WO2007114190A1 - Film deposition equipment and method for producing magnetic disc - Google Patents

Film deposition equipment and method for producing magnetic disc Download PDF

Info

Publication number
WO2007114190A1
WO2007114190A1 PCT/JP2007/056721 JP2007056721W WO2007114190A1 WO 2007114190 A1 WO2007114190 A1 WO 2007114190A1 JP 2007056721 W JP2007056721 W JP 2007056721W WO 2007114190 A1 WO2007114190 A1 WO 2007114190A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
base
bias
application terminal
film
Prior art date
Application number
PCT/JP2007/056721
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Yasumori
Yujiro Saito
Keiji Moroishi
Original Assignee
Hoya Corporation
Hoya Magnetics Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation, Hoya Magnetics Singapore Pte. Ltd. filed Critical Hoya Corporation
Publication of WO2007114190A1 publication Critical patent/WO2007114190A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders

Definitions

  • the present invention relates to a method for manufacturing a magnetic disk mounted on a hard disk device or the like, and also relates to a film forming apparatus that can be used for manufacturing such a magnetic disk.
  • a magnetic disk mounted on a hard disk drive is manufactured by forming a laminated film on a disk substrate with a vacuum apparatus (a sputtering apparatus or the like).
  • This laminated film is formed, for example, by placing a disk substrate held on a base in a process chamber (film formation chamber) where a plurality of targets are installed, and after evacuating, by sputtering or CVD. Then, the film is formed.
  • a laminated film formed on a disk substrate is formed by sequentially forming films such as a base layer and a recording layer. It is known that the temperature of the disk substrate during the deposition of each of these layers has a significant effect on the surface condition and film characteristics of the film. In order to heat the disk substrate in a vacuum, a heater is installed in the sputtering equipment. Has been.
  • Non-patent Document 1 JP-A-7-225935 (Patent Document 1) and JP-A-5-205240
  • Patent Document 2 As described in the publication (Patent Document 2), during the formation of the magnetic film, magnetic sputtering is performed by applying negative sputtering to apply a negative DC bias voltage (substrate bias) to the disk substrate.
  • substrate bias negative DC bias voltage
  • the recording density of the air disk can be increased. This can be achieved by increasing the adhesion of the magnetic film by applying a substrate bias, reducing the surface roughness, increasing the hardness by increasing the density of the magnetic film, as well as the orientation of the microcrystalline film and the length of the crystal axis. This is because it can be changed.
  • Patent Document 3 When a non-conductive glass substrate or the like is used as a disk substrate, a metal film is used as the first layer as described in JP-A-4-79025 (Patent Document 3).
  • Patent No. 3002632 Patent Document 4
  • Patent Document 5 Japanese Patent Application Laid-Open No. 7-243037
  • magnetic disks include not only 2.5 inch type mounted on so-called laptop computers and 3.5 inch type mounted on so-called desktop computers, but also mobile phones, Small-diameter magnetic disks, such as 1.0-inch type and 0.85-inch type, are manufactured for use in storage devices of small devices such as digital cameras, car navigation systems, and portable music players. Productivity cannot be improved unless film formation on such a small-diameter disk substrate is performed by holding a plurality of disk substrates on one base.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-225935
  • Patent Document 2 JP-A-5-205240
  • Patent Document 3 Japanese Patent Laid-Open No. 4 79025
  • Patent Document 4 Japanese Patent No. 3002632
  • Patent Document 5 Japanese Patent Laid-Open No. 7-243037
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-011625
  • Non-Patent Document 1 IEEE-Transactions on Magnetics. 26 ⁇ , 1282, 19 90.
  • a claw-shaped member made of a conductive material for example, metal
  • This claw-like member is also used as a bias application terminal.
  • the position of the disk substrate is changed and reattached to the nail member so that the nail member and the base layer are in sufficient contact with each other. .
  • the electric conduction necessary for applying the substrate bias is ensured, and therefore the substrate bias can be appropriately applied in the subsequent film forming process.
  • the disk substrate is once taken out of the film forming apparatus and then put back into the film forming apparatus, resulting in a significant deterioration in productivity.
  • the disk substrate is once taken out of the film forming apparatus and then put back into the film forming apparatus, resulting in a significant deterioration in productivity.
  • it is difficult to improve productivity because it is necessary to apply DC noise to each disk substrate. It has become.
  • taking out the disk base into the atmosphere may cause particles to adhere to the disk substrate, which may result in quality degradation.
  • the present invention is proposed in view of the above situation, and in a single wafer type film forming apparatus for performing film formation by bias sputtering on a plurality of non-conductive substrates.
  • the DC bias can be applied satisfactorily while maintaining productivity.
  • the purpose is to provide a high-productivity manufacturing method for magnetic disks that supports high-density recording.
  • a film forming apparatus has one of the following configurations.
  • a single-wafer type film forming apparatus that forms a film by bias sputtering on a non-conductive substrate, and has a base for holding at least one non-conductive substrate and a bias application terminal.
  • Bias application means for applying a noise voltage to the conductive film by bringing the application terminal into contact with a conductive film formed on a non-conductive substrate. It is formed by a member whose shape changes, and is characterized by coming into contact with and separating from a non-conductive substrate held on a base by deformation due to temperature change.
  • the member whose shape changes depending on the temperature forming the noisy application terminal is a shape memory alloy.
  • the member whose shape changes depending on the temperature forming the noisy application terminal is a bimetal.
  • the bias application terminal is deformed by the temperature rise accompanying the film formation and contacts the non-conductive substrate held on the base. It is characterized by being deformed by a temperature drop accompanying the completion of film formation and being separated from a non-conductive substrate held on a base.
  • the film forming apparatus having any one of Configurations 1 to 3 includes temperature control means for controlling the temperature of the bias application terminal, and the temperature of the bias application terminal is increased by the temperature control means during film formation.
  • Non-conductive held on the base The substrate is in contact with the substrate and is deformed when the temperature is lowered by the temperature control means after the film formation is completed, and is separated from the non-conductive substrate held on the base. .
  • the film forming apparatus having any one of Configurations 1 to 3 includes current supply means for supplying current to the bias application terminal, and the bias application terminal is supplied with current by the current supply means during film formation. As the temperature rises, it deforms and comes into contact with the non-conductive substrate held on the base, and after the film formation is completed, the current supply by the current supply means is cut off and the temperature is lowered. It is characterized in that it is deformed and separated from the nonconductive substrate held on the base.
  • a film forming apparatus having any one of Structures 1 to 6, wherein a disk substrate is used as a substrate, and an underlayer, a magnetic layer, and a protective layer are sequentially formed on the disk substrate. .
  • the magnetic disk manufacturing method according to the present invention has only one of the following configurations.
  • a method of manufacturing a magnetic disk in which an underlayer, a magnetic layer, and a protective layer are sequentially formed on a nonmagnetic and nonconductive disk substrate the step of holding the disk substrate on a base, and a base in a vacuum chamber.
  • Forming a conductive film on the disk substrate held on the table, and forming the bias application terminal on the disk substrate by deforming the bias application terminal of the bias application means in the vacuum chamber A magnetic layer and a protective layer on the conductive film while applying a negative voltage to the conductive film via a bias applying terminal by a bias applying means in a vacuum chamber.
  • a bimetal is used as a member whose shape changes depending on the temperature forming the bias application terminal.
  • the bias application terminal is deformed by the temperature rise accompanying the film formation and is held on the base. It is characterized in that it is brought into contact with a conductive substrate and is deformed by a temperature drop accompanying the completion of film formation so as to be separated from a nonconductive substrate held on a base.
  • the bias application terminal is being formed using the temperature control means for controlling the temperature of the bias application terminal.
  • the substrate is deformed by raising the temperature to contact with the non-conductive substrate held on the base, and is deformed by lowering the temperature after the film formation is completed, and the non-conductive held on the base. It is characterized in that it is separated from the conductive substrate.
  • the bias application terminal is being formed using the current supply means for supplying current to the bias application terminal. It is deformed by supplying a current to the substrate and raising the temperature to bring it into contact with a non-conductive substrate held on the base, and after the film formation is completed, the current supply is cut off and the temperature is lowered. It is characterized in that it is deformed and separated from the non-conductive substrate held on the base.
  • the bias application terminal has the temperature It is formed by a member whose shape changes according to the temperature, and due to deformation due to temperature change, it contacts and separates from the non-conductive substrate held on the base, so that the base remains installed in the vacuum chamber or the like In this state, the contact and separation of the noise application terminal and the substrate can be performed.
  • the conductive film can be formed in a state where the bias application terminal and the substrate are not in contact with each other, and the bias application terminal should be in contact with the substrate.
  • a conductive film can be satisfactorily formed even at the locations. Therefore, the conductive film and the bias application terminal can be appropriately electrically connected.
  • this film forming apparatus uses a conductive substrate that does not take the base into the atmosphere by bringing the bias application terminal into contact with the substrate by deformation of the bias application terminal.
  • Substrate bias can be applied by substantially the same process as in the case of the above. Therefore, even when a non-conductive substrate is used, high productivity can be realized.
  • the bias application terminal also has a shape memory alloy force, and can be deformed into a desired shape at a predetermined temperature.
  • the bias application terminal is made of bimeter, so that a desired deformation amount can be obtained by a predetermined temperature change.
  • the bias application terminal is deformed by a temperature change accompanying the film formation and the film formation, and is a nonconductive material held on the base. Since the substrate is in contact with or separated from the substrate, the application of the bias to the substrate is started and ended without performing a special operation.
  • the temperature control means controls the temperature of the bias application terminal, so that the deformation state of the bias application terminal can be controlled.
  • the temperature of the bias application terminal is controlled by the current supply means, so that the deformation state of the bias application terminal can be controlled.
  • a disk substrate is used as a substrate, and an underlayer, a magnetic layer, and a protective layer are sequentially formed on the disk substrate.
  • the nose application terminal is formed by a member whose shape changes according to the temperature, and is formed on the base by the change due to the temperature change. Since the substrate that is in contact with and away from the non-conductive substrate held in the chamber is used, each bias application terminal can be brought into contact with or separated from each disk substrate while the base is still installed in the vacuum chamber. it can.
  • the conductive film can be formed in a state where the bias application terminal and the disk substrate are not in contact with each other.
  • the conductive film can be satisfactorily formed also at the location where the contact terminal for contact is to come into contact. Therefore, the conductive film and the bias application terminal can be appropriately electrically connected.
  • the disk base is brought into the atmosphere by bringing the noise application terminal and the disk substrate into contact with each other by deformation of the noise application terminal.
  • Substrate bias can be applied by almost the same process as when using a conductive disk substrate without taking it out. Therefore, even when a non-conductive disk substrate is used, high mass productivity can be realized.
  • the bias application terminal since the bias application terminal having shape memory alloy force is used, the bias application terminal has a desired shape at a predetermined temperature. Can be transformed into
  • the bias application terminal since the bias application terminal uses a metal-metal force, the bias application terminal is deformed in a desired manner by a predetermined temperature change. It can be an amount.
  • the bias application terminal is deformed by the temperature change accompanying the completion of film formation and film formation, and is brought into contact with and separated from the non-conductive substrate held on the base.
  • the application of bias to the substrate can be started and ended.
  • the temperature of the bias application terminal is controlled by the temperature control means.
  • the state can be controlled.
  • the temperature of the bias application terminal is controlled by the current supply means, so that the deformation state of the bias application terminal is controlled. Can do.
  • a DC bias is satisfactorily applied while maintaining productivity.
  • this film forming apparatus it is possible to provide a manufacturing method with high productivity of a magnetic disk compatible with high-density recording.
  • FIG. 1 is a plan view (a) and a cross-sectional view (b) showing a configuration of a magnetic disk manufactured by a magnetic disk manufacturing method according to the present invention.
  • FIG. 2 is a plan view showing a configuration of a rotary transfer type single wafer reaction chamber in a film forming apparatus according to the present invention (a) and a plan view showing a configuration of a straight transfer type single wafer reaction chamber (b). It is.
  • FIG. 3 is a plan view showing a configuration of a base in the film forming apparatus according to the present invention.
  • FIG. 4 is a graph showing the relationship between the film forming process and the bias application terminal deformation in the film forming apparatus according to the present invention.
  • FIG. 5 is a plan view showing another example of the configuration of the bias application terminal in the film forming apparatus according to the present invention.
  • FIG. 6 is a plan view showing another example of the configuration of the base in the film forming apparatus according to the present invention.
  • FIG. 7 is a graph showing the relationship between the coercive force (a) and the relationship with the SN ratio (b) as the effect of the DC bias in the magnetic disk manufacturing method according to the present invention.
  • FIG. 1 is a plan view (a) and a cross-sectional view (b) showing the configuration of a magnetic disk manufactured by the method of manufacturing a magnetic disk according to the present invention.
  • a magnetic disk manufactured by the method of manufacturing a magnetic disk according to the present invention is a hard disk.
  • the disk substrate 1 is made of chemically tempered glass such as aluminosilicate glass, aluminoporosilicate glass, or soda lime glass.
  • the outer diameter is 27 mm and the inner diameter (center).
  • the diameter of the hole la) is 7mm, and the thickness force is 0.381mm.
  • the surface lb of the disk substrate 1 is mirror-polished so that the surface roughness is 0.4 nm or less in Ra and 5 nm or less in Rmax.
  • the first underlayer 2 a is formed on the surface lb of the disk substrate 1 by physical vapor deposition such as DC magnetron sputtering.
  • the first underlayer 2a is an AlRu alloy thin film having a thickness of 5 nm.
  • the second underlayer 2b is formed on the first underlayer 2a by a DC magnetron sputtering method or the like.
  • the second underlayer 2b is, for example, a CrMoTi alloy thin film having a thickness of 50 nm.
  • the underlayer 2 composed of the first underlayer 2a and the second underlayer 2b is formed in order to improve the crystal structure of the magnetic layer 3.
  • the magnetic layer 3 is formed on the underlayer 2 (second underlayer 2b) by physical vapor deposition such as DC magnetron sputtering.
  • the magnetic layer 3 has a thickness force of 15 nm.
  • the protective layer 4 is formed on the magnetic layer 3 by plasma CVD.
  • Protective layer 4 is formed on the magnetic layer 3 by plasma CVD.
  • it is made of amorphous diamond-like carbon having a thickness of 3 nm, and has a function of improving the wear resistance and protecting the magnetic layer 3.
  • the lubricating layer 5 is formed on the surface of the protective layer 4 by a dipping method.
  • the lubricating layer 5 is composed of a force such as a perfluoropolyether layer having a thickness of 1.2 nm, for example, and has a function of mitigating impact when contacting the magnetic head.
  • FIG. 2 is a plan view (a) showing a configuration of a rotary transfer type single wafer reaction chamber in a film forming apparatus according to the present invention, and a plan view (b) showing a configuration of a straight transfer type single wafer reaction chamber. It is.
  • the film forming apparatus is used to form the base layer 2, the magnetic layer 3 and the protective layer 4 on the surface lb of the disk substrate 1.
  • a plurality of disc substrates 1 are held by a base (substrate holder) 6. In this state, the film is transferred into the reaction chamber of the film forming apparatus.
  • Each disk substrate 1 is supported at the outer peripheral end on the inner peripheral side of the through hole formed in the base 6, with one surface facing upward and the other surface facing downward. Is held.
  • first to third targets 7, 8 for forming the underlayer 2 and the magnetic layer 3 along the rotational conveyance direction of the base 6. 9 is arranged.
  • the first target 7 is an AlRu target for forming the first underlayer 2a
  • the second target 8 is a CoCrTi target for forming the second underlayer 2b
  • the third target 9 is a CoCrB target for forming the magnetic layer 3.
  • Each target 7, 8 and 9 is arranged on the upper surface side and the lower surface side so as to sandwich the disk substrate 1 held on the transported base 6 from both sides in the reaction chamber! RU
  • the space in which the targets 7, 8, 9 are arranged is partitioned while allowing the movement of the base 6 as required.
  • the disk substrate 1 held by the base 6 is first opposed to the first target 7 and is subjected to the first growth by a vapor phase growth method such as a DC magnetron sputtering method.
  • the underlayer 2a is formed.
  • the disk substrate 1 held by the base 6 is heated to a predetermined temperature in the heating chamber 10.
  • the disk substrate 1 is transported through the reactive chamber while being held by the base 6, and is sequentially opposed to the second and third targets 8 and 9, and a vapor phase growth method such as a DC magnetron sputtering method.
  • the second underlayer 2b and the magnetic layer 3 are formed.
  • the disk substrate 1 that has been deposited is discharged from the reactive channel.
  • this film forming apparatus may have a linear conveyance type single wafer reaction chamber.
  • the base 6 holding the disk substrate 1 is conveyed linearly in the reactive chamber.
  • the disk substrate 1 held by the base 6 is first opposed to the first target 7 and is subjected to the first growth by a vapor phase growth method such as a DC magnetron sputtering method.
  • the underlayer 2a is formed.
  • the disk substrate 1 held by the base 6 is heated to a predetermined temperature in the heating chamber 10.
  • the disk substrate 1 is transported through the reactive chamber while being held by the base 6, and is sequentially opposed to the second and third targets 8 and 9, and a vapor phase growth method such as a DC magnetron sputtering method.
  • a vapor phase growth method such as a DC magnetron sputtering method.
  • the second underlayer 2b and the magnetic layer 3 are formed.
  • the disk substrate 1 that has been deposited is discharged from the reactive channel.
  • the disk substrate 1 on which the film up to the magnetic layer 3 has been formed in this way is sent to a plasma CVD chamber (not shown), and the protective layer 4 is formed by plasma CVD.
  • FIG. 3 is a plan view showing the configuration of the base in the film forming apparatus according to the present invention.
  • the base 6 in the film forming apparatus has a disc-like base main body (base) 6a, and a plurality of sheets (this embodiment)
  • base base
  • this embodiment four disk substrates for 1.0-inch type magnetic disks are configured to be on the same plane and can be held at equiangular intervals in the circumferential direction.
  • the base body 6a is made of, for example, titanium and has an outer shape of, for example, 95 mm.
  • Each of the targets 7, 8, and 9 in the reaction chamber has a disk shape with an outer diameter larger than that of the base body 6a, for example, an outer diameter of 120 mm. Accordingly, the disk substrate 1 is held on the base 6, so that the targets 7, 8, 9 are arranged around the positions facing the centers of the targets 7, 8, 9.
  • the base body 6a has a number of bias application terminals 13 corresponding to the number of disk substrates 1 held by the base body 6a.
  • Bias applying means is provided. This bias applying means makes each lead applying terminal 13 come into contact with a conductive film formed on the non-conductive disk substrate 1 to thereby introduce this bias. A bias voltage is applied to the conductive film.
  • Each bias application terminal 13 is formed of a member whose shape changes with temperature, and is formed on the non-conductive disk substrate 1 held on the base body 6a by deformation due to temperature change. Connect and separate.
  • Examples of the member whose shape changes according to the temperature forming the bias application terminal 13 include a material having a large thermal expansion coefficient.
  • examples of the member whose shape changes depending on the temperature include a so-called shape memory alloy and bimetal.
  • a shape memory alloy can memorize the shape at this time by performing a high heat treatment as a desired shape, and even when deformed at room temperature, when it is heated to a so-called transformation temperature (Af), It has the property of returning to the desired shape.
  • a shape memory alloy for example, a NiTiCu wire or the like can be used.
  • Bimetal is a laminate of two metal alloys with different coefficients of thermal expansion, and due to temperature changes, deformation (warping) occurs due to the stress caused by the difference in thermal expansion of each metal alloy! / RU
  • Each noisy application terminal 13 has its distal end facing each disk substrate 1 and its proximal end attached to a bias application member 14.
  • the bias applying member 14 is made of a conductive material such as metal and is formed in an annular shape so as to surround the base body 6a.
  • Each bias application terminal 13 is deformed by a change in temperature while the base end side is supported by the bias application member 14, so that the front end side is a non-conductive disk held on the base body 6a. Move to and away from substrate 1.
  • Each bias applying terminal 13 is supported by a bias applying member 14 via an elastic flange 15, and when it comes into contact with each disk substrate 1, the elastic force of the flange 15 As a result, the tip side of each disk substrate 1 is pressed!
  • a DC bias voltage is applied to the bias applying member 14 through a DC voltage supply terminal 16 installed outside the base 6.
  • each bias application terminal 13 is brought into contact with a plurality of disk substrates 1 held by the base body 6 a when the second underlayer 2 b and the magnetic layer 3 are formed. As a result, a DC bias is simultaneously applied to each disk substrate 1.
  • the DC bias voltage may be applied to the conductive film formed on the disk substrate 1 via the bias application terminals 13 as well as the force applied to the noise application member 14.
  • the external DC voltage supply terminal 16 is applied to the conductive film formed on the disk substrate 1 through the conductor 17 and the bias applying terminals 13. Also good.
  • FIG. 4 is a graph showing the relationship between the film forming process and the deformation of the bias application terminal in the film forming apparatus according to the present invention.
  • each bias applying terminal 13 is heated by a temperature control means (not shown) when forming the second underlayer 2b and the magnetic layer 3.
  • a temperature control means not shown
  • the tip end side is brought into contact with the non-conductive disk substrate 1 held on the base body 6a.
  • a bias voltage is applied to the conductive film formed on the non-conductive disk substrate 1 via the DC voltage supply terminal 16 and the bias applying member 14.
  • each bias application terminal 13 is deformed when the temperature is lowered by the temperature control means after the film formation is completed, and the non-conductive disk substrate 1 held on the base body 6a. More apart. As described above, the bias application terminals 13 are separated from the disk substrate 1 after the film formation is completed, so that the disk substrates 1 can be easily detached from the base 6.
  • FIG. 5 is a plan view showing another example of the configuration of the bias application terminal in the film forming apparatus according to the present invention.
  • each bias application terminal 13 is separated from each disk substrate i after the DC bias is applied. It is preferable to do. That is, each bias application terminal 13 comes into contact with the disk substrate 1 as shown by an arrow a in the figure when heated to the transformation temperature or higher as shown in (a) in FIG.
  • the first plate panel 13a having the shape memory alloy force set in advance as described above and the first plate panel 13a held at a position separated from the disk substrate 1 at a temperature lower than the transformation temperature (for example, room temperature).
  • the two panel panels 13b can be combined.
  • the bias applying terminal 13 has the base end sides of the first and second plate panels 13a and 13b fixed to the base body 6a, and the front end faces the disk substrate 1 held by the base body 6a. ing.
  • the noise application terminal 13 configured as described above is, as shown by an arrow b in the figure, at the room temperature, as shown by (b) in FIG. 5, due to the force of the second plate panel 13b.
  • the temperature is maintained at a position separated from the disk substrate 1 and becomes the transformation temperature or higher, as shown in FIG. 5 (a)
  • the disk substrate 1 is brought into contact with the first plate panel 13a. Therefore, the bias applying terminal 13 can facilitate the removal of the disk substrate 1 that does not get in the way when the disk substrate 1 is removed from the base 6.
  • each bias application terminal 13 is formed of a shape memory alloy
  • the transformation is performed by appropriately adjusting the alloy components, for example, the Ni content or changing the temperature at which the high heat treatment is performed.
  • the temperature (Af) can be changed.
  • each noise application terminal 13 is deformed by the temperature rise in the reactive chamber accompanying the film formation without being controlled by the temperature control means, so that the nonconductive state held on the base body 6a.
  • the temperature is lowered to the room temperature by being lowered to room temperature. Can be separated from the non-conductive disk substrate 1 held on the substrate.
  • each bias application terminal 13 was deformed by being supplied with a current by means of a current supply means (not shown) and the temperature was raised during film formation, and held on the base body 6a. It may be possible to bring the tip side into contact with the non-conductive disk substrate 1. In this case, each bias application terminal 13 is deformed when the current supply by the current supply means is interrupted and the temperature is lowered after the film formation is completed, so that the non-conductive held on the base body 6a. Away from the disc substrate 1
  • FIG. 6 is a plan view showing another example of the configuration of the base in the film forming apparatus according to the present invention.
  • the bias applying terminal 13 may be processed into a coil panel shape in order to increase the displacement (operation amount).
  • the coil panel-like bias application terminal 13 is sufficiently long to contact the disk substrate 1.
  • the bias application terminal 13 expands and contracts as shown by an arrow c in the figure due to a temperature change, and comes in contact with and separates from the disk substrate 1 held on the base body 6a.
  • the DC bias voltage is equal to the bias applying member 14 force and each bias applying end. It may be applied to the conductive film formed on the disk substrate 1 via the element 13, and as shown in (b) of FIG. It may be applied to the conductive film formed on the disk substrate 1 via each bias applying terminal 13 via the.
  • productivity is significantly more than four times that of conventional manufacturing methods that deposit one film at a time, take it into the atmosphere, and apply a bias. Can be improved.
  • the DC bias is applied not only when the magnetic layer 3 is deposited, but also when the second underlayer 2b and the magnetic layer 3 are deposited. You can do it both ways.
  • the DC bias may be applied at the time of forming the soft magnetic film in the perpendicular magnetic recording disk.
  • the soft magnetic layer since the soft magnetic layer requires a film thickness of about 50 nm, the soft magnetic layer can be formed without applying a DC bias first, and the thickness of the soft magnetic layer can be applied with a DC bias. When it reaches the point, application of DC bias may be started.
  • a base layer 2 (first base layer (GIF layer) 2a and second base layer (UL) is formed on the surface of a non-conductive disk substrate (glass substrate) 1.
  • Layer) 2b) and magnetic layer 3 (in the case of the so-called AFC structure, a plurality of magnetic layers divided by a spacer) were first subjected to precision polishing and chemical strengthening treatment.
  • a disk substrate 1 for inch type magnetic disk is held by a base 6. Note that the magnetic disk has the same structure on both sides of the disk substrate. Here, only one side will be described. Then, as shown in FIG. 2, the base 6 is mounted on the automatic transfer device, and the base 6 is introduced into the reactive chamber.
  • the base 6 is transported at a predetermined transport speed, and film formation is performed in a state where the base 6 is installed facing each of the targets 7, 8, 9 in a substantially concentric state.
  • the first underlayer (GIF layer) 2a is formed, it is introduced into the heating chamber 10.
  • the disk substrate 1 is heated by a heater, for example, at 300 ° C. for 1 minute.
  • each bias applying terminal 13 returns to a predetermined original shape, and comes into contact with the outer peripheral end portion where the first underlayer 2a of the plurality of disk substrates 1 held by the base body 6a is formed. Touch.
  • each disk substrate 1 A DC bias is applied to. At least the magnetic layer 3 is formed in this manner with a DC bias applied to each disk substrate 1.
  • an AlRu layer (first underlayer 2a) having a thickness of 5 nm and a CrMoTi (second underlayer 2b) having a thickness of 50 nm are also provided. Then, a CoCr B magnetic layer 3 having a thickness of 15 nm is formed.
  • the sputtering conditions in the reactive chamber are, for example, a sputtering pressure of 5 mtorr and a sputtering atmosphere of an inert gas of argon.
  • a protective layer 4 is formed on the magnetic layer 3 by a plasma CVD method or the like.
  • a lubricating layer 5 is formed on the upper layer of the protective layer 4 by applying a perfluoroether lubricant by a dipping method.
  • This lubrication layer 5 is obtained by applying a perfluoroether-based lubricant and then heat-treating the disk substrate 1 at 100 ° C. for about 1 hour using an oven, so that the outermost layer of the disk substrate 1 is perfluoroether. It is formed by fixing a system lubricant.
  • the perfluoropolyether lubricant for example, “Fomblin-Z-TetraolJ (trade name)” manufactured by rsolva y Solexis can be used.
  • the film thickness of the lubricating layer 5 was measured with a Fourier transform infrared spectrophotometer (FTIR) and found to be 1.2 nm.
  • FTIR Fourier transform infrared spectrophotometer
  • the second underlayer 2b and the magnetic layer 3 were formed without applying a DC bias, and a magnetic disk was prepared in the same manner as in the previous example.
  • each disk substrate 1 is taken out into the atmosphere, and each bias application terminal 13 is brought into contact with these disk substrates 1.
  • the second underlayer 2b and the magnetic layer 3 were formed by applying a DC bias, and a magnetic disk was prepared in the same manner as in the previous embodiment. .
  • FIG. 7 is a graph showing the relationship (a) with the coercive force and the relationship (b) with the S / N ratio as the effect of the DC bias in the magnetic disk manufacturing method according to the present invention.
  • DC bias is a force that takes a negative value (minus).
  • Fig. 6 it is shown as a positive value rather than a negative value.
  • 400V means -400V DC bias.
  • the magnetic disk of the example of the present invention has an SNR exhibiting electromagnetic conversion characteristics as compared with the magnetic disk of Comparative Example (1) (no DC bias). The improvement in (signal to noise ratio) was remarkable.
  • the magnetic disk of Comparative Example (2) is equivalent to the magnetic disk of the Example in terms of SNR.
  • the first underlayer 2a is not provided. Since the film is once taken out into the atmosphere after film formation, particle contamination is observed. Also, the first underlayer 2a is formed and then taken out and the bias application terminals 13 are brought into contact with each disk substrate 1. As a result, it was confirmed that the mass productivity was significantly reduced.
  • the present invention can be applied to a single-wafer type film forming apparatus that forms a film by non-sputtering on a plurality of non-conductive substrates.
  • a good DC bias can be applied while maintaining productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Film deposition equipment comprises a base for holding a nonconductive substrate, and a bias applying means for applying a bias voltage to a conductive film deposited on the substrate by bringing a bias applying terminal into contact with the conductive film. The bias applying terminal is formed of a member which varies the shape depending on the temperature such as a shape memory alloy, and the bias applying terminal is brought into contact with the substrate held on the base or separated therefrom through deformation caused by temperature variation.

Description

明 細 書  Specification
成膜装置及び磁気ディスクの製造方法  Film forming apparatus and magnetic disk manufacturing method
技術分野  Technical field
[0001] 本発明は、ハードディスク装置等に搭載される磁気ディスクの製造方法に関し、ま た、このような磁気ディスクの製造に使用することができる成膜装置に関する。  The present invention relates to a method for manufacturing a magnetic disk mounted on a hard disk device or the like, and also relates to a film forming apparatus that can be used for manufacturing such a magnetic disk.
背景技術  Background art
[0002] 従来、ハードディスクドライブに搭載される磁気ディスクは、真空装置 (スパッタ装置 など)により、ディスク基板上に積層膜を成膜することにより製造されている。この積層 膜は、例えば、基台上に保持されたディスク基板を複数のターゲットが設置されたプ 口セス室 (成膜室)内に設置し、真空排気後、スパッタリング法または CVD法等によつ て成膜される。  Conventionally, a magnetic disk mounted on a hard disk drive is manufactured by forming a laminated film on a disk substrate with a vacuum apparatus (a sputtering apparatus or the like). This laminated film is formed, for example, by placing a disk substrate held on a base in a process chamber (film formation chamber) where a plurality of targets are installed, and after evacuating, by sputtering or CVD. Then, the film is formed.
[0003] ディスク基板上に成膜される積層膜は、下地層や記録層などの膜が順次成膜され て形成される。これら各層の成膜時におけるディスク基板の温度は、膜の表面状態 や膜特性に大きく影響することが知られており、真空中においてディスク基板の加熱 を行うため、スパッタ装置内にはヒータが搭載されている。  [0003] A laminated film formed on a disk substrate is formed by sequentially forming films such as a base layer and a recording layer. It is known that the temperature of the disk substrate during the deposition of each of these layers has a significant effect on the surface condition and film characteristics of the film. In order to heat the disk substrate in a vacuum, a heater is installed in the sputtering equipment. Has been.
[0004] ところで、近年、このような磁気ディスクにおいては、記録密度の向上が要求されて いる。磁気ディスクにおける記録密度を向上させるためには、ピット寸法の微小化に 伴って、信号品質を維持、向上させるとともに、自己減磁効果への耐性を向上させる ことが必要となる。信号品質の維持、向上のためには、ノイズを下げるため、下地層と 磁性膜の間に中間非磁性層を設けることが行われている。そして、自己減磁効果へ の耐性の向上のためには、磁性膜の薄膜ィ匕ゃ高保磁力化のため、交換結合磁性膜 の導入や磁性膜への Ptの導入、また、成膜時にディスク基板にバイアス電位を与え ることが行われている。  Incidentally, in recent years, such magnetic disks have been required to improve recording density. In order to improve the recording density of a magnetic disk, it is necessary to maintain and improve the signal quality and to improve the resistance to the self-demagnetization effect as the pit size is reduced. In order to maintain and improve signal quality, an intermediate nonmagnetic layer is provided between the underlayer and the magnetic film in order to reduce noise. In order to improve the resistance against the self-demagnetization effect, in order to increase the coercive force of the thin film of the magnetic film, the exchange coupling magnetic film is introduced, Pt is introduced into the magnetic film, and the disk is formed during film formation. A bias potential is applied to the substrate.
[0005] すなわち、 IEEE-ィートランザクションズ オン マグネテイクス. 26卷, 1282頁, 1990 . (非特許文献 1)、特開平 7— 225935号公報 (特許文献 1)及び特開平 5— 20524 0号公報 (特許文献 2)に記載されているように、磁性膜の成膜時に、ディスク基板に 負の DCバイアス電圧 (基板バイアス)を印加するノ ィァススパッタを行うことにより、磁 気ディスクの高記録密度化が可能となることが知られている。これは、基板バイアスの 印加により、磁性膜の付着力を高めること、表面粗さを小さくすること、磁性膜の高密 度化により硬度を上げること、並びに、微結晶膜の配向や結晶軸の長さを変更するこ と等が可能になるためである。 [0005] That is, IEEE-Transactions on Magnetics. 26 卷, p. 1282, 1990. (Non-patent Document 1), JP-A-7-225935 (Patent Document 1) and JP-A-5-205240 As described in the publication (Patent Document 2), during the formation of the magnetic film, magnetic sputtering is performed by applying negative sputtering to apply a negative DC bias voltage (substrate bias) to the disk substrate. It is known that the recording density of the air disk can be increased. This can be achieved by increasing the adhesion of the magnetic film by applying a substrate bias, reducing the surface roughness, increasing the hardness by increasing the density of the magnetic film, as well as the orientation of the microcrystalline film and the length of the crystal axis. This is because it can be changed.
[0006] そして、ディスク基板として非導電性のガラス基板等を用いる場合にっ 、ては、特 開平 4— 79025号公報 (特許文献 3)に記載されているように、第 1層として金属膜か らなる下地層を形成し、この下地層に基板バイアスを印加して、この下地層上に磁性 層等を成膜する方法が知られている。このような場合に、ノィァス印加用端子をディ スク基板上の下地層に接触させる方法として、特許第 3002632号公報 (特許文献 4 )及び特開平 7— 243037号公報 (特許文献 5)に記載されているように、各種の方法 が提案されている。  [0006] When a non-conductive glass substrate or the like is used as a disk substrate, a metal film is used as the first layer as described in JP-A-4-79025 (Patent Document 3). There is known a method in which a base layer made of the above is formed, a substrate bias is applied to the base layer, and a magnetic layer or the like is formed on the base layer. In such a case, Patent No. 3002632 (Patent Document 4) and Japanese Patent Application Laid-Open No. 7-243037 (Patent Document 5) describe methods for bringing the noise application terminal into contact with the underlying layer on the disk substrate. As shown, various methods have been proposed.
[0007] また、近年では、磁気ディスクとしては、いわゆるノート型パソコンに搭載する 2. 5ィ ンチタイプのものや、いわゆるデスクトップ型パソコンに搭載する 3. 5インチタイプの もののみならず、携帯電話、デジタルカメラ、カーナピゲ一シヨン、携帯音楽プレーヤ 等の小型装置の記憶装置に搭載する 1. 0インチタイプのものや 0. 85インチタイプの ものなど、小径サイズの磁気ディスクが製造されている。このような小径のディスク基 板への成膜は、 1つの基台上に複数枚のディスク基板を保持させて行わなければ、 生産性を向上させることはできない。  [0007] Further, in recent years, magnetic disks include not only 2.5 inch type mounted on so-called laptop computers and 3.5 inch type mounted on so-called desktop computers, but also mobile phones, Small-diameter magnetic disks, such as 1.0-inch type and 0.85-inch type, are manufactured for use in storage devices of small devices such as digital cameras, car navigation systems, and portable music players. Productivity cannot be improved unless film formation on such a small-diameter disk substrate is performed by holding a plurality of disk substrates on one base.
[0008] そこで、これら小径サイズの磁気ディスクの製造では、生産性向上のため、例えば、 特開 2001 -011625公報(特許文献 6)に記載されているように、 口径の大きな一つ の基台上に複数枚の小径のディスク基板を保持させ、枚葉式の成膜装置を用いて、 一度に複数枚のディスク基板に対する成膜を行う方法が提案されている。  [0008] Therefore, in the manufacture of these small-diameter magnetic disks, in order to improve productivity, for example, as described in Japanese Patent Application Laid-Open No. 2001-011625 (Patent Document 6), one base having a large diameter is used. A method has been proposed in which a plurality of small-diameter disk substrates are held on top and a film is formed on a plurality of disk substrates at a time using a single-wafer film deposition apparatus.
[0009] 特許文献 1 :特開平 7— 225935号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 7-225935
特許文献 2:特開平 5 - 205240号公報  Patent Document 2: JP-A-5-205240
特許文献 3:特開平 4 79025号公報  Patent Document 3: Japanese Patent Laid-Open No. 4 79025
特許文献 4:特許第 3002632号公報  Patent Document 4: Japanese Patent No. 3002632
特許文献 5:特開平 7— 243037号公報  Patent Document 5: Japanese Patent Laid-Open No. 7-243037
特許文献 6:特開 2001 - 011625公報 非特許文献 1 : IEEE-ィートランザクションズ オン マグネテイクス. 26卷, 1282頁, 19 90. Patent Document 6: Japanese Patent Laid-Open No. 2001-011625 Non-Patent Document 1: IEEE-Transactions on Magnetics. 26 卷, 1282, 19 90.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] ところで、ディスク基板に DCバイアスをかけるノ ィァススパッタでは、基台上に導電 性材料 (例えば、金属)からなる爪状の部材を設けておき、この爪状の部材によって 各ディスク基板を保持させるとともに、この爪状の部材をバイアス印加用端子としても 用いている。 [0010] By the way, in non-sputtering in which a DC bias is applied to the disk substrate, a claw-shaped member made of a conductive material (for example, metal) is provided on the base, and each disk substrate is held by the claw-shaped member. This claw-like member is also used as a bias application terminal.
[0011] そして、非導電性のディスク基板を用いてバイアススパッタを行う場合には、非導電 性のディスク基板上に成膜した下地層に DCバイアスをかける必要がある。この下地 層は、バイアス印加用端子としても用いる爪状の部材によってディスク基板を保持さ せた状態で成膜する。この場合、ディスク基板において、爪状の部材に覆われている 部分には、下地層が成膜されない。そのため、爪状の部材と下地層との接触が不十 分となり、適切に基板バイアスを印加できな 、虞れがある。  [0011] When bias sputtering is performed using a non-conductive disk substrate, it is necessary to apply a DC bias to the underlying layer formed on the non-conductive disk substrate. This underlayer is formed in a state where the disk substrate is held by a claw-like member used also as a bias application terminal. In this case, the base layer is not formed on the portion of the disk substrate covered with the claw-like member. Therefore, the contact between the nail-like member and the underlayer is insufficient, and there is a concern that the substrate bias cannot be applied appropriately.
[0012] そこで、下地層を成膜した後に、爪状の部材と下地層とが十分に接触するように、 ディスク基板の位置を変えて改めて爪状の部材に取り付け直すことが行われている。 このようにすれば、基板バイアスを印加するために必要な電気伝導が確保されるため 、その後の成膜工程において、基板バイアスを適切に印加することができる。  [0012] Therefore, after the base layer is formed, the position of the disk substrate is changed and reattached to the nail member so that the nail member and the base layer are in sufficient contact with each other. . In this way, the electric conduction necessary for applying the substrate bias is ensured, and therefore the substrate bias can be appropriately applied in the subsequent film forming process.
[0013] ところが、ディスク基板を取り付け直すためには、ディスク基板を成膜装置の外に 一旦取り出し、再び成膜装置の中に入れることになるため、生産性が著しく劣化する こととなる。特に、複数のディスク基板に対して同時に成膜を行う場合には、 1枚 1枚 のディスク基板にっ 、て DCノ ィァスをかける必要があることから、生産性を向上させ ることが困難となっている。また、ディスク基台をー且大気中に取り出すことは、デイス ク基板にパーティクルが付着する虞れを生じさせ、品質の劣化を招来する虞れもある [0013] However, in order to reattach the disk substrate, the disk substrate is once taken out of the film forming apparatus and then put back into the film forming apparatus, resulting in a significant deterioration in productivity. In particular, when film formation is performed simultaneously on a plurality of disk substrates, it is difficult to improve productivity because it is necessary to apply DC noise to each disk substrate. It has become. In addition, taking out the disk base into the atmosphere may cause particles to adhere to the disk substrate, which may result in quality degradation.
[0014] そこで、本発明は、前述の実情に鑑みて提案されるものであって、複数枚の非導電 性の基板に対してバイアススパッタによる成膜を行う枚葉式の成膜装置において、生 産性を維持したままで、良好に DCバイアスを印加することができるようにするとともに 、高密度記録に対応した磁気ディスクの生産性の高 ヽ製造方法を提供することを目 的とする。 [0014] Therefore, the present invention is proposed in view of the above situation, and in a single wafer type film forming apparatus for performing film formation by bias sputtering on a plurality of non-conductive substrates. The DC bias can be applied satisfactorily while maintaining productivity. The purpose is to provide a high-productivity manufacturing method for magnetic disks that supports high-density recording.
課題を解決するための手段  Means for solving the problem
[0015] 前述の課題を解決し、前記目的を達成するため、本発明に係る成膜装置は、以下 の構成の 、ずれか一を有するものである。  In order to solve the above-described problems and achieve the above object, a film forming apparatus according to the present invention has one of the following configurations.
[0016] 〔構成 1〕 [0016] [Configuration 1]
非導電性の基板に対しバイアススパッタによる成膜を行う枚葉式の成膜装置であつ て、少なくとも一の非導電性の基板を保持する基台と、バイアス印加用端子を有しこ のバイアス印加用端子を非導電性の基板上に成膜された導電性膜に接触させること によってこの導電性膜にノィァス電圧を印加するバイアス印加手段とを備え、ノィァ ス印加用端子は、温度に応じて形状が変化する部材によって形成されており、温度 変化による変形によって、基台上に保持された非導電性の基板に接離することを特 徴とするちのである。  A single-wafer type film forming apparatus that forms a film by bias sputtering on a non-conductive substrate, and has a base for holding at least one non-conductive substrate and a bias application terminal. Bias application means for applying a noise voltage to the conductive film by bringing the application terminal into contact with a conductive film formed on a non-conductive substrate. It is formed by a member whose shape changes, and is characterized by coming into contact with and separating from a non-conductive substrate held on a base by deformation due to temperature change.
[0017] 〔構成 2〕 [0017] [Configuration 2]
構成 1を有する成膜装置において、ノ ィァス印加用端子をなす温度に応じて形状 が変化する部材は、形状記憶合金であることを特徴とするものである。  In the film forming apparatus having the configuration 1, the member whose shape changes depending on the temperature forming the noisy application terminal is a shape memory alloy.
[0018] 〔構成 3〕 [0018] [Configuration 3]
構成 1を有する成膜装置において、ノ ィァス印加用端子をなす温度に応じて形状 が変化する部材は、バイメタルであることを特徴とするものである。  In the film forming apparatus having the configuration 1, the member whose shape changes depending on the temperature forming the noisy application terminal is a bimetal.
[0019] 〔構成 4〕 [0019] [Configuration 4]
構成 1乃至構成 3のいずれか一を有する成膜装置において、バイアス印加用端子 は、成膜に伴う温度上昇によって変形して、基台上に保持された非導電性の基板に 接触するとともに、成膜の終了に伴う温度降下によって変形して、基台上に保持され た非導電性の基板より離間することを特徴とするものである。  In the film forming apparatus having any one of Configurations 1 to 3, the bias application terminal is deformed by the temperature rise accompanying the film formation and contacts the non-conductive substrate held on the base. It is characterized by being deformed by a temperature drop accompanying the completion of film formation and being separated from a non-conductive substrate held on a base.
[0020] 〔構成 5〕 [0020] [Configuration 5]
構成 1乃至構成 3のいずれか一を有する成膜装置において、バイアス印加用端子 の温度を制御する温度制御手段を備え、バイアス印加用端子は、成膜中に温度制 御手段により温度が上昇されることによって変形して、基台上に保持された非導電性 の基板に接触するとともに、成膜の終了後に温度制御手段により温度が降下される ことによって変形して、基台上に保持された非導電性の基板より離間することを特徴 とするちのである。 The film forming apparatus having any one of Configurations 1 to 3 includes temperature control means for controlling the temperature of the bias application terminal, and the temperature of the bias application terminal is increased by the temperature control means during film formation. Non-conductive held on the base The substrate is in contact with the substrate and is deformed when the temperature is lowered by the temperature control means after the film formation is completed, and is separated from the non-conductive substrate held on the base. .
[0021] 〔構成 6〕  [0021] [Configuration 6]
構成 1乃至構成 3のいずれか一を有する成膜装置において、バイアス印加用端子 に電流を供給する電流供給手段を備え、バイアス印加用端子は、成膜中に電流供 給手段により電流を供給されて温度上昇することによって変形して、基台上に保持さ れた非導電性の基板に接触するとともに、成膜の終了後に電流供給手段による電流 供給が遮断されて温度が降下されることによって変形して、基台上に保持された非導 電性の基板より離間することを特徴とするものである。  The film forming apparatus having any one of Configurations 1 to 3 includes current supply means for supplying current to the bias application terminal, and the bias application terminal is supplied with current by the current supply means during film formation. As the temperature rises, it deforms and comes into contact with the non-conductive substrate held on the base, and after the film formation is completed, the current supply by the current supply means is cut off and the temperature is lowered. It is characterized in that it is deformed and separated from the nonconductive substrate held on the base.
[0022] 〔構成 7〕 [0022] [Configuration 7]
構成 1乃至構成 6のいずれか一を有する成膜装置において、基板としてディスク基 板を用い、このディスク基板上に下地層、磁性層及び保護層を順次成膜することを 特徴とするものである。  A film forming apparatus having any one of Structures 1 to 6, wherein a disk substrate is used as a substrate, and an underlayer, a magnetic layer, and a protective layer are sequentially formed on the disk substrate. .
[0023] また、本発明に係る磁気ディスクの製造方法は、以下の構成の 、ずれか一を有す るものである。  [0023] Further, the magnetic disk manufacturing method according to the present invention has only one of the following configurations.
[0024] 〔構成 8〕 [0024] [Configuration 8]
非磁性及び非導電性のディスク基板上に下地層、磁性層及び保護層を順次成膜 する磁気ディスクの製造方法であって、ディスク基板を基台上に保持させる工程と、 真空チャンバ内において基台上に保持されたディスク基板上に導電性膜を成膜する 工程と、真空チャンバ内においてバイアス印加手段のバイアス印加用端子を変形さ せることによりこのバイアス印加用端子をディスク基板上に成膜された導電性膜に接 触させる工程と、真空チャンバ内においてバイアス印加手段によりバイアス印加用端 子を介して導電性膜にノ ィァス電圧を印カロしつつ該導電性膜上に磁性層及び保護 層を順次成膜する工程とを有し、バイアス印加部材として、温度に応じて形状が変化 する部材によって形成され温度変化による変形によって基台上に保持された非導電 性の基板に接離するものを用いることを特徴とするものである。  A method of manufacturing a magnetic disk in which an underlayer, a magnetic layer, and a protective layer are sequentially formed on a nonmagnetic and nonconductive disk substrate, the step of holding the disk substrate on a base, and a base in a vacuum chamber. Forming a conductive film on the disk substrate held on the table, and forming the bias application terminal on the disk substrate by deforming the bias application terminal of the bias application means in the vacuum chamber A magnetic layer and a protective layer on the conductive film while applying a negative voltage to the conductive film via a bias applying terminal by a bias applying means in a vacuum chamber. Forming a layer sequentially, and forming a bias applying member by a member whose shape changes according to temperature, and holding it on the base by deformation due to temperature change. And it is characterized in the use of those contact and separation in the non-conductive substrate.
[0025] 〔構成 9〕 構成 8を有する磁気ディスクの製造方法にお ヽて、バイアス印加用端子をなす温度 に応じて形状が変化する部材として、形状記憶合金を用いることを特徴とするもので ある。 [0025] [Configuration 9] In the method of manufacturing a magnetic disk having the configuration 8, a shape memory alloy is used as a member whose shape changes according to the temperature at which the bias application terminal is formed.
[0026] 〔構成 10〕 [0026] [Configuration 10]
構成 8を有する磁気ディスクの製造方法にお ヽて、バイアス印加用端子をなす温度 に応じて形状が変化する部材として、バイメタルを用いることを特徴とするものである  In the method of manufacturing a magnetic disk having the configuration 8, a bimetal is used as a member whose shape changes depending on the temperature forming the bias application terminal.
[0027] 〔構成 11〕 [Configuration 11]
構成 8乃至構成 10の 、ずれか一を有する磁気ディスクの製造方法にお!、て、バイ ァス印加用端子を、成膜に伴う温度上昇によって変形させて、基台上に保持された 非導電性の基板に接触させるとともに、成膜の終了に伴う温度降下によって変形さ せて、基台上に保持された非導電性の基板より離間させることを特徴とするものであ る。  In the manufacturing method of the magnetic disk having any one of the deviations 8 to 10, the bias application terminal is deformed by the temperature rise accompanying the film formation and is held on the base. It is characterized in that it is brought into contact with a conductive substrate and is deformed by a temperature drop accompanying the completion of film formation so as to be separated from a nonconductive substrate held on a base.
[0028] 〔構成 12〕  [0028] [Configuration 12]
構成 8乃至構成 10の 、ずれか一を有する磁気ディスクの製造方法にお!、て、バイ ァス印加用端子の温度を制御する温度制御手段を用いて、バイアス印加用端子を、 成膜中に温度上昇させることによって変形させて、基台上に保持された非導電性の 基板に接触させるとともに、成膜の終了後に温度降下させることによって変形させて 、基台上に保持された非導電性の基板より離間させることを特徴とするものである。  In the method of manufacturing a magnetic disk having any one of the deviations of Configurations 8 to 10, the bias application terminal is being formed using the temperature control means for controlling the temperature of the bias application terminal. The substrate is deformed by raising the temperature to contact with the non-conductive substrate held on the base, and is deformed by lowering the temperature after the film formation is completed, and the non-conductive held on the base. It is characterized in that it is separated from the conductive substrate.
[0029] 〔構成 13〕 [0029] [Configuration 13]
構成 8乃至構成 10の 、ずれか一を有する磁気ディスクの製造方法にお!、て、バイ ァス印加用端子に電流を供給する電流供給手段を用いて、バイアス印加用端子を、 成膜中に電流を供給して温度上昇させることによって変形させて、基台上に保持さ れた非導電性の基板に接触させるとともに、成膜の終了後に電流供給を遮断して温 度降下させることによって変形させて、基台上に保持された非導電性の基板より離間 させることを特徴とするちのである。  In the method of manufacturing a magnetic disk having any one of the deviations of Configurations 8 to 10, the bias application terminal is being formed using the current supply means for supplying current to the bias application terminal. It is deformed by supplying a current to the substrate and raising the temperature to bring it into contact with a non-conductive substrate held on the base, and after the film formation is completed, the current supply is cut off and the temperature is lowered. It is characterized in that it is deformed and separated from the non-conductive substrate held on the base.
発明の効果  The invention's effect
[0030] 構成 1を有する本発明に係る成膜装置においては、バイアス印加用端子は、温度 に応じて形状が変化する部材によって形成されており、温度変化による変形によって 、基台上に保持された非導電性の基板に接離するので、真空チャンバ内等に基台を 設置したままの状態で、ノ ィァス印加用端子と基板との接触及び離間を行うことがで きる。 [0030] In the film forming apparatus according to the present invention having the configuration 1, the bias application terminal has the temperature It is formed by a member whose shape changes according to the temperature, and due to deformation due to temperature change, it contacts and separates from the non-conductive substrate held on the base, so that the base remains installed in the vacuum chamber or the like In this state, the contact and separation of the noise application terminal and the substrate can be performed.
[0031] すなわち、この成膜装置においては、バイアス印加用端子と基板とが非接触の状 態で導電性膜を成膜することができ、基板にお ヽてバイアス印加用端子が接触すベ き箇所にも、良好に導電性膜を成膜することができる。そのため、この導電性膜とバイ ァス印加用端子とを適切に電気的に接続することができる。  That is, in this film forming apparatus, the conductive film can be formed in a state where the bias application terminal and the substrate are not in contact with each other, and the bias application terminal should be in contact with the substrate. A conductive film can be satisfactorily formed even at the locations. Therefore, the conductive film and the bias application terminal can be appropriately electrically connected.
[0032] また、この成膜装置にぉ 、ては、バイアス印加用端子の変形によってバイアス印加 用端子と基板とを接触させることにより、基台を大気中に取り出すことなぐ導電性の 基板を用いた場合とほぼ同様の工程により、基板バイアスを印加できる。そのため、 非導電性の基板を用いた場合にも、高 ヽ量産性を実現できる。  In addition, this film forming apparatus uses a conductive substrate that does not take the base into the atmosphere by bringing the bias application terminal into contact with the substrate by deformation of the bias application terminal. Substrate bias can be applied by substantially the same process as in the case of the above. Therefore, even when a non-conductive substrate is used, high productivity can be realized.
[0033] 構成 2を有する本発明に係る成膜装置においては、バイアス印加用端子は、形状 記憶合金力もなるので、所定の温度において所望の形状に変形させることができる。  [0033] In the film forming apparatus according to the present invention having the configuration 2, the bias application terminal also has a shape memory alloy force, and can be deformed into a desired shape at a predetermined temperature.
[0034] 構成 3を有する本発明に係る成膜装置においては、バイアス印加用端子は、バイメ タルからなるので、所定の温度変化により所望の変形量を得ることができる。  [0034] In the film forming apparatus according to the present invention having the configuration 3, the bias application terminal is made of bimeter, so that a desired deformation amount can be obtained by a predetermined temperature change.
[0035] 構成 4を有する本発明に係る成膜装置においては、バイアス印加用端子は、成膜 及び成膜の終了に伴う温度変化によって変形して、基台上に保持された非導電性の 基板に接離するので、特段の操作を行うことなぐ基板に対するバイアスの印加の開 始及び終了が行われる。  [0035] In the film forming apparatus according to the present invention having the configuration 4, the bias application terminal is deformed by a temperature change accompanying the film formation and the film formation, and is a nonconductive material held on the base. Since the substrate is in contact with or separated from the substrate, the application of the bias to the substrate is started and ended without performing a special operation.
[0036] 構成 5を有する本発明に係る成膜装置においては、温度制御手段によりバイアス印 加用端子の温度を制御するので、このバイアス印加用端子の変形状態を制御するこ とがでさる。  In the film forming apparatus according to the present invention having the configuration 5, the temperature control means controls the temperature of the bias application terminal, so that the deformation state of the bias application terminal can be controlled.
[0037] 構成 6を有する本発明に係る成膜装置においては、電流供給手段によりバイアス印 加用端子の温度を制御するので、このバイアス印加用端子の変形状態を制御するこ とがでさる。  [0037] In the film forming apparatus according to the present invention having the configuration 6, the temperature of the bias application terminal is controlled by the current supply means, so that the deformation state of the bias application terminal can be controlled.
[0038] 構成 7を有する本発明に係る成膜装置にぉ ヽては、基板としてディスク基板を用い 、このディスク基板上に下地層、磁性層及び保護層を順次成膜するので、磁気ディス クの製造に使用することができる。 [0038] In the film forming apparatus according to the present invention having the configuration 7, a disk substrate is used as a substrate, and an underlayer, a magnetic layer, and a protective layer are sequentially formed on the disk substrate. Can be used for manufacturing
[0039] 構成 8を有する本発明に係る磁気ディスクの製造方法にぉ 、ては、ノ ィァス印加用 端子として、温度に応じて形状が変化する部材によって形成され温度変化による変 形によって基台上に保持された非導電性の基板に接離するものを用いるので、真空 チャンバ内に基台を設置したままの状態で、各バイアス印加用端子と各ディスク基板 との接触及び離間を行うことができる。  [0039] In the method of manufacturing the magnetic disk according to the present invention having the configuration 8, the nose application terminal is formed by a member whose shape changes according to the temperature, and is formed on the base by the change due to the temperature change. Since the substrate that is in contact with and away from the non-conductive substrate held in the chamber is used, each bias application terminal can be brought into contact with or separated from each disk substrate while the base is still installed in the vacuum chamber. it can.
[0040] すなわち、この磁気ディスクの製造方法にぉ 、ては、バイアス印加用端子とディスク 基板とが非接触の状態で導電性膜を成膜することができ、ディスク基板にぉ ヽてバイ ァス印加用端子が接触すべき箇所にも、良好に導電性膜を成膜することができる。そ のため、この導電性膜とバイアス印加用端子とを適切に電気的に接続することができ る。  That is, according to this magnetic disk manufacturing method, the conductive film can be formed in a state where the bias application terminal and the disk substrate are not in contact with each other. The conductive film can be satisfactorily formed also at the location where the contact terminal for contact is to come into contact. Therefore, the conductive film and the bias application terminal can be appropriately electrically connected.
[0041] また、この磁気ディスクの製造方法にぉ 、ては、ノ ィァス印加用端子の変形によつ てノ ィァス印加用端子とディスク基板とを接触させることにより、ディスク基台を大気 中に取り出すことなぐ導電性のディスク基板を用いた場合とほぼ同様の工程により、 基板バイアスを印加できる。そのため、非導電性のディスク基板を用いた場合にも、 高い量産性を実現できる。  [0041] In addition, according to this method of manufacturing a magnetic disk, the disk base is brought into the atmosphere by bringing the noise application terminal and the disk substrate into contact with each other by deformation of the noise application terminal. Substrate bias can be applied by almost the same process as when using a conductive disk substrate without taking it out. Therefore, even when a non-conductive disk substrate is used, high mass productivity can be realized.
[0042] 構成 9を有する本発明に係る磁気ディスクの製造方法にぉ 、ては、バイアス印加用 端子として形状記憶合金力 なるものを用いるので、バイアス印加用端子を所定の温 度において所望の形状に変形させることができる。 [0042] In the method of manufacturing the magnetic disk according to the present invention having the configuration 9, since the bias application terminal having shape memory alloy force is used, the bias application terminal has a desired shape at a predetermined temperature. Can be transformed into
[0043] 構成 10を有する本発明に係る磁気ディスクの製造方法にぉ ヽては、バイアス印加 用端子としてノ ィメタル力 なるものを用いるので、バイアス印加用端子を所定の温 度変化により所望の変形量とすることができる。 [0043] In the manufacturing method of the magnetic disk according to the present invention having the configuration 10, since the bias application terminal uses a metal-metal force, the bias application terminal is deformed in a desired manner by a predetermined temperature change. It can be an amount.
[0044] 構成 11を有する本発明に係る磁気ディスクの製造方法にお!ヽては、バイアス印加 用端子を、成膜及び成膜の終了に伴う温度変化によって変形させ、基台上に保持さ れた非導電性の基板に接離させるので、特段の操作を行うことなぐ基板に対するバ ィァスの印加の開始及び終了を行うことができる。 [0044] In the method of manufacturing a magnetic disk according to the invention having the structure 11! On the other hand, the bias application terminal is deformed by the temperature change accompanying the completion of film formation and film formation, and is brought into contact with and separated from the non-conductive substrate held on the base. The application of bias to the substrate can be started and ended.
[0045] 構成 12を有する本発明に係る磁気ディスクの製造方法にお!ヽては、温度制御手段 によりバイアス印加用端子の温度を制御するので、このバイアス印加用端子の変形 状態を制御することができる。 [0045] In the method of manufacturing the magnetic disk according to the present invention having the configuration 12, the temperature of the bias application terminal is controlled by the temperature control means. The state can be controlled.
[0046] 構成 13を有する本発明に係る磁気ディスクの製造方法にお!ヽては、電流供給手段 によりバイアス印加用端子の温度を制御するので、このバイアス印加用端子の変形 状態を制御することができる。  [0046] In the method of manufacturing a magnetic disk according to the present invention having the structure 13, the temperature of the bias application terminal is controlled by the current supply means, so that the deformation state of the bias application terminal is controlled. Can do.
[0047] すなわち、本発明は、複数枚の非導電性の基板に対してバイアススパッタによる成 膜を行う枚葉式の成膜装置において、生産性を維持したままで、良好に DCバイアス を印加することを可能とし、また、この成膜装置を用いることにより、高密度記録に対 応した磁気ディスクの生産性の高い製造方法を提供することができるものである。 図面の簡単な説明  That is, according to the present invention, in a single-wafer type film forming apparatus that performs film formation by bias sputtering on a plurality of non-conductive substrates, a DC bias is satisfactorily applied while maintaining productivity. In addition, by using this film forming apparatus, it is possible to provide a manufacturing method with high productivity of a magnetic disk compatible with high-density recording. Brief Description of Drawings
[0048] [図 1]本発明に係る磁気ディスクの製造方法によって製造される磁気ディスクの構成 を示す平面図(a)及び断面図(b)である。  [0048] FIG. 1 is a plan view (a) and a cross-sectional view (b) showing a configuration of a magnetic disk manufactured by a magnetic disk manufacturing method according to the present invention.
[図 2]本発明に係る成膜装置における回転搬送型の枚葉式反応チャンバの構成を示 す平面図 (a)及び直線搬送型の枚葉式反応チャンバの構成を示す平面図 (b)であ る。  FIG. 2 is a plan view showing a configuration of a rotary transfer type single wafer reaction chamber in a film forming apparatus according to the present invention (a) and a plan view showing a configuration of a straight transfer type single wafer reaction chamber (b). It is.
[図 3]本発明に係る成膜装置における基台の構成を示す平面図である。  FIG. 3 is a plan view showing a configuration of a base in the film forming apparatus according to the present invention.
[図 4]本発明に係る成膜装置における成膜工程とバイアス印加用端子の変形の関係 を示すグラフである。  FIG. 4 is a graph showing the relationship between the film forming process and the bias application terminal deformation in the film forming apparatus according to the present invention.
[図 5]本発明に係る成膜装置におけるバイアス印加用端子の構成の他の例を示す平 面図である。  FIG. 5 is a plan view showing another example of the configuration of the bias application terminal in the film forming apparatus according to the present invention.
[図 6]本発明に係る成膜装置における基台の構成の他の例を示す平面図である。  FIG. 6 is a plan view showing another example of the configuration of the base in the film forming apparatus according to the present invention.
[図 7]本発明に係る磁気ディスクの製造方法における DCバイアスの効果として、保持 力との関係(a)及び SN比との関係 (b)を示すグラフである。  FIG. 7 is a graph showing the relationship between the coercive force (a) and the relationship with the SN ratio (b) as the effect of the DC bias in the magnetic disk manufacturing method according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、図面を参照して、本発明の最良の実施の形態について説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings.
[0050] 〔磁気ディスク及びその製造方法の概略〕 [Outline of Magnetic Disk and its Manufacturing Method]
図 1は、本発明に係る磁気ディスクの製造方法によって製造される磁気ディスクの 構成を示す平面図 (a)及び断面図 (b)である。  FIG. 1 is a plan view (a) and a cross-sectional view (b) showing the configuration of a magnetic disk manufactured by the method of manufacturing a magnetic disk according to the present invention.
[0051] 本発明に係る磁気ディスクの製造方法によって製造される磁気ディスクは、ハード ディスクドライブに搭載される磁気ディスクであり、図 1中の(a)に示すように、非磁性 及び非導電性の材料カゝらなり中心孔 laを備えた円形のディスク基板 1を用いて、図 1 中の(b)に示すように、ディスク基板 1の表面 lb上に、下地層 2、磁性層 3、保護層 4 力 この順に積層して成膜されて構成されている。 [0051] A magnetic disk manufactured by the method of manufacturing a magnetic disk according to the present invention is a hard disk. A magnetic disk mounted on a disk drive, as shown in (a) of FIG. 1, using a circular disk substrate 1 having a central hole la made of a nonmagnetic and nonconductive material, As shown in FIG. 1 (b), the base layer 2, the magnetic layer 3, and the protective layer 4 are stacked on the surface lb of the disk substrate 1 in this order to form a film.
[0052] ディスク基板 1は、例えば、アルミノシリケートガラス、アルミノポロシリケートガラス、ま たは、ソーダライムガラスなどの化学強化ガラス力 なり、 1. 0インチ型の場合、外径 が 27mm、内径(中心孔 laの直径)が 7mm、厚さ力 0. 381mmとなっている。また 、ディスク基板 1の表面 lbは、表面粗さが、 Raで 0. 4nm以下、 Rmaxで 5nm以下とな るように、鏡面研磨が施されている。  [0052] The disk substrate 1 is made of chemically tempered glass such as aluminosilicate glass, aluminoporosilicate glass, or soda lime glass. In the case of the 1.0 inch type, the outer diameter is 27 mm and the inner diameter (center). The diameter of the hole la) is 7mm, and the thickness force is 0.381mm. Further, the surface lb of the disk substrate 1 is mirror-polished so that the surface roughness is 0.4 nm or less in Ra and 5 nm or less in Rmax.
[0053] この磁気ディスク 1を製造するには、まず、ディスク基板 1の表面 lbに対して、 DCマ グネトロンスパッタリング法などの物理気相成長法により、第 1の下地層 2aを形成する 。第 1の下地層 2aは、厚さが 5nmの AlRu合金薄膜である。次に、第 1の下地層 2aの 上層に、 DCマグネトロンスパッタリング法などにより、第 2の下地層 2bを形成する。第 2の下地層 2bは、例えば、厚さが 50nmの CrMoTi合金薄膜である。これら第 1の下 地層 2a及び第 2の下地層 2bからなる下地層 2は、磁性層 3の結晶構造を良好にする ために形成される。  To manufacture the magnetic disk 1, first, the first underlayer 2 a is formed on the surface lb of the disk substrate 1 by physical vapor deposition such as DC magnetron sputtering. The first underlayer 2a is an AlRu alloy thin film having a thickness of 5 nm. Next, the second underlayer 2b is formed on the first underlayer 2a by a DC magnetron sputtering method or the like. The second underlayer 2b is, for example, a CrMoTi alloy thin film having a thickness of 50 nm. The underlayer 2 composed of the first underlayer 2a and the second underlayer 2b is formed in order to improve the crystal structure of the magnetic layer 3.
[0054] 次に、下地層 2 (第 2の下地層 2b)の上層に、 DCマグネトロンスパッタリングなどの 物理気相成長法により、磁性層 3を形成する。磁性層 3は、例えば、厚さ力 15nmの Next, the magnetic layer 3 is formed on the underlayer 2 (second underlayer 2b) by physical vapor deposition such as DC magnetron sputtering. For example, the magnetic layer 3 has a thickness force of 15 nm.
CoCrB合金薄膜である。 CoCrB alloy thin film.
[0055] 次に、磁性層 3の上層に、プラズマ CVD法により、保護層 4を形成する。保護層 4はNext, the protective layer 4 is formed on the magnetic layer 3 by plasma CVD. Protective layer 4
、例えば、厚さが 3nmのアモルファスのダイヤモンドライクカーボンからなり、而摩耗 性を向上させて磁性層 3を保護する機能を担っている。 For example, it is made of amorphous diamond-like carbon having a thickness of 3 nm, and has a function of improving the wear resistance and protecting the magnetic layer 3.
[0056] 次に、保護層 4の表面に、潤滑層 5をディップ法により形成する。潤滑層 5は、例え ば、厚さが 1. 2nmのパーフルォロポリエーテル層など力も構成され、磁気ヘッドと接 触した際の衝撃を緩和するなどの機能を担って 、る。 Next, the lubricating layer 5 is formed on the surface of the protective layer 4 by a dipping method. The lubricating layer 5 is composed of a force such as a perfluoropolyether layer having a thickness of 1.2 nm, for example, and has a function of mitigating impact when contacting the magnetic head.
[0057] 〔成膜装置の構成〕 [Configuration of film forming apparatus]
図 2は、本発明に係る成膜装置における回転搬送型の枚葉式反応チャンバの構成 を示す平面図 (a)及び直線搬送型の枚葉式反応チャンバの構成を示す平面図 (b) である。 FIG. 2 is a plan view (a) showing a configuration of a rotary transfer type single wafer reaction chamber in a film forming apparatus according to the present invention, and a plan view (b) showing a configuration of a straight transfer type single wafer reaction chamber. It is.
[0058] 本発明に係る磁気ディスクの製造装置においては、ディスク基板 1の表面 lbに下 地層 2,磁性層 3及び保護層 4を成膜するにあたって、本発明に係る成膜装置を使用 する。この成膜装置においては、図 2中の(a)に示すように、ディスク基板 1は、基台( 基板ホルダ) 6によって、複数枚 (本実施の形態にぉ ヽては 4枚)が保持された状態で 、成膜装置の反応チャンバ内にお 、て搬送されるようになって 、る。  In the magnetic disk manufacturing apparatus according to the present invention, the film forming apparatus according to the present invention is used to form the base layer 2, the magnetic layer 3 and the protective layer 4 on the surface lb of the disk substrate 1. In this film forming apparatus, as shown in FIG. 2A, a plurality of disc substrates 1 (four in this embodiment) are held by a base (substrate holder) 6. In this state, the film is transferred into the reaction chamber of the film forming apparatus.
[0059] 各ディスク基板 1は、基台 6に形成された透孔の内周側において、外周端部を支持 され、一方の面を上方側に臨ませ、他方の面を下方側に臨ませて保持されている。  [0059] Each disk substrate 1 is supported at the outer peripheral end on the inner peripheral side of the through hole formed in the base 6, with one surface facing upward and the other surface facing downward. Is held.
[0060] この成膜装置の反応性チャンバ内には、基台 6の回転搬送方向に沿って、下地層 2及び磁性層 3を成膜するための第 1乃至第 3のターゲット 7, 8, 9が配置されている 。第 1のターゲット 7は、第 1の下地層 2aを形成するための AlRuターゲットであり、第 2 のターゲット 8は、第 2の下地層 2bを形成するための CoCrTiターゲットであり、第 3の ターゲット 9は、磁性層 3を形成するための CoCrBターゲットである。各ターゲット 7, 8 , 9は、反応チャンバ内において、搬送されてくる基台 6に保持されたディスク基板 1 を両面から挟むように、上面側と下面側とに配置されて!、る。  In the reactive chamber of this film forming apparatus, first to third targets 7, 8 for forming the underlayer 2 and the magnetic layer 3 along the rotational conveyance direction of the base 6. 9 is arranged. The first target 7 is an AlRu target for forming the first underlayer 2a, and the second target 8 is a CoCrTi target for forming the second underlayer 2b, and the third target 9 is a CoCrB target for forming the magnetic layer 3. Each target 7, 8 and 9 is arranged on the upper surface side and the lower surface side so as to sandwich the disk substrate 1 held on the transported base 6 from both sides in the reaction chamber! RU
[0061] なお、各ターゲット 7, 8, 9が配置させた空間は、必要に応じて、基台 6の移動を許 容しつつ、仕切られるようになつている。  [0061] The space in which the targets 7, 8, 9 are arranged is partitioned while allowing the movement of the base 6 as required.
[0062] この成膜装置においては、基台 6によって保持されたディスク基板 1は、まず、第 1 のターゲット 7に対向されて、 DCマグネトロンスパッタリング法などの気相成長法によ り、第 1の下地層 2aを成膜される。次に、基台 6によって保持されたディスク基板 1は、 加熱チャンバ 10において、所定の温度まで加熱される。そして、ディスク基板 1は、基 台 6に保持されたまま反応性チャンバ内を搬送されて、第 2及び第 3のターゲット 8, 9 に順次対向されて、 DCマグネトロンスパッタリング法などの気相成長法により、第 2の 下地層 2b、磁性層 3を成膜される。成膜をなれさたディスク基板 1は、反応性チャン ノくから排出される。  [0062] In this film forming apparatus, the disk substrate 1 held by the base 6 is first opposed to the first target 7 and is subjected to the first growth by a vapor phase growth method such as a DC magnetron sputtering method. The underlayer 2a is formed. Next, the disk substrate 1 held by the base 6 is heated to a predetermined temperature in the heating chamber 10. Then, the disk substrate 1 is transported through the reactive chamber while being held by the base 6, and is sequentially opposed to the second and third targets 8 and 9, and a vapor phase growth method such as a DC magnetron sputtering method. Thus, the second underlayer 2b and the magnetic layer 3 are formed. The disk substrate 1 that has been deposited is discharged from the reactive channel.
[0063] なお、この成膜装置は、図 2 (b)に示すように、直線搬送型の枚葉式反応チャンバ を有するものとしてもよい。この成膜装置においては、ディスク基板 1を保持した基台 6は、反応性チャンバ内を直線状に搬送される。 [0064] この成膜装置においては、基台 6によって保持されたディスク基板 1は、まず、第 1 のターゲット 7に対向されて、 DCマグネトロンスパッタリング法などの気相成長法によ り、第 1の下地層 2aを成膜される。次に、基台 6によって保持されたディスク基板 1は、 加熱チャンバ 10において、所定の温度まで加熱される。そして、ディスク基板 1は、基 台 6に保持されたまま反応性チャンバ内を搬送されて、第 2及び第 3のターゲット 8, 9 に順次対向されて、 DCマグネトロンスパッタリング法などの気相成長法により、第 2の 下地層 2b、磁性層 3を成膜される。成膜をなれさたディスク基板 1は、反応性チャン ノくから排出される。 [0063] Note that, as shown in FIG. 2 (b), this film forming apparatus may have a linear conveyance type single wafer reaction chamber. In this film forming apparatus, the base 6 holding the disk substrate 1 is conveyed linearly in the reactive chamber. [0064] In this film forming apparatus, the disk substrate 1 held by the base 6 is first opposed to the first target 7 and is subjected to the first growth by a vapor phase growth method such as a DC magnetron sputtering method. The underlayer 2a is formed. Next, the disk substrate 1 held by the base 6 is heated to a predetermined temperature in the heating chamber 10. Then, the disk substrate 1 is transported through the reactive chamber while being held by the base 6, and is sequentially opposed to the second and third targets 8 and 9, and a vapor phase growth method such as a DC magnetron sputtering method. Thus, the second underlayer 2b and the magnetic layer 3 are formed. The disk substrate 1 that has been deposited is discharged from the reactive channel.
[0065] このようにして磁性層 3までの成膜をなされたディスク基板 1は、図示しないプラズマ CVD室に送られ、プラズマ CVDによる保護層 4の成膜をなされる。  The disk substrate 1 on which the film up to the magnetic layer 3 has been formed in this way is sent to a plasma CVD chamber (not shown), and the protective layer 4 is formed by plasma CVD.
[0066] 〔基台の構成〕  [0066] [Configuration of base]
図 3は、本発明に係る成膜装置における基台の構成を示す平面図である。  FIG. 3 is a plan view showing the configuration of the base in the film forming apparatus according to the present invention.
[0067] 本発明に係る成膜装置における基台 6は、図 3に示すように、円盤状の基台本体( ベース) 6aを有し、この基台本体 6aにより、複数枚 (本実施の形態においては 4枚)の 1. 0インチ型磁気ディスク用のディスク基板 1を、同一平面上として、周方向に等角 度間隔で保持することができるように構成されて 、る。  As shown in FIG. 3, the base 6 in the film forming apparatus according to the present invention has a disc-like base main body (base) 6a, and a plurality of sheets (this embodiment) In this embodiment, four disk substrates for 1.0-inch type magnetic disks are configured to be on the same plane and can be held at equiangular intervals in the circumferential direction.
[0068] 基台本体 6aは、例えば、チタン製であり、外形が、例えば、 95mmである。なお、反 応チャンバ内の各ターゲット 7, 8, 9は、いずれも、外径が基台本体 6aよりも大きい、 例えば、外径 120mmの円盤形状となっている。したがって、ディスク基板 1は、基台 6に保持されることにより、各ターゲット 7, 8, 9に対しては、各ターゲット 7, 8, 9中心 と対向する位置の周囲に配置される。  [0068] The base body 6a is made of, for example, titanium and has an outer shape of, for example, 95 mm. Each of the targets 7, 8, and 9 in the reaction chamber has a disk shape with an outer diameter larger than that of the base body 6a, for example, an outer diameter of 120 mm. Accordingly, the disk substrate 1 is held on the base 6, so that the targets 7, 8, 9 are arranged around the positions facing the centers of the targets 7, 8, 9.
[0069] この基台本体 6aには、ディスク基板 1より大きい 4つの透孔 11が周方向に等間隔で 形成されている。これら透孔 11の内周部には、ディスク基板 1の外周端部を挟持して 保持する複数の外形チヤッキング 12が設けられている。  [0069] In the base body 6a, four through holes 11 larger than the disk substrate 1 are formed at equal intervals in the circumferential direction. A plurality of external chucks 12 that sandwich and hold the outer peripheral end portion of the disk substrate 1 are provided in the inner peripheral portions of these through holes 11.
[0070] そして、基台本体 6aには、図 3中の(a)に示すように、この基台本体 6aに保持され るディスク基板 1の枚数に対応した数のバイアス印加用端子 13を有するバイアス印 加手段が設けられている。このバイアス印加手段は、各バイアス印加用端子 13を非 導電性のディスク基板 1上に成膜された導電性膜に接触させることによって、この導 電性膜にバイアス電圧を印加するものである。 [0070] Then, as shown in FIG. 3A, the base body 6a has a number of bias application terminals 13 corresponding to the number of disk substrates 1 held by the base body 6a. Bias applying means is provided. This bias applying means makes each lead applying terminal 13 come into contact with a conductive film formed on the non-conductive disk substrate 1 to thereby introduce this bias. A bias voltage is applied to the conductive film.
[0071] 各バイアス印加用端子 13は、温度に応じて形状が変化する部材によって形成され ており、温度変化による変形によって、基台本体 6a上に保持された非導電性のディ スク基板 1に接離する。バイアス印加用端子 13をなす温度に応じて形状が変化する 部材としては、熱膨張係数が大きな材料が挙げられる。また、温度に応じて形状が変 化する部材としては、 、わゆる形状記憶合金やバイメタルが挙げられる。  [0071] Each bias application terminal 13 is formed of a member whose shape changes with temperature, and is formed on the non-conductive disk substrate 1 held on the base body 6a by deformation due to temperature change. Connect and separate. Examples of the member whose shape changes according to the temperature forming the bias application terminal 13 include a material having a large thermal expansion coefficient. In addition, examples of the member whose shape changes depending on the temperature include a so-called shape memory alloy and bimetal.
[0072] 形状記憶合金は、一般に、所望の形状として高熱処理を施すことにより、このときの 形状を記憶することができ、常温において変形させても、いわゆる変態温度 (Af)に 加熱すると、元の所望の形状に戻る性質を有する。このような形状記憶合金としては 、例えば、 NiTiCu線材等を用いることができる。また、バイメタルは、熱膨張係数の 異なる 2つの金属合金を貼り合わせたもので、温度変化により、各金属合金の熱膨張 の差によって生ずる応力によって、変形 (反り)を生ずるようになって!/、る。  [0072] In general, a shape memory alloy can memorize the shape at this time by performing a high heat treatment as a desired shape, and even when deformed at room temperature, when it is heated to a so-called transformation temperature (Af), It has the property of returning to the desired shape. As such a shape memory alloy, for example, a NiTiCu wire or the like can be used. Bimetal is a laminate of two metal alloys with different coefficients of thermal expansion, and due to temperature changes, deformation (warping) occurs due to the stress caused by the difference in thermal expansion of each metal alloy! / RU
[0073] 各ノ ィァス印加用端子 13は、先端側を各ディスク基板 1に臨ませるとともに、基端 側をバイアス印加部材 14に取付けられている。このバイアス印加部材 14は、金属の 如き導電性材料カゝらなり、基台本体 6aを囲むようにして円環状に形成されている。各 バイアス印加用端子 13は、基端側をバイアス印加部材 14に支持された状態で、温 度変化によって変形することにより、先端側を、基台本体 6a上に保持された非導電 性のディスク基板 1に接離させる。  Each noisy application terminal 13 has its distal end facing each disk substrate 1 and its proximal end attached to a bias application member 14. The bias applying member 14 is made of a conductive material such as metal and is formed in an annular shape so as to surround the base body 6a. Each bias application terminal 13 is deformed by a change in temperature while the base end side is supported by the bias application member 14, so that the front end side is a non-conductive disk held on the base body 6a. Move to and away from substrate 1.
[0074] なお、各バイアス印加用端子 13は、バイアス印加部材 14により、弾性を有する扞部 15を介して支持されており、各ディスク基板 1に対して接触したとき、扞部 15の弾性 力によって、各ディスク基板 1に先端側を押接させるようになって!/ヽる。  Each bias applying terminal 13 is supported by a bias applying member 14 via an elastic flange 15, and when it comes into contact with each disk substrate 1, the elastic force of the flange 15 As a result, the tip side of each disk substrate 1 is pressed!
[0075] そして、バイアス印加部材 14には、基台 6外に設置された直流電圧供給端子 16を 介して、 DCバイアス電圧が印加されている。  A DC bias voltage is applied to the bias applying member 14 through a DC voltage supply terminal 16 installed outside the base 6.
[0076] この基台 6においては、第 2の下地層 2b及び磁性層 3の成膜時において、各バイァ ス印加用端子 13を基台本体 6aに保持された複数のディスク基板 1に接触させること により、各ディスク基板 1に対して、同時に DCバイアスを印加するようになっている。  In the base 6, each bias application terminal 13 is brought into contact with a plurality of disk substrates 1 held by the base body 6 a when the second underlayer 2 b and the magnetic layer 3 are formed. As a result, a DC bias is simultaneously applied to each disk substrate 1.
[0077] なお、 DCバイアス電圧は、ノ ィァス印加部材 14力も各バイアス印加用端子 13を経 てディスク基板 1上に成膜された導電性膜に印加されるようにしてもよく また、図 3中 の (b)に示すように、外部の直流電圧供給端子 16から導線 17を介して各バイアス印 加用端子 13を経てディスク基板 1上に成膜された導電性膜に印加されるようにしても よい。 It should be noted that the DC bias voltage may be applied to the conductive film formed on the disk substrate 1 via the bias application terminals 13 as well as the force applied to the noise application member 14. During ~ (B), the external DC voltage supply terminal 16 is applied to the conductive film formed on the disk substrate 1 through the conductor 17 and the bias applying terminals 13. Also good.
[0078] 図 4は、本発明に係る成膜装置における成膜工程とバイアス印加用端子の変形の 関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the film forming process and the deformation of the bias application terminal in the film forming apparatus according to the present invention.
[0079] この成膜装置においては、各バイアス印加用端子 13は、図 4に示すように、第 2の 下地層 2b及び磁性層 3の成膜時には、図示しない温度制御手段により温度が上昇 されることによって変形して、基台本体 6a上に保持された非導電性のディスク基板 1 に先端側を接触させる。このとき、直流電圧供給端子 16及びバイアス印加部材 14を 介して、非導電性のディスク基板 1上に成膜された導電性膜にバイアス電圧が印加さ れる。  In this film forming apparatus, as shown in FIG. 4, each bias applying terminal 13 is heated by a temperature control means (not shown) when forming the second underlayer 2b and the magnetic layer 3. Thus, the tip end side is brought into contact with the non-conductive disk substrate 1 held on the base body 6a. At this time, a bias voltage is applied to the conductive film formed on the non-conductive disk substrate 1 via the DC voltage supply terminal 16 and the bias applying member 14.
[0080] そして、各バイアス印加用端子 13は、成膜の終了後に温度制御手段により温度が 降下されることによって変形して、基台本体 6a上に保持された非導電性のディスク基 板 1より離間する。このように、成膜の終了後に各バイアス印加用端子 13がディスク 基板 1より離間することにより、この基台 6からの各ディスク基板 1の取り外しが容易と なる。  [0080] Then, each bias application terminal 13 is deformed when the temperature is lowered by the temperature control means after the film formation is completed, and the non-conductive disk substrate 1 held on the base body 6a. More apart. As described above, the bias application terminals 13 are separated from the disk substrate 1 after the film formation is completed, so that the disk substrates 1 can be easily detached from the base 6.
[0081] 図 5は、本発明に係る成膜装置におけるバイアス印加用端子の構成の他の例を示 す平面図である。  FIG. 5 is a plan view showing another example of the configuration of the bias application terminal in the film forming apparatus according to the present invention.
[0082] なお、基台 6からの各ディスク基板 1の取り外しをより容易とするためには、 DCバイ ァスの印可後に、各バイアス印加用端子 13が各ディスク基板 iより大きく離間するよう にすることが好ましい。すなわち、各バイアス印加用端子 13は、図 5中の(a)に示すよ うに、加熱して変態温度以上となされたときに、図中矢印 aで示すように、ディスク基 板 1に接触するように予め設定しておいた形状記憶合金力 なる第 1の板パネ 13aと 、変態温度より低い温度 (例えば、室温)において第 1板パネ 13aをディスク基板 1か ら離間した位置に保持する第 2の板パネ 13bとを組み合わせて構成することができる 。このバイアス印加用端子 13は、第 1及び第 2の板パネ 13a, 13bの基端側が基台本 体 6aに固定されており、先端側を基台本体 6aに保持されたディスク基板 1に臨ませ ている。 [0083] このように構成したノ ィァス印加用端子 13は、室温時には、図 5中の (b)に示すよう に、第 2の板パネ 13bの力により、図中矢印 bで示すように、ディスク基板 1から離間し た位置に保持され、変態温度以上になると、図 5中の (a)に示すように、第 1の板パネ 13aによりディスク基板 1に接触する状態となる。したがって、このバイアス印加用端 子 13は、基台 6から各ディスク基板 1を取り外すときに邪魔になることがなぐディスク 基板 1の取り外しを容易とすることができる。 [0082] In order to make it easier to remove each disk substrate 1 from the base 6, each bias application terminal 13 is separated from each disk substrate i after the DC bias is applied. It is preferable to do. That is, each bias application terminal 13 comes into contact with the disk substrate 1 as shown by an arrow a in the figure when heated to the transformation temperature or higher as shown in (a) in FIG. The first plate panel 13a having the shape memory alloy force set in advance as described above and the first plate panel 13a held at a position separated from the disk substrate 1 at a temperature lower than the transformation temperature (for example, room temperature). The two panel panels 13b can be combined. The bias applying terminal 13 has the base end sides of the first and second plate panels 13a and 13b fixed to the base body 6a, and the front end faces the disk substrate 1 held by the base body 6a. ing. [0083] The noise application terminal 13 configured as described above is, as shown by an arrow b in the figure, at the room temperature, as shown by (b) in FIG. 5, due to the force of the second plate panel 13b. When the temperature is maintained at a position separated from the disk substrate 1 and becomes the transformation temperature or higher, as shown in FIG. 5 (a), the disk substrate 1 is brought into contact with the first plate panel 13a. Therefore, the bias applying terminal 13 can facilitate the removal of the disk substrate 1 that does not get in the way when the disk substrate 1 is removed from the base 6.
[0084] また、各バイアス印加用端子 13を形状記憶合金によって形成した場合には、合金 成分、例えば、 Ni含有量を適宜調整することや、高熱処理を行う温度を変えること〖こ より、変態温度 (Af)を変えることができる。これにより、各ノ ィァス印加用端子 13は、 温度制御手段による温度制御をせずとも、成膜に伴う反応性チャンバ内の温度上昇 によって変形して、基台本体 6a上に保持された非導電性のディスク基板 1に接触す るとともに、成膜の終了に伴う真空スパッタ装置外への取り出しで温度が室温まで低 下することで変態温度以下になることによって変形して、基台本体 6a上に保持された 非導電性のディスク基板 1より離間するようにすることができる。  [0084] Further, when each bias application terminal 13 is formed of a shape memory alloy, the transformation is performed by appropriately adjusting the alloy components, for example, the Ni content or changing the temperature at which the high heat treatment is performed. The temperature (Af) can be changed. As a result, each noise application terminal 13 is deformed by the temperature rise in the reactive chamber accompanying the film formation without being controlled by the temperature control means, so that the nonconductive state held on the base body 6a. When the substrate is brought into contact with the magnetic disk substrate 1 and taken out of the vacuum sputtering apparatus upon completion of the film formation, the temperature is lowered to the room temperature by being lowered to room temperature. Can be separated from the non-conductive disk substrate 1 held on the substrate.
[0085] さらに、各バイアス印加用端子 13は、成膜中に、図示しない電流供給手段により電 流を供給されて温度が上昇されることによって変形して、基台本体 6a上に保持され た非導電性のディスク基板 1に先端側を接触させるようにしてもょ ヽ。この場合には、 各バイアス印加用端子 13は、成膜の終了後に電流供給手段による電流供給が遮断 されて温度が降下されることによって変形して、基台本体 6a上に保持された非導電 性のディスク基板 1より離間する。  [0085] Furthermore, each bias application terminal 13 was deformed by being supplied with a current by means of a current supply means (not shown) and the temperature was raised during film formation, and held on the base body 6a. It may be possible to bring the tip side into contact with the non-conductive disk substrate 1. In this case, each bias application terminal 13 is deformed when the current supply by the current supply means is interrupted and the temperature is lowered after the film formation is completed, so that the non-conductive held on the base body 6a. Away from the disc substrate 1
[0086] 図 6は、本発明に係る成膜装置における基台の構成の他の例を示す平面図である FIG. 6 is a plan view showing another example of the configuration of the base in the film forming apparatus according to the present invention.
[0087] さらに、このバイアス印加用端子 13は、図 6中の(a)に示すように、変位量 (動作量) を大きくするために、コイルパネ状に加工しておいてもよい。このコイルパネ状のバイ ァス印加用端子 13は、十分にディスク基板 1に接触する長さとしておく。このバイアス 印加用端子 13は、温度変化により、図中矢印 cで示すように、伸縮して、基台本体 6a 上に保持されたディスク基板 1に対して接離する。 Further, as shown in (a) of FIG. 6, the bias applying terminal 13 may be processed into a coil panel shape in order to increase the displacement (operation amount). The coil panel-like bias application terminal 13 is sufficiently long to contact the disk substrate 1. The bias application terminal 13 expands and contracts as shown by an arrow c in the figure due to a temperature change, and comes in contact with and separates from the disk substrate 1 held on the base body 6a.
[0088] この場合にも、 DCバイアス電圧は、バイアス印加部材 14力も各バイアス印加用端 子 13を経てディスク基板 1上に成膜された導電性膜に印加されるようにしてもよく ま た、図 6中の (b)に示すように、外部の直流電圧供給端子 16から導線 17を介して各 バイアス印加用端子 13を経てディスク基板 1上に成膜された導電性膜に印加される ようにしてもよい。 [0088] Also in this case, the DC bias voltage is equal to the bias applying member 14 force and each bias applying end. It may be applied to the conductive film formed on the disk substrate 1 via the element 13, and as shown in (b) of FIG. It may be applied to the conductive film formed on the disk substrate 1 via each bias applying terminal 13 via the.
[0089] 〔本実施の形態における効果〕  [Effect in the present embodiment]
この実施の形態においては、磁性層 3の成膜時に、基台 6によって保持されている 複数枚のディスク基板 1に対し、同時に DCバイアスを印加させることが可能であり、 高記録密度に対応した磁気ディスクを良好な生産性において製造することができる。  In this embodiment, it is possible to simultaneously apply a DC bias to a plurality of disk substrates 1 held by the base 6 during the formation of the magnetic layer 3, which corresponds to a high recording density. Magnetic disks can be manufactured with good productivity.
[0090] すなわち、ディスク基板 1上に導電性を有する膜を成膜した後、 DCバイアスをかけ るために真空スパッタ装置のチャンバ内から取り出す必要がなくなり、製造プロセスが 単純化されて生産性が向上し、さらに、 4枚を一度に成膜できることから、一度に 1枚 ずつ成膜し一度大気中に取り出してバイアスを印加する従来の製造方法に比べて、 生産性を 4倍以上に大幅に向上させることができる。  That is, after forming a conductive film on the disk substrate 1, it is not necessary to remove it from the chamber of the vacuum sputtering apparatus in order to apply a DC bias, simplifying the manufacturing process and improving productivity. In addition, because four films can be deposited at once, productivity is significantly more than four times that of conventional manufacturing methods that deposit one film at a time, take it into the atmosphere, and apply a bias. Can be improved.
[0091] なお、 DCバイアスの印加は、磁性層 3の成膜時のみならず、第 2の下地層 2bの成 膜時に行ってもよぐ第 2の下地層 2b及び磁性層 3の成膜の両方において行ってもよ い。  Note that the DC bias is applied not only when the magnetic layer 3 is deposited, but also when the second underlayer 2b and the magnetic layer 3 are deposited. You can do it both ways.
[0092] また、 DCバイアスの印加は、垂直磁気記録ディスクにおける軟磁性膜の成膜時に 行ってもよい。この場合、軟磁性層は、 50nm程度の膜厚を必要とするので、始めに DCバイアスをかけずに軟磁性層を成膜し、この軟磁性層の厚さが DCバイアスの印 加ができる程度となったときに、 DCバイアスの印加を開始するようにしてもよい。  Further, the DC bias may be applied at the time of forming the soft magnetic film in the perpendicular magnetic recording disk. In this case, since the soft magnetic layer requires a film thickness of about 50 nm, the soft magnetic layer can be formed without applying a DC bias first, and the thickness of the soft magnetic layer can be applied with a DC bias. When it reaches the point, application of DC bias may be started.
[0093] 〔磁気ディスクの製造方法の実施例〕  [Example of Magnetic Disk Manufacturing Method]
前述のように構成された基台 6を用いて、非導電性のディスク基板 (ガラス基板) 1の 表面に下地層 2 (第 1の下地層(GIF層) 2a及び第 2の下地層(UL層) 2b)、磁性層 3 (いわゆる AFC構造を有する場合は、スぺーサにより分割された複数の磁性層)を成 膜するにあたっては、まず、精密研磨及び化学強化処理を施した 1. 0インチ型磁気 ディスク用のディスク基板 1を、基台 6により保持させる。なお、磁気ディスクは、デイス ク基板の両面に同様の構成を有する力 ここでは、一方の面のみについて説明する [0094] そして、図 2に示すように、この基台 6を自動搬送装置に装着し、基台 6を反応性チ ヤンバ内に導入する。基台 6は、所定の搬送速度で搬送され、基台 6が各ターゲット 7 , 8, 9に略同心状態に対向設置された状態で、成膜が行われる。第 1の下地層(GI F層) 2aを成膜した後に、加熱チャンバ 10内に導入する。加熱チャンバ 10では、ヒー タによって、ディスク基板 1を、例えば、 300° C、 1分間の加熱条件にて加熱する。こ の加熱によって、各バイアス印加用端子 13が所定の元の形状に戻り、基台本体 6a に保持された複数のディスク基板 1の第 1下地層 2aが成膜されている外周端部に接 触する。 Using the base 6 configured as described above, a base layer 2 (first base layer (GIF layer) 2a and second base layer (UL) is formed on the surface of a non-conductive disk substrate (glass substrate) 1. Layer) 2b) and magnetic layer 3 (in the case of the so-called AFC structure, a plurality of magnetic layers divided by a spacer) were first subjected to precision polishing and chemical strengthening treatment. A disk substrate 1 for inch type magnetic disk is held by a base 6. Note that the magnetic disk has the same structure on both sides of the disk substrate. Here, only one side will be described. Then, as shown in FIG. 2, the base 6 is mounted on the automatic transfer device, and the base 6 is introduced into the reactive chamber. The base 6 is transported at a predetermined transport speed, and film formation is performed in a state where the base 6 is installed facing each of the targets 7, 8, 9 in a substantially concentric state. After the first underlayer (GIF layer) 2a is formed, it is introduced into the heating chamber 10. In the heating chamber 10, the disk substrate 1 is heated by a heater, for example, at 300 ° C. for 1 minute. By this heating, each bias applying terminal 13 returns to a predetermined original shape, and comes into contact with the outer peripheral end portion where the first underlayer 2a of the plurality of disk substrates 1 held by the base body 6a is formed. Touch.
[0095] 次に、第 2の下地層 2b及び磁性層 3を成膜する。このとき、各バイアス印加用端子 1 3が基台本体 6aに保持された複数のディスク基板 1の第 1下地層 2aが成膜されてい る外周端部に接触しているので、各ディスク基板 1には DCバイアスが印加される。少 なくとも磁性層 3は、このようにして各ディスク基板 1に DCバイアスを印加した状態で 成膜する。  Next, the second underlayer 2b and the magnetic layer 3 are formed. At this time, since each bias application terminal 13 is in contact with the outer peripheral edge portion where the first underlayer 2a of the plurality of disk substrates 1 held by the base body 6a is formed, each disk substrate 1 A DC bias is applied to. At least the magnetic layer 3 is formed in this manner with a DC bias applied to each disk substrate 1.
[0096] このようにして、ディスク基板 1の両面に、膜厚 5nmの AlRu層(第 1の下地層 2a)及 び膜厚 50nmの CrMoTi (第 2の下地層 2b)力もなる下地層 2と、膜厚 15nmの CoCr B磁性層 3とが形成される。ここで、反応性チャンバ内のスパッタリング条件は、例え ば、スパッタ圧力が 5mtorrであり、スパッタ雰囲気がアルゴンの不活性ガスである。  [0096] In this way, on both sides of the disk substrate 1, an AlRu layer (first underlayer 2a) having a thickness of 5 nm and a CrMoTi (second underlayer 2b) having a thickness of 50 nm are also provided. Then, a CoCr B magnetic layer 3 having a thickness of 15 nm is formed. Here, the sputtering conditions in the reactive chamber are, for example, a sputtering pressure of 5 mtorr and a sputtering atmosphere of an inert gas of argon.
[0097] このようにして成膜を終了すると、各ディスク基板 1を保持した基台 6は、反応性チヤ ンバ内から排出される。また、反応性チャンバ内から排出されたディスク基板 1に対し ては、磁性層 3の上層に、プラズマ CVD法などにより、保護層 4を形成する。さらに、 この保護層 4の上層には、ディップ法により、パーフルォロエーテル系潤滑剤を塗布 することにより、潤滑層 5を形成する。この潤滑層 5は、パーフルォロエーテル系潤滑 剤の塗布後、オーブンを用いて、ディスク基板 1を 100° Cで 1時間程度加熱処理し 、ディスク基板 1の最表層にパーフルォロエーテル系潤滑剤を定着させることによつ て形成される。なお、パーフルォロポリエーテル系の潤滑剤としては、例えば、 rsolva y Solexis社」製の「Fomblin— Z— TetraolJ (商品名)を用いることができる。  When the film formation is completed in this way, the base 6 holding each disk substrate 1 is discharged from the reactive chamber. For the disk substrate 1 discharged from the reactive chamber, a protective layer 4 is formed on the magnetic layer 3 by a plasma CVD method or the like. Further, a lubricating layer 5 is formed on the upper layer of the protective layer 4 by applying a perfluoroether lubricant by a dipping method. This lubrication layer 5 is obtained by applying a perfluoroether-based lubricant and then heat-treating the disk substrate 1 at 100 ° C. for about 1 hour using an oven, so that the outermost layer of the disk substrate 1 is perfluoroether. It is formed by fixing a system lubricant. As the perfluoropolyether lubricant, for example, “Fomblin-Z-TetraolJ (trade name)” manufactured by rsolva y Solexis can be used.
[0098] ここで、潤滑層 5の膜厚を、フーリエ変換型赤外分光高度計 (FTIR)で測定したとこ ろ、 1. 2nmであった。 [0099] 〔比較例〕 Here, the film thickness of the lubricating layer 5 was measured with a Fourier transform infrared spectrophotometer (FTIR) and found to be 1.2 nm. [0099] [Comparative Example]
比較例(1)として、第 2の下地層 2b及び磁性層 3の成膜を DCバイアスを印可せず に行い、他は前述の実施例と同様にして、磁気ディスクを作成した。  As a comparative example (1), the second underlayer 2b and the magnetic layer 3 were formed without applying a DC bias, and a magnetic disk was prepared in the same manner as in the previous example.
[0100] また、比較例(2)として、第 1の下地層(GIF層) 2aを成膜した後に各ディスク基板 1 を大気中に取り出し、これらディスク基板 1に各バイアス印加用端子 13を接触させた 後に反応性チャンバ内に戻して、第 2の下地層 2b及び磁性層 3の成膜を DCバイァ スを印可して行い、他は前述の実施例と同様にして、磁気ディスクを作成した。  [0100] As a comparative example (2), after the first underlayer (GIF layer) 2a is formed, each disk substrate 1 is taken out into the atmosphere, and each bias application terminal 13 is brought into contact with these disk substrates 1. After that, the second underlayer 2b and the magnetic layer 3 were formed by applying a DC bias, and a magnetic disk was prepared in the same manner as in the previous embodiment. .
[0101] 〔DCバイアスの効果〕  [0101] [Effect of DC bias]
図 7は、本発明に係る磁気ディスクの製造方法における DCバイアスの効果として、 保持力との関係 (a)及び SN比との関係 (b)を示すグラフである。  FIG. 7 is a graph showing the relationship (a) with the coercive force and the relationship (b) with the S / N ratio as the effect of the DC bias in the magnetic disk manufacturing method according to the present invention.
[0102] 前述のようにして製造した磁気ディスクについて、図 7中の(a)に示すように、保持 力 Heの DCバイアス依存性を確認したところ、 DCバイアスを約 400Vとすることにより 、保持力 Heが最も良好となることが確認された。また、図 7中の (b)に示すように、 SN 比の DCバイアス依存性を確認したところ、 DCバイアスを高くするほど、 SN比が良好 となることが確認された。  [0102] Regarding the magnetic disk manufactured as described above, as shown in (a) of Fig. 7, the dependency of the holding force He on the DC bias was confirmed. It was confirmed that the force He was the best. In addition, as shown in (b) of Fig. 7, the dependence of the SN ratio on the DC bias was confirmed, and it was confirmed that the higher the DC bias, the better the SN ratio.
[0103] なお、 DCバイアスは、負の値(マイナス)をとる力 図 6においては、マイナスではな ぐ正の値として示してある。例えば、 400Vは、—400Vの DCバイアスを意味する。  [0103] Note that the DC bias is a force that takes a negative value (minus). In Fig. 6, it is shown as a positive value rather than a negative value. For example, 400V means -400V DC bias.
[0104] また、以下の〔表 1〕に示すように、本発明の実施例の磁気ディスクは、比較例(1)の 磁気ディスク (DCバイアスなし)に比較して、電磁変換特性を示す SNR (信号雑音比 )が向上していることがわ力つた。  [0104] Further, as shown in [Table 1] below, the magnetic disk of the example of the present invention has an SNR exhibiting electromagnetic conversion characteristics as compared with the magnetic disk of Comparative Example (1) (no DC bias). The improvement in (signal to noise ratio) was remarkable.
[0105] そして、比較例(2)の磁気ディスクは、〔表 1〕に示すように、 SNRについては実施 例の磁気ディスクと同等であるが、前述したように、第 1の下地層 2aを成膜した後に 一度大気中に取り出しているため、パーティクル汚染が認められ、また、第 1の下地 層 2aを成膜した後に取り出して各ディスク基板 1に各バイアス印加用端子 13を接触 させるという手間が発生するため、量産性が著しく低下することが確認された。  [0105] As shown in [Table 1], the magnetic disk of Comparative Example (2) is equivalent to the magnetic disk of the Example in terms of SNR. However, as described above, the first underlayer 2a is not provided. Since the film is once taken out into the atmosphere after film formation, particle contamination is observed. Also, the first underlayer 2a is formed and then taken out and the bias application terminals 13 are brought into contact with each disk substrate 1. As a result, it was confirmed that the mass productivity was significantly reduced.
[0106] [表 1] SNR (信号雑音比) [0106] [Table 1] SNR (signal to noise ratio)
ま讀  Ma 讀
比較例 (1) (パイァスなし) 20. 5  Comparative example (1) (No bias) 20.5
關 (2) (大気中に跑り出す) 20. 9 産業上の利用可能性  關 (2) (starts in the atmosphere) 20. 9 Industrial Applicability
本発明は、複数枚の非導電性の基板に対してノ ィァススパッタによる成膜を行う枚 葉式の成膜装置に適用可能である。生産性を維持したままで、良好に DCバイアスを 印加することができる。  The present invention can be applied to a single-wafer type film forming apparatus that forms a film by non-sputtering on a plurality of non-conductive substrates. A good DC bias can be applied while maintaining productivity.

Claims

請求の範囲 The scope of the claims
[1] 非導電性の基板に対し、バイアススパッタによる成膜を行う枚葉式の成膜装置であ つて、  [1] A single-wafer type film forming apparatus for forming a film by bias sputtering on a non-conductive substrate.
少なくとも一の非導電性の基板を保持する基台と、  A base for holding at least one non-conductive substrate;
バイアス印加用端子を有し、このバイアス印加用端子を前記非導電性の基板上に 成膜された導電性膜に接触させることによって、この導電性膜にバイアス電圧を印加 するバイアス印加手段とを備え、  Bias applying means for applying a bias voltage to the conductive film by bringing the bias applying terminal into contact with a conductive film formed on the non-conductive substrate. Prepared,
前記バイアス印加用端子は、温度に応じて形状が変化する部材によって形成され ており、温度変化による変形によって、前記基台上に保持された非導電性の基板に 接離することを特徴とする成膜装置。  The bias application terminal is formed of a member whose shape changes according to temperature, and contacts and separates from a non-conductive substrate held on the base by deformation due to temperature change. Deposition device.
[2] 前記バイアス印加用端子をなす温度に応じて形状が変化する部材は、形状記憶合 金であることを特徴とする請求項 1記載の成膜装置。  [2] The film forming apparatus according to [1], wherein the member whose shape changes according to the temperature forming the bias applying terminal is a shape memory alloy.
[3] 前記バイアス印加用端子をなす温度に応じて形状が変化する部材は、バイメタル であることを特徴とする請求項 1記載の成膜装置。  [3] The film forming apparatus according to [1], wherein the member whose shape changes depending on the temperature forming the bias application terminal is a bimetal.
[4] 前記バイアス印加用端子は、成膜に伴う温度上昇によって変形して、前記基台上 に保持された非導電性の基板に接触するとともに、成膜の終了に伴う温度降下によ つて変形して、前記基台上に保持された非導電性の基板より離間することを特徴とす る請求項 1乃至請求項 3のいずれか一に記載の成膜装置。  [4] The bias application terminal is deformed by the temperature rise accompanying the film formation, contacts the non-conductive substrate held on the base, and is caused by the temperature drop accompanying the end of the film formation. 4. The film forming apparatus according to claim 1, wherein the film forming apparatus is deformed to be separated from a non-conductive substrate held on the base.
[5] 前記バイアス印加用端子の温度を制御する温度制御手段を備え、  [5] A temperature control means for controlling the temperature of the bias application terminal is provided,
前記バイアス印加用端子は、成膜中に前記温度制御手段により温度が上昇される ことによって変形して、前記基台上に保持された非導電性の基板に接触するとともに 、成膜の終了後に前記温度制御手段により温度が降下されることによって変形して、 前記基台上に保持された非導電性の基板より離間することを特徴とする請求項 1乃 至請求項 3の 、ずれか一に記載の成膜装置。  The bias application terminal is deformed when the temperature is raised by the temperature control means during film formation, and contacts the non-conductive substrate held on the base, and after the film formation is completed. The deformation according to any one of claims 1 to 3, wherein the temperature control means deforms when the temperature is lowered and is separated from a non-conductive substrate held on the base. 2. The film forming apparatus according to 1.
[6] 前記バイアス印加用端子に電流を供給する電流供給手段を備え、  [6] comprising a current supply means for supplying a current to the bias application terminal;
前記バイアス印加用端子は、成膜中に前記電流供給手段により電流を供給されて 温度上昇することによって変形して、前記基台上に保持された非導電性の基板に接 触するとともに、成膜の終了後に前記電流供給手段による電流供給が遮断されて温 度が降下されることによって変形して、前記基台上に保持された非導電性の基板より 離間することを特徴とする請求項 1乃至請求項 3のいずれか一に記載の成膜装置。 The bias application terminal is deformed when a current is supplied by the current supply means during the film formation and the temperature rises, and contacts the non-conductive substrate held on the base. After the end of the film, the current supply by the current supply means is interrupted and the temperature is 4. The film forming apparatus according to claim 1, wherein the film forming apparatus is deformed by being lowered and separated from a non-conductive substrate held on the base.
[7] 前記基板としてディスク基板を用い、このディスク基板上に下地層、磁性層及び保 護層を順次成膜することを特徴とする請求項 1乃至請求項 6のいずれか一に記載の 成膜装置。 [7] The composition according to any one of [1] to [6], wherein a disk substrate is used as the substrate, and an underlayer, a magnetic layer, and a protective layer are sequentially formed on the disk substrate. Membrane device.
[8] 非磁性及び非導電性のディスク基板上に下地層、磁性層及び保護層を順次成膜 する磁気ディスクの製造方法であって、  [8] A method of manufacturing a magnetic disk in which an underlayer, a magnetic layer, and a protective layer are sequentially formed on a nonmagnetic and nonconductive disk substrate,
前記ディスク基板を、基台上に保持させる工程と、  Holding the disk substrate on a base;
真空チャンバ内において、前記基台上に保持されたディスク基板上に導電性膜を 成膜する工程と、  Forming a conductive film on a disk substrate held on the base in a vacuum chamber;
前記真空チャンバ内において、バイアス印加手段のバイアス印加用端子を変形さ せることにより、このバイアス印加用端子を前記ディスク基板上に成膜された導電性 膜に接触させる工程と、  In the vacuum chamber, by deforming the bias application terminal of the bias application means, the bias application terminal is brought into contact with the conductive film formed on the disk substrate; and
前記真空チャンバ内において、前記バイアス印加手段により、前記バイアス印加用 端子を介して前記導電性膜にノ ィァス電圧を印カロしつつ、該導電性膜上に磁性層 及び保護層を順次成膜する工程とを有し、  In the vacuum chamber, the bias applying means sequentially forms a magnetic layer and a protective layer on the conductive film while applying a negative voltage to the conductive film via the bias application terminal. A process,
前記バイアス印加部材として、温度に応じて形状が変化する部材によって形成され 温度変化による変形によって前記基台上に保持された非導電性の基板に接離する ものを用いることを特徴とする磁気ディスクの製造方法。  A magnetic disk, wherein the bias applying member is formed of a member whose shape changes according to temperature, and contacts and separates from a non-conductive substrate held on the base by deformation due to temperature change. Manufacturing method.
[9] 前記バイアス印加用端子をなす温度に応じて形状が変化する部材として、形状記 憶合金を用いることを特徴とする請求項 8記載の磁気ディスクの製造方法。 9. The method of manufacturing a magnetic disk according to claim 8, wherein a shape-memory alloy is used as the member whose shape changes according to the temperature forming the bias application terminal.
[10] 前記バイアス印加用端子をなす温度に応じて形状が変化する部材として、バイメタ ルを用いることを特徴とする請求項 8記載の磁気ディスクの製造方法。 10. The method of manufacturing a magnetic disk according to claim 8, wherein a bimetal is used as the member whose shape changes according to the temperature forming the bias application terminal.
[11] 前記バイアス印加用端子を、成膜に伴う温度上昇によって変形させて、前記基台 上に保持された非導電性の基板に接触させるとともに、成膜の終了に伴う温度降下 によって変形させて、前記基台上に保持された非導電性の基板より離間させることを 特徴とする請求項 8乃至請求項 10のいずれか一に記載の磁気ディスクの製造方法。 [11] The bias application terminal is deformed by a temperature rise accompanying the film formation and brought into contact with a non-conductive substrate held on the base, and is deformed by a temperature drop accompanying the completion of the film formation. 11. The method of manufacturing a magnetic disk according to claim 8, wherein the magnetic disk is separated from a non-conductive substrate held on the base.
[12] 前記バイアス印加用端子の温度を制御する温度制御手段を用いて、前記バイアス 印加用端子を、成膜中に温度上昇させることによって変形させて、前記基台上に保 持された非導電性の基板に接触させるとともに、成膜の終了後に温度降下させること によって変形させて、前記基台上に保持された非導電性の基板より離間させることを 特徴とする請求項 8乃至請求項 10のいずれか一に記載の磁気ディスクの製造方法。 前記バイアス印加用端子に電流を供給する電流供給手段を用いて、前記バイアス 印加用端子を、成膜中に電流を供給して温度上昇させることによって変形させて、前 記基台上に保持された非導電性の基板に接触させるとともに、成膜の終了後に電流 供給を遮断して温度降下させることによって変形させて、前記基台上に保持された非 導電性の基板より離間させることを特徴とする請求項 8乃至請求項 10のいずれか一 に記載の磁気ディスクの製造方法。 [12] Using the temperature control means for controlling the temperature of the bias application terminal, the bias The application terminal is deformed by increasing the temperature during the film formation, contacting the non-conductive substrate held on the base, and deforming by lowering the temperature after the film formation is completed. 11. The method for manufacturing a magnetic disk according to claim 8, wherein the magnetic disk is separated from a non-conductive substrate held on the base. Using the current supply means for supplying current to the bias application terminal, the bias application terminal is deformed by supplying a current during film formation to increase the temperature and held on the base. The non-conductive substrate is brought into contact with the non-conductive substrate, and after the film formation is completed, the current supply is cut off and the temperature is lowered to be deformed to be separated from the non-conductive substrate held on the base. The method for manufacturing a magnetic disk according to claim 8.
PCT/JP2007/056721 2006-03-30 2007-03-28 Film deposition equipment and method for producing magnetic disc WO2007114190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006094722A JP4961157B2 (en) 2006-03-30 2006-03-30 Film forming apparatus and magnetic disk manufacturing method
JP2006-094722 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114190A1 true WO2007114190A1 (en) 2007-10-11

Family

ID=38563459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056721 WO2007114190A1 (en) 2006-03-30 2007-03-28 Film deposition equipment and method for producing magnetic disc

Country Status (2)

Country Link
JP (1) JP4961157B2 (en)
WO (1) WO2007114190A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251140A (en) * 1989-03-24 1990-10-08 Sony Corp Thin film formation device
JPH06264237A (en) * 1993-03-16 1994-09-20 Ulvac Japan Ltd Substrate holder of apparatus for producing magnetic recording medium
JPH07243037A (en) * 1994-03-07 1995-09-19 Anelva Corp Thin film forming method and device therefor
JPH08138225A (en) * 1994-11-07 1996-05-31 Hitachi Ltd Magnetic recording medium and magnetic recorder using same
JPH097174A (en) * 1995-06-22 1997-01-10 Hoya Corp Production of magnetic recording medium and substrate holder
JP2003521792A (en) * 2000-02-01 2003-07-15 インテバック・インコーポレイテッド Insulating substrate processing method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251140A (en) * 1989-03-24 1990-10-08 Sony Corp Thin film formation device
JPH06264237A (en) * 1993-03-16 1994-09-20 Ulvac Japan Ltd Substrate holder of apparatus for producing magnetic recording medium
JPH07243037A (en) * 1994-03-07 1995-09-19 Anelva Corp Thin film forming method and device therefor
JPH08138225A (en) * 1994-11-07 1996-05-31 Hitachi Ltd Magnetic recording medium and magnetic recorder using same
JPH097174A (en) * 1995-06-22 1997-01-10 Hoya Corp Production of magnetic recording medium and substrate holder
JP2003521792A (en) * 2000-02-01 2003-07-15 インテバック・インコーポレイテッド Insulating substrate processing method and apparatus

Also Published As

Publication number Publication date
JP2007270189A (en) 2007-10-18
JP4961157B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US9196284B2 (en) In-line type film forming apparatus and method for manufacturing magnetic recording medium
US20070098993A1 (en) Article with multilayer diamond-like carbon film
JP4794514B2 (en) Method and apparatus for manufacturing magnetic recording medium
KR100797872B1 (en) Magnetic disk, manufacturing method therefor and magnetic recording device
JP4552861B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP4961157B2 (en) Film forming apparatus and magnetic disk manufacturing method
JP2006216216A (en) Magnetic disk, manufacturing method therefor and magnetic storage device
JP4657959B2 (en) Film forming apparatus and magnetic disk manufacturing method
JP2008176847A (en) Manufacturing method of thin film layered product, manufacturing apparatus of thin film layered product, magnetic recording medium and magnetic recording and reproducing device
JP2002008226A (en) Device and method for manufacture of information recording disk and method for plasma ashing
CN101842837A (en) Method of manufacturing magnetic recording medium
JP2009093710A (en) Method of manufacturing magnetic recording medium and magnetic recording medium
US20090021860A1 (en) Production method for magnetic recording medium
JP2007026516A (en) Manufacturing method of magnetic recording medium, and substrate adapter
JP2010231863A (en) Method for manufacturing magnetic disk
JP2007095205A (en) Manufacturing method of magnetic recording disk, magnetic recording disk manufacturing device and substrate holder for manufacturing magnetic recording disk
JPH04241222A (en) Magnetic disk substrate and magnetic recording medium using the same
US20020098386A1 (en) Magnetic recording medium and magnetic disc drive
JP2010027102A (en) Magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing apparatus
JP5720311B2 (en) Method and apparatus for manufacturing DLC film
JP2001207266A (en) Substrate supporting device for film deposition
JP2009054228A (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording unit
JP2004054973A (en) Magnetic recording medium and manufacturing method thereof
JPH01169719A (en) Magnetic disk and its manufacture
JP2006221680A (en) Glass substrate for recording medium, manufacturing method of glass substrate for recording medium, information recording medium, and information recorder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740159

Country of ref document: EP

Kind code of ref document: A1