示装置は、それぞれ高さ 1 mの 2つのプラズマ'チューブ'アレイで糸且み立てることができる。しかし、各 1本のプラ ズマ 'チューブにおける一端部にあるアドレス放電の最初のセルは、アドレス放電に よる壁電圧の形成が充分でな 、のでサスティン放電が生じな ヽことがある。一方のプ ラズマ ·チューブ ·アレイにおける最初のアドレス放電が 2つのプラズマ ·チューブ ·ァ レイのチューブ端部の繋ぎ目付近のラインのセルで生じると、そのラインに多くのサス ティン放電の失敗または誤りが生じるので表示装置を見る者にとって目障りである。 サスティン放電の失敗を防止するために、プラズマ'チューブにおける最初のセル のアドレス放電電圧の電圧だけを高くするようアドレス電圧発生回路を構成すると、ァ ドレス電圧発生回路のコストが高くなる。 For example, a large plasma tube array display with a height of 2 m can be stretched by two plasma 'tube' arrays each having a height of 1 m. However, in the first cell of the address discharge at one end of each one plasma tube, the wall voltage is not sufficiently formed by the address discharge, so that the sustain discharge may not occur. If the first address discharge in one plasma tube array occurs in a cell in a line near the joint between the tube ends of the two plasma tube arrays, many sustain discharge failures or errors occur in that line. This is a nuisance for those who view the display device. To prevent the sustain discharge failure, if the address voltage generation circuit is configured to increase only the address discharge voltage of the first cell in the plasma tube, The cost of the dressing voltage generation circuit increases.
発明者たちは、 2つのプラズマ ·チューブ ·アレイの一方のプラズマ ·チューブ ·ァレ ィの表示電極対の数をその他方のプラズマ ·チューブ ·アレイの表示電極対の数より 少 なくし、かつその一方のプラズマ'チューブ'アレイにおいて他方のプラズマ'チュ 一 ブ'アレイに隣接する最初のラインのセルの信号電極に印加する最初のアドレス 電圧の 持続時間を長くすることによって、その最初のラインのセルにおけるサスティ ン放電の 失敗を大幅に減少させることができる、と認識した。  The inventors reduced the number of display electrode pairs in one plasma tube array of two plasma tube arrays to be less than the number of display electrode pairs in the other plasma tube array, and one of them. By increasing the duration of the first address voltage applied to the signal electrode of the cell in the first line adjacent to the other plasma 'tube' array in the other plasma 'tube' array, We realized that sustain discharge failures could be greatly reduced.
[0005] 本発明の目的は、 2つのプラズマ'チューブ'アレイの繋ぎ目付近で生じ得る表示不 良を防止することである。 [0005] An object of the present invention is to prevent display defects that may occur near the joint between two plasma 'tube' arrays.
本発明の別の目的は、 2つのプラズマ'チューブ'アレイの繋ぎ目付近で生じ得る表 示放電の失敗を防止することである。  Another object of the present invention is to prevent display discharge failures that can occur near the joint of two plasma 'tube' arrays.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の特徴によれば、表示装置は、内部に、蛍光体層が形成されると共に放電 ガスが封入され、長手方向に複数の発光点をそれぞれ有する複数 m本のガス放電 管が並置され、その複数 m本のガス放電管の表示面側に第 1の複数 ne対の表示電 極が配置され、その複数 m本のガス放電管の背面側に複数 m本の信号電極が配置 された第 1のユニットと;内部に、蛍光体層が形成されると共に放電ガスが封入され、 長手方向に複数の発光点をそれぞれ有する複数 m本のガス放電管が並置され、そ の複数 m本のガス放電管の表示面側に第 2の複数 nc対の表示電極が配置され、そ の複数 m本のガス放電管の背面側に複数 m本の信号電極が配置された第 2のュ- ットと;第 1の期間においてその第 1のユニットのその第 1の複数 ne対の表示電極の各 表示電極対のうちの一方の表示電極に走査電圧を順次印加し、第 2の期間におい てその第 1の複数 ne対の表示電極に維持電圧パルスを印加する第 1の表示電極駆 動回路と;その第 1の期間においてその第 1のユニットのその一方の表示電極に順次 印加されたその走査電圧に従ってその複数 m本の信号電極にアドレス電圧パルスを 印加する第 1のアドレス電圧回路と;その第 1の期間においてその第 2のユニットのそ の第 2の複数 nc対の表示電極の各表示電極対のうちの一方の表示電極に走査電圧 を順次印加し、その第 2の期間においてその第 2の複数 nc対の表示電極に維持電 圧パルスを印加する第 2の表示電極駆動回路と;その第 1の期間においてその第 2の ユニットのその一方の表示電極に順次印加されたその走査電圧に従ってその複数 m 本の信号電極にアドレス電圧パルスを印加する第 2のアドレス電圧回路と、を具えて いる。その第 2の複数 ncの数はその第 1の複数 neの数より少ない。その第 1のュ-ッ トの複数 m本のガス放電管の長手方向端部とその第 2のユニットの複数 m本のガス放 電管の長手方向端部とが繋ぎ目に沿って互いに隣接して配置されている。その第 2 のアドレス電圧回路は、その第 1の期間において、その第 2の複数 nc対の表示電極 の各表示電極対のうちの或る表示電極に最初の走査電圧が印加されたときに、他の アドレス電圧パルスの持続時間より長い持続時間の最初の組アドレス電圧パルスを その第 2のユニットのその複数 m本の信号電極に印加する。 [0006] According to a feature of the present invention, a display device includes a plurality of m gas discharge tubes each having a phosphor layer formed therein, a discharge gas sealed therein, and a plurality of light emitting points in the longitudinal direction. The first plurality of ne pair display electrodes are arranged on the display surface side of the plurality of m gas discharge tubes, and the plurality of m signal electrodes are arranged on the back side of the plurality of m gas discharge tubes. A plurality of m gas discharge tubes each having a plurality of light emitting points in the longitudinal direction are arranged side by side, and a phosphor layer is formed and a discharge gas is enclosed therein. A second multi-nc pair of display electrodes is arranged on the display surface side of one gas discharge tube, and a plurality of m signal electrodes are arranged on the back side of the plurality of m gas discharge tubes. Each display electrode of the first plurality of ne pair of display electrodes of the first unit in the first period; A first display electrode driving circuit that sequentially applies a scanning voltage to one of the display electrodes and applies a sustain voltage pulse to the first plurality of ne display electrodes in the second period; A first address voltage circuit for applying an address voltage pulse to the plurality of m signal electrodes in accordance with the scan voltage sequentially applied to the one display electrode of the first unit in a period of one; the first unit; A scanning voltage is sequentially applied to one display electrode of each display electrode pair of the second plurality of nc pairs of the second unit in the second unit, and the second plurality of display electrodes in the second period. Maintenance power to nc pair display electrodes A second display electrode driving circuit for applying a pressure pulse; and an address voltage for the m signal electrodes according to the scanning voltage sequentially applied to the one display electrode of the second unit during the first period. And a second address voltage circuit for applying a pulse. The number of the second multiple nc is less than the number of the first multiple ne. The longitudinal ends of the plurality of m gas discharge tubes of the first unit and the longitudinal ends of the plurality of m gas discharge tubes of the second unit are adjacent to each other along the joint. Are arranged. The second address voltage circuit is configured such that, during the first period, when a first scanning voltage is applied to a certain display electrode of the display electrode pairs of the second plurality of nc pairs, The first set of address voltage pulses having a duration longer than the duration of the other address voltage pulses is applied to the m signal electrodes of the second unit.
発明の効果  The invention's effect
[0007] 本発明によれば、 2つのプラズマ .チューブ .アレイの繋ぎ目付近で生じ得る放電の 失敗を防止することができ、それによつて 2つのプラズマ'チューブ'アレイの繋ぎ目 付近で生じ得る表示不良を防止することができる。  [0007] According to the present invention, it is possible to prevent a discharge failure that may occur near the joint between the two plasma tube arrays, and thereby, near the joint between the two plasma 'tube' arrays. Display defects can be prevented.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明の実施形態を、図面を参照して説明する。図面において、同様の構成要素 には同じ参照番号が付されて 、る。  An embodiment of the present invention will be described with reference to the drawings. In the drawings, similar components are denoted by the same reference numerals.
[0009] 図 1は、通常のプラズマ'チューブ'アレイのユニット(以下、 PTAユニットという) 10 のプラズマ 'チューブまたはガス放電管 11R、 11Gおよび 1 IBのアレイの概略的な部 分的構造を例示している。図 1において、 PTAユニット 10は、互いに平行に配置され た透明な細長いカラ一'プラズマ 'チューブ 11R、 11Gおよび 11Bのアレイ、透明な 前面側の支持シートまたは薄い基板力 なる前面側支持基板 31、透明なまたは不 透明な背面側の支持シートまたは薄い基板力 なる背面側支持基板 32、複数の表 示電極対または主電極対 2、および複数の信号電極またはアドレス電極 3を含んで いる。図 1において、 Xは表示電極 2のうちの維持電極または X電極を示し、 Yは表示 電極 2のうちの走査電極または Y電極を示している。 R, Gおよび Bは蛍光体の発光 色である赤、緑および青を示している。支持基板 31および 32は、例えば可撓性の P ETフィルム、ガラス等で作られている。 細長いプラズマ 'チューブ 11R、 11Gおよび 11Bの細管 20は、例えばホウケィ酸ガ ラス、パイレックス (登録商標)、ソーダガラス、石英ガラスまたはゼロデュアのような透 明な絶縁体で作製され、典型的には、管径が 2mm以下であり、例えば、管の断面の 幅約 lmmおよび高さ約 0. 55mmであり、長さが 300mm以上であり、管壁の厚さ約 0. lmmの寸法を有する。 [0009] FIG. 1 illustrates a schematic partial structure of a normal plasma 'tube' array unit (hereinafter referred to as a PTA unit) 10 plasma 'tube or gas discharge tubes 11R, 11G and 1 IB arrays is doing. In FIG. 1, the PTA unit 10 is composed of an array of transparent elongated color 'plasma' tubes 11R, 11G and 11B arranged in parallel with each other, a transparent front support sheet or a front support substrate 31 with a thin substrate force, It includes a transparent or non-transparent back support sheet or thin substrate force back support substrate 32, a plurality of display electrode pairs or main electrode pairs 2, and a plurality of signal electrodes or address electrodes 3. In FIG. 1, X indicates a sustain electrode or X electrode of the display electrode 2, and Y indicates a scan electrode or Y electrode of the display electrode 2. R, G, and B indicate red, green, and blue emission colors of the phosphor. The support substrates 31 and 32 are made of, for example, a flexible PET film or glass. Elongated plasma 'tubes 11R, 11G and 11B tubules 20 are made of a transparent insulator, such as borosilicate glass, Pyrex®, soda glass, quartz glass or zerodur, typically The tube diameter is 2 mm or less. For example, the tube has a cross-sectional width of about 1 mm and a height of about 0.55 mm, a length of 300 mm or more, and a tube wall thickness of about 0.1 mm.
プラズマ 'チューブ 11R、 11Gおよび 1 IBの内部の背面側には、赤、緑、青 (R、 G 、 B)の蛍光体層 4をそれぞれ形成した支持部材がそれぞれ挿入されて配置され、放 電ガスが導入されて、両端が封止されている。プラズマ 'チューブ 11R、 11Gおよび 1 1Bの内面には MgO力もなる電子放出膜 5が形成されている。蛍光体層 R、 G、 Bは、 典型的には、約 10 m〜約 30 μ mの範囲の厚さを有する。  Plasma 'tubes 11R, 11G, and 1 IB have support members formed with phosphor layers 4 of red, green, and blue (R, G, B) inserted and arranged on the back side of the inside, respectively. Gas is introduced and both ends are sealed. On the inner surfaces of the plasma tubes 11R, 11G, and 11B, an electron emission film 5 having MgO force is formed. The phosphor layers R, G, B typically have a thickness in the range of about 10 m to about 30 μm.
支持部材は、プラズマ 'チューブ 11R、 11G、 11Bと同様に、例えばホウケィ酸ガラ ス、ノィレックス (登録商標)、石英ガラス、ソーダガラス、鉛ガラスのような絶縁体で作 製され、この支持部材上に蛍光体層 4が形成されている。支持部材は、ガラス管の外 部で、支持部材上に蛍光体ペーストを塗布し、それを焼成して支持部材上に蛍光体 層 4を形成した後、その支持部材をガラス管内に挿入して配置することができる。蛍 光体ペーストは、当該分野で公知の各種の蛍光体ペーストを利用することができる。 電子放出膜 5は、放電ガスとの衝突により荷電粒子を発生する。表示電極対 2に電 圧を印加すると、管内に封入された放電ガスが励起され、その励起放電ガスの脱励 起によって真空紫外光が発生し、その紫外光により蛍光体層 4が可視光を発生する 図 2Aは、透明な複数の表示電極対 2が形成された前面側支持基板 31を示してい る。図 2Bは、複数の信号電極 3が形成された背面側支持基板 32を示している。 信号電極 3は、背面側支持基板 32の前面すなわち内面上に形成され、プラズマ- チューブ 11R、 11Gおよび 1 IBの長手方向に沿って設けられている。隣接する信号 電極 3間のピッチは、プラズマ 'チューブ 11R、 11Gおよび 1 IBの各々の幅と同じで あり、例えば lmmである。複数の表示電極対 2は、周知の形態で前面側支持基板 3 1の背面すなわち内面上に形成され、信号電極 3と直角に交差する方向に配置され ている。表示電極 2の幅は例えば 0. 75mmであり、各 1対の表示電極 2の端縁間の 距離は例えば 0. 4mmである。表示電極対 2と隣の表示電極対 2の間には、非放電 領域となる距離または非放電ギャップが確保され、その距離は例えば 1. 1mmである 信号電極 3と表示電極対 2は、 PTAユニット 10の組み立て時にプラズマ 'チューブ 11R、 11Gおよび 1 IBの下側の外周面部分と上側の外周面部分にそれぞれ密着す るように接触させる。その密着性を良くするために、それぞれの電極とプラズマ'チュ ーブ面との間に接着剤を介在させて接着してもよい。 The support member is made of an insulating material such as borosilicate glass, Neurex (registered trademark), quartz glass, soda glass, lead glass, and the like on the plasma 'tubes 11R, 11G, and 11B. The phosphor layer 4 is formed on the substrate. The support member is an outer portion of the glass tube. After the phosphor paste is applied on the support member and baked to form the phosphor layer 4 on the support member, the support member is inserted into the glass tube. Can be arranged. Various phosphor pastes known in the art can be used as the phosphor paste. The electron emission film 5 generates charged particles by collision with the discharge gas. When a voltage is applied to the display electrode pair 2, the discharge gas sealed in the tube is excited, and vacuum ultraviolet light is generated by the excitation of the excited discharge gas, and the phosphor layer 4 emits visible light by the ultraviolet light. The generated FIG. 2A shows a front support substrate 31 on which a plurality of transparent display electrode pairs 2 are formed. FIG. 2B shows a back side support substrate 32 on which a plurality of signal electrodes 3 are formed. The signal electrode 3 is formed on the front surface, that is, the inner surface of the back-side support substrate 32, and is provided along the longitudinal direction of the plasma tubes 11R, 11G, and 1IB. The pitch between the adjacent signal electrodes 3 is the same as the width of each of the plasma tubes 11R, 11G, and 1IB, for example, lmm. The plurality of display electrode pairs 2 are formed on the back surface, that is, the inner surface of the front-side support substrate 31 in a well-known form, and are arranged in a direction perpendicular to the signal electrode 3. The width of the display electrode 2 is, for example, 0.75 mm, and between the edges of each pair of display electrodes 2 The distance is for example 0.4 mm. Between the display electrode pair 2 and the adjacent display electrode pair 2, a distance or non-discharge gap as a non-discharge region is secured, and the distance is, for example, 1.1 mm.The signal electrode 3 and the display electrode pair 2 have a PTA When the unit 10 is assembled, it is brought into close contact with the lower outer peripheral surface portion and the upper outer peripheral surface portion of the plasma tubes 11R, 11G and 1IB. In order to improve the adhesion, an adhesive may be interposed between each electrode and the plasma tube surface to bond them.
この PTAユニット 10を正面から平面的にみた場合、信号電極 3と表示電極対 2との 交差部が単位発光領域となる。表示は、表示電極対 2のいずれか 1本を走査電極と して用い、その走査電極と信号電極 3との交差部で選択放電を発生させて発光領域 を選択し、その放電により当該領域の管内面に形成された壁電荷を利用して、表示 電極対 2で表示放電を発生させ、蛍光体層を発光させることによって行う。選択放電 は、垂直方向に対向する走査 Y電極と信号電極 3との間のプラズマ 'チューブ 11R、 11Gおよび 1 IB内で発生される対向放電である。表示放電は、平面上に平行に配 置された 1対の表示電極間のプラズマ ·チューブ 11R、 11Gおよび 11B内で発生さ れる面放電である。  When the PTA unit 10 is viewed from the front, the intersection of the signal electrode 3 and the display electrode pair 2 becomes a unit light emitting region. For display, one of the display electrode pairs 2 is used as a scanning electrode, a selective discharge is generated at the intersection of the scanning electrode and the signal electrode 3, and a light emitting region is selected. Using the wall charges formed on the inner surface of the tube, a display discharge is generated at the display electrode pair 2 and the phosphor layer is caused to emit light. The selective discharge is a counter discharge generated in the plasma tubes 11R, 11G, and 1IB between the scanning Y electrode and the signal electrode 3 opposed in the vertical direction. The display discharge is a surface discharge generated in the plasma tubes 11R, 11G, and 11B between a pair of display electrodes arranged in parallel on a plane.
表示電極対 2と信号電極 3は、電圧を印加することによって管内部の放電ガスに放 電を発生させることが可能である。図 1では、プラズマ 'チューブ 11R、 11Gおよび 11 Bの電極構造は、 1つの発光部位に 3つの電極が配置された構成であり、表示電極 対によって表示放電が発生される構造である力 これに限定されるものではなぐ表 示電極 2と信号電極 3の間で表示放電が発生される構造であってもよい。即ち、表示 電極対 2を 1本とし、この表示電極 2を走査電極として用 、て信号電極 3との間に選択 放電と表示放電 (対向放電)を発生させる形式の電極構造であってもよ ヽ。  The display electrode pair 2 and the signal electrode 3 can generate a discharge in the discharge gas inside the tube by applying a voltage. In Fig. 1, the electrode structure of plasma 'tubes 11R, 11G and 11B is a structure in which three electrodes are arranged in one light emitting part, and the display discharge is generated by a pair of display electrodes. A structure in which display discharge is generated between the display electrode 2 and the signal electrode 3 is not limited thereto. That is, the display electrode pair 2 may be one, and the display electrode 2 may be used as a scanning electrode to generate a selective discharge and a display discharge (opposite discharge) between the display electrode 2 and the signal electrode 3.ヽ.
図 3は、 PTAユニット 10のプラズマ'チューブ'アレイ 11の管の長手方向に垂直な 断面の構造を示している。 PTAユニット 10において、プラズマ 'チューブ 11R、 11G および 1 IBは、その中の背面側の支持部材 6R、 6Gおよび 6Bの内面に蛍光体層 4R 、 4Gおよび 4Bが形成されており、断面幅 1. Omm、断面高さ 0. 55mm,管壁の厚さ 0. lmm、および長さ lm〜3mの細管からなる。一実施例として、赤の蛍光体 4Rはィ ットリア系((Y. Ga) BO: Eu)の材料を含み、緑の蛍光体 4Gはジンクシリケート系(Z FIG. 3 shows a cross-sectional structure perpendicular to the longitudinal direction of the tubes of the plasma “tube” array 11 of the PTA unit 10. In the PTA unit 10, the plasma tubes 11R, 11G, and 1IB have phosphor layers 4R, 4G, and 4B formed on the inner surfaces of the back support members 6R, 6G, and 6B, and have a cross-sectional width of 1. It consists of thin tubes with Omm, cross-sectional height of 0.55 mm, tube wall thickness of 0.1 mm, and length of lm to 3 m. As an example, the red phosphor 4R Green phosphor 4G containing Zutria ((Y. Ga) BO: Eu) material is zinc silicate (Z
3  Three
n SiO : Mn)の材料を含み、青の蛍光体 4Bは BAM系(BaMgAl O : Eu)の材料 n Phosphorus 4M is a BAM-based (BaMgAl 2 O 3: Eu) material.
2 4 10 17 2 4 10 17
を含む。  including.
図 3において、プラズマ 'チューブ 11R、 11Gおよび 11Bの底面には、信号電極 3R 、 3Gおよび 3Bが配置され、粘着剤層 34を介して背面側支持基板 32が接着されて いる。プラズマ 'チューブ 11R、 11Gおよび 11Bの上面には、信号電極対 2が配置さ れ、粘着剤層を介して前面側支持基板 31が接着されて!ヽる。  In FIG. 3, signal electrodes 3R, 3G, and 3B are arranged on the bottom surfaces of the plasma tubes 11R, 11G, and 11B, and a back-side support substrate 32 is bonded via an adhesive layer. The signal electrode pair 2 is disposed on the upper surfaces of the plasma tubes 11R, 11G, and 11B, and the front-side support substrate 31 is adhered via the adhesive layer!
[0012] 図 4は、 PTAユニット 10、アドレス (A)電極ドライバ装置 400、 X電極ドライバ装置 5 00および Y電極ドライバ装置 600を具える通常のプラズマ ·チューブ ·アレイ型の表 示装置 100を示している。 PTAユニット 10において、 n対の表示電極 2 (XI, Yl)、 . . .、(Xj, Yj)、 . . . (Xn, Yn)の中の X電極は、 X電極ドライバ装置 500の X電極 用の維持電圧パルス回路(SST) 50に接続され、その中の Υ電極は Υ電極ドライバ 装置 600の走査パルス回路(SCN) 70に接続される。 m本の信号電極 3 Al、 . . .、 Ai、 . . . Amは、 A電極ドライバ装置 400に接続される。 X電極ドライバ装置 500はさ らにリセット回路 51を含んでいる。 Y電極ドライバ装置 600はさらに維持電圧パルス 回路 60およびリセット回路 61を含んでいる。ドライバ制御回路(CTRL) 42が、 A電 極ドライバ装置 400、 X電極ドライバ装置 500および Y電極ドライバ装置 600に接続さ れる。 [0012] FIG. 4 shows a conventional plasma tube array type display device 100 comprising a PTA unit 10, an address (A) electrode driver device 400, an X electrode driver device 500 and a Y electrode driver device 600. ing. In the PTA unit 10, the X electrodes in the n pairs of display electrodes 2 (XI, Yl), ..., (Xj, Yj), ... (Xn, Yn) are the X electrodes of the X electrode driver device 500. Is connected to a sustain voltage pulse circuit (SST) 50 for use, and the soot electrode therein is connected to a scan pulse circuit (SCN) 70 of the soot electrode driver device 600. The m signal electrodes 3 Al,..., Ai,... Am are connected to the A electrode driver device 400. The X electrode driver device 500 further includes a reset circuit 51. The Y electrode driver device 600 further includes a sustain voltage pulse circuit 60 and a reset circuit 61. A driver control circuit (CTRL) 42 is connected to the A electrode driver device 400, the X electrode driver device 500, and the Y electrode driver device 600.
[0013] 次に、一般的なプラズマ ·チューブ ·アレイ型の AC型ガス放電表示装置の駆動法 の一例について説明する。 1つのピクチャ(映像)は典型的には 1フレーム期間で構 成されており、インターレース型走査では 1フレームが 2つのフィールドで構成され、 プログレッシブ型走査では 1フレームが 1つのフィールドで構成されている。また、通 常のテレビジョン方式による動画表示のためには 1秒間に 30フレームの表示が必要 である。そこでこのタイプの表示装置 100による表示では、 2値の発光制御によって 階調を持ったカラー再現を行うために、典型的にはそのような 1フィールド Fを q個の サブフィールド SFの集合に置き換える。しばしば、これらサブフィールド SFに順に 2° , 21, 22, . . . 2q_1等の異なる重みを付けて各サブフィールド SFの表示放電の回数を 設定する。サブフィールド単位の発光 Z非発光の組合せで R, Gおよび Bの各色毎 に N ( = l + 21 + 22 + . . . + 2q_1 )段階の輝度設定を行うことができる。このようなフィ 一ルド構成に合わせてフィールド転送周期であるフィールド期間 Tfを q個のサブフィ 一ルド期間 Tsfに分割し、各サブフィールド SFに 1つのサブフィールド期間 Tsfを割り 当てる。さらに、サブフィールド期間 Tsfを、初期化のためのリセット期間 TR、アドレツ シングのためのアドレス期間 TA、および維持放電による発光のための表示期間 TS に分ける。典型的には、リセット期間 TRおよびアドレス期間 TAの長さが重みに係わ らず一定であるのに対し、表示期間 TSにおけるパルス数は重みが大き 、ほど多く、 表示期間 TSの長さは重みが大きいほど長い。この場合、サブフィールド期間 Tsfの 長さも、該当するサブフィールド SFの重みが大きいほど長い。 Next, an example of a driving method of a general plasma tube array type AC gas discharge display device will be described. One picture (video) is typically composed of one frame period. In interlaced scanning, one frame is composed of two fields, and in progressive scanning, one frame is composed of one field. . In addition, 30 frames per second are required for video display using the normal television system. Therefore, in this type of display device 100, in order to perform color reproduction with gradation by binary light emission control, typically such one field F is replaced with a set of q subfields SF. . Often, the number of display discharges in each subfield SF is set by giving different weights such as 2 °, 2 1 , 2 2 , ... For each color of R, G, and B with a combination of light emission and non-light emission in subfield units N (= l + 2 1 + 2 2 + ... + 2 q_1 ) brightness settings can be made. According to such a field configuration, the field period Tf which is a field transfer period is divided into q subfield periods Tsf, and one subfield period Tsf is assigned to each subfield SF. Further, the subfield period Tsf is divided into a reset period TR for initialization, an address period TA for addressing, and a display period TS for light emission by sustain discharge. Typically, the length of the reset period TR and the address period TA is constant regardless of the weight, whereas the number of pulses in the display period TS is larger and the length of the display period TS is The greater the weight, the longer. In this case, the length of the subfield period Tsf is longer as the weight of the corresponding subfield SF is larger.
図 5は、通常の表示装置 100における、 A電極ドライバ装置 400、 X電極ドライバ装 置 500および Y電極ドライバ装置 600の出力駆動電圧波形の概略的な駆動シーケン スを例示している。なお、図示の波形は一例であり、振幅、極性およびタイミングを様 々に変更することができる。  FIG. 5 illustrates a schematic drive sequence of output drive voltage waveforms of the A electrode driver device 400, the X electrode driver device 500, and the Y electrode driver device 600 in the normal display device 100. The illustrated waveform is an example, and the amplitude, polarity, and timing can be changed in various ways.
リセット期間 TR、アドレス期間 TAおよびサスティン期間 TSの順序は、 q個のサブフ ィールド SFにおいて同じであり、駆動シーケンスはサブフィールド SF毎に繰り返され る。各サブフィールド SFのリセット期間 TRにおいては、全ての表示電極 Xに対して負 極性のパルス Prxlと正極性のパルス Prx2とを順に印加し、全ての表示電極 Yに対 して正極性のパルス Pry 1と負極性のパルス Pry2とを順に印加する。パルス Prxl, P rylおよび Pry2は微小放電が生じる変化率で振幅が漸増するランプ波形または鈍 波パルスである。最初に印加されるパルス Prxlおよび Prylは、前サブフィールド SF における発光 Z非発光に係わらず全ての放電セルにいったん同一極性の適度の壁 電荷を生じさせるために印加される。引き続き適度の壁電荷が存在する放電セルに パルス Prx2および Pry2を印加することにより、この壁電荷を維持パルスでは再放電 しないレベル (消去状態)まで減少させるように調整する。セルに加わる駆動電圧は、 表示電極 Xおよび Yに印加されるパルスの振幅の差を表す合成電圧である。  The order of the reset period TR, the address period TA, and the sustain period TS is the same in the q subfields SF, and the drive sequence is repeated for each subfield SF. In the reset period TR of each subfield SF, a negative polarity pulse Prxl and a positive polarity pulse Prx2 are sequentially applied to all the display electrodes X, and a positive polarity pulse Pry is applied to all the display electrodes Y. 1 and negative polarity pulse Pry2 are applied in order. Pulses Prxl, P ryl and Pry2 are ramp waveforms or blunt pulses whose amplitude gradually increases with the rate of change at which a microdischarge occurs. The first applied pulses Prxl and Pryl are applied once to generate moderate wall charges of the same polarity in all discharge cells regardless of light emission Z non-light emission in the previous subfield SF. Subsequently, by applying pulses Prx2 and Pry2 to the discharge cells where moderate wall charges are present, the wall charges are adjusted so as to be reduced to a level where they are not redischarged by the sustain pulses (erased state). The drive voltage applied to the cell is a composite voltage representing the difference in the amplitude of the pulses applied to the display electrodes X and Y.
アドレス期間 TAにおいては、発光させる放電セルのみに放電維持に必要な壁電 荷を形成する。全ての表示電極 Xl〜Xnおよび全ての表示電極 Yl〜Ynを所定電 位にバイアスした状態で、行選択期間(1行分のスキャン時間)毎に選択行に対応し た表示電極 Yjに負極性のスキャン 'パルス Vyjを印加する。この行選択と同時にアド レス放電を生じさせるべき選択セルに対応したアドレス電極 Aiのみにアドレス 'パルス Vaを印加する。つまり、選択行 jの m列分のサブフィールドデータ Dsfに基づいてアド レス電極 A〜Aの電位を走査ライン毎に 2値制御する。これによつて、選択セルでは In the address period TA, the wall charge necessary for maintaining the discharge is formed only in the discharge cells that emit light. All the display electrodes Xl to Xn and all the display electrodes Yl to Yn are biased to a predetermined potential and correspond to the selected row for each row selection period (one row scan time). Apply negative scan 'pulse Vyj to display electrode Yj. Simultaneously with this row selection, the address pulse Va is applied only to the address electrode Ai corresponding to the selected cell that is to generate the address discharge. That is, the potentials of the address electrodes A to A are binary-controlled for each scanning line based on the subfield data Dsf for m columns of the selected row j. This allows the selected cell to
1 m  1 m
表示電極 Yjとアドレス電極 Aiとの間で放電管内にアドレス放電が生じる。そのアドレ ス放電によって書き込まれた表示データが放電管のセル内壁に壁電荷の形で記憶 され、その後のサスティン'パルスの印加により表示電極 X—Y間の面放電が生じる。 サステスティン期間 TSにお ヽては、最初に先のアドレス放電で生じた壁電荷と加 算されて維持放電を発生する極性(図の例では正極性)のサスティン'パルス Psを印 加する。その後、表示電極 Xと表示電極 Yとに対して交互にサスティン'パルス Psを 印加する。サスティン'パルス Psの振幅は維持電圧 Vsである。サスティン'パルス Ps の印加によって、所定の壁電荷が残存する放電セルにおいて面放電が生じる。サス ティン'パルス Psの印加回数は、上述したようにサブフィールド SFの重みに対応する 。なお、サスティン期間 TS全体にわたって不要な対向放電を防止するために、アド レス電極 Aをサスティン'パルス Psと同極性の電圧 Vasにバイアスする。  An address discharge is generated in the discharge tube between the display electrode Yj and the address electrode Ai. The display data written by the address discharge is stored in the form of wall charges on the cell inner wall of the discharge tube, and the surface discharge between the display electrodes X and Y is generated by the subsequent application of the sustain pulse. In the sustain period TS, a sustain pulse Ps having a polarity (positive polarity in the example shown in the figure) that is first added to the wall charge generated in the previous address discharge to generate a sustain discharge is applied. Thereafter, the sustain pulse Ps is alternately applied to the display electrode X and the display electrode Y. The amplitude of the sustain pulse Ps is the sustain voltage Vs. By applying the sustain pulse Ps, a surface discharge is generated in the discharge cell in which a predetermined wall charge remains. The number of times that the sustain pulse Ps is applied corresponds to the weight of the subfield SF as described above. In order to prevent unnecessary counter discharge throughout the sustain period TS, the address electrode A is biased to a voltage Vas having the same polarity as the sustain pulse Ps.
[0015] 図 6Aおよび 6Bは、 1つのラインのセルのアドレス電極 Aと走査電極 Yに印加される アドレス電圧 Vaおよび走査電圧 Vyを示しており、図 6Cは、それに応答して生じるァ ドレス放電による発光の変化を示している。図 6Dは、各セルにおける A電極、 X電極 および Y電極の配置を示して 、る。  [0015] FIGS. 6A and 6B show the address voltage Va and the scan voltage Vy applied to the address electrode A and the scan electrode Y of the cells in one line, and FIG. 6C shows the address discharge generated in response thereto. It shows the change in light emission due to FIG. 6D shows the arrangement of A electrode, X electrode and Y electrode in each cell.
図 6A〜6Dを参照すると、アドレス期間 TAにおいて、アドレス電圧パルス Vaを印加 した後で或る時間遅延を伴って発光が立ち上がり、さらに或る時間遅延を伴って発 光が立ち下がる。アドレス電圧パルスの印力!]から放電の終了までの時間期間を放電 遅延 Tdとする。従って、アドレス電圧のパルス幅 Twaは、遅延 Tdよりも充分長くなけ ればならない。パルス幅 Twaが充分でないと、アドレス放電の失敗または誤りを生じ、 その後のサスティン期間 TSにおいて所要のサスティン放電が生じず、表示画像がち らついたりして見苦しくなる。  Referring to FIGS. 6A to 6D, in the address period TA, after applying the address voltage pulse Va, the light emission rises with a certain time delay, and further, the light emission falls with a certain time delay. Address voltage pulse strength! ] Is the discharge delay Td. Therefore, the pulse width Twa of the address voltage must be sufficiently longer than the delay Td. If the pulse width Twa is not sufficient, an address discharge failure or error will occur, the required sustain discharge will not occur in the subsequent sustain period TS, and the display image will flicker and become unsightly.
[0016] 図 7Aは、プラズマ ·チューブ ·アレイにおいて、異なる走査電圧 Vyに対して、 1ライ ン、 2ライン、 4ラインおよび 8ラインという 1ライン以上のライン数毎に 1ラインの間隔で 、対応する Y電極 Yjと A電極 Al〜Amとの間にアドレス放電を生じさせた場合のアド レス放電遅延 Tdを示している。図 7Bは、異なるアドレス電圧 Vaに対して Y電極 Yjと A電極 Al〜Amとの間にアドレス放電を生じさせた場合のアドレス放電遅延 Tdを示 している。 [0016] Figure 7A shows a plasma tube array with one line spacing for one or more lines of 1 line, 2 lines, 4 lines and 8 lines for different scan voltages Vy. The address discharge delay Td when address discharge is generated between the corresponding Y electrode Yj and A electrodes Al to Am is shown. FIG. 7B shows the address discharge delay Td when address discharge is generated between the Y electrode Yj and the A electrodes Al to Am for different address voltages Va.
図 7Aから分かるように、或る走査電圧 Vyについて、隣接するラインが連続してアド レス放電を起こす場合にはアドレス放電遅延 Tdは最も短ぐアドレス放電のラインの 間隔が 2ライン、 4ライン、 . . .と大きくなるに従ってアドレス放電遅延 Tdが増大する。 約 4ライン前のアドレス放電のプライミング効果は幾分力残るが、それより離れたライン ではその効果がなくなる。  As can be seen from FIG. 7A, for a certain scanning voltage Vy, when adjacent lines continuously generate an address discharge, the address discharge delay Td is the shortest address discharge line interval between 2 lines, 4 lines, As the value increases, the address discharge delay Td increases. The priming effect of the address discharge about 4 lines before remains somewhat strong, but the effect disappears in the line farther away.
或る表示セルは、より近 、位置の前の隣接表示セルのアドレス放電によるプライミン グ粒子または空間電荷が存在することによって、或る表示セルのアドレス放電遅延 T dがより短くなり、必要な走査電圧 Vyがより低くなり、従ってアドレス放電しやすくなる 。従って、プラズマ 'チューブにおいて、付近の隣接表示セルにおける前のアドレス 放電が存在しな 、走査の先頭位置のチューブ端部のセルでは、アドレス放電が最も 失敗しやすい。  Some display cells are closer, due to the presence of priming particles or space charges due to the address discharge of the adjacent display cell before the position, thereby reducing the display cell address discharge delay Td and the required scanning. The voltage Vy becomes lower, and therefore address discharge is more likely. Accordingly, in the plasma tube, the address discharge is most likely to fail in the cell at the end of the tube at the head position of the scan when there is no previous address discharge in the adjacent adjacent display cell.
図 7Aおよび 7Bから、アドレス電圧 Vaおよび走査電圧 Vyが増大するとともに、アド レス放電の遅延 Tdが短くなることが分かる。  7A and 7B that the address voltage Va and the scanning voltage Vy increase and the address discharge delay Td decreases.
図 8は、 2つのプラズマ'チューブ'アレイを有する通常の表示装置 102を示してい る。表示装置 102は、 A電極ドライバ装置 400、 X電極ドライバ装置 500および Y電極 ドライバ装置 600に接続された PTAユニット 10と、 A電極ドライバ装置 408、 X電極ド ライバ装置 508および Y電極ドライバ装置 608に接続された PTAユニット 18を有する 。 PTAユニット 10と 18は、継ぎ目 183において PTAユニット 10のチューブの下端と PTAユニット 10のチューブの上端とが接触するように配置されて 、る。  FIG. 8 shows a typical display device 102 having two plasma 'tube' arrays. Display device 102 includes PTA unit 10 connected to A electrode driver device 400, X electrode driver device 500, and Y electrode driver device 600, A electrode driver device 408, X electrode driver device 508, and Y electrode driver device 608. Has a PTA unit 18 connected. The PTA units 10 and 18 are arranged so that the lower end of the tube of the PTA unit 10 and the upper end of the tube of the PTA unit 10 are in contact with each other at the joint 183.
A電極ドライバ装置 400は、 Y電極ドライバ装置 600による順次印加される走査電 圧 Vyに従って、 PTAユニット 10の上端 181から継ぎ目 183の方向にアドレス電圧 V aを順次印加する。それと同時に並行して、 A電極ドライバ装置 408は、 Y電極ドライ バ装置 608による順次印加される走査電圧 Vyに従って、 PTAユニット 18の継ぎ目 1 83から下端 188の方向にアドレス電圧 Vadを順次印加する。それによつて、アドレス 期間を半分に減らすことができる。 The A electrode driver device 400 sequentially applies the address voltage Va in the direction from the upper end 181 of the PTA unit 10 to the joint 183 in accordance with the scanning voltage Vy sequentially applied by the Y electrode driver device 600. At the same time, the A electrode driver device 408 sequentially applies the address voltage Vad in the direction from the joint 183 to the lower end 188 of the PTA unit 18 according to the scanning voltage Vy sequentially applied by the Y electrode driver device 608. According to it, the address The period can be cut in half.
PTAユニット 10の上端 181の最も上のラインのセルは、アドレス放電の失敗が生じ る傾向になるので、カバーで覆って隠し、その 1ラインのセルの全てをアドレス放電さ せて、 2ライン目以降のラインのセルのアドレス放電の失敗を防止し、それによつて表 示が見苦しくなるのを防止すればよい。し力し、 PTAユニット 18の継ぎ目 183付近の 最も上のラインのセルは表示画面の中央に位置するので覆い隠すことができない。 P TAユニット 10と 18の継ぎ目 183付近では、両者のプラズマ 'チューブの内部空間は 分離されて ヽるので、プライミング粒子の効果が途切れる。  The cells on the top line of the upper end 181 of the PTA unit 10 tend to fail in address discharge, so they are covered with a cover and hidden. It is only necessary to prevent the address discharge failure of the cells in the subsequent lines, thereby preventing the display from becoming unsightly. However, the cell of the top line near the joint 183 of the PTA unit 18 is located in the center of the display screen and cannot be obscured. In the vicinity of the joint 183 of the PTA units 10 and 18, the internal space of both plasma tubes is separated, and the effect of priming particles is interrupted.
これを解決するために、 PTAユニット 18の下端 188の最も下のラインのセルは、力 バーで覆って隠し、 Y電極ドライバ装置 608による逆方向に順次印加される走査電 圧 Vyに従って、 PTAユニット 18の下端 188から継ぎ目 183の方向にアドレス電圧 V aを順次印加すればよい。しかし、縦方向に配置された 3つの PTAユニットを具える 表示装置において、中央の PTAユニットは、チューブのいずれの端部も覆い隠すこ とができない。  In order to solve this, the cell in the lowermost line of the lower end 188 of the PTA unit 18 is covered with a force bar and hidden, and the PTA unit 18 is sequentially applied in the reverse direction by the Y electrode driver device 608 according to the scanning voltage Vy. The address voltage Va may be sequentially applied in the direction from the lower end 188 of 18 to the joint 183. However, in a display device with three PTA units arranged vertically, the central PTA unit cannot cover any end of the tube.
プラズマ ·チューブ ·アレイのアドレス走査にぉ 、て、チューブ端部の先頭ラインは 前のラインからのプライミング電荷が少な 、ので、そのアドレス放電の成功の確率は、 低ぐ例えば約 50%である。  During the address scan of the plasma tube array, the leading line at the end of the tube has less priming charge from the previous line, so the probability of successful address discharge is low, for example about 50%.
或るライのセルのアドレス放電は、隣接ラインのセルのアドレス放電に対して、充分 なプライミング効果を与える。  The address discharge of a cell in a lie gives a sufficient priming effect to the address discharge of a cell in an adjacent line.
リセット期間 TRにおけるランプ波形のリセット電圧は、背景発光を抑制するように僅 かな放電しか生じさせな 、ので、アドレス期間 TAにおけるアドレス放電に対するプラ イミング効果は小さい。  Since the reset voltage of the ramp waveform in the reset period TR generates only a slight discharge so as to suppress background light emission, the priming effect on the address discharge in the address period TA is small.
通常のアドレス放電遅延を減らしアドレス放電の失敗を防止するために、アドレス電 圧の増大、アドレス電圧パルスの幅の増大、アドレス電極の面積の増大、アドレス電 極と走査電極の間のギャップの減少を行うことが考えられる。しかし、それは、電源電 圧の増大、回路の耐圧電圧の増大および消費電力の増大、アドレス期間の増大、発 光効率の低下、およびコスト増大を伴う。  In order to reduce the normal address discharge delay and prevent address discharge failure, the address voltage is increased, the address voltage pulse width is increased, the address electrode area is increased, and the gap between the address electrode and the scan electrode is decreased. Can be considered. However, it entails an increase in the power supply voltage, an increase in the withstand voltage of the circuit and an increase in power consumption, an increase in the address period, a decrease in light emission efficiency, and an increase in cost.
例えば或る駆動電圧において前のラインがアドレス放電せずにプライミング電荷が な ヽ場合と、前のラインがアドレス放電してプライミング電荷が存在する場合のァドレ ス放電遅れ時間 Tdは、それぞれ 1. 5 sと 1. 0 sであり、約 1. 5倍の差がある。従 つて、プライミング電荷が無い場合のアドレス電圧パルス幅を、例えば 1. 5倍に増大 させればアドレス放電の失敗を防止できる。 For example, at a certain driving voltage, the priming charge is generated without address discharge of the previous line. In this case, the address discharge delay time Td is 1.5 s and 1.0 s, respectively, when there is priming charge due to the address discharge of the previous line, and there is a difference of about 1.5 times. . Therefore, address discharge failure can be prevented by increasing the address voltage pulse width when there is no priming charge by a factor of 1.5, for example.
図 9は、本発明の実施形態による、縦方向に隣接して配置された 3つの PTAュ-ッ ト 10、 12および 18を有する表示装置 104の概略的構成を示している。  FIG. 9 shows a schematic configuration of a display device 104 having three PTA units 10, 12, and 18 arranged vertically adjacent to each other according to an embodiment of the present invention.
PTAユニット 10は、 m本のプラズマ 'チューブ 111と、背面側支持基板 320に配置 された m本の信号電極 Al〜Amと、前面側支持基板 310に配置された ne対の表示 電極 (XI, Yl)、 (Χ2, Υ2)、 . . . (Xne, Yne)とを有し、ここで neは正の整数である 。 Aドライバ装置 400は、 PTAユニット 10の信号電極 Al〜Amにアドレス電圧パルス を印加する。 Yドライバ装置 600は、 PTAユニット 10の表示電極 Yl、 Υ2、 . . . Yne に昇順に走査電圧パルスを印加する。図 9には示されていないが、 PTAユニット 10 には図 4と同様の図 8の Xドライバ装置 500が用いられる。  The PTA unit 10 includes m plasma 'tubes 111, m signal electrodes Al to Am arranged on the rear support substrate 320, and ne pair display electrodes (XI, Yl), (Χ2, Υ2),... (Xne, Yne), where ne is a positive integer. The A driver device 400 applies address voltage pulses to the signal electrodes Al to Am of the PTA unit 10. The Y driver device 600 applies scanning voltage pulses to the display electrodes Yl, Υ2,... Yne of the PTA unit 10 in ascending order. Although not shown in FIG. 9, the X driver device 500 of FIG. 8 similar to FIG. 4 is used for the PTA unit 10.
PTAユニット 12は、 m本のプラズマ 'チューブ 112と、背面側支持基板 322に配置 された m本の信号電極 Al〜Amと、前面側支持基板 312に配置された nc対の表示 電極(XI, Yl)、 (Χ2, Υ2)、 . . . (Xnc, Ync)を有し、ここで ncは neより小さい正の 整数である。 neと ncの差 (ne— nc)は好ましくは 1〜4である。 Aドライバ装置 402は、 PTAユニット 12の信号電極 Al〜Amにアドレス電圧パルスを印加する。 Yドライバ装 置 602は、 PTAユニット 12の表示電極 Yl、 Y2、 . . . Yncに昇順に走査電圧パルス を印カロする図 9には示されて!/ヽな!ヽが、 PTAユニット 12には図 4と同様の Xドライバ 装置(図 10の 502)が用いられる。プラズマ 'チューブ 112は、差である ne— nc対分 の電極に対応してプラズマ ·チューブ 111より短くてよい。  The PTA unit 12 includes m plasma 'tubes 112, m signal electrodes Al to Am arranged on the rear support substrate 322, and nc pairs of display electrodes (XI, Yl), (Χ2, Υ2),... (Xnc, Ync), where nc is a positive integer less than ne. The difference between ne and nc (ne−nc) is preferably 1 to 4. The A driver device 402 applies address voltage pulses to the signal electrodes Al to Am of the PTA unit 12. The Y driver device 602 displays the scanning voltage pulses in ascending order on the display electrodes Yl, Y2,... Ync of the PTA unit 12 as shown in FIG. The same X driver device as in Fig. 4 (502 in Fig. 10) is used. The plasma 'tube 112 may be shorter than the plasma tube 111 to accommodate the difference ne-nc pair electrode.
PTAユニット 18は、背面側支持基板 328に配置された m本の信号電極 Al〜Am と、前面側支持基板 318に配置された ne対の表示電極 (XI, Yl)、(Χ2, Υ2)、 . . . (Xne, Yne)とを有する。 Aドライバ装置 408は、 PTAユニット 18の信号電極 Al〜 Amにアドレス電圧パルスを印加する。 Yドライバ装置 608は、 PTAユニット 18の表 示電極 Yl、 Υ2、 . . . Yneに降順に走査電圧パルスを印加する。図 9には示されて いないが、 PTAユニット 18には図 4と同様の図 8の Xドライバ装置 508が用いられる。 PTAユニット 10、 12および 18の各組の信号電極 Al〜Amは、電気的に互いに分 離している。アドレス期間において、 Aドライバ装置 400および Yドライバ装置 600と、 Aドライバ装置 402および Yドライバ装置 602と、 Aドライバ装置 408および Yドライバ 装置 608とは、同時に並行して動作する。 The PTA unit 18 includes m signal electrodes Al to Am arranged on the rear support substrate 328, and ne pairs of display electrodes (XI, Yl), (Χ2, Υ2) arranged on the front support substrate 318, (Xne, Yne). The A driver device 408 applies address voltage pulses to the signal electrodes Al to Am of the PTA unit 18. The Y driver device 608 applies scanning voltage pulses to the display electrodes Yl, Υ2,... Yne of the PTA unit 18 in descending order. Although not shown in FIG. 9, the PTA unit 18 uses the X driver device 508 shown in FIG. The signal electrodes Al to Am of each set of the PTA units 10, 12 and 18 are electrically separated from each other. In the address period, the A driver device 400 and the Y driver device 600, the A driver device 402 and the Y driver device 602, and the A driver device 408 and the Y driver device 608 operate simultaneously in parallel.
[0020] 図 10は、図 9の表示装置 104の PTAユニット 12に用いられる Aドライバ装置 402、 Xドライバ装置 402および Yドライバ装置 502の構成を示している。 FIG. 10 shows a configuration of the A driver device 402, the X driver device 402, and the Y driver device 502 used for the PTA unit 12 of the display device 104 of FIG.
図 10において、信号処理回路 51は、 TVチューナまたはコンピュータのような外部 装置から R, Gおよび Bの 3原色の発光強度を示すフィールドデータ Dfを同期信号と ともに受け取る。信号処理回路 51は、フィールドデータ Dfを階調表示のためのサブ フィールドデータ Dsfに変換して、サブフィールドデータ Dsfをドライバ制御回路 52に 供給する。サブフィールドデータ Dsfは、 1セル当たり 1ビットの表示データの集合で あり、その各ビットの値は該当する 1つのサブフィールド SFにおける各セルの発光の 要否を表す。  In FIG. 10, a signal processing circuit 51 receives field data Df indicating the emission intensities of the three primary colors R, G, and B together with a synchronization signal from an external device such as a TV tuner or a computer. The signal processing circuit 51 converts the field data Df into subfield data Dsf for gradation display, and supplies the subfield data Dsf to the driver control circuit 52. The subfield data Dsf is a set of 1-bit display data per cell, and the value of each bit indicates whether or not each cell needs to emit light in the corresponding subfield SF.
ドライバ制御回路 52は、サブフィールドデータ Dsfおよび制御信号 CTRL— Aを A ドライバ装置 402に供給する。ドライバ制御回路 52は、さらに、走査データおよびシ フト ·クロックパルス cp を Yドライバ装置 602のスキャン回路 70に供給し、制御信  The driver control circuit 52 supplies the subfield data Dsf and the control signal CTRL—A to the A driver device 402. The driver control circuit 52 further supplies the scan data and the shift clock pulse cp to the scan circuit 70 of the Y driver device 602, and the control signal
SHIFT  SHIFT
号 CTRL— Yを Yドライバ装置 602の制御回路に供給する。ドライバ制御回路 52は、 さらに、制御信号 CTRL_Xを Xドライバ装置 502に供給する。  No. CTRL — Y is supplied to the control circuit of Y driver device 602. The driver control circuit 52 further supplies a control signal CTRL_X to the X driver device 502.
[0021] 図 11A〜11Dは、アドレス期間 TAにおいて図 9の PTAユニット 12に用いられる、 ドライバ制御回路 52からのシフト'クロックパルス cp および走査データ中の先頭の [0021] FIGS. 11A to 11D show the shift clock pulse cp from the driver control circuit 52 used in the PTA unit 12 of FIG. 9 in the address period TA and the head of the scan data.
SHIFT  SHIFT
部分、 Aドライバ装置 402からのアドレス電圧パルス Val〜Vanc、および Yドライバ 装置 502からの走査電圧パルス Vyl〜Vyncのタイム'チャートを示している。ァドレ ス電圧パルス Val〜Vancの各々は、順次走査に従ってアドレス電極 Al〜Amに印 加される高レベル(1)および低レベル(0)の m個の電圧パルスの組を表している。 図 11A〜: L 1Dにお!/、て、アドレス電極 Al〜Amに印加される最初のアドレス電圧 パルス Valの幅 W1は、アドレス電極 Al〜Amに印加される残りのアドレス電圧パル ス Va2〜Vancの通常の幅 Wncより大きぐ残りのアドレス電圧パルス Va2〜Vancの 幅 Wncの好ましくは 1. 5倍乃至 2倍の所定の幅を有する。従って、走査電極 Y1に印 加される最初の走査電圧パルス Vylの幅 Wlは、走査電極 Y2〜Yncに印加される 残りの走査電圧パルス Vy2〜Vyncの通常の幅 Wncより大きく(Wl >Wnc)、残りの 走査電圧パルス Vy2〜Vyncの幅 Wncの好ましくは 1. 5倍乃至 2倍の範囲の所定の 幅を有する。幅 W1の最初のアドレス電圧パルスによって、 PTAユニット 12の信号電 極 Al〜Amと最初の走査電極 Y1の間にうまくアドレス放電を発生させることができる The time chart of the part, the address voltage pulses Val to Vanc from the A driver device 402, and the scanning voltage pulses Vyl to Vync from the Y driver device 502 is shown. Each of the address voltage pulses Val to Vanc represents a set of m voltage pulses of high level (1) and low level (0) applied to the address electrodes Al to Am according to sequential scanning. Fig. 11A ~: First address voltage pulse applied to address electrodes Al ~ Am at L 1D! The width W1 of the pulse Val is the remaining address voltage pulse Va2 ~ applied to the address electrodes Al ~ Am. The width of the remaining address voltage pulses Va2 to Vanc, which is larger than the normal width Wnc of Vanc, preferably has a predetermined width of 1.5 to 2 times Wnc. Therefore, mark the scan electrode Y1. The width Wl of the first scan voltage pulse Vyl applied is larger than the normal width Wnc of the remaining scan voltage pulses Vy2 to Vync applied to the scan electrodes Y2 to Ync (Wl> Wnc), and the remaining scan voltage pulse Vy2 ~ Vync width Wnc preferably has a predetermined width in the range of 1.5 to 2 times. The first address voltage pulse of width W1 can successfully generate an address discharge between the signal electrodes Al to Am of the PTA unit 12 and the first scan electrode Y1.
Aドライバ装置 402は、上述のような幅 W1および Wncの間隔を有するように調整さ れたシフト'クロックパルス cp に従って、アドレス電圧パルス Val〜 Vaneを発生す The A driver device 402 generates the address voltage pulses Val to Vane according to the shift clock pulse cp adjusted to have the widths W1 and Wnc as described above.
SHIFT  SHIFT
る。 Yドライバ装置 502は、先頭の走査データを受け取ると走査電極 Yl〜Yncに電 圧 Vya2を印加し、シフト'クロックパルス cp に従って、レベル Vyalの走査電圧パ The When the Y driver device 502 receives the head scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync, and the scan voltage pulse at the level Vyal according to the shift clock pulse cp.
SHIFT  SHIFT
ルス Vyl〜Vyncを走査電極 Yl〜Yncに順次印加する。 Rus Vyl ~ Vync is sequentially applied to the scan electrodes Yl ~ Ync.
図 12A〜12Dは、アドレス期間 TAにおいて図 9の PTAユニット 12に用いられる、 ドライバ制御回路 52からのシフト'クロックパルス cp および走査データ中の先頭の  FIGS. 12A to 12D show the shift clock pulse cp from the driver control circuit 52 used in the PTA unit 12 of FIG. 9 in the address period TA and the head of the scan data.
SHIFT  SHIFT
部分、 Aドライバ装置 402からのアドレス電圧パルス Val〜Vanc、および Yドライバ 装置 502からの走査電圧パルス Vyl〜Vyncの代替的なタイム'チャートを示してい る。 7 shows an alternative time chart of the address voltage pulses Val to Vanc from the A driver device 402 and the scanning voltage pulses Vyl to Vync from the Y driver device 502.
図 11A〜: L 1Dにお!/、て、アドレス電極 Al〜Amに印加される最初のアドレス電圧 パルス Valの幅 W1は、アドレス電極 Al〜Amに印加されるアドレス電圧パルス Va2 の幅 W2および残りのアドレス電圧パルス Va3〜Vancの通常の幅 Wncより大きぐ残 りのアドレス電圧パルス Va3〜Vancの幅 Wncの好ましくは 1. 5倍乃至 2倍の所定の 幅を有する。アドレス電極 Al〜Amに印加される 2番目のアドレス電圧パルス Va2の 幅 W2は、アドレス電極 Al〜Amに印加されるアドレス電圧パルス Valの幅 W1より 小さく、かつ残りのアドレス電圧パルス Va3〜Vancの通常の幅 Wncより大きく(W1 >W2>Wnc)、残りのアドレス電圧パルス Va3〜Vancの幅 Wncの好ましくは 1. 25 倍乃至 1. 5倍の所定の幅を有する。従って、走査電極 Y1に印加される最初の走査 電圧パルス Vylの幅 W1は、走査電極 Y2に印加される 2番目の走査電圧パルス Vy 2の幅 W2より大きく、残りの走査電圧パルス Vy3〜Vyncの幅 Wncの好ましくは 1. 5 倍乃至 2倍の範囲の所定の幅を有し、 2番目の走査電圧パルス Vy2の幅 W2は、走 查電極 Y3〜Yncに印加される残りの走査電圧パルス Vy3〜Vyncの通常の幅 Wnc より大きく、残りの走査電圧パルス Vy3〜Vyncの幅 Wncの好ましくは 1. 25倍乃至 1 . 5倍の範囲の所定の幅を有する。幅 W1および W2の最初の 2つのアドレス電圧パ ルス Valおよび Va2によって、 PTAユニット 12の信号電極 Al〜Amと最初の走查電 極 Y1および Y2の間にうまくアドレス放電を発生させることができる。 Figure 11A ~: The first address voltage pulse applied to the address electrodes Al ~ Am at L1D! The width W1 of the pulse Val is the width W2 of the address voltage pulse Va2 applied to the address electrodes Al ~ Am. The width of the remaining address voltage pulses Va3 to Vanc, which is larger than the normal width Wnc of the remaining address voltage pulses Va3 to Vanc, preferably has a predetermined width of 1.5 to 2 times the width Wnc. The width W2 of the second address voltage pulse Va2 applied to the address electrodes Al to Am is smaller than the width W1 of the address voltage pulse Val applied to the address electrodes Al to Am, and the remaining address voltage pulses Va3 to Vanc. It is larger than the normal width Wnc (W1>W2> Wnc), and has a predetermined width of preferably 1.25 to 1.5 times the width Wnc of the remaining address voltage pulses Va3 to Vanc. Therefore, the width W1 of the first scan voltage pulse Vyl applied to the scan electrode Y1 is larger than the width W2 of the second scan voltage pulse Vy2 applied to the scan electrode Y2, and the remaining scan voltage pulses Vy3 to Vync Preferably, the width W2 of the second scan voltage pulse Vy2 has a predetermined width in the range of 1.5 to 2 times the width Wnc. 查 The width of the remaining scanning voltage pulses Vy3 to Vync, which is larger than the normal width Wnc of the remaining scanning voltage pulses Vy3 to Vync applied to the electrodes Y3 to Ync, preferably in the range of 1.25 times to 1.5 times the width Wnc Having a predetermined width. The first two address voltage pulses Val and Va2 of width W1 and W2 can successfully generate an address discharge between the signal electrodes Al to Am of the PTA unit 12 and the first scanning electrodes Y1 and Y2.
Aドライバ装置 402は、上述のような幅 Wl、 W2および Wncの間隔を有するように 調整されたシフト'クロックパルス cp に従って、アドレス電圧パルス Val〜Vancを  The A driver device 402 applies the address voltage pulses Val to Vanc according to the shift clock pulse cp adjusted to have the intervals of the widths Wl, W2, and Wnc as described above.
SHIFT  SHIFT
発生する。 Yドライバ装置 502は、先頭の走査データを受け取ると走査電極 Yl〜Yn cに電圧 Vya2を印カロし、シフト'クロックパルス cp に従って、レべノレ Vvalの走査 appear. When the Y driver device 502 receives the head scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync, and scans the Revenor Vval according to the shift clock pulse cp.
SHIFT  SHIFT
電圧パルス Vyl〜Vyncを走査電極 Yl〜Yncに順次印加する。 Voltage pulses Vyl to Vync are sequentially applied to the scan electrodes Yl to Ync.
図 13は、本発明の別の実施形態による、縦方向に隣接して配置された 4つの PTA ユニット 10、 12、 14および 18を有する表示装置 106の概略的構成を示している。 P TAユニット 10、 12および 18は、図 9のものと同様の構成を有する。  FIG. 13 shows a schematic configuration of a display device 106 having four PTA units 10, 12, 14 and 18 arranged vertically adjacent to each other according to another embodiment of the present invention. The PTA units 10, 12 and 18 have the same configuration as that of FIG.
PTAユニット 14は、 PTAユニット 12と同様に、 m本のプラズマ 'チューブ 114と、背 面側支持基板 324に配置された m本の信号電極 Al〜Amと、前面側支持基板 314 に配置された nc対の表示電極 (XI, Yl)、 (Χ2, Υ2)、 . . . (Xnc, Ync)を有する。 Aドライバ装置 404は、 PTAユニット 14の信号電極 Al〜Amにアドレス電圧パルス を印加する。 Yドライバ装置 604は、 PTAユニット 12の表示電極 Yl、 Υ2、 . . . Ync に昇順に走査電圧パルスを印加する。 PTAユニット 14には図 4と同様の図 10の Xド ライバ装置 504が用いられる。  Similar to the PTA unit 12, the PTA unit 14 is arranged on the m plasma tubes 114, the m signal electrodes Al to Am arranged on the back side support substrate 324, and the front side support substrate 314. nc pairs of display electrodes (XI, Yl), (Χ2, Υ2), ... (Xnc, Ync). The A driver device 404 applies an address voltage pulse to the signal electrodes Al to Am of the PTA unit 14. The Y driver device 604 applies scanning voltage pulses to the display electrodes Yl, Υ2,... Ync of the PTA unit 12 in ascending order. The PTA unit 14 uses the X driver device 504 shown in FIG.
PTAユニット 10、 12、 14および 18の各組の信号電極 Al〜Amは、電気的に互い に分離している。アドレス期間において、 Aドライバ装置 400および Yドライバ装置 60 0と、 Aドライバ装置 402および Yドライバ装置 602と、 Aドライバ装置 404および Yドラ ィバ装置 604と、 Aドライバ装置 408および Yドライバ装置 608とは、同時に並行して 動作する。  The signal electrodes Al to Am of each set of the PTA units 10, 12, 14 and 18 are electrically separated from each other. In the address period, A driver device 400 and Y driver device 600, A driver device 402 and Y driver device 602, A driver device 404 and Y driver device 604, A driver device 408 and Y driver device 608 Operate simultaneously in parallel.
PTAユニット 12には、図 10に示されているように Aドライバ装置 402、 Xドライバ装 置 502および Yドライバ装置 602が用いられ、同様に、 PTAユニット 14には、 Aドライ バ装置 404、 Xドライバ装置 504および Yドライバ装置 604が用いられる。 図 11 A〜 1 IDおよび図 12A〜 12Dのタイム ·チャートは、 Aドライバ装置 402およ ひ Ύドライバ装置 502と同様に、図 13の Aドライバ装置 404および Yドライバ装置 504 にも適用される。それによつて、 PTAユニット 12と同様に、 PTAユニット 14の信号電 極 Al〜Amと最初の走査電極 Y1または信号電極 Al〜Amと Y1および Y2との間に うまくアドレス放電を発生させることができる。 As shown in FIG. 10, the A driver device 402, the X driver device 502, and the Y driver device 602 are used for the PTA unit 12, and similarly, the A driver device 404, X A driver device 504 and a Y driver device 604 are used. The time charts of FIGS. 11A-1 ID and FIGS. 12A-12D apply to the A driver device 404 and Y driver device 504 of FIG. 13 as well as the A driver device 402 and the driver device 502. Accordingly, similarly to the PTA unit 12, the address discharge can be successfully generated between the signal electrode Al to Am of the PTA unit 14 and the first scan electrode Y1 or the signal electrode Al to Am and Y1 and Y2. .
[0024] 図 14は、図 9の実施形態の変形であり、本発明のさらに別の実施形態による、縦方 向に隣接して配置された 3つの PTAユニット 10 '、 12 'および 18 'を有する表示装置 108の概略的構成を示している。この場合、 PTAユニット 10'および 12'はより長い m本のプラズマ ·チューブ 111 'を共有しており、 PTAユニット 12'および 18 'はより長 V、m本のプラズマ 'チューブ 118,を共有して 、る。  [0024] FIG. 14 is a variation of the embodiment of FIG. 9, and includes three PTA units 10 ′, 12 ′ and 18 ′ arranged vertically adjacent, according to yet another embodiment of the invention. 1 shows a schematic configuration of a display device 108 having the display device 108. In this case, PTA units 10 'and 12' share the longer m plasma tubes 111 ', and PTA units 12' and 18 'share the longer V, m plasma' tubes 118 '. And
PTAユニット 10'は、 m本のプラズマ 'チューブ 111 'の大きい上部分と、背面側支 持基板 320上に配置されたアドレス電極 Al〜Amと、前面側支持基板 310上に配 置された ne対の表示電極 (XI, Yl)、 (Χ2, Υ2)、 . . . (Xne, Yne)と、を有する。 P TAユニット 18 'は、 m本のプラズマ 'チューブ 118'の大きい下部分と、背面側支持 基板 328上に配置されたアドレス電極 Al〜Amと、前面側支持基板 318上に配置さ れた ne対の表示電極 (XI, Yl)、 (Χ2, Υ2)、 . . . (Xne, Yne)と、を有する。 PTA ユニット 12,は、 m本のプラズマ 'チューブ 111,の残りの下部分と、 m本のプラズマ' チューブ 118'の残りの上部分と、背面側支持基板 322上に配置されたアドレス電極 Al〜Amと、前面側支持基板 312上に配置された nc対の表示電極 (XI, Yl)、 (Χ2 , Υ2)、 . . . (Xnc, Ync)と、を有する。 j番目の行の対の表示電極 (Xj, Yj)は、 m本 のプラズマ 'チューブ 118 'の最も上の行のセルに対応する。  The PTA unit 10 'includes a large upper portion of m plasma' tubes 111 ', address electrodes Al to Am arranged on the back side support substrate 320, and ne arranged on the front side support substrate 310. A pair of display electrodes (XI, Yl), (Χ2, Υ2),... (Xne, Yne). The PTA unit 18 'includes a large lower part of m plasma' tubes 118 ', address electrodes Al to Am arranged on the back side support substrate 328, and ne arranged on the front side support substrate 318. A pair of display electrodes (XI, Yl), (Χ2, Υ2),... (Xne, Yne). The PTA unit 12 includes the remaining lower part of the m plasma 'tubes 111, the remaining upper part of the m plasma' tubes 118 ', and the address electrodes Al ~ disposed on the rear support substrate 322. Am, and nc pairs of display electrodes (XI, Yl), (Χ2, Υ2),... (Xnc, Ync) disposed on the front support substrate 312. The display electrodes (Xj, Yj) in the jth row pair correspond to the cells in the uppermost row of m plasma 'tubes 118'.
[0025] 図 15A〜15Dは、アドレス期間 TAにおいて図 14の PTAユニット 12,に用いられる 、ドライバ制御回路 52からのシフト'クロックパルス cp および走査データ中の先頭  [0025] FIGS. 15A to 15D show the shift clock pulse cp from the driver control circuit 52 used in the PTA unit 12 of FIG. 14 in the address period TA and the head in the scan data.
SHIFT  SHIFT
の部分、 Aドライバ装置 402からのアドレス電圧パルス Val〜Vanc、および Yドライ バ装置 502からの走査電圧パルス Vyl〜Vyncのタイム'チャートを示している。 図 15A〜 15Dにお!/、て、アドレス電極 Al〜Amに印加される最初および j番目の アドレス電圧パルス Valおよび Vajの幅 W1は、アドレス電極 Al〜Amに印加される 残りのアドレス電圧パルス Va2〜Vaj— 1および Vaj + l〜Vancの通常の幅 Wncより 大きぐ残りのアドレス電圧パルス Va2〜Vaj— 1および Vaj + l〜Vancの幅 Wncの 好ましくは 1. 5倍乃至 2倍の所定の幅を有する。従って、走査電極 Y1および Yjに印 加される最初および j番目の走査電圧パルス Vylおよび Vyjの幅 W1は、走査電極 Y 2〜Yj— 1および Yj + l〜Yncに印加される残りの走査電圧パルス Vy2〜Vyj— 1お よび Vyj + l〜Vyncの通常の幅 Wncより大きく(Wl >Wnc)、残りの走査電圧パル ス Vy2〜Vyj - 1および Vyj + l〜Vyncの幅 Wncの好ましくは 1. 5倍乃至 2倍の範 囲の所定の幅を有する。幅 W1のアドレス電圧パルス Valおよび Vajによって、 PTA ユニット 12の信号電極 Al〜Amと最初および j番目の走査電極 Y1の間にうまくアド レス放電を発生させることができる。 The time chart of the address voltage pulses Val to Vanc from the A driver device 402 and the scanning voltage pulses Vyl to Vync from the Y driver device 502 is shown in FIG. 15A to 15D! /, The first and jth address voltage pulses applied to the address electrodes Al to Am. The width W1 of Val and Vaj is the remaining address voltage pulse applied to the address electrodes Al to Am. Va2 to Vaj— 1 and Vaj + l to Vanc normal width Wnc The remaining large address voltage pulses Va2 to Vaj—1 and Vaj + 1 to Vanc have a predetermined width of preferably 1.5 to 2 times the width Wnc. Therefore, the width W1 of the first and jth scan voltage pulses Vyl and Vyj applied to the scan electrodes Y1 and Yj is the remaining scan voltage applied to the scan electrodes Y2 to Yj-1 and Yj + l to Ync. Pulses Vy2 to Vyj— 1 and Vyj + l to Vync normal width Wnc greater than Wnc (Wl> Wnc), remaining scan voltage pulses Vy2 to Vyj-1 and Vyj + l to Vync width Wnc preferably 1 It has a predetermined width in the range of 5 to 2 times. Address voltage pulses Val and Vaj of width W1 can generate an address discharge between the signal electrodes Al to Am of the PTA unit 12 and the first and jth scan electrodes Y1.
Aドライバ装置 402は、上述のような幅 W1および Wncの間隔を有するように調整さ れたシフト'クロックパルス cp に従って、アドレス電圧パルス Val〜 Vaneを発生す  The A driver device 402 generates the address voltage pulses Val to Vane according to the shift clock pulse cp adjusted to have the widths W1 and Wnc as described above.
SHIFT  SHIFT
る。 Yドライバ装置 502は、先頭の走査データを受け取ると走査電極 Yl〜Yncに電 圧 Vya2を印加し、シフト'クロックパルス cp に従って、レベル Vyalの走査電圧パ The When the Y driver device 502 receives the head scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync, and the scan voltage pulse at the level Vyal according to the shift clock pulse cp.
SHIFT  SHIFT
ルス Vyl〜Vyncを走査電極 Yl〜Yncに順次印加する。それによつて、 PTAュ-ッ ト 12'の信号電極 Al〜Amと最初の走査電極 Y1および Yjまたは信号電極 A1〜A mと Y1および Yjおよび Y2および Yj + 1との間にうまくアドレス放電を発生させること ができる。 Rus Vyl ~ Vync is sequentially applied to the scan electrodes Yl ~ Ync. Therefore, the address discharge between the signal electrodes Al ~ Am and the first scan electrodes Y1 and Yj or the signal electrodes A1 ~ Am and Y1 and Yj and Y2 and Yj + 1 of the PTA mute 12 'is successfully performed. Can be generated.
Aドライバ装置■、 402および 408、 Xドライバ装置 500、 502および 508、および Yドライバ装置 600、 602および 608のその他の動作は、図 9の実施形態のものと同 様である。  The other operations of the A driver devices ■, 402 and 408, the X driver devices 500, 502 and 508, and the Y driver devices 600, 602 and 608 are the same as those of the embodiment of FIG.
図 16A〜16Dは、アドレス期間 TAにおいて図 14の PTAユニット 12,に用いられる 、ドライバ制御回路 52からのシフト'クロックパルス cp および走査データ中の先頭  FIGS. 16A to 16D are used for the PTA unit 12 of FIG. 14 in the address period TA, and are shifted from the driver control circuit 52, the clock pulse cp and the head in the scan data.
SHIFT  SHIFT
の部分、 Aドライバ装置 402からのアドレス電圧パルス Val〜Vanc、および Yドライ バ装置 502からの走査電圧パルス Vyl〜Vyncの別のタイム'チャートを示している。 図 16A〜16Dにおいて、アドレス電極 Al〜Amに印加される最初および j番目の アドレス電圧パルス Valの幅 W1は、アドレス電極 Al〜Amに印加されるアドレス電 圧パルス Va2および Vaj + 1の幅 W2および残りのアドレス電圧パルス Va3〜Vaj— 1 および Vaj + 2〜Vancの通常の幅 Wncより大きぐ残りのアドレス電圧パルス Va3〜 Vaj 1および Vaj + 2〜Vancの幅 Wncの好ましくは 1. 5倍乃至 2倍の所定の幅を 有する。アドレス電極 Al〜Amに印加される 2番目およ + 1番目のアドレス電圧パ ルス Va2および Vaj + 1の幅 W2は、アドレス電極 Al〜Amに印加されるアドレス電 圧パルス Valの幅 W1より小さぐかつ残りのアドレス電圧パルス Va3〜Vaj— lおよ び Vaj + 2〜Vancの通常の幅 Wncより大きく(Wl >W2>Wnc)、残りのアドレス電 圧パルス Va3〜Vaj - 1および Vaj + 2〜Vancの幅 Wncの好ましくは 1. 25倍乃至 1 . 5倍の所定の幅を有する。従って、走査電極 Y1および Yjに印加される最初および j 番目の走査電圧パルス Vylおよび Vyjの幅 W1は、走査電極 Y2に印加される 2番目 および j + 1番目の走査電圧パルス Vy 2および Vyj + 1の幅 W2より大きぐ残りの走 查電圧パルス Vy3〜Vaj— 1および Vaj + 2〜Vyncの幅 Wncの好ましくは 1. 5倍乃 至 2倍の範囲の所定の幅を有し、 2番目および j + 1番目の走査電圧パルス Vy2およ び Vyj + 1の幅 W2は、走査電極 Y3〜Yj— 1および Yj + l〜Yncに印加される残り の走査電圧パルス Vy3〜Vaj— 1および Vaj + 2〜Vyncの通常の幅 Wncより大きぐ 残りの走査電圧パルス Vy3〜Vaj— 1および Vaj + 2〜Vyncの幅 Wncの好ましくは 1 . 25倍乃至 1. 5倍の範囲の所定の幅を有する。幅 W1および W2のアドレス電圧パ ルス Valおよび Va2、および Vajおよび Vaj + 1によって、 PTAユニット 12,の信号電 極 Al〜Amと走査電極 Yl、 Y2、 Yjおよび Yj + 1の間にうまくアドレス放電を発生さ せることができる。 5 shows another time chart of address voltage pulses Val to Vanc from the A driver device 402 and scanning voltage pulses Vyl to Vync from the Y driver device 502. In FIGS. 16A to 16D, the width W1 of the first and jth address voltage pulses Val applied to the address electrodes Al to Am is the width W2 of the address voltage pulses Va2 and Vaj + 1 applied to the address electrodes Al to Am. And the remaining address voltage pulses Va3 to Vaj— 1 and Vaj + 2 to Vanc normal width Wnc The remaining address voltage pulses Va3 to greater than Wnc The width of Vaj 1 and Vaj + 2 to Vanc preferably has a predetermined width of 1.5 to 2 times Wnc. The width W2 of the second and first address voltage pulses Va2 and Vaj + 1 applied to the address electrodes Al to Am is smaller than the width W1 of the address voltage pulse Val applied to the address electrodes Al to Am. The remaining address voltage pulses Va3 to Vaj—L and Vaj + 2 to Vanc normal width Wnc (Wl>W2> Wnc), remaining address voltage pulses Va3 to Vaj-1 and Vaj + 2 ˜Vanc width Wnc preferably has a predetermined width of 1.25 to 1.5 times. Accordingly, the width W1 of the first and jth scan voltage pulses Vyl and Vyj applied to the scan electrodes Y1 and Yj is equal to the second and j + 1st scan voltage pulses Vy2 and Vyj + applied to the scan electrode Y2. The remaining scan voltage pulse larger than the width W2 of 1 Vy3 to Vaj— 1 and Vaj + 2 to Vync width Wnc preferably has a predetermined width in the range of 1.5 times to 2 times, and the second And j + 1st scan voltage pulse Vy2 and Vyj + 1 width W2 is determined by the remaining scan voltage pulses Vy3 to Vaj-1 and Vaj applied to scan electrodes Y3 to Yj—1 and Yj + l to Ync. + 2 to Vync normal width Wnc greater than the remaining scan voltage pulse Vy3 to Vaj— 1 and Vaj + 2 to Vync width Wnc preferably with a predetermined width in the range of 1.25 to 1.5 times Have. Address discharge pulses of width W1 and W2 Val and Va2 and Vaj and Vaj + 1 enable address discharge between PTA unit 12 signal electrodes Al to Am and scan electrodes Yl, Y2, Yj and Yj + 1. Can be generated.
Aドライバ装置 402は、上述のような幅 Wl、 W2および Wncの間隔を有するように 調整されたシフト'クロックパルス cp に従って、アドレス電圧パルス Val〜Vancを  The A driver device 402 applies the address voltage pulses Val to Vanc according to the shift clock pulse cp adjusted to have the intervals of the widths Wl, W2, and Wnc as described above.
SHIFT  SHIFT
発生する。 Yドライバ装置 502は、先頭の走査データを受け取ると走査電極 Yl〜Yn cに電圧 Vya2を印カロし、シフト'クロックパルス cp に従って、レべノレ Vyalの走査 appear. When the Y driver device 502 receives the first scan data, it applies the voltage Vya2 to the scan electrodes Yl to Ync and scans the Revenor Vyal according to the shift clock pulse cp.
SHIFT  SHIFT
電圧パルス Vyl〜Vyncを走査電極 Yl〜Yncに順次印加する。 Voltage pulses Vyl to Vync are sequentially applied to the scan electrodes Yl to Ync.
Aドライバ装置■、 402および 408、 Xドライバ装置 500、 502および 508、および Yドライバ装置 600、 602および 608のその他の動作は、図 9の実施形態のものと同 様である。  The other operations of the A driver devices ■, 402 and 408, the X driver devices 500, 502 and 508, and the Y driver devices 600, 602 and 608 are the same as those of the embodiment of FIG.
図 15Cおよび 15Dと図 16Cおよび 16Dとにおいて、代替構成として、アドレス電圧 パルス Val〜Vaj - 1および Vaj〜Vancの印加の順序は、 Vaj〜 Vaneおよび Val 〜Vaj— 1の順序とし、かつ走査電圧パルス Vyl〜Vyj— 1および Vyj〜Vyncの印 加の順序は、プラズマ 'チューブ 118の上端部から開始して Vyj〜Vyncおよび Vyl 〜Vyj— 1であってもよ!/、。 In FIGS. 15C and 15D and FIGS. 16C and 16D, as an alternative configuration, the application sequence of the address voltage pulses Val to Vaj-1 and Vaj to Vanc is Vaj to Vane and Val. ~ Vaj—1 and scan voltage pulses Vyl ~ Vyj—1 and Vyj ~ Vync applied from Vyj ~ Vync and Vyl ~ Vyj-1 starting from the top of plasma 'tube 118. Anyway!
[0027] 図 17は、図 13の実施形態の変形であり、本発明のさらに別の実施形態による、縦 方向に隣接して配置された 4つの PTAユニット 10'、 12'、 14'および 18'を有する表 示装置 110の概略的構成を示している。この場合、 PTAユニット 10'および 12'はよ り長 ヽ m本のプラズマ 'チューブ 111,を共有しており、 PTAユニット 12および 14はよ り長い m本のプラズマ 'チューブ 113を共有しており、 PTAユニット 14'および 18'は より長!、m本のプラズマ ·チューブ 118 'を共有して 、る。 [0027] FIG. 17 is a variation of the embodiment of FIG. 13 and includes four PTA units 10 ′, 12 ′, 14 ′ and 18 arranged vertically adjacent, according to yet another embodiment of the invention. 1 shows a schematic configuration of a display device 110 having '. In this case, PTA units 10 'and 12' share a longer m plasma 'tube 111, and PTA units 12 and 14 share a longer m plasma' tube 113. The PTA units 14 'and 18' are longer! They share m plasma tubes 118 '.
PTAユニット 10,および 18,は、図 14の場合のものと同様である。  PTA units 10 and 18 are the same as in FIG.
PTAユニット 12,は、 m本のプラズマ 'チューブ 111,の下部分と、 m本のプラズマ' チューブ 113の上部分と、背面側支持基板 322上に配置されたアドレス電極 A1〜A mと、前面側支持基板 312上に配置された nc対の表示電極 (XI, Yl)、(Χ2, Υ2)、 . . . (Xnc, Ync)と、を有する。 j番目の行の対の表示電極 (Xj, Yj)は、 m本のプラ ズマ'チューブ 113の最も上の行のセルに対応する。  The PTA unit 12 includes m plasma 'tubes 111, the lower part, m plasmas' tube 113 upper part, address electrodes A1 to Am arranged on the rear support substrate 322, and the front surface. Nc pairs of display electrodes (XI, Yl), (Χ2, Υ2),... (Xnc, Ync) arranged on the side support substrate 312. The display electrodes (Xj, Yj) in the j-th row pair correspond to the cells in the uppermost row of m plasma 'tubes 113.
PTAユニット 14,は、 m本のプラズマ 'チューブ 113の下部分と、 m本のプラズマ' チューブ 118'の上部分と、背面側支持基板 322上に配置されたアドレス電極 Al〜 Amと、前面側支持基板 312上に配置された nc対の表示電極 (XI, Yl)、(Χ2, Υ2 )、 . . . (Xnc, Ync)と、を有する。 j番目の行の対の表示電極 (Xj, Yj)は、 m本のプ ラズマ ·チューブ 118 'の最も上の行のセルに対応する。  PTA unit 14 includes m plasma 'tube 113 lower part, m plasma' tube 118 'upper part, address electrodes Al to Am arranged on back support substrate 322, front side Nc pairs of display electrodes (XI, Yl), (Χ2, Υ2),... (Xnc, Ync) disposed on the support substrate 312. The display electrodes (Xj, Yj) in the jth row pair correspond to the cells in the uppermost row of m plasma tubes 118 '.
図 15A〜 15Dおよび図 16A〜 16Dのタイム ·チャートは、 Aドライバ装置 402およ ひ Ύドライバ装置 502と同様に、 Aドライバ装置 404および Yドライバ装置 504にも適 用される。それによつて、 PTAユニット 14'の信号電極 Al〜Amと最初の走査電極 Y 1および Yjまたは信号電極 Al〜Amと Y1および Yjおよび Y2および Yj + 1との間に うまくアドレス放電を発生させることができる。  The time charts of FIGS. 15A to 15D and FIGS. 16A to 16D apply to the A driver device 404 and the Y driver device 504 as well as the A driver device 402 and the driver device 502. Therefore, the address discharge between the signal electrodes Al to Am of the PTA unit 14 'and the first scan electrodes Y1 and Yj or the signal electrodes Al to Am and Y1 and Yj and Y2 and Yj + 1 can be successfully generated. Can do.
[0028] 図 14および 17の実施形態では、プラズマ'チューブ'アレイの数が PTAユニットの 数より少ないが、プラズマ'チューブ'アレイの数力 SPTAユニットの数より多くてもよい [0029] 上述の実施形態では、走査開始およびチューブ端部からの最初および Zまたは 2 番目のアドレス電圧パルスのパルス幅 Wl、 W2を大きくした力 走査開始およびチュ ーブ端部からの最初から数 k番目のアドレス電圧パルスのパルス幅を大きくしてもよ い。 [0028] In the embodiment of FIGS. 14 and 17, the number of plasma 'tube' arrays is less than the number of PTA units, but the number of plasma 'tube' arrays may be greater than the number of SPTA units. [0029] In the above-described embodiment, the force obtained by increasing the pulse widths Wl and W2 of the first and Z or second address voltage pulses from the scan start and the tube end, and the number from the start from the scan start and the tube end. The pulse width of the kth address voltage pulse may be increased.
[0030] 以上説明した実施形態は典型例として挙げたに過ぎず、その各実施形態の構成要 素を組み合わせること、その変形およびバリエーションは当業者にとって明らかであり 、当業者であれば本発明の原理および請求の範囲に記載した発明の範囲を逸脱す ることなく、実施形態の種々の変形を行えることは明らかである。  [0030] The embodiment described above is merely given as a typical example, and it is obvious to those skilled in the art to combine the constituent elements of each embodiment, and variations and variations thereof. Obviously, various modifications can be made to the embodiments without departing from the scope of the invention as set forth in the principles and claims.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]図 1は、通常のプラズマ'チューブ'アレイのユニット(PTAユニット)のプラズマ' チューブまたはガス放電管のアレイの概略的な部分的構造を例示している。  [0031] FIG. 1 illustrates a schematic partial structure of an array of plasma 'tubes or gas discharge tubes of a conventional plasma' tube 'array unit (PTA unit).
[図 2]図 2Aは、透明な複数の表示電極対が形成された前面側支持基板を示している 。図 2Bは、複数の信号電極または信号電極が形成された背面側支持基板を示して いる。  FIG. 2A shows a front-side support substrate on which a plurality of transparent display electrode pairs are formed. FIG. 2B shows a backside support substrate on which a plurality of signal electrodes or signal electrodes are formed.
[図 3]図 3は、 PTAユニットのプラズマ'チューブ'アレイの管の長手方向に垂直な断 面の構造を示している。  [FIG. 3] FIG. 3 shows the structure of a cross section perpendicular to the longitudinal direction of the tubes of the plasma 'tube' array of the PTA unit.
[図 4]図 4は、 PTAユニット、 A電極ドライバ装置、 X電極ドライバ装置および Y電極ド ライバ装置を具える通常のプラズマ ·チューブ ·アレイ型の表示装置を示して!/、る。  [FIG. 4] FIG. 4 shows a conventional plasma tube array type display device including a PTA unit, an A electrode driver device, an X electrode driver device, and a Y electrode driver device.
[図 5]図 5は、通常の表示装置における、 A電極ドライバ装置、 X電極ドライバ装置お よび Y電極ドライバ装置の出力駆動電圧波形の概略的な駆動シーケンスを例示して いる。  FIG. 5 illustrates a schematic drive sequence of output drive voltage waveforms of an A electrode driver device, an X electrode driver device, and a Y electrode driver device in a normal display device.
[図 6]図 6Aおよび 6Bは、 1つのラインのセルのアドレス電極 Aと走査電極 Yに印加さ れるアドレス電圧および走査電圧を示しており、図 6Cは、それに応答して生じるアド レス放電による発光の変化を示している。図 6Dは、各セルにおける A電極、 X電極お よび Y電極の配置を示して 、る。  [FIG. 6] FIGS. 6A and 6B show the address voltage and scan voltage applied to the address electrode A and the scan electrode Y of the cell in one line, and FIG. 6C shows the address discharge generated in response thereto. The change in luminescence is shown. FIG. 6D shows the arrangement of the A, X, and Y electrodes in each cell.
[図 7]図 7Aは、プラズマ ·チューブ ·アレイにおいて、異なる走査電圧に対して 1ライン 以上のライン数毎に 1ラインの間隔で、対応する Y電極と A電極との間にアドレス放電 を生じさせた場合のアドレス放電遅延を示している。図 7Bは、異なるアドレス電圧に 対して Y電極と A電極との間にアドレス放電を生じさせた場合のアドレス放電遅延を 示している。 [Fig. 7] Fig. 7A shows an address discharge between the corresponding Y electrode and A electrode in the plasma tube array at intervals of 1 line for each number of lines of 1 or more for different scanning voltages. The address discharge delay in the case of being performed is shown. Figure 7B shows different address voltages In contrast, the address discharge delay when address discharge is generated between the Y electrode and the A electrode is shown.
[図 8]図 8は、 2つのプラズマ ·チューブ ·アレイを有する通常の表示装置を示して!/、る  [Figure 8] Figure 8 shows a typical display device with two plasma tube arrays! /
[図 9]図 9は、本発明の実施形態による、縦方向に隣接して配置された 3つの PTAュ ニットを有する表示装置の概略的構成を示して ヽる。 FIG. 9 shows a schematic configuration of a display device having three PTA units arranged adjacent to each other in the vertical direction according to an embodiment of the present invention.
[図 10]図 10は、図 9の表示装置の PTAユニットに用いられる Aドライバ装置、 Xドライ バ装置および Yドライバ装置の構成を示して 、る。  [FIG. 10] FIG. 10 shows configurations of an A driver device, an X driver device, and a Y driver device used in the PTA unit of the display device of FIG.
[図 11]図 11A〜11Dは、アドレス期間において図 9の PTAユニットに用いられる、ド ライバ制御回路からのシフト'クロックパルスおよび走査データ中の先頭の部分、 Aド ライパ装置からのアドレス電圧パルス、および Yドライバ装置からの走査電圧パルス のタイム ·チャートを示して!/、る。  [FIG. 11] FIGS. 11A to 11D show the shift clock pulse from the driver control circuit used in the PTA unit of FIG. 9 in the address period and the head part in the scan data, the address voltage pulse from the A driver device. , And show a time chart of the scanning voltage pulse from the Y driver device!
[図 12]図 12A〜12Dは、アドレス期間において図 9の PTAユニットに用いられる、ド ライバ制御回路からのシフト'クロックパルスおよび走査データ中の先頭の部分、 Aド ライバ装置からのアドレス電圧パルス、および Yドライバ装置からの走査電圧パルス の代替的なタイム ·チヤ一トを示して 、る。  [FIG. 12] FIGS. 12A to 12D show the shift clock pulse from the driver control circuit used in the PTA unit of FIG. 9 during the address period and the head part of the scan data, the address voltage pulse from the A driver device. And an alternative time chart of scan voltage pulses from the Y driver device.
[図 13]図 13は、本発明の別の実施形態による、縦方向に隣接して配置された 4つの PTAユニットを有する表示装置の概略的構成を示して!/、る。  FIG. 13 shows a schematic configuration of a display device having four PTA units arranged adjacent to each other in the vertical direction according to another embodiment of the present invention.
[図 14]図 14は、図 9の実施形態の変形であり、本発明のさらに別の実施形態による、 縦方向に隣接して配置された 3つの PTAユニットを有する表示装置の概略的構成を 示している。  FIG. 14 is a modification of the embodiment of FIG. 9, and shows a schematic configuration of a display device having three PTA units arranged vertically adjacent to each other according to still another embodiment of the present invention. Show.
[図 15]図 15A〜15Dは、アドレス期間において図 14の PTAユニットに用いられる、ド ライバ制御回路からのシフト'クロックパルスおよび走査データ中の先頭の部分、 Aド ライバ装置からのアドレス電圧パルス、および Yドライバ装置からの走査電圧パルス のタイム ·チャートを示して!/、る。  [FIG. 15] FIGS. 15A to 15D show a shift clock pulse from the driver control circuit used in the PTA unit of FIG. 14 in the address period and the head part in the scan data, an address voltage pulse from the A driver device. , And show a time chart of the scanning voltage pulse from the Y driver device!
[図 16]図 16A〜16Dは、アドレス期間において図 14の PTAユニットに用いられる、ド ライバ制御回路からのシフト'クロックパルスおよび走査データ中の先頭の部分、 Aド ライバ装置からのアドレス電圧パルス、および Yドライバ装置からの走査電圧パルス の別のタイム ·チャートを示して 、る。 [FIG. 16] FIGS. 16A to 16D show the shift clock pulse from the driver control circuit used in the PTA unit of FIG. 14 in the address period and the head part in the scan data, the address voltage pulse from the A driver device. , And scan voltage pulse from Y driver device Show another time chart.
[図 17]図 17は、図 13の実施形態の変形であり、本発明のさらに別の実施形態による 、縦方向に隣接して配置された 4つの PTAユニットを有する表示装置の概略的構成 を示している。  FIG. 17 is a modification of the embodiment of FIG. 13, and shows a schematic configuration of a display device having four PTA units arranged adjacent to each other in the vertical direction according to still another embodiment of the present invention. Show.

Claims

請求の範囲 The scope of the claims
内部に、蛍光体層が形成されると共に放電ガスが封入され、長手方向に複数の発 光点をそれぞれ有する第 1組の複数 m本のガス放電管が並置され、前記第 1組の複 数 m本のガス放電管の表示面側に第 1の複数 ne対の表示電極が配置され、前記第 1組の複数 m本のガス放電管の背面側に複数 m本の信号電極が配置された第 1の ユニットと、  Inside, a phosphor layer is formed and a discharge gas is enclosed, and a first set of a plurality of m gas discharge tubes each having a plurality of emission points in the longitudinal direction are juxtaposed, and the plurality of the first set The first plurality of ne pairs of display electrodes are arranged on the display surface side of the m gas discharge tubes, and the plurality of m signal electrodes are arranged on the back side of the first set of the plurality of m gas discharge tubes. The first unit,
内部に、蛍光体層が形成されると共に放電ガスが封入され、長手方向に複数の発 光点をそれぞれ有する第 2組の複数 m本のガス放電管が並置され、前記第 2組の複 数 m本のガス放電管の表示面側に第 2の複数 nc対の表示電極が配置され、前記第 2組の複数 m本のガス放電管の背面側に複数 m本の信号電極が配置された第 2の ユニットと、  Inside, a phosphor layer is formed and a discharge gas is enclosed, and a second set of a plurality of m gas discharge tubes each having a plurality of emission points in the longitudinal direction are juxtaposed, and the plurality of the second set A second plurality of nc pairs of display electrodes are arranged on the display surface side of the m gas discharge tubes, and a plurality of m signal electrodes are arranged on the back side of the second set of the plurality of m gas discharge tubes. A second unit,
第 1の期間にぉ 、て前記第 1のユニットの前記第 1の複数 ne対の表示電極の各表 示電極対のうちの一方の表示電極に走査電圧を順次印加し、第 2の期間において 前記第 1の複数 ne対の表示電極に維持電圧パルスを印加する第 1の表示電極駆動 回路と、  During the first period, a scanning voltage is sequentially applied to one display electrode of each display electrode pair of the first plurality of ne display electrodes of the first unit, and in the second period, A first display electrode driving circuit for applying a sustain voltage pulse to the first plurality of ne pair of display electrodes;
前記第 1の期間において前記第 1のユニットの前記一方の表示電極に順次印加さ れた前記走査電圧に従って前記複数 m本の信号電極にアドレス電圧パルスを印加 する第 1のアドレス電圧回路と、  A first address voltage circuit for applying an address voltage pulse to the plurality of m signal electrodes in accordance with the scan voltage sequentially applied to the one display electrode of the first unit in the first period;
前記第 1の期間において前記第 2のユニットの前記第 2の複数 nc対の表示電極の 各表示電極対のうちの一方の表示電極に走査電圧を順次印加し、前記第 2の期間 において前記第 2の複数 nc対の表示電極に維持電圧パルスを印加する第 2の表示 電極駆動回路と、  In the first period, a scan voltage is sequentially applied to one display electrode of each display electrode pair of the second plurality of nc pairs of display electrodes of the second unit, and the second period includes the second display electrode. A second display electrode driving circuit for applying a sustain voltage pulse to the display electrodes of the plurality of two nc pairs;
前記第 1の期間において前記第 2のユニットの前記一方の表示電極に順次印加さ れた前記走査電圧に従って前記複数 m本の信号電極にアドレス電圧パルスを印加 する第 2のアドレス電圧回路と、  A second address voltage circuit for applying an address voltage pulse to the plurality of m signal electrodes in accordance with the scan voltage sequentially applied to the one display electrode of the second unit in the first period;
を具え、 With
前記第 2の複数 ncの数は前記第 1の複数 neの数より少なぐ  The number of the second plurality of ncs is less than the number of the first plurality of ne
前記第 1組の複数 m本のガス放電管の端部と前記第 2組の複数 m本のガス放電管 の端部とが繋ぎ目に沿って互いに隣接して配置され、 Ends of the first set of multiple m gas discharge tubes and the second set of multiple m gas discharge tubes Are arranged adjacent to each other along the joint,
前記第 2のアドレス電圧回路は、前記第 1の期間において、前記第 2の複数 nc対の 表示電極の各表示電極対のうちの或る表示電極に最初の走査電圧が印加されたと きに、他のアドレス電圧パルスの持続時間より長 、持続時間の最初の組アドレス電圧 パルスを前記第 2のユニットの前記複数 m本の信号電極に印加することを特徴とする 、表示装置。  The second address voltage circuit is configured to apply an initial scanning voltage to a certain display electrode of the display electrode pairs of the second plurality of nc pairs in the first period. A display device, wherein a first address voltage pulse having a duration longer than that of other address voltage pulses is applied to the plurality of m signal electrodes of the second unit.
[2] 前記第 2のアドレス電圧回路は、前記第 1の期間において、前記第 2の複数 nc対の 表示電極の各表示電極対のうちの或る表示電極に最初および 2番目の走査電圧が 印加されたときに、他のアドレス電圧パルスの持続時間より長い持続時間の最初およ び 2番目の組のアドレス電圧パルスを前記第 2のユニットの前記複数 m本の信号電極 に印加することを特徴とする、請求項 1に記載の表示装置。  [2] In the second address voltage circuit, the first and second scanning voltages are applied to a display electrode of the display electrode pairs of the second plurality of nc pairs in the first period. When applied, the first and second sets of address voltage pulses having a duration longer than the duration of the other address voltage pulses are applied to the plurality of m signal electrodes of the second unit. The display device according to claim 1, wherein the display device is characterized.
[3] 前記第 2のアドレス電圧回路は、前記第 1の期間において、前記第 2の複数 nc対の 表示電極の各表示電極対のうちのチューブ端部の最初の表示電極に走査電圧が印 カロされたときに、他のアドレス電圧パルスの持続時間より長い持続時間の 1組のアド レス電圧パルスを前記第 2のユニットの前記複数 m本の信号電極に印加することを特 徴とする、請求項 1に記載の表示装置。  [3] In the first period, the second address voltage circuit applies a scanning voltage to the first display electrode at the tube end of each display electrode pair of the second plurality of nc pairs of display electrodes. When a set of address voltage pulses having a duration longer than that of other address voltage pulses is applied to the plurality of m signal electrodes of the second unit. The display device according to claim 1.
[4] さら〖こ、内部に、蛍光体層が形成されると共に放電ガスが封入され、長手方向に第 1の複数 ne個の発光点をそれぞれ有する第 3組の複数 m本のガス放電管が並置さ れ、前記第 3組の複数 m本のガス放電管の表示面側に第 1の複数 ne対の表示電極 が配置され、前記第 3組の複数 m本のガス放電管の背面側に複数 m本の信号電極 が配置された第 3のユニットを具えることを特徴とする、請求項 1に記載の表示装置。  [4] Sarakoko, a third set of a plurality of m gas discharge tubes each having a phosphor layer formed therein and filled with a discharge gas, each having a first plurality of ne luminous points in the longitudinal direction Are arranged side by side, and the first plurality of ne pairs of display electrodes are arranged on the display surface side of the third set of the plurality of m gas discharge tubes, and the rear side of the third set of the plurality of m gas discharge tubes 2. The display device according to claim 1, further comprising a third unit in which a plurality of m signal electrodes are arranged.
[5] 内部に、蛍光体層が形成されると共に放電ガスが封入され、長手方向に複数の発 光点をそれぞれ有する第 1の組の複数 m本のガス放電管の一部が並置され、前記第 1組の複数 m本のガス放電管の表示面側に第 1の複数 ne対の表示電極が配置され 、前記第 1組の複数 m本のガス放電管の背面側に複数 m本の信号電極が配置され た第 1のユニットと、  [5] Inside, a phosphor layer is formed and a discharge gas is enclosed, and a part of the first set of a plurality of m gas discharge tubes each having a plurality of light emitting points in the longitudinal direction are juxtaposed, A first plurality of ne pairs of display electrodes are arranged on the display surface side of the first set of the plurality of m gas discharge tubes, and a plurality of m pieces of display electrodes are arranged on the back side of the first set of the plurality of m gas discharge tubes. A first unit with signal electrodes,
内部に、蛍光体層が形成されると共に放電ガスが封入され、前記第 1組の複数 m本 のガス放電管の残りの一部が並置され、前記第 1組の複数 m本のガス放電管の残り の一部の端部に隣接して長手方向に複数の発光点をそれぞれ有する第 2の組の複 数 m本のガス放電管の一部が並置され、前記第 1組の複数 m本のガス放電管の残り の一部と前記第 2組の複数 m本のガス放電管の一部の表示面側に第 2の複数 nc対 の表示電極が配置され、前記第 1組の複数 m本のガス放電管の残りの一部と前記第 2組の複数 m本のガス放電管の一部の背面側に複数 m本の信号電極が配置された 第 2のユニットと、 Inside, a phosphor layer is formed and a discharge gas is sealed, and the remaining part of the first set of the plurality of m gas discharge tubes is juxtaposed, and the first set of the plurality of m gas discharge tubes The rest of A portion of the second set of the plurality of m gas discharge tubes each having a plurality of light emitting points in the longitudinal direction adjacent to the end of a portion of the first set of the plurality of gas discharge tubes is juxtaposed. A second plurality of nc pairs of display electrodes are arranged on the display surface side of the remaining part of the discharge tube and a part of the second set of the plurality of m gas discharge tubes, and the plurality of m sets of the first set. A second unit in which a plurality of m signal electrodes are arranged on the back side of the remaining part of the gas discharge tube and a part of the second set of the plurality of m gas discharge tubes;
第 1の期間にぉ 、て前記第 1のユニットの前記第 1の複数 ne対の表示電極の各表 示電極対のうちの一方の表示電極に走査電圧を順次印加し、第 2の期間において 前記第 1の複数 ne対の表示電極に維持電圧パルスを印加する第 1の表示電極駆動 回路と、  During the first period, a scanning voltage is sequentially applied to one display electrode of each display electrode pair of the first plurality of ne display electrodes of the first unit, and in the second period, A first display electrode driving circuit for applying a sustain voltage pulse to the first plurality of ne pair of display electrodes;
前記第 1の期間において前記第 1のユニットの前記一方の表示電極に順次印加さ れた前記走査電圧に従って前記複数 m本の信号電極にアドレス電圧パルスを印加 する第 1のアドレス電圧回路と、  A first address voltage circuit for applying an address voltage pulse to the plurality of m signal electrodes in accordance with the scan voltage sequentially applied to the one display electrode of the first unit in the first period;
前記第 1の期間において前記第 2のユニットの前記第 2の複数 nc対の表示電極の 各表示電極対のうちの一方の表示電極に走査電圧を順次印加し、前記第 2の期間 において前記第 2の複数 nc対の表示電極に維持電圧パルスを印加する第 2の表示 電極駆動回路と、  In the first period, a scan voltage is sequentially applied to one display electrode of each display electrode pair of the second plurality of nc pairs of display electrodes of the second unit, and the second period includes the second display electrode. A second display electrode driving circuit for applying a sustain voltage pulse to the display electrodes of the plurality of two nc pairs;
前記第 1の期間において前記第 2のユニットの前記一方の表示電極に順次印加さ れた前記走査電圧に従って前記複数 m本の信号電極にアドレス電圧パルスを印加 する第 2のアドレス電圧回路と、  A second address voltage circuit for applying an address voltage pulse to the plurality of m signal electrodes in accordance with the scan voltage sequentially applied to the one display electrode of the second unit in the first period;
を具え、 With
前記第 1組の複数 m本のガス放電管の残りの一部の端部と前記第 2組の複数 m本 のガス放電管の一部の端部とが繋ぎ目に沿って互いに隣接して配置され、  The remaining part of the first set of the plurality of m gas discharge tubes and the end of the second set of the plurality of m gas discharge tubes are adjacent to each other along a joint. Arranged,
前記第 2のアドレス電圧回路は、前記第 1の期間において、前記第 2の複数 nc対の 表示電極の各表示電極対のうちの前記第 2組の複数 m本のガス放電管の一部の端 部の最初の表示電極に走査電圧が印加されたときに、他のアドレス電圧パルスの持 続時間より長い持続時間の 1組アドレス電圧パルスを前記第 2のユニットの前記複数 m本の信号電極に印加することを特徴とする、表示装置。 In the first period, the second address voltage circuit includes a part of the second set of the plurality of m gas discharge tubes of the display electrode pairs of the second plurality of nc pairs of display electrodes. When a scanning voltage is applied to the first display electrode at the end, one set of address voltage pulses having a duration longer than the duration of other address voltage pulses is applied to the plurality of m signal electrodes of the second unit. A display device characterized by being applied to the display.
PCT/JP2006/306635 2006-03-30 2006-03-30 Display apparatus WO2007116437A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509589A JPWO2007116437A1 (en) 2006-03-30 2006-03-30 Display device
PCT/JP2006/306635 WO2007116437A1 (en) 2006-03-30 2006-03-30 Display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306635 WO2007116437A1 (en) 2006-03-30 2006-03-30 Display apparatus

Publications (1)

Publication Number Publication Date
WO2007116437A1 true WO2007116437A1 (en) 2007-10-18

Family

ID=38580746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306635 WO2007116437A1 (en) 2006-03-30 2006-03-30 Display apparatus

Country Status (2)

Country Link
JP (1) JPWO2007116437A1 (en)
WO (1) WO2007116437A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008648A (en) * 2008-06-26 2010-01-14 Shinoda Plasma Kk Display device and computer program
WO2011004595A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Plasma display panel driving method and plasma display device
WO2011089887A1 (en) * 2010-01-19 2011-07-28 パナソニック株式会社 Plasma display panel driving method and plasma display device
WO2011089886A1 (en) * 2010-01-19 2011-07-28 パナソニック株式会社 Plasma display panel driving method and plasma display device
US9060818B2 (en) 2011-09-01 2015-06-23 DePuy Synthes Products, Inc. Bone implants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179520A (en) * 1995-12-25 1997-07-11 Fujitsu Ltd Plasma display panel driving method and plasma display device
JP2003272529A (en) * 2002-03-14 2003-09-26 Sony Corp Plasma display device and its driving method
JP2004178854A (en) * 2002-11-25 2004-06-24 Fujitsu Ltd Light emitting tube array display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179520A (en) * 1995-12-25 1997-07-11 Fujitsu Ltd Plasma display panel driving method and plasma display device
JP2003272529A (en) * 2002-03-14 2003-09-26 Sony Corp Plasma display device and its driving method
JP2004178854A (en) * 2002-11-25 2004-06-24 Fujitsu Ltd Light emitting tube array display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008648A (en) * 2008-06-26 2010-01-14 Shinoda Plasma Kk Display device and computer program
WO2011004595A1 (en) * 2009-07-10 2011-01-13 パナソニック株式会社 Plasma display panel driving method and plasma display device
JP5170313B2 (en) * 2009-07-10 2013-03-27 パナソニック株式会社 Plasma display panel driving method and plasma display device
WO2011089887A1 (en) * 2010-01-19 2011-07-28 パナソニック株式会社 Plasma display panel driving method and plasma display device
WO2011089886A1 (en) * 2010-01-19 2011-07-28 パナソニック株式会社 Plasma display panel driving method and plasma display device
CN102714017A (en) * 2010-01-19 2012-10-03 松下电器产业株式会社 Plasma display panel driving method and plasma display device
JPWO2011089886A1 (en) * 2010-01-19 2013-05-23 パナソニック株式会社 Plasma display panel driving method and plasma display device
JPWO2011089887A1 (en) * 2010-01-19 2013-05-23 パナソニック株式会社 Plasma display panel driving method and plasma display device
US9060818B2 (en) 2011-09-01 2015-06-23 DePuy Synthes Products, Inc. Bone implants
US9814506B2 (en) 2011-09-01 2017-11-14 DePuy Synthes Products, Inc. Bone implants

Also Published As

Publication number Publication date
JPWO2007116437A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR100713052B1 (en) Method of driving plasma display panel
JP3303134B2 (en) Plasma display panel and driving device and method thereof
EP1705629B1 (en) Plasma display panel drive method
JP2006286250A (en) Plasma display panel and plasma display device
KR20040007710A (en) Plasma display panel display and its driving method
WO2007116437A1 (en) Display apparatus
WO2006030825A1 (en) Plasma display panel driving method
JP4927855B2 (en) Display device
JP4837726B2 (en) Display device
JP4874270B2 (en) Display device
JP5189503B2 (en) Display device driving method and display device
KR20030079501A (en) Plasma display panel and method of driving the same
WO2008050445A1 (en) Display device
JP2003076320A (en) Plasma display panel display device and its driving method
WO2005043503A1 (en) Plasma display panel drive method and plasma display device
JPH11144626A (en) Surface discharge plasma display panel and its driving method
US6882327B2 (en) Plasma display panel with number of scanning drivers reduced by using progressive drive method
JP2004288514A (en) Plasma display panel
WO2007091325A1 (en) Display apparatus
WO2007141847A1 (en) Display device
JP5143448B2 (en) Plasma tube array type display device
KR20080092477A (en) Display apparatus
JPWO2007148389A1 (en) Display device
JP2009175201A (en) Driving method of plasma display and plasma display device
KR20060051636A (en) Method for driving plasma display panel and plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509589

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730583

Country of ref document: EP

Kind code of ref document: A1