WO2007115389A1 - Positive displacement plant - Google Patents

Positive displacement plant Download PDF

Info

Publication number
WO2007115389A1
WO2007115389A1 PCT/BY2006/000003 BY2006000003W WO2007115389A1 WO 2007115389 A1 WO2007115389 A1 WO 2007115389A1 BY 2006000003 W BY2006000003 W BY 2006000003W WO 2007115389 A1 WO2007115389 A1 WO 2007115389A1
Authority
WO
WIPO (PCT)
Prior art keywords
mob
working
positive displacement
spherical surface
housing
Prior art date
Application number
PCT/BY2006/000003
Other languages
French (fr)
Russian (ru)
Inventor
Vladimir Iossifovich Golubev
Original Assignee
Vladimir Iossifovich Golubev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vladimir Iossifovich Golubev filed Critical Vladimir Iossifovich Golubev
Priority to PCT/BY2006/000003 priority Critical patent/WO2007115389A1/en
Priority to EA200802121A priority patent/EA014051B1/en
Publication of WO2007115389A1 publication Critical patent/WO2007115389A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C9/00Oscillating-piston machines or pumps
    • F04C9/002Oscillating-piston machines or pumps the piston oscillating around a fixed axis

Definitions

  • the invention relates to mechanical engineering and can be used as a basis for creating various combined installations consisting of a drive device (mainly in the form of an electric motor) connected to a rotary displacement volume displacement (MOB) machine, or with several similar machines, for example, two hydraulic pumps, or compressor and vacuum pump, etc.
  • a drive device mainly in the form of an electric motor
  • MOB rotary displacement volume displacement
  • several similar machines for example, two hydraulic pumps, or compressor and vacuum pump, etc.
  • the MOB is made in the form of an engine
  • the drive device for example, in the form of an electric generator.
  • volumetric displacement installations consisting of a drive device using one or another type of energy with a rotating drive link (electric machine rotor, flywheel, etc.) connected to the MOB [1].
  • Such installations are characterized by the implementation of the drive device and MOB in the form of independent (autonomous) structures having their own separate housings, which leads to an increase in the weight and size of the installation.
  • More compact installations with a drive device in the form of an electric motor and rotary MOB, made, for example, in the form of a hermetic refrigeration unit [2], while the drive link (motor rotor) is installed in two strong end walls of the MOB housing containing the housing, working chambers and piston elements in the form of eccentrics.
  • volumetric displacement units consisting of several drive devices and / or MOBs are most noticeable.
  • a volumetric displacement unit [3] (prototype) is known, consisting of a drive device in the form of an electric motor and two rotary MOBs located in a common housing and connected on both sides with a drive link - an electric rotor engine.
  • each MOB contains a housing, working chambers and piston elements in the form of eccentrics.
  • the radial and axial bearings of the rotor of the electric machine and the piston elements are the durable end walls of the MOB housings.
  • the technical result of the proposed solution is to minimize the mass and size of the volumetric displacement unit. Additionally, the problem of reducing the starting torque and uneven supply of the working fluid, eliminating the effects of unbalanced pressure forces of the working fluid, and reducing the number of excess bonds is solved. This leads to a decrease in vibration, increase the reliability and durability of the device.
  • the basis of the proposed technical solution is the non-obvious design properties of the well-known volumetric device - “Golubeva Machines” [4], which allow to exclude partially or completely bearing end walls of both the MOB housing and the drive device when it is connected to the MOB.
  • volumetric displacement consisting of at least a drive device (for example, in the form of an electric motor) connected differences have been introduced with the drive link from at least one rotor-type MOB having a housing, working chambers and piston elements, namely, the MOB housing is provided with a spherical surface portion, piston elements are installed in the equatorial region of the spherical surface and placed in meridional working cameras located in the working body, which is paired with a portion of the spherical surface of the housing and installed with the possibility of spherical movement.
  • a drive device for example, in the form of an electric motor
  • the spherical movement of the working body is determined by the movement of its geometric pole axis along a conditional biconical surface around the geometric pole axis of a portion of the spherical surface of the housing, and the connection of the drive device to the MOB is made by hinging the drive link with the working body of the MOB.
  • the working body also simultaneously performs the spatial fixation function of the drive link and can be considered as a self-aligning spherical support of the drive link, which makes it possible to exclude, in particular, the prototype (and in such installations) fully or partially durable end walls of the housing, perceiving radial and axial forces of the drive link. At the same time, excess connections are also reduced.
  • the presented functional feature can be implemented using various technical solutions depending on the specific purpose of the installation and its design and technological features.
  • the implementation of this functional feature is most effective when performing installation with several MOB and / or drive devices in various combinations.
  • Possible spatial fixation of the drive link, i.e. specific implementation of the link of the drive link with the working body of the MOB can be represented in two main forms:
  • the drive link is equipped with a rigidly installed oblique crank, directed along the geometric pole axis of the working body MOB, while the hinges are placed in the pole regions of the working body MOB;
  • the drive link is equipped with a rigidly mounted oblique crank in the form of an oblique (inclined) washer with an axis directed along the geometric pole axis of the sections of the spherical surface of the housing, and the hinges are located in the center of the spherical movement of the working body MOB.
  • a rigidly mounted oblique crank in the form of an oblique (inclined) washer with an axis directed along the geometric pole axis of the sections of the spherical surface of the housing, and the hinges are located in the center of the spherical movement of the working body MOB.
  • Particular embodiments of the installation can be a combination of the mentioned links of the drive link (links) with the working body (bodies)
  • MOB MOB.
  • the choice of option is determined by the functional purpose of the installation, as well as the structural and technological preferences of the manufacturer.
  • the drive device is made in the form of an electric motor located between two MOBs that perform the functions of compressors of the first and second compression stages with intermediate cooling.
  • FIG. 1 shows a longitudinal section (B-B) of an installation from a drive device in the form of an electric motor, a compressor of the first compression stage connected through an intermediate heat exchanger (shown schematically) to a compressor of the second compression stage.
  • FIG. 2 shows a cross-section (A-A) of an MOB (compressor of the first compression stage) with fragments of a view of the input and output channels.
  • the compressor of the second compression stage is similar, but has a smaller cross section of the working chambers (i.e., a smaller working volume), and the hinges are placed in the pole regions of the working body.
  • the proposed installation option comprises a drive device 1 (electric motor) with a drive link 2 (rotor) connected to two structurally similar MOB - 3 and Za.
  • Each MOB contains a housing 4, working chambers 5 (the accepted number of working chambers is 12) with piston elements 6 included.
  • the housing 4 is made with a portion of the spherical surface 7, and the working chambers 5 have a meridional orientation and are located in the working body 8 associated with housing 4 along a portion of the spherical surface 7.
  • Piston elements 6 are mounted on the housing 4 in the equatorial region of the portion of the spherical surface 7 using piston fingers 9.
  • the spherical movement of the working body 8 is determined by the movement of its geometric pole axis 10 along a conditional biconical surface (not shown) around the geometric pole axis 11 sections the spherical surface 7 of the housing 4 by kinematic connection of the working body 8 with the drive link 2.
  • kinematic connection Two variants of the kinematic connection are presented.
  • the working body 8 of the compressor of the first compression stage (MOB 3) is pivotally connected to the drive link 2 by means of an oblique crank 12 (an inclined washer, disk) located in the central region of the housing 4 and rigidly connected by the axis 13 to the drive link 2.
  • the working body 8 of the compressor of the second compression stage (MOB 3) is pivotally connected to the driving link 2 by means of an oblique crank 14 passing through the poles of the working body, rigidly connected to the driving link 2.
  • the MOB 3 and MOB 3 are equipped with counterweights 15 located in the polar regions of the working body . If necessary, corrective balances can be installed on the drive link 2 (not shown).
  • Input channels 16, 16a and output channels 17, 17a, respectively, of MOB 3 and MOB 3 are placed in the housing 4 taking into account the paths of the working chambers 5.
  • the output channels 17 of the compressor of the first compression stage (MOB 3) are connected to the input channels 16 of the compressor of the second compression stage (MOB For) through an intermediate ring heat exchanger 18 (shown schematically).
  • the conditional dividing plane 19 divides the considered options for the kinematic connection of the working body 8 with the drive link 2 into two parts. In other configurations of the installation, these parts can be connected symmetrically relative to each other or the drive device, and MOB can be placed on one side of the drive device or between the drive devices.
  • the installation of volumetric displacement as a refrigeration unit of the air conditioner operates as follows. When energy is supplied to the drive device 1 (electric motor), the drive link 2 (rotor) rotates and the axis 13 rigidly mounted on it with an oblique crank 12, as well as an oblique crank 14.
  • the geometric pole axes 10 of the working bodies 8 describe biconical surfaces around the geometrical pole axis 11 of the sections of the spherical surface 7 of the housing 4, and the working bodies 8, pivotally connected to the oblique cranks 12 and 14, perform a spherical movement characteristic of the MOB of the “Golubeva” type [4], in which the working chambers 5 describe elongated b
  • the working chambers 5 are alternately connected to the input channels 16, 16a and output channels 17, 17a.
  • the mechanism of distribution of the working fluid is not considered in detail in the context of the problem being solved). It is important to note that to solve the problem it is essential that the same work processes (in particular, the processes of compression of the working fluid) occur in diametrically opposed working chambers 5, while the working body 8 is unloaded from the pressure of the working fluid and performs the function of a spherical (self-aligning ) bearings of the drive link 2.
  • the working body 8 can be considered as a spherical bearing with gas-static unloading.
  • the working element in the hydraulic MOB also plays the role of a support with hydrostatic unloading).
  • the drive link 2 becomes spatially defined in the radial and axial directions with the minimum possible excess connections.
  • the centrifugal forces arising during the spherical movement of the working body 8 are balanced arbitrarily exactly by counterweights 15.
  • the working fluid in this case, CO 2
  • the working fluid is supplied to the input channels 16, is compressed and fed through the output channels 17 through an annular heat exchanger 18 on the input channels 16a MOB Over, where it is pressurized to a predetermined pressure.
  • volumetric displacement installation is feasible at the modern technological level. In this case, the following is achieved: - reduction of the overall size and weight of the installation;
  • volumetric displacement units for various functional purposes on the basis of various combinations of drives and MOBs with various working bodies, compressible and incompressible. It is also important to note that various sources of torque, i.e. having rotating drive link. In particular, the most effective is the performance of volumetric displacement installations with a drive device also on MOBs of the “Golubev Machine” type [4], for example, a reversed installation in the form of two spaced electric generators with a hydraulic motor between them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

The invention can be used in mechanical engineering for producing compact positive displacement plants using compressible and incompressible working media. The inventive plant comprises different combinations of driving devices and rotary positive displacement machines which are used in refrigerating units, air-conditioning devices using CO<SUB>2 </SUB>in the form of a working medium, hydraulic pumping plants etc. The inventive plant comprises a driving device (in particular, an electric motor ) and is connected to at least one rotary positive displacement machine by means of a rotatable driving link. The positive displacement machines are provided with a working member which contains 12-20 working volumes and carries out a spherical movement along the section of a spherical surface of the body. The driving link is spatially fixed by means of a joint-type coupling with the working member, in the form of a spherical self-adjustable gasostatic bearing (or hydrostatic for hydraulic positive displacement machines). Such a structural design makes it possible to exclude the strong end walls of the driving device and the positive displacement machine, thereby reducing the all-over dimensions and mass of the plant. The possible embodiment of the plant is disclosed in the form of a refrigeration unit for an CO<SUB>2</SUB> air-conditioning device provided with the compressors of first and second compression stages and a driving electric motor.

Description

УСТАНОВКА ОБЪЕМНОГО ВЫТЕСНЕНИЯ Область техники INSTALLING VOLUME EXTRACTION
Изобретение относится к области машиностроения и может быть использовано в качестве базы для создания различных комбинированных установок, состоящих из приводного устройства (преимущественно в виде электрического двигателя), соединенного с машиной объемного вытеснения (MOB) роторного типа, или с несколькими подобными машинами, например, двух гидравлических насосов, или компрессора и вакуумного насоса и т.д. Предполагается возможность обращенного выполнения установки, при котором MOB выполнена в виде двигателя, а приводное устройство, например, в виде электрического генератора.The invention relates to mechanical engineering and can be used as a basis for creating various combined installations consisting of a drive device (mainly in the form of an electric motor) connected to a rotary displacement volume displacement (MOB) machine, or with several similar machines, for example, two hydraulic pumps, or compressor and vacuum pump, etc. The possibility of reversed installation is assumed, in which the MOB is made in the form of an engine, and the drive device, for example, in the form of an electric generator.
Предшествующий уровень техникиState of the art
Широко известны установки объемного вытеснения, состоящие из использующего тот или иной вид энергии приводного устройства с вращающимся приводным звеном (ротором электрической машины, маховиком и т.д.), соединенным с MOB [1]. Для подобных установок характерно выполнение приводного устройства и MOB в виде самостоятельных (автономных) конструкций, имеющих собственные отдельные корпуса, что приводит к увеличению массы и габарита установки. Более компактны установки, с приводным устройством в виде электрического двигателя и роторной MOB, выполненные, например, в виде герметичного холодильного агрегата [2], при этом приводное звено (ротор двигателя) установлено в двух прочных торцевых стенках корпуса MOB, содержащей корпус, рабочие камеры и поршневые элементами в виде эксцентриков.Volumetric displacement installations are widely known, consisting of a drive device using one or another type of energy with a rotating drive link (electric machine rotor, flywheel, etc.) connected to the MOB [1]. Such installations are characterized by the implementation of the drive device and MOB in the form of independent (autonomous) structures having their own separate housings, which leads to an increase in the weight and size of the installation. More compact installations, with a drive device in the form of an electric motor and rotary MOB, made, for example, in the form of a hermetic refrigeration unit [2], while the drive link (motor rotor) is installed in two strong end walls of the MOB housing containing the housing, working chambers and piston elements in the form of eccentrics.
Но наиболее заметны упомянутые недостатки известных установок объемного вытеснения, состоящих из нескольких приводных устройств и/или MOB. В качестве типичного представителя компактной установки объемного вытеснения известна, например, установка объемного вытеснения [3] (прототип), состоящая из приводного устройства в виде электрического двигателя и двух роторных MOB, размещенных в общем корпусе и соединенных с двух сторон с приводным звеном - ротором электрического двигателя. При этом каждая MOB содержит корпус, рабочие камеры и поршневые элементами в виде эксцентриков. Радиальными и осевыми опорами ротора электрической машины и поршневых элементов служат прочные торцевые стенки корпусов MOB. Необходимость в четырех достаточно прочных (и соответственно - тяжелых) торцевых стенках корпуса увеличивает массу и габарит установки. К тому же выполнение MOB только с одним рабочим циклом за оборот поршневого элемента увеличивает пусковой момент приводного устройства (соответственно - пусковой ток и габарит электрического двигателя). Увеличивается также и неравномерность подачи рабочего тела. При обращенном выполнении установки велика неравномерность крутящего момента MOB и пульсации тока электрического генератора. Наличие четырех разнесенных соосных цилиндрических подшипников (т.е. не самоустанавливающихся) приводит к появлению избыточных связей и, соответственно, к вероятности появления дополнительных механических потерь из-за технологических и эксплутационных погрешностей.But the drawbacks of the known volumetric displacement units consisting of several drive devices and / or MOBs are most noticeable. As a typical representative of a compact volumetric displacement unit, for example, a volumetric displacement unit [3] (prototype) is known, consisting of a drive device in the form of an electric motor and two rotary MOBs located in a common housing and connected on both sides with a drive link - an electric rotor engine. In addition, each MOB contains a housing, working chambers and piston elements in the form of eccentrics. The radial and axial bearings of the rotor of the electric machine and the piston elements are the durable end walls of the MOB housings. The need for four sufficiently strong (and, accordingly, heavy) end walls of the housing increases the weight and size of the installation. In addition, the implementation of MOB with only one duty cycle per revolution of the piston element increases the starting torque of the drive device (respectively, the starting current and the dimension of the electric motor). The unevenness of the supply of the working fluid also increases. When the installation is reversed, the unevenness of the MOB torque and the ripple of the current of the electric generator is large. The presence of four spaced coaxial cylindrical bearings (i.e., not self-aligning) leads to the appearance of excessive connections and, accordingly, to the likelihood of additional mechanical losses due to technological and operational errors.
Раскрытие изобретенияDisclosure of invention
Техническим результатом предлагаемого решения является минимизация массы и габарита установки объемного вытеснения. Дополнительно решается задача уменьшения пускового момента и неравномерности подачи рабочего тела, исключения действия неуравновешенных сил давления рабочего тела, уменьшения числа избыточных связей. Это приводит к уменьшению вибраций, увеличению надежности и долговечности устройства. Основой предлагаемого технического решения являются неочевидные свойства конструкции известного объемного устройства - «Maшины Гoлyбeвa» [4], позволяющие исключить частично или полностью несущие торцевые стенки, как корпуса MOB, так и приводного устройства при его соединении с MOB. Одновременно достигается уменьшение пускового момента и равномерность подачи за счет существенного (в 6 -10 раз) увеличения числа рабочих циклов на оборот, исключение действия неуравновешенных сил давления рабочего тела, при этом сферическая форма кинематически взаимодействующих элементов позволяет уменьшить влияния избыточных связей.The technical result of the proposed solution is to minimize the mass and size of the volumetric displacement unit. Additionally, the problem of reducing the starting torque and uneven supply of the working fluid, eliminating the effects of unbalanced pressure forces of the working fluid, and reducing the number of excess bonds is solved. This leads to a decrease in vibration, increase the reliability and durability of the device. The basis of the proposed technical solution is the non-obvious design properties of the well-known volumetric device - “Golubeva Machines” [4], which allow to exclude partially or completely bearing end walls of both the MOB housing and the drive device when it is connected to the MOB. At the same time, a decrease in the starting torque and uniformity of feed is achieved due to a significant (6 -10 times) increase in the number of work cycles per revolution, elimination of the action of unbalanced pressure forces of the working fluid, while the spherical shape of kinematically interacting elements reduces the effects of excess bonds.
Для достижения основного и дополнительных технических результатов в установке объемного вытеснения, состоящей, по крайней мере, из приводного устройства, (например, в виде электрического двигателя), соединенного з приводным звеном, по крайней мере, с одной MOB роторного типа, имеющей корпус, рабочие камеры и поршневые элементы, введены отличия, а именно - корпус MOB снабжен участком сферической поверхности, поршневые элементы установлены в экваториальной области упомянутой сферической поверхности и размещены в меридиональных рабочих камерах, размещенных в рабочем органе, который сопряжен с участком сферической поверхности корпуса и установлен с возможностью сферического движения. При этом сферическое движение рабочего органа определено перемещением его геометрической полюсной оси по условной биконической поверхности вокруг геометрической полюсной оси участка сферической поверхности корпуса, а соединение приводного устройства с MOB выполнено при помощи шарнирной связи приводного звена с рабочим органом MOB. В этом случае рабочий орган одновременно выполняет также функцию пространственной фиксации приводного звена и может рассматриваться, как самоустанавливающаяся сферическая опора приводного звена, что и позволяет исключить, в частности, у прототипа (и в подобных установках) полностью или частично прочные торцевые стенки корпуса, воспринимающие радиальные и осевые силы приводного звена. Одновременно уменьшаются также и избыточные связи. Представленный функциональный признак может быть реализован с помощью различных вариантов технических решений в зависимости от конкретного назначения установки и ее конструктивных и технологических особенностей. Реализация этого функционального признака наиболее эффектна при выполнении установки с несколькими MOB и/или приводными устройствами в различных комбинациях. Возможные варианты пространственной фиксации приводного звена, т.е. конкретного выполнения связи приводного звена с рабочим органом MOB могут быть представлены в двух основных видах:To achieve the main and additional technical results in the installation of volumetric displacement, consisting of at least a drive device (for example, in the form of an electric motor) connected differences have been introduced with the drive link from at least one rotor-type MOB having a housing, working chambers and piston elements, namely, the MOB housing is provided with a spherical surface portion, piston elements are installed in the equatorial region of the spherical surface and placed in meridional working cameras located in the working body, which is paired with a portion of the spherical surface of the housing and installed with the possibility of spherical movement. In this case, the spherical movement of the working body is determined by the movement of its geometric pole axis along a conditional biconical surface around the geometric pole axis of a portion of the spherical surface of the housing, and the connection of the drive device to the MOB is made by hinging the drive link with the working body of the MOB. In this case, the working body also simultaneously performs the spatial fixation function of the drive link and can be considered as a self-aligning spherical support of the drive link, which makes it possible to exclude, in particular, the prototype (and in such installations) fully or partially durable end walls of the housing, perceiving radial and axial forces of the drive link. At the same time, excess connections are also reduced. The presented functional feature can be implemented using various technical solutions depending on the specific purpose of the installation and its design and technological features. The implementation of this functional feature is most effective when performing installation with several MOB and / or drive devices in various combinations. Possible spatial fixation of the drive link, i.e. specific implementation of the link of the drive link with the working body of the MOB can be represented in two main forms:
- приводное звено, снабжено жестко установленным косым кривошипом, направленным по геометрической полюсной оси рабочего органа MOB, при этом шарниры размещены в полюсных областях рабочего органа MOB;- the drive link is equipped with a rigidly installed oblique crank, directed along the geometric pole axis of the working body MOB, while the hinges are placed in the pole regions of the working body MOB;
- приводное звено снабжено жестко установленным косым кривошипом в виде косой (наклонной) шайбы с осью, направленной по геометрической полюсной оси участков сферической поверхности корпуса, а шарниры размещены в области центра сферического движения рабочего органа MOB. Частные варианты выполнения установки могут представлять комбинации упомянутых связей приводного звена (звеньев) с рабочим органом (органами)- the drive link is equipped with a rigidly mounted oblique crank in the form of an oblique (inclined) washer with an axis directed along the geometric pole axis of the sections of the spherical surface of the housing, and the hinges are located in the center of the spherical movement of the working body MOB. Particular embodiments of the installation can be a combination of the mentioned links of the drive link (links) with the working body (bodies)
MOB. При этом выбор варианта определяется функциональным назначением установки, а также конструктивными и технологическими предпочтениями изготовителя.MOB. In this case, the choice of option is determined by the functional purpose of the installation, as well as the structural and technological preferences of the manufacturer.
Один из возможных примеров реализации технического решения представлен в виде компрессорной установки кондиционера с СОг в качестве рабочего тела. При этом приводное устройство выполнено в виде электрического двигателя, размещенного между двумя MOB, выполняющих функции компрессоров первой и второй ступеней сжатия с промежуточным охлаждением.One of the possible examples of the implementation of the technical solution is presented in the form of a compressor installation of an air conditioner with CO2 as a working fluid. In this case, the drive device is made in the form of an electric motor located between two MOBs that perform the functions of compressors of the first and second compression stages with intermediate cooling.
Краткое описание фигур чертежейBrief Description of the Drawings
На фиг. 1 изображен продольный разрез (Б-Б) установки из приводного устройства в виде электрического двигателя, компрессора первой ступени сжатия, соединенного через промежуточный теплообменник (показан схематически) с компрессором второй ступени сжатия. На фиг. 2 изображен поперечный разрез (A-A) MOB (компрессора первой ступени сжатия) с фрагментами вида входных и выходных каналов. Компрессор второй ступени сжатия выполнен аналогично, но имеет меньшее поперечное сечение рабочих камер (т.е. меньший рабочий объем), а шарниры размещены в полюсных областях рабочего органа.In FIG. 1 shows a longitudinal section (B-B) of an installation from a drive device in the form of an electric motor, a compressor of the first compression stage connected through an intermediate heat exchanger (shown schematically) to a compressor of the second compression stage. In FIG. 2 shows a cross-section (A-A) of an MOB (compressor of the first compression stage) with fragments of a view of the input and output channels. The compressor of the second compression stage is similar, but has a smaller cross section of the working chambers (i.e., a smaller working volume), and the hinges are placed in the pole regions of the working body.
Варианты осуществления изобретенияEmbodiments of the invention
Предлагаемый вариант установки содержит приводное устройство 1 (электрический двигатель) с приводным звеном 2 (ротором), соединенным с двумя конструктивно подобными MOB - 3 и За. Каждая MOB содержит корпус 4, рабочие камеры 5 (принятое число рабочих камер - 12) с входящими в них поршневыми элементами 6. Корпус 4 выполнен с участком сферической поверхности 7, а рабочие камеры 5 имеют меридиональную направленность и размещены в рабочем органе 8, сопряженном с корпусом 4 по участку сферической поверхности 7. Поршневые элементы 6 установлены на корпусе 4 в экваториальной области участка сферической поверхности 7 при помощи поршневых пальцев 9. Сферическое движение рабочего органа 8 определено перемещением его геометрической полюсной оси 10 по условной биконической поверхности (не показана) вокруг геометрической полюсной оси 11 участка сферической поверхности 7 корпуса 4 путем кинематического соединения рабочего органа 8 с приводным звеном 2. Представлены два варианта кинематического соединения. В первом варианте рабочий орган 8 компрессора первой ступени сжатия (MOB 3) шарнирно соединен с приводным звеном 2 при помощи размещенного в центральной области корпуса 4 косого кривошипа 12 (наклонной шайбы, диска), жестко соединенного осью 13 с приводным звеном 2. Во втором варианте рабочий орган 8 компрессора второй ступени сжатия (MOB За) шарнирно соединен с приводным звеном 2 при помощи проходящего через полюса рабочего органа косого кривошипа 14, жестко соединенного с приводным звеном 2. MOB 3 и MOB За снабжены размещенными в полюсных областях рабочего органа 8 противовесами 15. При необходимости, корректирующие противовесы могут быть установлены на приводном звене 2 (не показаны). Входные каналы 16, 16а и выходные каналы 17, 17а соответственно MOB 3 и MOB За размещены в корпусе 4 с учетом траекторий движения рабочих камер 5. Выходные каналы 17 компрессора первой ступени сжатия (MOB 3) соединены входными каналами 16 компрессора второй ступени сжатия (MOB За) через промежуточный кольцевой теплообменник 18 (показан схематически).The proposed installation option comprises a drive device 1 (electric motor) with a drive link 2 (rotor) connected to two structurally similar MOB - 3 and Za. Each MOB contains a housing 4, working chambers 5 (the accepted number of working chambers is 12) with piston elements 6 included. The housing 4 is made with a portion of the spherical surface 7, and the working chambers 5 have a meridional orientation and are located in the working body 8 associated with housing 4 along a portion of the spherical surface 7. Piston elements 6 are mounted on the housing 4 in the equatorial region of the portion of the spherical surface 7 using piston fingers 9. The spherical movement of the working body 8 is determined by the movement of its geometric pole axis 10 along a conditional biconical surface (not shown) around the geometric pole axis 11 sections the spherical surface 7 of the housing 4 by kinematic connection of the working body 8 with the drive link 2. Two variants of the kinematic connection are presented. In the first embodiment, the working body 8 of the compressor of the first compression stage (MOB 3) is pivotally connected to the drive link 2 by means of an oblique crank 12 (an inclined washer, disk) located in the central region of the housing 4 and rigidly connected by the axis 13 to the drive link 2. In the second embodiment the working body 8 of the compressor of the second compression stage (MOB 3) is pivotally connected to the driving link 2 by means of an oblique crank 14 passing through the poles of the working body, rigidly connected to the driving link 2. The MOB 3 and MOB 3 are equipped with counterweights 15 located in the polar regions of the working body . If necessary, corrective balances can be installed on the drive link 2 (not shown). Input channels 16, 16a and output channels 17, 17a, respectively, of MOB 3 and MOB 3 are placed in the housing 4 taking into account the paths of the working chambers 5. The output channels 17 of the compressor of the first compression stage (MOB 3) are connected to the input channels 16 of the compressor of the second compression stage (MOB For) through an intermediate ring heat exchanger 18 (shown schematically).
Условная разделительная плоскость 19 разделяет рассмотренные варианты выполнения кинематической связи рабочего органа 8 с приводным звеном 2 на две части. При других компоновочных вариантах установки, эти части могут соединяться симметрично относительно друг друга или приводного устройства, причем MOB могут быть размещены с одной стороны приводного устройства или между приводными устройствами. Установка объемного вытеснения в качестве холодильного агрегата кондиционера работает следующим образом. При подводе энергии к приводному устройству 1 (электрическому двигателю) вращается приводное звено 2 (ротор) и жестко установленные на нем ось 13 с косым кривошипом 12, а также косой кривошип 14. Соответственно в каждой MOB геометрические полюсные оси 10 рабочих органов 8 описывают биконические поверхности вокруг геометрической полюсной оси 11 участков сферической поверхности 7 корпуса 4, а рабочие органы 8, шарнирно соединенные с косыми кривошипами 12 и 14 совершают характерное для MOB типа «Maшины Гoлyбeвa» [4] сферическое движение, при котором рабочие камеры 5 описывают вытянутые в бThe conditional dividing plane 19 divides the considered options for the kinematic connection of the working body 8 with the drive link 2 into two parts. In other configurations of the installation, these parts can be connected symmetrically relative to each other or the drive device, and MOB can be placed on one side of the drive device or between the drive devices. The installation of volumetric displacement as a refrigeration unit of the air conditioner operates as follows. When energy is supplied to the drive device 1 (electric motor), the drive link 2 (rotor) rotates and the axis 13 rigidly mounted on it with an oblique crank 12, as well as an oblique crank 14. Accordingly, in each MOB, the geometric pole axes 10 of the working bodies 8 describe biconical surfaces around the geometrical pole axis 11 of the sections of the spherical surface 7 of the housing 4, and the working bodies 8, pivotally connected to the oblique cranks 12 and 14, perform a spherical movement characteristic of the MOB of the “Golubeva” type [4], in which the working chambers 5 describe elongated b
меридиональном направлении «вocьмepки», а поршневые элементы 6 отслеживают их движение. В процессе перемещения рабочие камеры 5 поочередно соединяются с входными каналами 16, 16а и выходными каналами 17, 17а. (Детально механизм распределения рабочего тела в контексте решаемой задачи не рассматривается). Важно отметить, что для решения поставленной задачи существенно то, что одинаковые рабочие процессы (в частности - процессы сжатия рабочего тела) происходят в размещенных диаметрально противоположных рабочих камерах 5, при этом рабочий орган 8 разгружен от сил давления рабочего тела и выполняет функцию сферической (самоустанавливающейся) опоры приводного звена 2. Иначе говоря, рабочий орган 8 может рассматриваться как сферическая опора с газостатической разгрузкой. (Еще эффективнее играет роль опоры с гидростатической разгрузкой рабочий орган в гидравлических MOB). Таким образом, приводное звено 2 становится пространственно определено в радиальном и осевом направлениях при минимально возможных избыточных связях. Возникающие в процессе сферического движения рабочего органа 8 центробежные силы уравновешиваются сколь угодно точно противовесами 15. В процессе работы MOB 3 рабочее тело (в данном случае - CO2) подается во входные каналы 16, сжимается и подается через выходные каналы 17 через кольцевой теплообменник 18 на входные каналы 16а MOB За, где и дожимается до заданного давления.the meridional direction of "eight", and the piston elements 6 track their movement. During the movement, the working chambers 5 are alternately connected to the input channels 16, 16a and output channels 17, 17a. (The mechanism of distribution of the working fluid is not considered in detail in the context of the problem being solved). It is important to note that to solve the problem it is essential that the same work processes (in particular, the processes of compression of the working fluid) occur in diametrically opposed working chambers 5, while the working body 8 is unloaded from the pressure of the working fluid and performs the function of a spherical (self-aligning ) bearings of the drive link 2. In other words, the working body 8 can be considered as a spherical bearing with gas-static unloading. (The working element in the hydraulic MOB also plays the role of a support with hydrostatic unloading). Thus, the drive link 2 becomes spatially defined in the radial and axial directions with the minimum possible excess connections. The centrifugal forces arising during the spherical movement of the working body 8 are balanced arbitrarily exactly by counterweights 15. During the operation of MOB 3, the working fluid (in this case, CO 2 ) is supplied to the input channels 16, is compressed and fed through the output channels 17 through an annular heat exchanger 18 on the input channels 16a MOB Over, where it is pressurized to a predetermined pressure.
Промышленная применимостьIndustrial applicability
Предлагаемое выполнение установки объемного вытеснения осуществимо на современном технологическом уровне. При этом достигается: - уменьшение габарита и массы установки;The proposed implementation of the volumetric displacement installation is feasible at the modern technological level. In this case, the following is achieved: - reduction of the overall size and weight of the installation;
- уменьшение пускового момента (пускового тока);- decrease in starting torque (inrush current);
- уменьшение пульсации рабочего тела (крутящего момента);- reduction of pulsation of the working fluid (torque);
- принципиальная возможность исключение механических вибраций. Расширяется также конструктивная база, так как конструктор получает возможность проектировать компактные варианты установок объемного вытеснения различного функционального назначения на основе различных комбинаций приводов и MOB с различными рабочими телами, сжимаемыми и несжимаемыми. Важно также отметить, что в качестве приводного устройства могут выступать различные источники крутящего момента, т.е. имеющие вращающееся приводное звено. В частности, наиболее эффектно выполнение установок объемного вытеснения с приводным устройством также на MOB типа «Maшины Гoлyбeвa» [4], например обращенной установки в виде двух разнесенных электрогенераторов с гидравлическим двигателем между ними.- a fundamental possibility of the exclusion of mechanical vibrations. The design base is also expanding, since the designer is able to design compact versions of volumetric displacement units for various functional purposes on the basis of various combinations of drives and MOBs with various working bodies, compressible and incompressible. It is also important to note that various sources of torque, i.e. having rotating drive link. In particular, the most effective is the performance of volumetric displacement installations with a drive device also on MOBs of the “Golubev Machine” type [4], for example, a reversed installation in the form of two spaced electric generators with a hydraulic motor between them.
Источники информации: [1] - « Механические вакуумные нacocы». Е.С. Фролов, И. В. Автономова,Sources of information: [1] - "Mechanical vacuum pumps". E.S. Frolov, I.V. Avtonomova,
В. И. Васильев и др. - M.: Машиностроение, 1989. (Стр. 88). [2] - «Xoлoдильныe кoмпpeccopы». Справочник. Под ред. А.В. Быкова. - M.: Легкая и пищевая промышленность. 1981. (Стр. 160).V.I. Vasiliev et al. - M.: Mechanical Engineering, 1989. (p. 88). [2] - “Refrigerated Compressors”. Directory. Ed. A.V. Bykova. - M .: Light and food industry. 1981. (p. 160).
[3] - Пат. США Ns 6171076 B1 от 9. 01. 2002.[3] - Pat. U.S. Nos. 6171076 B1 dated 9.01.2002.
[4] - Евразийский патент Ns 003880 «Oбъeмнoe устройство «Maшинa Гoлyбeвa», опубл. 30.10.2003. (Заявка PCT WO 01/75274, опубл. 11.10.2001). [4] - Eurasian patent Ns 003880 "Volumetric device" Golubeva machine ", publ. 10/30/2003. (Application PCT WO 01/75274, publ. 11.10.2001).

Claims

ФОРМУЛА ИЗОБРЕНИЯ FORMULA OF THE INVENTION
1. Установка объемного вытеснения, состоящая, по крайней мере, из одного приводного устройства, соединенного приводным звеном, по крайней мере, с одной машиной объемного вытеснения (MOB) роторного типа, имеющей корпус, рабочие камеры и поршневые элементы, отличается тем, что корпус MOB снабжен участком сферической поверхности, поршневые элементы установлены в экваториальной области упомянутой сферической поверхности и размещены в меридиональных рабочих камерах, размещенных в рабочем органе, который сопряжен с участком сферической поверхности корпуса и установлен с возможностью сферического движения, определенного перемещением его геометрической полюсной оси по условной биконической поверхности вокруг геометрической полюсной оси участка сферической поверхности корпуса, а соединение приводного устройства с MOB выполнено при помощи шарнирной связи приводного звена с рабочим органом MOB. 1. Installation of volumetric displacement, consisting of at least one drive device connected by a drive link to at least one rotary volume displacement (MOB) machine having a housing, working chambers and piston elements, characterized in that the housing The MOB is equipped with a portion of the spherical surface, piston elements are installed in the equatorial region of the spherical surface and are placed in the meridional working chambers located in the working body, which is paired with a portion of the spherical surface of the housing and installed with the possibility of spherical movement, determined by moving its geometric pole axis along the conditional biconical surfaces around the geometrical pole axis of the spherical surface portion of the housing, and the connection of the drive device to the MOB is made by articulating the drive link with the working body of the MOB.
2. Устройство по п.1 , отличающееся тем, что шарнирная связь приводного звена выполнено при помощи жестко установленного на нем косого кривошипа, направленного по геометрической оси рабочего органа MOB, а шарниры размещены в полюсных областях рабочего органа, или в области центра участка сферической поверхности корпуса, при этом косой кривошип выполнен в виде (наклонной) шайбы с осью, направленной по геометрической полюсной оси участков сферической поверхности корпуса. 2. The device according to claim 1, characterized in that the articulated connection of the drive link is made using a rigidly mounted oblique crank directed along the geometric axis of the working body MOB, and the hinges are placed in the pole regions of the working body, or in the region of the center of the spherical surface case, while the oblique crank is made in the form of a (inclined) washer with an axis directed along the geometric pole axis of the sections of the spherical surface of the case.
PCT/BY2006/000003 2006-04-10 2006-04-10 Positive displacement plant WO2007115389A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/BY2006/000003 WO2007115389A1 (en) 2006-04-10 2006-04-10 Positive displacement plant
EA200802121A EA014051B1 (en) 2006-04-10 2006-04-10 Positive displacement plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BY2006/000003 WO2007115389A1 (en) 2006-04-10 2006-04-10 Positive displacement plant

Publications (1)

Publication Number Publication Date
WO2007115389A1 true WO2007115389A1 (en) 2007-10-18

Family

ID=36974711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BY2006/000003 WO2007115389A1 (en) 2006-04-10 2006-04-10 Positive displacement plant

Country Status (2)

Country Link
EA (1) EA014051B1 (en)
WO (1) WO2007115389A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0381639A2 (en) * 1989-01-09 1990-08-08 3D International A/S Power conversion machine provided with pistons rotating in a spherical housing
US6171076B1 (en) * 1998-06-10 2001-01-09 Tecumseh Products Company Hermetic compressor assembly having a suction chamber and twin axially disposed discharge chambers
WO2001075274A1 (en) * 2000-04-03 2001-10-11 Ooo 'mg-Motory' 'goulubev machine' volumetric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0381639A2 (en) * 1989-01-09 1990-08-08 3D International A/S Power conversion machine provided with pistons rotating in a spherical housing
US6171076B1 (en) * 1998-06-10 2001-01-09 Tecumseh Products Company Hermetic compressor assembly having a suction chamber and twin axially disposed discharge chambers
WO2001075274A1 (en) * 2000-04-03 2001-10-11 Ooo 'mg-Motory' 'goulubev machine' volumetric device

Also Published As

Publication number Publication date
EA014051B1 (en) 2010-08-30
EA200802121A1 (en) 2009-02-27

Similar Documents

Publication Publication Date Title
EP1807623B1 (en) Reciprocating compressor
JP5441982B2 (en) Rotary compressor
JP5084692B2 (en) 2-cylinder rotary compressor
KR20070010082A (en) Rotary fluid machine
WO2005113985A1 (en) Rotary compressor
KR102485660B1 (en) Scroll compressor
KR20200112247A (en) Scroll compressor
KR100432115B1 (en) Plural cylinder rotary compressor
JP2005188492A (en) Horizontal opposed type compressor
US6203301B1 (en) Fluid pump
JP2010121481A (en) Rotary compressor
KR20100023634A (en) Hermetic compressor and refrigerator having the same
WO2007115389A1 (en) Positive displacement plant
KR101462935B1 (en) Hermetic compressor and refrigerator having the same
KR100876530B1 (en) The reciprocation type 4 cycle second compressor
KR101549863B1 (en) Hermetic compressor having the same and refrigerator having the same
KR100556404B1 (en) Rotary Type Compressor Having Dual Capacity
CN108463635B (en) Oscillating piston type compressor
JPH0972275A (en) Low vibration displacement type machine
KR100531271B1 (en) Rotary Type Compressor Having Dual Capacity
KR101978960B1 (en) Compressor
JP2007182822A (en) Expansion compressor
JP4208239B2 (en) Positive displacement machine
JPH10288156A (en) Oscillating type compressor
KR20210080889A (en) Inverter-Integrated Electric Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06721652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200802121

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 06721652

Country of ref document: EP

Kind code of ref document: A1