WO2007114114A1 - 低電圧制御高周波スイッチおよび複合高周波部品 - Google Patents

低電圧制御高周波スイッチおよび複合高周波部品 Download PDF

Info

Publication number
WO2007114114A1
WO2007114114A1 PCT/JP2007/056360 JP2007056360W WO2007114114A1 WO 2007114114 A1 WO2007114114 A1 WO 2007114114A1 JP 2007056360 W JP2007056360 W JP 2007056360W WO 2007114114 A1 WO2007114114 A1 WO 2007114114A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transmission
diode
signal
switch
Prior art date
Application number
PCT/JP2007/056360
Other languages
English (en)
French (fr)
Inventor
Dai Nakagawa
Naoki Nakayama
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to CN2007800124708A priority Critical patent/CN101416405B/zh
Priority to JP2008508538A priority patent/JPWO2007114114A1/ja
Priority to GB0817065A priority patent/GB2449818B/en
Publication of WO2007114114A1 publication Critical patent/WO2007114114A1/ja
Priority to US12/203,991 priority patent/US8179206B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • H03K17/76Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to a high-frequency switch and a composite high-frequency component including the same, and more particularly to a low-voltage control high-frequency switch and a composite high-frequency component that perform switching of a low control voltage transmission / reception signal.
  • a high-frequency switch that transmits and receives transmission / reception signals of a plurality of communication systems having different frequency bands with an antenna and switches the transmission / reception signal between a transmission signal and a reception signal and a composite high-frequency component including the same are known. ing.
  • the high-frequency switch includes a plurality of diodes for outputting a transmission signal to an antenna and inputting a reception signal from the antenna to a reception unit.
  • a reception unit for example, see Patent Document 1.
  • This composite high frequency component is applicable to 1800MHz band GSM1800 (DCS), 1900MHz band GS M1900 (PCS), 850MHz band GSM850, and 900MHz band GSM900 (EGS M).
  • a diplexer (multiplexer / demultiplexer) 102 multiplexes and demultiplexes the GSM850ZGSM900 transmission / reception signal and the GSM1800ZGSM1900 transmission / reception signal.
  • the transmission / reception switching switch 103 switches between a GSM850ZGSM900 transmission signal and a reception signal.
  • the transmission / reception switching switch 104 switches between the GSM1800ZGSM1900 system transmission signal and reception signal.
  • Filter 105 passes the fundamental wave of the GSM850ZGSM900 transmission signal and attenuates the harmonics.
  • the filter 106 passes the fundamental wave of the GSM1800ZGSM1900 transmission signal and attenuates the harmonics.
  • a diode GDI and an inductor GSL1 are provided in the transmission path for transmitting the transmission signal of GSM850Z900, and the transmission path for this transmission signal is provided.
  • the diode GDI is provided in the series.
  • the transmission line for transmitting the received signal of GSM850Z900 is provided with stripline GSL2, diode GD2 and capacitor GC5, and diode GD2 is provided in the shunt for the transmission path of this received signal.
  • the two diodes GDI and GD2 are connected in series so that when a positive voltage is applied to the terminal VcG force of the transmission / reception switching control signal, a direct current flows through the two diodes GDI and GD2. .
  • diode DD 1 and inductor DPSL 1 are provided in the transmission path for transmitting the transmission signal of GSM1800Z1900, and diode DD 1 is provided in series for the transmission path of this transmission signal.
  • the transmission line for transmitting the received signal of GSM 1800/1900 is provided with stripline DSL2, diode DD2 and capacitor DC5, and diode DD2 is provided in the shunt for the transmission path of this received signal.
  • the two diodes DDI and DD2 are connected in series so that a direct current flows through the two diodes DDI and DD2 when the terminal VcD power positive voltage of the transmission / reception switching control signal is applied. Yes.
  • Patent Document 1 JP 2000-165274 A
  • the composite high-frequency component is used in a communication device in a mobile communication system such as a mobile phone terminal.
  • the drive voltage has been further reduced with the recent demand for low power consumption.
  • the voltage of the control signal of the conventional transmission / reception switching switch (high frequency switch) as shown in FIG. 1 is lowered, the two diodes (for example, the diode GDI in the transmission / reception switching switch 103 of GSM8 50Z900 shown in FIG. , GD2), the voltage applied between the anode and cathode approaches the PN junction potential of the diode.
  • the diode does not become fully conductive, and when the on-resistance increases or when the voltage across the diode fluctuates according to the voltage of the transmission signal that should be cut off, the phenomenon occurs.
  • the As a result there is a problem that the insertion loss (IL) deteriorates and the harmonic distortion increases as circuit characteristics. Therefore, there is a limit to lowering the control voltage.
  • IL insertion loss
  • the above-mentioned problem is not limited to the transmission / reception switching switch.
  • two different frequency bands are used.
  • an object of the present invention is to provide a low-voltage controlled high-frequency switch that can be switched at a lower control voltage than that of a conventional high-frequency switch, and that suppresses deterioration of insertion loss characteristics and harmonic distortion characteristics, and the same. It is to provide a composite high-frequency component provided.
  • the high-frequency switch and the composite high-frequency component of the present invention are configured as follows.
  • a high-frequency switch having a second signal transmission path, including a first diode, a first current path through which a direct current flows, and a second current path through which a direct current flows, including a second diode.
  • the first current path and the second current path are connected in parallel with the direction of current flow of the DC current matched, and an inductor is provided between one connection point of the parallel connection and the ground.
  • the other connection point is set as a control voltage input unit, a first diode is provided in series in the first signal transmission path, and a second diode is provided in the shunt in the second signal transmission path.
  • a high-frequency switch having a second signal transmission path, wherein a first diode is serially provided in the first signal transmission path, and a second diode is shunted in the second signal transmission path.
  • a first current path through which a direct current flows, including the first diode, and a second current path through which a direct current flows, including the second diode, and the second signal transmission path Includes a strip line between the first diode and the second diode and between the shared signal input / output unit and the second diode, and the first and second current paths are connected to each other. Are connected in parallel with the direction of current flow of the DC current matched, and the strip An inductor is provided between one connection point of the parallel connection, which is a connection point between the second diode and the strip line, on the second signal input / output unit side from the ground and the other side of the parallel connection. Is a control voltage input section.
  • the resistors through which the direct current flows are respectively connected. Provide resistance.
  • the composite high-frequency component of the present invention includes input / output units and antenna connection units for transmission / reception signals of a plurality of communication systems each having a different frequency band, and combines the transmission / reception signals of the plurality of communication systems.
  • 'A complex high-frequency switch that connects a high-frequency switch for switching a transmission signal and a reception signal between the multiplexer / demultiplexer for demultiplexing, the input / output unit of the transmission / reception signals of the plurality of communication systems, and the multiplexer / demultiplexer. It is a component, and at least one of the plurality of high-frequency switches is constituted by the low-voltage control high-frequency switch.
  • the low-voltage control high-frequency switch is, for example, between the input / output unit of the communication system transmission / reception signal having the highest signal power among the plurality of communication system transmission / reception signals and the multiplexer / demultiplexer.
  • a strip line is provided between the antenna connection portion of the multiplexer / demultiplexer and the low voltage control high frequency switch, and one end of the inductor of the low voltage control high frequency switch is connected to the low voltage control high frequency switch. Connect to the connection point between the multiplexer / demultiplexer and the low-voltage control high-frequency switch, and ground the other end.
  • the inductor and the first and second current paths of the low-voltage control high-frequency switch are also used as a part of the multiplexer / demultiplexer.
  • a low-voltage control high-frequency switch is switched to block frequency components other than the frequency band used in the communication system (distortion). Provide a filter for suppression.
  • the multiplexer / demultiplexer includes at least three transmission / reception signals (for example, GSM850 / 900 / GSM1800 / GSM1900) transmission / reception signals (for example, GSM850 / 900 transmission / reception signals and GSM1800 / 1900 transmission / reception signals).
  • transmission / reception signals for example, GSM850 / 900 / GSM1800 / GSM1900
  • GSM850 / 900 transmission / reception signals for example, GSM850 / 900 transmission / reception signals and GSM1800 / 1900 transmission / reception signals.
  • the transmission and reception signals of two communication systems for example, GSM1800'1900
  • the transmission and reception signals of other communication systems are combined and demultiplexed, and the received signals of the two communication systems that are close to each other in the frequency band
  • a high-frequency switch for receiving signals for switching between GSM1800RX and GSM1900RX is configured by the low-voltage control high-frequency switch, and so-called triple-band composite high-frequency components are configured.
  • the multiplexer / demultiplexer includes two communication systems (for example, GSM850 / 900/1800/1900) and two communication systems (for example, GSM850 / 900/1800/1900) forming a first set in which the frequency bands are close to each other.
  • GSM1800 / 1900) and the transmission / reception signal of the second communication system (for example, GSM850 / 900) are combined and demultiplexed, and the reception signals of the first communication system (for example, GSM1800RX and GSM190 ORx)
  • At least one of the first received signal high-frequency switch that switches between two received signal signals (e.g. GSM850RX and GSM900RX) of the two communication systems that form the second set is connected to the low-voltage controlled high-frequency switch. It is composed of switches and constitutes a so-called quad band composite high frequency component.
  • the first and second current paths are connected in parallel with the direction of current flow of the direct current flowing through each of them matched, and an inductor is connected between one connection point of the parallel connection and the ground.
  • the control voltage is applied to the first and second diodes respectively. Is possible. In other words, the voltage applied to each diode increases compared to the conventional case where the control voltage is applied by connecting two diodes in series. Therefore, the control voltage can be lowered without deterioration of insertion loss and harmonic distortion.
  • a second diode is provided on the second signal input / output unit side from a strip line provided between the shared signal input / output unit and the second diode.
  • the high-frequency switch is By adopting a voltage-controlled high-frequency switch configuration, a composite high-frequency component with low voltage and low current consumption can be obtained.
  • a strip line is provided between the antenna connection of the multiplexer / demultiplexer and the low-voltage control high-frequency switch, and the inductor of the low-voltage control high-frequency switch is connected to the multiplexer / demultiplexer and the low-voltage control high-frequency switch.
  • the static electricity discharge path that also enters the antenna terminal side force is A receiving circuit or a transmitting circuit formed by an inductor and connected to a low-voltage control high-frequency switch can be protected from an electrostatic damage.
  • the multiplexer / demultiplexer multiplexes and demultiplexes the transmission / reception signals of two communication systems close to each other in at least three communication systems and the transmission / reception signals of other communication systems, and the frequency band is
  • the high-frequency switch for reception signals that switches the reception signals of the two adjacent communication systems with the low-voltage control high-frequency switch, input / output of transmission / reception signals and output of two reception signals are performed for the three frequency bands. It can be used as a so-called triple band switchplexer.
  • FIG. 1 is a diagram showing a configuration of a conventional composite high-frequency component.
  • FIG. 2 is a circuit diagram of a low-voltage control high-frequency switch according to the first embodiment.
  • FIG. 3 is a circuit diagram of a composite high frequency component according to a second embodiment.
  • FIG. 4 is a diagram showing a conductor pattern of each layer in the case where the composite high-frequency component is formed on a multilayer substrate formed by laminating a plurality of sheet layers having a ceramic force.
  • FIG. 5 is a diagram showing a conductor pattern of each layer following FIG. 4.
  • FIG. 6 is a diagram showing a conductor pattern of each layer following FIG. 5.
  • FIG. 7 is a diagram showing the configuration of the top layer of the multilayer body of the composite high-frequency component.
  • FIG. 8 is a circuit diagram of a composite high-frequency component according to a third embodiment.
  • FIG. 9 is a circuit diagram of a composite high frequency component according to a fourth embodiment.
  • FIG. 10 is a circuit diagram of a composite high frequency component according to a fifth embodiment.
  • FIG. 11 is a circuit diagram of a composite high frequency component according to a sixth embodiment.
  • FIG. 12 is a circuit diagram of a composite high frequency component according to a seventh embodiment.
  • FIG. 13 is a circuit diagram of a composite high-frequency component according to an eighth embodiment.
  • FIG. 14 is a circuit diagram of a composite high frequency component according to a ninth embodiment.
  • FIG. 15 is a circuit diagram of a composite high frequency component according to a tenth embodiment.
  • FIG. 16 is a circuit diagram of a composite high frequency component according to an eleventh embodiment.
  • FIG. 17 is a circuit diagram of a composite high frequency component according to a twelfth embodiment.
  • FIG. 18 is a circuit diagram of a composite high frequency component according to a thirteenth embodiment.
  • VcG, VcD Control terminals
  • FIG. 2 is a circuit diagram of a transmission / reception switching switch using the low-voltage control high-frequency switch according to the present invention.
  • This transmission / reception switching switch 203 outputs the transmission signal input to the GTx terminal from the transmission circuit car to the antenna terminal ANT or the reception signal from the antenna terminal ANT according to the applied voltage from the control terminal VcG. This is to switch whether to output to the receiving terminal GRx.
  • a first diode GDI is provided in series with respect to the first signal transmission path SL1, and a second diode GD2 is shunted to the second signal transmission path SL2 via a capacitor GC5.
  • the first signal transmission line SL1 is configured between the antenna terminal ANT, which is the shared signal input / output section, and the GTx terminal, which is the first signal input / output section.
  • a second signal transmission line SL2 is configured between the antenna terminal ANT and the GRx terminal which is the second signal input / output unit.
  • the second current path CR2 including the diode GD2 is configured, and the first current path CR1 and the second current path CR2 are connected in parallel with the direction in which the DC current is applied.
  • An inductor GL is provided between one connection point of the parallel connection and the ground, and a control terminal VcG which is a control voltage input unit is connected to the other connection point of the parallel connection via a resistor GR.
  • both the first diode GDI and the second diode GD2 are turned on, and the first current path CR1 and the second current A direct current flows through each of the flow paths CR2 in the directions indicated by the arrows in the figure.
  • the transmission signal power of the GTx terminal power passes through the first signal transmission path SL1, and is output to the antenna terminal ANT via the capacitor Cant. Also, when the second diode GD2 is turned on, the second signal transmission line SL2 is shunted by this diode GD2 and capacitor GD5, and the transmission signal is not output to the GRx pin.
  • the electrical length of the strip line GSL2 is set so that the connection point between the first signal transmission path SL1 and the second signal transmission path SL2 is equivalently opened when the second diode GD2 is on. It has established.
  • an inductor GSL1 is provided in a path connecting the connection point between the resistor GR and the capacitor GC5 and the anode side of the diode GDI.
  • this inductor GSL1 it is possible to prevent the GTx terminal force transmission signal from being grounded through the path connecting the connection point between the resistor GR and the capacitor GC5 and the anode side of the diode GDI and the capacitor GC5. I can do it. The same effect can be obtained even if a resistor is used in place of the inductor GSL1 instead of the inductor.
  • a capacitor Cgt provided in the first signal transmission line SL1, a capacitor Cgr provided in the second signal transmission line SL2, and a capacitor Cant connected to the antenna terminal ANT are capacitors for DC current interruption and impedance matching, respectively. It is.
  • the capacitor GC5 connected in series with the second diode GD2 acts to ground the signal at a high frequency and prevent a DC current from being short-circuited to the ground when GD2 is turned on.
  • the first and second current paths CR1.CR2 are connected in parallel, and the voltage of the control terminal VcG is applied to the first and second diodes GDI 'GD2 respectively.
  • the voltage applied to the first and second diodes GDI 'GD2 is higher, and the control voltage applied to the control terminal VcG can be set lower accordingly.
  • the control voltage is set to a low voltage of 1.6 to 2.OV. be able to.
  • the stripline GSL2 has an electrical length equivalent to approximately 1/4 wavelength of the frequency of this transmission signal. Therefore, as already described, when the second diode GD2 is turned on, the antenna terminal ANT side, which is the shared signal input / output section of the stripline GSL2, is equivalently opened, and most of the transmission signal is blocked by the GSL2. Is done. A partially leaked signal can also be grounded via the second diode GD2 and capacitor GC5 because the second diode GD2 is on, and the transmitted signal will not leak to the GRx pin. .
  • the first and second diodes GDI 'GD2 are switched, the first diode GDI is instantaneously turned on and the second diode GD2 is turned off due to a difference in the switching speed of the die auto.
  • the transmission signal leaked from the stripline GSL2 will leak to the GRx terminal during that time. If this leaked signal is input to a receiver circuit such as a low-noise amplifier (LNA) (not shown) connected after the GRx terminal, the receiver circuit may be destroyed.
  • LNA low-noise amplifier
  • the inductance value (line) is such that the inductor GL is arranged in the shunt before the GRx terminal and the inductor GL is grounded equivalently to the frequency of the transmission signal.
  • the leakage transmission signal is grounded by the inductor GL by setting the electrical length of the line to approximately ⁇ Z2) of the transmission signal.
  • the composite high-frequency component 200 shown in FIG. 3 is applicable to 1800 MHz band GSM1800 (DCS), 1900 MHz band GSM1900 (PCS), 850 MHz band GSM850, and 900 MHz band GSM 900 (EGSM).
  • DCS 1800 MHz band GSM1800
  • PCS 1900 MHz band GSM1900
  • 850 MHz band GSM850 850 MHz band GSM850
  • EGSM 900 MHz band GSM 900
  • the diplexer 202 multiplexes / demultiplexes the transmission / reception signal of the GSM850ZGSM900 system and the transmission / reception signal of the GS M1800ZGSM1900 system.
  • the transmission / reception switch 203 switches between the GSM850ZGSM900 transmission signal and reception signal.
  • the transmission / reception switch 204 switches between GSM 1800 / GSM 1900 transmission signals and reception signals.
  • the filter 205 passes the GSM850ZGSM900 transmission signal and attenuates the harmonics.
  • the filter 206 passes the GSM1800ZGSM1900 transmission signal and attenuates harmonics.
  • the configuration of the transmission / reception switching switches 203 and 204 is different from the conventional composite high-frequency component shown in FIG.
  • the configuration of the diplexer 202 shown in FIG. 3 is the same as that of the diplexer 102 shown in FIG.
  • capacitors Ctl, Cul and stripline Ltl constitute a low-pass filter
  • capacitors Ccl, Cc2, Ct2 and stripline Lt2 constitute a high-pass filter
  • the filter 205 shown in FIG. 3 is the same as the filter 105 shown in FIG. 1, and in this example, a low pass filter is constituted by the Canon GCcl, GCul, GCu2, and the stripline GLtl.
  • the filter 206 shown in FIG. 3 is the same as the filter 106 shown in FIG. 1, and the capacitors DCc1, DCc2, DCul, DCu2, DCu3, and strip lines DLtl, DLt2 constitute a low-pass filter.
  • the GSM850Z900 transmission / reception switch 203 shown in FIG. 3 has the same configuration as the transmission / reception switch 203 shown in FIG. That is, the first diode GDI is provided in the series in the transmission signal transmission path of the GSM850Z900, and the second diode GD2 and the capacitor GC5 are provided in the shunt in the transmission path of the reception signal of the GSM850Z900.
  • control terminal VcG ⁇ resistor GR ⁇ inductor GSL1 ⁇ first diode GD1 ⁇ strip line GSL The first current path through which DC current flows through the path of 2 ⁇ inductor GL, the second current path through which DC current flows through the path of VcG ⁇ GR ⁇ second diode GD2 ⁇ GL, and the first current path
  • the first and second current paths including the diode GDI and the second diode GD2 are connected in parallel.
  • the capacitor GCu3 provided in the reception signal transmission line of the GSM850Z900 is a capacitor for impedance matching of the reception signal transmission line when the diode GD2 is off.
  • the configuration of the transmission / reception switching switch 204 on the GSM1800Z1900 side is basically the same as the configuration of the transmission / reception switching switch 203 on the GSM850Z900 side.
  • a second diode DD2 is provided in the shunt for the GSM1800Z1900 receive signal transmission path.
  • the first diode DDI is different in that a series circuit of a stripline DPSLt and a capacitor DPCtl is connected in parallel.
  • DPSLt is provided to ensure isolation by parallel resonance between the capacitance of diode DDI and DPSLt when diode DD1 is off.
  • the capacitor DPCtl is provided to prevent a direct current from flowing without going through the diode DDI.
  • the first diode DDI When a predetermined positive voltage is applied to the control terminal VcD of the transmission / reception switching switch 204, the first diode DDI is turned on, along the path of VcD ⁇ resistor DR ⁇ inductor DPSL1 ⁇ DD1 ⁇ strip line DSL2 ⁇ inductor DL. DC current flows. Also, the second diode D D2 is turned on, and a direct current flows through the path of VcD ⁇ DR ⁇ DD2 ⁇ DL.
  • Capacitor DCu4 is a capacitor for impedance matching of the reception signal transmission line when diode DD2 is off.
  • FIGS. Figure 4 to 6 are bottom views of the conductor pattern in each layer. (1) in FIG. 4 is the lowest layer, and (24) in FIG. 6 is the uppermost layer.
  • FIGS. Figure 4 to 6 the reference numerals of the respective parts in the figure correspond to the reference numerals in the circuit diagram shown in FIG.
  • GND in these figures is a ground electrode.
  • G is a ground terminal. Other terminals correspond to the respective symbols in the circuit diagram shown in FIG.
  • FIG. 7 is a top view of a state where each chip component is mounted on the uppermost surface of the laminate.
  • the symbols in the figure correspond to the symbols in the circuit diagram of FIG.
  • This composite high-frequency component 210 is different from the composite high-frequency component shown in FIG. 3 in the configuration of the transmission / reception switching switches 213 and 214.
  • the diplexer 212 is the same as the diplexer 202 shown in FIG. 3, and the finoletas 215 and 216 are also the same as the finoletas 205 and 206 shown in FIG.
  • the transmission / reception switching switch 213 of the GSM850Z900 includes a first diode GDI in the series in the transmission signal transmission path and a second diode GD2 in the shunt with respect to the transmission path of the reception signal.
  • one end of the inductor GL is connected to the connection point between the force sword of the first diode GDI and the stripline GSL2, and the other end is grounded.
  • the inductor GL is provided between the connection point of the diplexer 212 and the transmission / reception switching switch 213 and the ground, so that the antenna terminal side force can be reduced even if a surge voltage such as static electricity is applied. Is immediately discharged to the ground via the inductor GL, so that the reception circuit or transmission circuit connected to the transmission / reception switching switch 213 can be protected from static electricity.
  • the transmission / reception switching switch 214 of the GSM 1800Z 1900 also connects one end of the inductor DL to the connection point between the power sword of the diode DDI and the stripline DSL2. The end is grounded.
  • a direct current flows through the control terminal VcD ⁇ resistance DR ⁇ inductor DPSL1 ⁇ DD1 ⁇ DL (first current path). Also, DC current flows through the path (second current path) from VcD ⁇ DR ⁇ diode DD2 ⁇ stripline DSL2 ⁇ DL.
  • both the transmission / reception switching on the GSM850Z900 side and the transmission / reception switching on the GSM1800Z1900 side can be controlled at a low voltage, and a composite high-frequency component of low voltage * low current consumption can be obtained.
  • This composite high frequency component 220 differs from the composite high frequency component shown in FIG. 3 in the configuration of the transmission / reception switching switch 223 on the GSM850 Z900 side.
  • This is the connection position of the inductor GL in which the DC current flowing in the two diodes GDI and GD2 flows in common (the combined current flows).
  • the inductor GL is connected to the shared signal input / output section of the diplexer 222.
  • a direct current flows through the path (first current path) from VcG ⁇ resistor GR ⁇ inductor GSL1 ⁇ first diode GD1 ⁇ stripline Ltl ⁇ GL.
  • a direct current flows in the path (second current path) of VcG ⁇ GR ⁇ second diode GD2 ⁇ strip line GSL2 ⁇ Ltl ⁇ GL.
  • a composite high-frequency component according to a fifth embodiment will be described with reference to FIG.
  • a single resistor GR is used, in which the current from the control terminal VcG flows in common, but the composite high-frequency component 230 shown in FIG. 10 has a current through which a DC current flows in the first diode GDI.
  • a resistor GR1 is provided in the path, and a resistor GR2 is provided in the current path through which a direct current flows through the second diode GD2.
  • resistors DR1 and DR2 are individually provided in a current path through which a direct current flows through the first and second diodes DDI and DD2.
  • This composite high-frequency component 240 is different from that shown in FIG. 10 in the configuration of the transmission / reception switching switches 243 and 244.
  • inductors GSL1 and DPSL1 are provided in the current paths through which direct current flows in the diodes GDI and DDI, respectively, but in the example shown in FIG. Is omitted.
  • the resistors GR1 and DR1 are provided in the current path of the direct current that flows through the diodes GDI and DDI provided in series in the signal transmission path, so there is no need for transmission signals to the control terminal side.
  • This high-frequency composite component 250 is different from the high-frequency composite component shown in FIG. 3 in the configuration of the diplexer 252 and the transmission / reception switching switch 253 on the GSM850Z900 side.
  • the filter on the GSM850Z900 side of the diplexer 252 is composed of capacitors Ct 1, Cul, GCcl, GCul and strip lines Ltl, GLtl.
  • a two-stage low-pass filter is configured to enhance the high-frequency (harmonic component) cutoff effect over the frequency band used in the GSM850Z900 communication system. Accordingly, the circuit corresponding to the filter 205 shown in FIG. 3 is omitted.
  • the transmission / reception switching switch 253 on the GSM850Z900 side is basically the same as the transmission / reception switching switch 203 shown in FIG. 3, except that the circuit corresponding to the filter 205 shown in FIG. 3 is omitted.
  • a capacitor GCu2 is provided for impedance matching with the transmission terminal GTx.
  • the composite high-frequency component 260 is different from that shown in FIG. 12 in the configuration of the diplexer 262 and the filter 266.
  • a low pass filter is provided in front of the transmission / reception switching switch 264 in order to suppress spurious on the GSM1800 Z1900 side of the diplexer 262.
  • This composite high frequency component 270 is different from the composite high frequency component shown in FIG. 3 in the configuration of the transmission / reception switching switch 274 on the GSM1800 Z1900 side.
  • the force is configured so that the control voltage is applied in parallel to the two diodes for both the GSM1800 Z1900 side and GSM850Z900 side transmission / reception switching switch.
  • the GSM1800Z190CK For the regular transmission / reception switching switch 274, a control voltage is applied in series to the two diodes D Dl and DD2.
  • the transmission / reception switching switch 274 on the GSM180 OZ1900 side has the same circuit configuration as the conventional one.
  • the composite high-frequency component according to the tenth embodiment will be described with reference to FIG. 15.
  • the transmission signal input terminal, the reception signal output terminal of the GSM850Z900, and the transmission signal input of the GSM1800Z1900 A dual-band switchplexer with a terminal and a reception signal output terminal is shown.
  • the composite high-frequency component 280 shown in Fig. 15 is used as a triple-band switchplexer that separates the reception signal output terminals of GSM1800 and 1900. It is.
  • the difference from the circuit shown in Fig. 3 is that the received signal high-frequency switch switches the GSM1800Z1900 received signal to the GSM1800 and 1900 received signal.
  • H 287 is provided.
  • the first diode PD1 is provided in series on the reception signal transmission path of the GSM1900, and the second diode PD2 is provided on the shunt with respect to the reception signal transmission path of the GSM1800.
  • both diodes PD1 and PD2 are turned on so that a direct current flows in the path of VcDR ⁇ resistance PR ⁇ PD2 ⁇ stripline PSL2 ⁇ PD1 ⁇ inductor PSL1.
  • a direct current blocking capacitor DC 6 is provided between the transmission / reception switching switch 284 and the reception signal high frequency switch 287.
  • the composite high-frequency component 290 is different from the circuit shown in FIG. 15 in the configuration of the received signal high-frequency switch 297 for GSM1800Z1900.
  • This high-frequency switch for reception signal 297 is provided with a first diode PD 1 in series with respect to the reception signal transmission line of GSM 1900, and a second diode PD2 in a shunt with respect to the reception signal transmission line of GSM 1800.
  • a first current path through which a direct current flows through the diode PD1 and a second current path through which a direct current flows through the diode PD2 are connected in parallel. That is, when a predetermined positive voltage is applied to the control terminal VcDR, a current flows along the path VcDR ⁇ resistance PR ⁇ inductor PSL1 ⁇ PD1 ⁇ stripline PSL2 ⁇ inductor PL (first current path), and VcDR ⁇ Current flows in the PR ⁇ PD2 ⁇ PL path (second current path).
  • the reception signal high-frequency switch 297 can also be configured such that the control voltage is applied in parallel to the two diodes PD1 and PD2, thereby reducing the control voltage.
  • This composite high-frequency component 300 is provided with a high-frequency switch for reception signal 308 on the GSM850Z900 side, and is used as a quad-band switchplexer.
  • the reception signal high-frequency switch on the GSM1800Z1 900 side is the same as that shown in FIG.
  • the composite high-frequency component 310 differs from the circuit shown in FIG. 17 in the configuration of the high-frequency switch 318 for reception signals on the GSM850Z900 side.
  • the reception signal high-frequency switch 317 on the GSM1800Z1900 side has the same configuration as the reception signal high-frequency switch 297 shown in FIG.
  • the reception signal high-frequency switch 318 on the GSM850Z900 side is also configured such that a control voltage is applied in parallel to the two diodes AD1, AD2. That is, when a predetermined positive voltage is applied to the control terminal VcGR, the first current path through which the direct current flows through the diode PD1 and the second current path through which the direct current flows through the diode PD2 are connected in parallel. .
  • VcGR When a predetermined positive voltage is applied to the control terminal VcGR, current flows along the path (first current path) of V cGR ⁇ resistance AR ⁇ inductor ASL1 ⁇ AD1 ⁇ stripline ASL2 ⁇ inductor AL, and VcGR ⁇ AR ⁇ Current flows through the AD2 ⁇ AL path (second current path).
  • the reception signal high-frequency switch 318 is also configured such that the control voltage is applied in parallel to the two diodes AD1 and AD2, thereby reducing the control voltage.

Abstract

 送受切替スイッチ(203)において、送信信号伝送路に対してシリーズに第1のダイオード(GD1)を設け、受信信号伝送路に対してシャントに第2のダイオード(GD2)を設け、第1のダイオード(GD1)に直流電流が流れる第1の電流経路と第2のダイオード(GD2)に直流電流が流れる第2の電流経路とを並列接続する。制御端子(VcG)に所定の正電圧を印加することにより、ダイオード(GD1,GD2)がオンし、制御端子(VcG)→抵抗(GR)→インダクタ(GSL1)→ダイオード(GD1)→ストリップライン(GSL2)→インダクタ(GL)の経路で直流電流が流れ、制御端子(VcG)→抵抗(GR)→第2のダイオード(GD2)→インダクタ(GL)の経路で直流電流が流れる。

Description

明 細 書
低電圧制御高周波スィッチおよび複合高周波部品
技術分野
[0001] この発明は高周波スィッチおよびそれを備えた複合高周波部品に関し、特に、低い 制御電圧送受信信号の切替えを行う低電圧制御高周波スィッチおよび複合高周波 部品に関するものである。
背景技術
[0002] 従来、それぞれの周波数帯が異なる複数の通信系の送受信信号をアンテナで送 受信するとともに、送受信信号を送信信号と受信信号に切り替える高周波スィッチお よびそれを備えた複合高周波部品が知られている。
[0003] 上記高周波スィッチには、送信信号をアンテナへ出力し、アンテナからの受信信号 を受信部へ入力するための複数のダイオードが含まれて 、る。(例えば特許文献 1参 照。)
ここで特許文献 1に示されている複合高周波部品の構成について図 1を基に説明 する。
この複合高周波部品は、 1800MHz帯の GSM1800 (DCS)、 1900MHz帯の GS M1900 (PCS)、 850MHz帯の GSM850、および 900MHz帯の GSM900 (EGS M)に適応するものである。
図 1においてダイプレクサ(合分波器) 102は、 GSM850ZGSM900系の送受信 信号と、 GSM1800ZGSM1900系の送受信信号を合波 ·分波する。送受切替スィ ツチ 103は GSM850ZGSM900系の送信信号と受信信号を切り替える。同様に送 受切替スィッチ 104は GSM1800ZGSM1900系の送信信号と受信信号を切り替 える。フィルタ 105は GSM850ZGSM900系の送信信号の基本波を通過させるとと もに高調波を減衰させる。同様〖こフィルタ 106は GSM1800ZGSM1900系の送信 信号の基本波を通過させるとともに高調波を減衰させる。
[0004] 送受切替スィッチ 103において、 GSM850Z900の送信信号を伝送する伝送路 にダイオード GDIおよびインダクタ GSL1を設けるとともに、この送信信号の伝送路 に対してダイオード GDIをシリーズに設けている。また GSM850Z900の受信信号 を伝送する伝送路にはストリップライン GSL2、ダイオード GD2およびキャパシタ GC 5を設けるとともに、この受信信号の伝送路に対してダイオード GD2をシャントに設け ている。そして、送受切替制御信号の端子 VcG力も正電圧が印加されたとき、上記 2 つのダイオード GDI, GD2に対して直流電流が流れるように、この 2つのダイオード GDI, GD2を直列関係に接続している。
[0005] 送受切替スィッチ 104についても同様に、 GSM1800Z1900の送信信号を伝送 する伝送路にダイオード DD 1およびインダクタ DPSL 1を設けるとともに、この送信信 号の伝送路に対してダイオード DD 1をシリーズに設けて!/、る。また GSM 1800/ 19 00の受信信号を伝送する伝送路にはストリップライン DSL2、ダイオード DD2および キャパシタ DC5を設けるとともに、この受信信号の伝送路に対してダイオード DD2を シャントに設けている。そして、送受切替制御信号の端子 VcD力 正電圧が印加さ れたとき、上記 2つのダイオード DDI, DD2に対して直流電流が流れるように、この 2 つのダイオード DDI, DD2を直列関係に接続している。
特許文献 1 :特開 2000— 165274号公報
発明の開示
発明が解決しょうとする課題
[0006] 前記複合高周波部品は携帯電話端末等の移動体通信システムにおける通信装置 に用いられるが、近年の低消費電力化の要請に伴って駆動電圧もますます低下され つつある。ところが図 1に示したような従来の送受切替スィッチ(高周波スィッチ)の制 御信号の電圧を低下させていくと前記 2つのダイオード(例えば図 1に示した GSM8 50Z900の送受切替スィッチ 103におけるダイオード GDI , GD2)のアノード ·カソ ード間に印加される電圧がダイオードの PN接合電位に近くなる。そのような条件で はダイオードが完全な導通状態にはならず、オン抵抗が増したり、伝送 Z遮断すべき 伝送信号の電圧に応じてダイオードの両端電圧が変動したりするといつた現象が生 じる。そのため、回路特性としては挿入損失 (IL)が劣化し、高調波歪みが増大すると いう問題が生じる。したがって制御電圧の低電圧化には限界があった。
[0007] 上述の問題は送受切替スィッチに限らず、例えば互いの周波数帯が異なる 2つの 通信系の受信信号を切り替える受信信号切替スィッチ等についても同様に生じる。
[0008] そこで、この発明の目的は、従来の高周波スィッチに比べて低い制御電圧で切り替 えられるようにし、また挿入損失特性や高調波歪み特性の劣化を抑えた低電圧制御 高周波スィッチおよびそれを備えた複合高周波部品を提供することにある。
課題を解決するための手段
[0009] 前記課題を解決するためにこの発明の高周波スィッチおよび複合高周波部品は次 のように構成する。
[0010] (1)共用信号入出力部と第 1の信号入出力部との間に第 1の信号伝送路を有し、 前記共用信号入出力部と第 2の信号入出力部との間に第 2の信号伝送路を有する 高周波スィッチであって、第 1のダイオードを含む、直流電流が流れる第 1の電流経 路と、第 2のダイオードを含む、直流電流が流れる第 2の電流経路とを備え、前記第 1 •第 2の電流経路同士を前記直流電流の通電方向を一致させて並列接続し、当該並 列接続の一方の接続点と接地との間にインダクタを設け、前記並列接続の他方の接 続点を制御電圧入力部とし、前記第 1の信号伝送路に第 1のダイオードをシリーズに 設け、前記第 2の信号伝送路に第 2のダイオードをシャントに設ける。
[0011] (2)共用信号入出力部と第 1の信号入出力部との間に第 1の信号伝送路を有し、 前記共用信号入出力部と第 2の信号入出力部との間に第 2の信号伝送路を有する 高周波スィッチであって、前記第 1の信号伝送路に第 1のダイオードをシリ一ズに設 け、前記第 2の信号伝送路に第 2のダイオードをシャントに設けるとともに、前記第 1 のダイオードを含む、直流電流が流れる第 1の電流経路と、前記第 2のダイオードを 含む、直流電流が流れる第 2の電流経路とを備え、前記第 2の信号伝送路には、前 記第 1のダイオードと前記第 2のダイオードとの間で且つ前記共用信号入出力部と第 2のダイオードとの間にストリップラインを備え、前記第 1 ·第 2の電流経路同士を前記 直流電流の通電方向を一致させて並列接続するとともに、前記ストリップラインより第 2の信号入出力部側で、第 2のダイオードと前記ストリップラインとの接続点である前 記並列接続の一方の接続点と接地との間にインダクタを設け、前記並列接続の他方 の接続点を制御電圧入力部とする。
[0012] (3)前記第 1 ·第 2の電流経路には、例えばそれぞれに前記直流電流が流れる抵 抗を設ける。
[0013] (4)この発明の複合高周波部品は、それぞれ周波数帯が異なる複数の通信系の送 受信信号の入出力部およびアンテナ接続部を備えて、前記複数の通信系の送受信 信号を合波'分波する合分波器と、前記複数の通信系の送受信信号の入出力部と 前記合分波器との間に、送信信号と受信信号を切り替える高周波スィッチをそれぞ れ接続した複合高周波部品であって、前記複数の高周波スィッチのうち少なくとも 1 つを前記低電圧制御高周波スィッチで構成する。
[0014] (5)前記低電圧制御高周波スィッチは、前記複数の通信系の送受信信号のうち、 例えば信号電力が最も高い通信系の送受信信号の入出力部と前記合分波器との間 に設ける。
[0015] (6)また、例えば前記合分波器の前記アンテナ接続部と前記低電圧制御高周波ス イッチとの間にストリップラインを備え、前記低電圧制御高周波スィッチの前記インダ クタの一端を前記合分波器と前記低電圧制御高周波スィッチとの接続点に接続する とともに他端を接地する。
[0016] (7)また、例えば前記低電圧制御高周波スィッチの前記インダクタおよび前記第 1 · 第 2の電流経路を前記合分波器の一部に兼用する。
[0017] (8)前記低電圧制御高周波スィッチと前記合分波器との間には、例えば低電圧制 御高周波スィッチが切り替える、通信系で使用する周波数帯域以外の周波数成分を 遮断する(歪み抑制用)フィルタを設ける。
[0018] (9)前記合分波器は少なくとも 3つの通信系 (例えば GSM850,900/GSM1800/GSM1 900)の送受信信号(例えば GSM850/900の送受信信号と GSM1800/1900の送受信信 号)のうち互いの周波数帯域が近接した 2つの通信系 (例えば GSM1800' 1900)の送 受信信号と他の通信系の送受信信号を合分波し、周波数帯域が近接した前記 2つ の通信系の受信信号 (例えば GSM1800RXと GSM1900RX)を切り替える受信信号用高 周波スィッチを前記低電圧制御高周波スィッチで構成し、所謂トリプルバンドの複合 高周波部品を構成する。
[0019] (10)前記合分波器は 4つの通信系(例えば GSM850/900/1800/1900)の送受信信 号のうち互いの周波数帯域が近接した第 1組をなす 2つの通信系(例えば GSM1800/ 1900)の送受信信号と第 2組をなす 2つの通信系(例えば GSM850/900)の送受信信 号を合分波し、第 1組をなす 2つの通信系の受信信号(例えば GSM1800RXと GSM190 ORx)を切り替える第 1の受信信号用高周波スィッチと、第 2組をなす 2つの通信系の 受信信号 (例えば GSM850RXと GSM900RX)を切り替える第 2の受信信号用高周波ス イッチの少なくとも一方を前記低電圧制御高周波スィッチで構成し、所謂クヮッドバン ド用の複合高周波部品を構成する。
発明の効果
[0020] (1)第 1 ·第 2の電流経路同士を、それぞれに流れる直流電流の通電方向を一致さ せて並列接続し、その並列接続の一方の接続点と接地との間にインダクタを設け、並 列接続の他方の接続点に制御電圧を入力するように構成したことにより、第 1 ·第 2の ダイオードにそれぞれ制御電圧が印加されることになり、低い制御電圧でオン'オフ 制御が可能となる。すなわち、従来のように 2つのダイオードを直列関係にして制御 電圧を印加するようにした場合に比べてそれぞれのダイオードに印加される電圧が 増加する。したがって、挿入損失および高調波歪みが劣化することなく制御電圧の 低電圧化が図れる。
[0021] (2)前記第 2の信号伝送路に、前記共用信号入出力部と前記第 2のダイオードとの 間に備えるストリップラインより第 2の信号入出力部側で、第 2のダイオードと前記スト リップラインとの接続点と接地との間にインダクタを設けたことにより、第 1 ·第 2のダイ オードの切替時にはダイオートの切替速度の差などに起因して、瞬間的に第 1のダイ オードがオン状態、第 2のダイオードがオフ状態となっても、前記インダクタで第 1の 信号伝送路の信号を第 2の信号入出力部前段で等価的に接地することができる。そ のため、第 1の信号伝送路の信号が第 2の信号入出力部側へ漏れるのを防ぐことが できる。
[0022] (3)第 1 ·第 2の電流経路にそれぞれ個別の抵抗を設けることによって、第 1 ·第 2の ダイオードのオン時に流れる電流を個別に設定可能となる。そのため全体の電力消 費を抑えつつ必要且つ最低限の電圧印加および電流通電が可能となる。
[0023] (4)複数の通信系の送受信信号を合波,分波する合分波器と、送受の切替えを行 う高周波スィッチとを備えた複合高周波部品において、その高周波スィッチを前記低 電圧制御高周波スィッチの構成とすることによって低電圧'低消費電流の複合高周 波部品が得られる。
[0024] (5)前記低電圧制御高周波スィッチを複数の通信系の送受信信号のうち少なくとも 信号電力が最も高い通信系の送受信信号の入出力部と合分波器との間に設けるこ とによって、第 1 ·第 2のダイオードの印加電圧を下げることによって影響を受けやす い送受信信号の高調波歪み特性の劣化を抑えることができる。
[0025] (6)合分波器のアンテナ接続部と低電圧制御高周波スィッチとの間にストリップライ ンを備え、低電圧制御高周波スィッチのインダクタを合分波器と低電圧制御高周波 スィッチとの接続点と接地との間に設けたことにより、アンテナ端子側から入る静電気 の放電経路が上記インダクタによって形成され、低電圧制御高周波スィッチに接続さ れる受信回路または送信回路を静電気カゝら保護できる。
[0026] (7)前記低電圧制御高周波スィッチのインダクタおよび第 1、第 2の電流経路を合 分波器の一部に兼用することによって、やはりアンテナ端子側力 入る静電気の放 電経路が上記インダクタによって形成され、低電圧制御高周波スィッチに接続される 受信回路または送信回路を静電気カゝら保護できる。
[0027] (8)低電圧制御高周波スィッチと合分波器との間に低電圧制御高周波スィッチが 切り替える信号の周波数帯域以外の周波数成分を遮断するフィルタを設けることによ つて、低電圧制御高周波スィッチで生じる高調波成分が除去され、その分、低電圧 制御高周波スィッチに印加する制御電圧をさらに下げることができる。
[0028] (9)前記合分波器を少なくとも 3つの通信系のうち互いの周波数帯域が近接した 2 つの通信系の送受信信号と他の通信系の送受信信号を合分波し、周波数帯域が近 接した 2つの通信系の受信信号を切り替える受信信号用高周波スィッチを前記低電 圧制御高周波スィッチで構成することによって、 3つの周波数帯域について送受信 信号の入出力、 2つの受信信号の出力を行ういわゆるトリプルバンド用のスィッチプレ クサとして用いることができる。
[0029] (10)前記合分波器を 4つの通信系の送受信信号のうち互いの周波数帯域が近接 した第 1組をなす 2つの通信系の送受信信号と第 2組をなす 2つの通信系の送受信 信号を合分波し、第 1組をなす 2つの通信系の受信信号を切り替える、第 1の受信信 号用高周波スィッチと、第 2組をなす 2つの通信系の受信信号を切り替える、第 2の 受信信号用高周波スィッチと、低電圧制御高周波スィッチで構成することにより、 4つ の通信系の送信信号の入力および受信信号の出力を行うクヮッドバンド用のスィッチ プレクサ用いることができる。
図面の簡単な説明
[0030] [図 1]従来の複合高周波部品の構成を示す図である。
[図 2]第 1の実施形態に係る低電圧制御高周波スィッチの回路図である。
[図 3]第 2の実施形態に係る複合高周波部品の回路図である。
[図 4]同複合高周波部品をセラミック力もなる複数のシート層を積層してなる多層基板 に構成する場合の各層の導体パターンを示す図である。
[図 5]図 4に続く各層の導体パターンを示す図である。
[図 6]図 5に続く各層の導体パターンを示す図である。
[図 7]同複合高周波部品の積層体最上層の構成を示す図である。
[図 8]第 3の実施形態に係る複合高周波部品の回路図である。
[図 9]第 4の実施形態に係る複合高周波部品の回路図である。
[図 10]第 5の実施形態に係る複合高周波部品の回路図である。
[図 11]第 6の実施形態に係る複合高周波部品の回路図である。
[図 12]第 7の実施形態に係る複合高周波部品の回路図である。
[図 13]第 8の実施形態に係る複合高周波部品の回路図である。
[図 14]第 9の実施形態に係る複合高周波部品の回路図である。
[図 15]第 10の実施形態に係る複合高周波部品の回路図である。
[図 16]第 11の実施形態に係る複合高周波部品の回路図である。
[図 17]第 12の実施形態に係る複合高周波部品の回路図である。
[図 18]第 13の実施形態に係る複合高周波部品の回路図である。
符号の説明
[0031] 100, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310—複 合高周波部品
102, 202—ダイプレクサ 103, 203, 213, 223, 233, 243, 253, 263, 273, 283, 293, 303, 313—送 受切替スィッチ
104, 204, 214, 224, 234, 244, 254, 264, 274, 284, 294, 304, 314—送 受切替スィッチ
105, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315—フ イノレタ
106, 206, 216, 226, 236, 246, 256, 266, 276, 286, 296, 306, 316—フ イノレタ
SL1—第 1の信号伝送路
SL2—第 2の信号伝送路
CR1—第 1の電流経路
CR2—第 2の電流経路
VcG, VcD—制御端子
287, 297, 307, 308, 317, 318—受信信号用高周波スィッチ
発明を実施するための最良の形態
[0032] 《第 1の実施形態》
第 1の実施形態に係る送受切替スィッチについて図 2を参照して説明する。
図 2はこの発明による低電圧制御高周波スィッチを用いた送受切替スィッチの回路 図である。この送受切替スィッチ 203は、制御端子 VcGからの印加電圧に応じて、送 信回路カゝら GTx端子に入力される送信信号をアンテナ端子 ANTへ出力するか、ァ ンテナ端子 ANTからの受信信号を受信端子 GRxへ出力するかを切り替えるもので ある。
[0033] 図 2に示すように、第 1の信号伝送路 SL1に対して第 1のダイオード GDIをシリーズ に設け、第 2の信号伝送路 SL2にキャパシタ GC5を介して第 2のダイオード GD2を シャントに設けている。共用信号入出力部であるアンテナ端子 ANTと第 1の信号入 出力部である GTx端子との間に第 1の信号伝送路 SL1を構成している。また、アンテ ナ端子 ANTと第 2の信号入出力部である GRx端子との間に第 2の信号伝送路 SL2 を構成している。さらに、第 1のダイオード GDIを含む第 1の電流経路 CR1と、第 2の ダイオード GD2を含む第 2の電流経路 CR2とを構成して 、て、この第 1の電流経路 C R1と第 2の電流経路 CR2とを直流電流の通電方向を一致させて並列接続するととも に、その並列接続の一方の接続点と接地との間にインダクタ GLを設け、並列接続の 他方の接続点に制御電圧入力部である制御端子 VcGを、抵抗 GRを介して接続して いる。
[0034] このような構成により、制御端子 VcGに正電圧を印加することによって、第 1のダイ オード GDIと第 2のダイオード GD2が共にオンして、第 1の電流経路 CR1と第 2の電 流経路 CR2にそれぞれ図中矢印で示す方向に直流電流が流れる。
[0035] 第 1のダイオード GDIのオンによって GTx端子力もの送信信号力 第 1の信号伝 送路 SL1を通り、キャパシタ Cantを介してアンテナ端子 ANTへ出力される。また第 2 のダイオード GD2のオンによって、第 2の信号伝送路 SL2はこのダイオード GD2お よびキャパシタ GD5でシャントされて、送信信号が GRx端子へ出力されることがない
[0036] なお、この第 2のダイオード GD2のオン状態で第 1の信号伝送路 SL1と第 2の信号 伝送路 SL2との接続点が等価的に開放となるようにストリップライン GSL2の電気長 を定めている。
[0037] また、抵抗 GRとコンデンサ GC5との接続点とダイオード GDIのアノード側とを結ぶ 経路にインダクタ GSL1を設けている。このインダクタ GSL1を設けることにより、抵抗 GRとコンデンサ GC5との接続点とダイオード GDIのアノード側とを結ぶ経路、およ びコンデンサ GC5を介して GTx端子力 の送信信号が接地されるのを防ぐことがで きる。なお、このインダクタ GSL1の箇所にインダクタに代えて抵抗を用いても同様の 効果を得ることができる。
[0038] 第 1の信号伝送路 SL1に設けたキャパシタ Cgt、第 2の信号伝送路 SL2に設けたキ ャパシタ Cgrおよびアンテナ端子 ANTに接続したキャパシタ Cantはそれぞれ直流 電流遮断用およびインピーダンス整合用のキャパシタである。
[0039] また、第 2のダイオード GD2に対して直列接続したキャパシタ GC5は GD2のオン 時に、信号を高周波的に接地するとともに直流電流が接地へ短絡しないように作用 する。 [0040] このように第 1 ·第 2の電流経路 CR1.CR2同士を並列接続し、第 1 ·第 2のダイォー ド GDI 'GD2にそれぞれ制御端子 VcGの電圧を印加するように構成したことにより、 図 1に示した従来の高周波スィッチに比べて第 1 ·第 2のダイオード GDI ' GD2に印 加される電圧が高くなり、その分、制御端子 VcGに印加する制御電圧を低く設定でき る。例えば、従来は制御電圧として 2. 4〜2. 8Vまたは 2. 3〜3. OVが用いられてい た力 この図 2に示す回路では制御電圧を 1. 6〜2. OVという低い電圧に定めること ができる。
[0041] ところで、図 2において第 1 ·第 2のダイオード GDI ' GD2のオン時は、 GTx端子か ら送信信号が入力される。また、ストリップライン GSL2はこの送信信号の周波数のほ ぼ 1/4波長と等価な電気長としている。そのため、既に述べたとおり第 2のダイォー ド GD2のオン時にはストリップライン GSL2の共用信号入出力部であるアンテナ端子 ANT側が等価的に開放状態になり、前記送信信号は GSL2によりその大部分が遮 断される。また、一部漏れた信号も、第 2のダイオード GD2がオンになっているため、 第 2のダイオード GD2およびキャパシタ GC5を介して接地することができ、 GRx端子 へ送信信号が漏れることはな ヽ。
[0042] ところが、第 1 ·第 2のダイオード GDI ' GD2の切替時にはダイオートの切替速度の 差などに起因して、瞬間的に第 1のダイオード GDIがオン状態、第 2のダイオード GD 2がオフ状態になることがあり、その時間はストリップライン GSL2から漏れた前記送信 信号が GRx端子側へ漏れ出してしまう。この漏れ出した信号が GRx端子の後段に接 続されている図外の低雑音増幅器 (LNA)等の受信回路に入力されると、その受信 回路を破壊するおそれがある。
[0043] しかし、図 2に示した回路では、 GRx端子の前段にインダクタ GLをシャントに配置し 、インダクタ GLを送信信号の周波数に対して等価的に接地されるようなインダクタン ス値 (線路で構成する場合には、その線路の電気長を送信信号のほぼ λ Z2)にす ることにより、漏れた送信信号はインダクタ GLにより接地される。
[0044] このようにインダクタ GLを配置することにより、第 1 ·第 2のダイオード GDI ' GD2の 切替速度の差を起因とする送信信号の GRx端子側への漏れによる Rx側回路の破 壊を未然に防ぐことができる。 [0045] 《第 2の実施形態》
次に、第 2の実施形態に係る複合高周波部品について図 3を参照して説明する。 図 3に示す複合高周波部品 200は、 1800MHz帯の GSM1800 (DCS)、 1900M Hz帯の GSM1900 (PCS)、 850MHz帯の GSM850、および 900MHz帯の GSM 900 (EGSM)に適応するものである。
[0046] 図 3においてダイプレクサ 202は、 GSM850ZGSM900系の送受信信号と、 GS M1800ZGSM1900系の送受信信号を合波·分波する。送受切替スィッチ 203は GSM850ZGSM900系の送信信号と受信信号を切り替える。同様に送受切替スィ ツチ 204は GSM 1800/GSM 1900系の送信信号と受信信号を切り替える。フィル タ 205は GSM850ZGSM900系の送信信号を通過させるとともに高調波を減衰さ せる。同様にフィルタ 206は GSM1800ZGSM1900系の送信信号を通過させると ともに、高調波を減衰させる。
[0047] 図 1に示した従来の複合高周波部品と異なるのは、送受切替スィッチ 203, 204の 構成である。図 3に示すダイプレクサ 202の構成は図 1に示したダイプレクサ 102と同 様である。ここでキャパシタ Ctl、 Culおよびストリップライン Ltlによってローパスフィ ルタを構成し、キャパシタ Ccl, Cc2, Ct2およびストリップライン Lt2によってハイパ スフィルタを構成して!/、る。
[0048] 図 3に示すフィルタ 205は、図 1に示したフィルタ 105と同様であり、この例ではキヤ ノ シタ GCcl, GCul, GCu2およびストリップライン GLtlによってローパスフィルタを 構成している。
図 3に示すフィルタ 206は、図 1に示したフィルタ 106と同様であり、キャパシタ DCc 1, DCc2, DCul, DCu2, DCu3、ストリップライン DLtl, DLt2によってローパスフ ィルタを構成している。
[0049] 図 3に示す GSM850Z900用の送受切替スィッチ 203は、図 2に示した送受切替 スィッチ 203と同様に構成している。すなわち GSM850Z900の送信信号伝送路に 第 1のダイオード GDIをシリーズに設け、 GSM850Z900の受信信号の伝送路に 第 2のダイオード GD2およびコンデンサ GC5をシャントに設けている。また、制御端 子 VcG→抵抗 GR→インダクタ GSL1→第 1のダイオード GD1→ストリップライン GSL 2→インダクタ GLの経路で直流電流が流れる第 1の電流経路を構成し、 VcG→GR →第 2のダイオード GD2→GLの経路で直流電流が流れる第 2の電流経路を構成し 、第 1のダイオード GDIと第 2のダイオード GD2を含む上記第 1 ·第 2の電流経路が 並列接続される関係としている。
なお、 GSM850Z900の受信信号伝送路に設けたキャパシタ GCu3はダイオード GD2のオフ時に、受信信号伝送路のインピーダンス整合をとるためのキャパシタであ る。
[0050] GSM1800Z1900側の送受切替スィッチ 204の構成も GSM850Z900側の送 受切替スィッチ 203の構成と基本的に同様であり、 GSM1800Z1900の送信信号 伝送路に対してシリーズに第 1のダイオード DDIを設け、 GSM1800Z1900の受 信信号伝送路に対してシャントに第 2のダイオード DD2を設けている。
[0051] 但し、第 1のダイオード DDIに対して、ストリップライン DPSLtとキャパシタ DPCtl との直列回路を並列に接続している点では異なる。なお、 DPSLtは、ダイオード DD 1のオフ時に、ダイオード DDIの容量と DPSLtとの並列共振によりアイソレーション を確保するために設けている。なお、コンデンサ DPCtlは、直流電流が、ダイオード DDIを介さずに流れるのを防止するために設けている。
[0052] この送受切替スィッチ 204の制御端子 VcDに所定の正電圧を印加すると、第 1の ダイオード DDIがオンして、 VcD→抵抗 DR→インダクタ DPSL1→DD1→ストリップ ライン DSL2→インダクタ DLの経路で直流電流が流れる。また、第 2のダイオード D D2がオンして、 VcD→DR→DD2→DLの経路で直流電流が流れる。
[0053] なお、キャパシタ DCu4は、ダイオード DD2のオフ時に、受信信号伝送路のインピ 一ダンス整合をとるためのキャパシタである。
[0054] このようにして GSM850Z90CK則の送受の切替、 GSM1800Zl90(K則の送受の 切替の 、ずれも低電圧で制御可能となる。
[0055] 次に、上記複合高周波部品を、セラミック力 なる複数のシート層を積層してなる多 層基板に一体化した場合の構成例を図 4〜図 6を基に説明する。
図 4〜図 6は各層における導体パターンの下面図である。図 4の(1)が最下層、図 6 の(24)が最上層であり、図示の都合上図 4〜図 6の 3つの図に分けて表している。図 4〜図 6にお 、て、図中の各部の符号は図 3に示した回路図中の各符号に対応して いる。また、これらの図中の GNDは接地電極である。図 4の(1)において Gは接地端 子、である。その他の端子は図 3に示した回路図中の各符号に対応している。
[0056] 図 7は上記積層体の最上面に各チップ部品を搭載した状態の上面図である。ここ で図中の各符号は図 3の回路図中の各符号に対応して 、る。
[0057] 以上のように、第 2の実施形態に係る複合高周波部品によれば、低電圧化'低消費 電流化が図れる。
[0058] 《第 3の実施形態》
次に、第 3の実施形態に係る複合高周波部品について図 8を参照して説明する。 この複合高周波部品 210が図 3に示した複合高周波部品と異なるのは送受切替ス イッチ 213, 214の構成である。ダイプレクサ 212は図 3に示したダイプレクサ 202と 同様であり、フイノレタ 215, 216も図 3に示したフィノレタ 205, 206と同様である。
[0059] GSM850Z900の送受切替スィッチ 213は、送信信号の伝送路にシリーズに第 1 のダイオード GDIを備え、受信信号の伝送路に対してシャントに第 2のダイオード G D2を備えている。図 3に示した送受切替スィッチ 203と異なり、第 1のダイオード GDI の力ソードとストリップライン GSL2との接続点にインダクタ GLの一端を接続し、その 他端を接地している。
[0060] 制御端子 VcGに正電圧を印加した時、 VcG→抵抗 GR→インダクタ GSL1→GD1 →GLの経路(第 1の電流経路)で直流電流が流れる。また、 。0→0!^→002→ス トリップライン GSL2→GLの経路(第 2の電流経路)で直流電流が流れる。このように インダクタ GLの接続位置を変えることによって第 1 ·第 2の電流経路は図 3に示した例 と異なる力 2つのダイオード GDI, GD2に印加される制御電圧は同様に並列に印 加される。
[0061] このように、インダクタ GLをダイプレクサ 212と送受切替スィッチ 213との接続点と 接地との間に設けたことにより、アンテナ端子側力も静電気等のサージ電圧が印加さ れても、その静電気等はインダクタ GLを介して直ちに接地に放電されるので、送受 切替スィッチ 213に接続される受信回路または送信回路を静電気等カゝら保護できる [0062] GSM 1800Z 1900の送受切替スィッチ 214についても図 3に示した送受切替スィ ツチ 204とは異なり、ダイオード DDIの力ソードとストリップライン DSL2との接続点に インダクタ DLの一端を接続し、その他端を接地している。そのため、制御端子 VcD →抵抗 DR→インダクタ DPSL1→DD1→DLの経路(第 1の電流経路)で直流電流 が流れる。また VcD→DR→ダイオード DD2→ストリップライン DSL2→DLの経路( 第 2の電流経路)で直流電流が流れる。
[0063] このようにして GSM850Z900側の送受の切替、 GSM1800Z1900側の送受の 切替のいずれも低電圧で制御可能となり、低電圧 *低消費電流の複合高周波部品が 得られる。
[0064] 《第 4の実施形態》
次に、第 4の実施形態に係る複合高周波部品について図 9を参照して説明する。 この複合高周波部品 220が図 3に示した複合高周波部品と異なるのは GSM850 Z900側の送受切替スィッチ 223の構成である。 2つのダイオード GDI, GD2に流 れる直流電流が共通に流れる(合成電流が流れる)インダクタ GLの接続位置である。 この例ではインダクタ GLをダイプレクサ 222の共用信号入出力部に接続している。 制御端子 VcGに正電圧が印加された時、 VcG→抵抗 GR→インダクタ GSL1→第 1 のダイオード GD1→ストリップライン Ltl→GLの経路(第 1の電流経路)で直流電流 が流れる。また、 VcG→GR→第 2のダイオード GD2→ストリップライン GSL2→Ltl →GLの経路 (第 2の電流経路)で直流電流が流れる。
[0065] ダイプレクサ 222、 GSM1800Z1900側の送受切替スィッチ 224、フィルタ 225, 226【こつ!/、て ίま、図 3【こ示したダイプレクサ 202、送受切替スィッチ 204、フイノレタ 20 5, 206と同様である。
[0066] このようにダイプレクサ 222の直流電流が流れる電流経路を送受切替スィッチに兼 用しても同様の作用効果が得られる。
[0067] また、インダクタ GLをアンテナ端子側に設けたことにより、アンテナ端子側から静電 気等のサージ電圧が印加されても、その静電気等はインダクタ GLを介して直ちに接 地に放電されるので、送受切替スィッチ 223に接続される受信回路または送信回路 を静電気等カゝら保護できる。 [0068] 《第 5の実施形態》
次に第 5の実施形態に係る複合高周波部品について図 10を参照して説明する。 図 3に示した例では、制御端子 VcGからの電流が共通に流れる単一の抵抗 GRを 用いたが、この図 10に示す複合高周波部品 230は、第 1のダイオード GDIに直流電 流が流れる電流経路に抵抗 GR1を設け、第 2のダイオード GD2に直流電流が流れ る電流経路に抵抗 GR2を設けて ヽる。
[0069] 制御端子 VcGに正電圧が印加された時、 VcG→GRl→インダクタ GSL1→GD1 →ストリップライン GSL2→インダクタ GLの経路 (第 1の電流経路)で直流電流が流れ 、これとともに VcG→GR2→GD2→GLの経路(第 2の電流経路)で直流電流が流れ る。
[0070] GSM1800Z1900側の送受切替スィッチ 234についても同様に第 1 ·第 2のダイ オード DDI, DD2に直流電流が流れる電流経路に個別に抵抗 DR1, DR2を設け ている。
[0071] このようにダイオードごとに電流制限用抵抗を設けることによって、各ダイオードに 加わる電圧を大きくすることができる。
[0072] 《第 6の実施形態》
次に第 6の実施形態に係る複合高周波部品について図 11を参照して説明する。 この複合高周波部品 240が図 10に示したものと異なるのは送受切替スィッチ 243, 244の構成である。図 10に示した送受切替スィッチ 233, 234では、ダイード GDI, DDIに直流電流が流れる電流経路にインダクタ GSL1, DPSL1をそれぞれ設けて いたが、この図 11に示す例では、それらのインダクタ GSL1, DPSL1を省略している 。このように、信号伝送路にシリーズに設けたダイオード GDI, DDIに対して通電す る直流電流の電流経路には抵抗 GR1, DR1をそれぞれ設けているので、制御端子 側への送信信号の不要な伝送を抑制することができる。また、抵抗 GR1, DR1を用 いることで、ダイオード GDI, DDIに、より高い電圧を印加することができる。なお、 図 10に示した例で、インダクタ GSL1, DPSL1は、電流を流す役割と共に高周波の リークを防いでいる。図 11に示す例では抵抗 GR1, DR1のみを用いている力 これ ら抵抗も上記インダクタと同様な役割を果たす。 [0073] 《第 7の実施形態》
次に、第 7の実施形態に係る複合高周波部品について図 12を参照して説明する。 この複合高周波部品 250が図 3に示した高周波複合部品と異なるのはダイプレクサ 252および GSM850Z900側の送受切替スィッチ 253の構成である。この図 12に 示す例では、ダイプレクサ 252の GSM850Z900側のフィルタとして、キャパシタ Ct 1, Cul, GCcl, GCulおよびストリップライン Ltl, GLtlで構成している。すなわち 2段のローパスフィルタを構成し、 GSM850Z900の通信系で用いる周波数帯域よ り高周波域 (高調波成分)の遮断効果を高めている。その分、図 3に示したフィルタ 2 05に相当する回路を省略している。
[0074] GSM850Z900側の送受切替スィッチ 253は基本的には図 3に示した送受切替ス イッチ 203と同様であるが、図 3に示したフィルタ 205に相当する回路を省略したこと に伴 、、送信端子 GTxとのインピーダンス整合をとるためのキャパシタ GCu2を設け ている。
[0075] このように送受切替スィッチ 253の送信信号出力部側に、 GSM850Z900の通信 系で使用する周波数帯域以外の周波数成分を遮断するフィルタを設けたことにより、 ダイオード GDIの非直線性による高調波歪みの成分を抑圧することができ、その分 、ダイオード GDIに印加する制御電圧、すなわち制御端子 VcGに印加する制御電 圧を可能な限り低く設定できる。
[0076] 《第 8の実施形態》
次に第 8の実施形態に係る複合高周波部品について図 13を参照して説明する。 この複合高周波部品 260が図 12に示したものと異なるのはダイプレクサ 262および フィルタ 266の構成である。この図 13に示す例では、ダイプレクサ 262の GSM1800 Z1900側のスプリアスを抑えるためにローパスフィルタを送受切替スィッチ 264の前 段に設けている。
[0077] このように GSM1800Z1900の送信信号を切り替える送受切替スィッチ 264の出 力側に GSM 1800Z 1900の通信系で使用する周波数帯域以外の高周波域 (高調 波成分)を遮断するフィルタを設けることによって、ダイオード DDIの非直線性による 高調波歪みの成分を抑圧することができ、その分、ダイオード DDIに印加する制御 電圧、すなわち制御端子 VcDに印加する制御電圧も可能な限り低く設定できる。
[0078] 《第 9の実施形態》
次に、第 9の実施形態に係る複合高周波部品について図 14を参照して説明する。 この複合高周波部品 270が図 3に示した複合高周波部品と異なるのは GSM1800 Z1900側の送受切替スィッチ 274の構成である。図 3に示した例では、 GSM1800 Z1900側と GSM850Z900側の両方の送受切替スィッチについてそれぞれの 2つ のダイオードに制御電圧が並列に印加されるように構成した力 この図 14に示す例 では、 GSM1800Z190CK則の送受切替スィッチ 274について、 2つのダイオード D Dl, DD2に対して制御電圧が直列に印加されるようにしている。すなわち GSM180 OZ1900側の送受切替スィッチ 274については従来と同様の回路構成としている。
[0079] この例では、制御端子 VcDに所定の正電圧が印加された時、 2つのダイオード DD 1, DD2がともにオンし、 VcD→抵抗 DR→ダイオード DD2→ストリップライン DSL2 →ダイオード DD1→インダクタ DPSL1の経路で直流電流が流れる。
[0080] このようにいわゆるデュアルバンドのスィッチプレクサの場合、信号電力が低い通信 系の送受信信号を切り替える高周波スィッチにおいて、ダイオードに印加される制御 電圧が低くなることに伴って生じる高調波歪みの問題が顕著に現れる。そのため、こ の図 14に示したように、信号電力が相対的に高い通信系である GSM850Z900側 の送受切替スィッチ 273に対してのみ、 2つのダイオードに制御電圧が並列に印加さ れるように構成してもよ 、。
[0081] 《第 10の実施形態》
次に、第 10の実施形態に係る複合高周波部品について図 15を参照して説明する 第 2〜第 9の実施形態では、 GSM850Z900の送信信号入力端子、受信信号出 力端子、 GSM1800Z1900の送信信号入力端子および受信信号出力端子を備え るデュアルバンドのスィッチプレクサを示したが、この図 15に示す複合高周波部品 2 80は GSM1800と 1900の受信信号出力端子を分離したトリプルバンドのスィッチプ レクサとして用いるものである。図 3に示した回路と異なるのは、 GSM1800Z1900 の受信信号を GSM1800と 1900の受信信号に切り替える受信信号用高周波スイツ チ 287を設けて 、る点である。
[0082] 受信信号用高周波スィッチ 287は、 GSM1900の受信信号伝送路にシリーズに第 1のダイオード PD1を設け、 GSM1800の受信信号伝送路に対してシャントに第 2の ダイオード PD2を設けている。また、制御端子 VcDRに所定の正電圧が印加された 時、ダイオード PD1, PD2が共にオンして、 VcDR→抵抗 PR→PD2→ストリップライ ン PSL2→PD1→インダクタ PSL1の経路で直流電流が流れるように構成して!/、る。 このようにして送受切替スィッチ 284から出力される GSM1800Z1900の受信信号 を受信信号用高周波スィッチ 287で GSM1900の受信信号と GSM1800の受信信 号とに切り替える。
[0083] なお、送受切替スィッチ 284と受信信号用高周波スィッチ 287との間には直流電流 遮断用のキャパシタ DC6を設けて 、る。
[0084] 《第 11の実施形態》
次に第 11の実施形態に係る複合高周波部品について図 16を参照して説明する。 この複合高周波部品 290が図 15に示した回路と異なるのは GSM1800Z1900用 の受信信号用高周波スィッチ 297の構成である。この受信信号用高周波スィッチ 29 7は GSM 1900の受信信号伝送路に対してシリーズに第 1のダイオード PD 1を設け、 GSM 1800の受信信号伝送路に対してシャントに第 2のダイオード PD2を設けてい る。また、制御端子 VcDRに所定の正電圧が印加された時、ダイオード PD1を直流 電流が流れる第 1の電流経路とダイオード PD2に直流電流が流れる第 2の電流経路 とを並列に接続している。すなわち、制御端子 VcDRに所定の正電圧が印加されると 、 VcDR→抵抗 PR→インダクタ PSL1→PD1→ストリップライン PSL2→インダクタ P Lの経路(第 1の電流経路)で電流が流れ、これとともに VcDR→PR→PD2→PL経 路 (第 2の電流経路)で電流が流れる。
[0085] このように受信信号用高周波スィッチ 297についても 2つのダイオード PD1, PD2 に制御電圧が並列に印加されるように構成することによって、その制御電圧の低電圧 化が図れる。
[0086] 《第 12の実施形態》
次に第 12の実施形態に係る複合高周波部品について図 17を参照して説明する。 この複合高周波部品 300は、 GSM850Z900側にも受信信号用高周波スィッチ 3 08を設けてクヮッドバンドのスィッチプレクサとして用いるものである。 GSM1800Z1 900側の受信信号用高周波スィッチは図 15に示したものと同様である。
[0087] 制御端子 VcGRに所定の正電圧が印加されると、 2つのダイオード AD1, AD2が 共にオンし、 VcGR→抵抗 AR→ダイオード AD2→ストリップライン ASL2→ダィォ一 ド AD1→インダクタ ASL1の経路で直流電流が流れる。このようにして GSM850Z9 00側にも受信信号用高周波スィッチ 308を設けることによってクヮッドバンドのスイツ チプレクサとして用いることができる。
[0088] 《第 13の実施形態》
次に第 13の実施形態に係る複合高周波部品について図 18を参照して説明する。 この複合高周波部品 310が図 17に示した回路と異なるのは GSM850Z900側の 受信信号用高周波スィッチ 318の構成である。また、 GSM1800Z1900側の受信 信号用高周波スィッチ 317は図 16に示した受信信号用高周波スィッチ 297と同様の 構成としている。
[0089] この例では、 GSM850Z900側の受信信号用高周波スィッチ 318についても、そ の 2つのダイオード AD1, AD2に対して制御電圧が並列に印加されるように構成し ている。すなわち、制御端子 VcGRに所定の正電圧が印加されると、ダイオード PD1 を直流電流が流れる第 1の電流経路とダイオード PD2に直流電流が流れる第 2の電 流経路とを並列に接続している。制御端子 VcGRに所定の正電圧が印加されると、 V cGR→抵抗 AR→インダクタ ASL1→AD1→ストリップライン ASL2→インダクタ AL の経路(第 1の電流経路)で電流が流れ、これとともに VcGR→AR→AD2→ALの経 路 (第 2の電流経路)で電流が流れる。
[0090] このように受信信号用高周波スィッチ 318についても 2つのダイオード AD1, AD2 に制御電圧が並列に印加されるように構成することによって、その制御電圧の低電圧 化が図れる。

Claims

WO 2007/114114 B^S¾0 /0563i°8. 6。 2007 20 請求の範囲
[1] 共用信号入出力部と第 1の信号入出力部との間に第 1の信号伝送路を有.し、前記
共用信号入出力部と第 2の信号入出力部との間に第 2の信号伝送路を有する高周
波スィッチであって、
第 1のダイオードを含む、直流電流が流れる第 1の電流経路と、第 2のダイオードを
含む、直流電流が流れる第 2の電流経路とを備え、
前記第 1 ·第 2の電流経路同士を前記直流電流の通電方向を一致させて並列接続
し、当該並列接続の一方の接続点と接地との間にインダクタを設け、前記並列接続
の他方の接続点を制御電圧入力部とし、
前記第 1の信号伝送路に前記第 1のダイオードをシリーズに設け、前記第 2の信号
伝送路に前記第 2のダイオードをシャントに設けたことを特徴とする低電圧制御高周
波スィッチ。
[2] 共用信号入出力部と第 1の信号入出力部との間に第 1の信号伝送路を有し、前記共
用信号入出力部と第 2の信号入出力部との間に第 2の信号伝送路を有する高周波ス
イッチであって、
前記第 1の信号伝送路に第 1のダイオードをシリーズに設け、前記第 2の信号伝送
路に第 2のダイオードをシャントに設けるとともに、前記第 1のダイオードを含む、直流
電流が流れる第 1の電流経路と、前記第 2のダイオードを含む、直流電流が流れる第
2の電流経路とを備え、 '
前記第 2の信号伝送路には、前記第 1のダイオードと前記第 2のダイオードとの間で
且つ前記共用信号入出力部と第 2のダイオードとの間にストリップラインを備え、
前記第 1 ·第 2の電流経路同士を前記直流電流の通電方向を一致させて並列接続
するとともに、前記ストリップラインより第 2の信号入出力部側で、第 2のダイオードと前
記ストリップラインとの接続点である前記並列接続の一方の接続点と接地との間にィ
ンダクタを設け、前記並列接続の他方の接続点を制御電圧入力部としたことを特徴と
する低電圧制御高周波スィッチ。
[3] 前記第 1 ·第 2の電流経路のそれぞれに前記直流電流が流れる抵抗を設けた請求
項 1または 2に記載の低電圧制御高周波スィッチ。
訂正された用紙 (規則 91) PGT/JP2007/0563G0
WO 2007/114114 曰 fey qo /0563 6, 2007
[4] それぞれの周波数帯が異なる複数の通信系の送受信信号の入出力部およびアン
テナ接続部を備えて、前記複数の通信系の送受信信号を合波'分波する合分波器と
、前記複数の通信系の送受信信号の入出力部と前記合分波器との間に、送信信号
と受信信号を切り替える高周波スィッチをそれぞれ接続した複合高周波部品におい
て、
前記複数の高周波スィッチのうち少なくとも 1つを請求項 1、 2または 3に記載の低
電圧制御高周波スィッチで構成した複合高周波部品。
[5] 前記低電圧制御高周波スィッチは、前記複数の通信系の送受信信号のうち、少な
くとも信号電力が最も高い通信系の送受信信号の入出力部と前記合分波器との間
に設けた請求項 4に記載の複合高周波部品。
[6] 前記合分波器の前記アンテナ接続部と前記低電圧制御高周波スィッチとの間にス
トリップラインを備え、前記低電圧制御高周波スィッチの前記インダクタの一端を前記
合分波器と前記低電圧制御高周波スィッチとの接続点に接続するとともに他端を接
地した請求項 4または 5に記載の複合高周波部品。
[7] 前記低電圧制御高周波スィッチの前記インダクタおょぴ前記第 1 '第 2の電流経路
を前記合分波器の一部に兼用した請求項 4〜6のうちいずれか 1項に記載の複合高
周波部ロロ。
[8] 前記低電圧制御高周波スィッチと前記合分波器との間に、低電圧制御高周波スィ
ツチが切り替える、通信系で使用する周波数帯域以外の周波数成分を遮断するフィ
ルタを設けた請求項 4〜7のうちいずれか 1項に記載の複合高周波部品。
[9] 前記合分波器は少なくとも 3つの通信系の送受信信号のうち互 ヽの周波数帯域が
近接した2つの通信系の送受信信号と他の通信系の送受信信号を合分波し、周波
数帯域が近接した前記 2つの通信系の受信信 を切り替える受信信号用高周波スィ
ツチを請求項 1、 2または 3に記載の低電圧制御高周波スィッチで構成した複合高周
波部品。
[10] 前記合分波器は 4つの通信系の送受信信号のうち互 、の周波数帯域が近接した
第 1組をなす 2つの通信系の送受信信号と第 2組をなす 2つの通信系の送受信信号
を合分波し、第 1組をなす 2つの通信系の受信信号を切り替える第 1の受信信号用高
訂正された诏紙 007/114114 曰 CT/JP2007/05636o8. 6· 2007
22 周波スィッチと、第 2組をなす 2つの通信系の受信信号を切り替える第 2の受信信号
用高周波スィッチの少なくとも一方を請求項 1、 2または 3に記載の低電圧制御高周
波スィッチで構成した複合高周波部品。
ΙΠΕされた用紙 (規則 91)
PCT/JP2007/056360 2006-04-05 2007-03-27 低電圧制御高周波スイッチおよび複合高周波部品 WO2007114114A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800124708A CN101416405B (zh) 2006-04-05 2007-03-27 低电压控制高频开关以及复合高频部件
JP2008508538A JPWO2007114114A1 (ja) 2006-04-05 2007-03-27 低電圧制御高周波スイッチおよび複合高周波部品
GB0817065A GB2449818B (en) 2006-04-05 2007-03-27 Low-voltage control high-frequency switch and composite high-frequency component
US12/203,991 US8179206B2 (en) 2006-04-05 2008-09-04 Low-voltage control high-frequency switch and composite high-frequency component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-104159 2006-04-05
JP2006104159 2006-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/203,991 Continuation US8179206B2 (en) 2006-04-05 2008-09-04 Low-voltage control high-frequency switch and composite high-frequency component

Publications (1)

Publication Number Publication Date
WO2007114114A1 true WO2007114114A1 (ja) 2007-10-11

Family

ID=38563383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056360 WO2007114114A1 (ja) 2006-04-05 2007-03-27 低電圧制御高周波スイッチおよび複合高周波部品

Country Status (6)

Country Link
US (1) US8179206B2 (ja)
JP (1) JPWO2007114114A1 (ja)
KR (1) KR100995300B1 (ja)
CN (1) CN101416405B (ja)
GB (1) GB2449818B (ja)
WO (1) WO2007114114A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139819A1 (ja) * 2007-05-10 2008-11-20 Murata Manufacturing Co., Ltd. 複合高周波部品
WO2009069353A1 (ja) * 2007-11-28 2009-06-04 Murata Manufacturing Co., Ltd. 低電圧制御高周波スイッチおよび複合高周波部品
CN102171927A (zh) * 2008-09-30 2011-08-31 双信电机株式会社 高频开关

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737304B2 (ja) * 2013-01-18 2015-06-17 株式会社村田製作所 フィルタ回路
JP6658742B2 (ja) * 2015-04-21 2020-03-04 ソニー株式会社 通信装置、および、通信装置の制御方法
DE102018116597A1 (de) * 2018-07-10 2020-01-16 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Schaltung zum schalten einer wechselspannung
CN113746465B (zh) * 2021-11-04 2022-03-11 南京正銮电子科技有限公司 一种被动式大功率tr开关及tr组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268324U (ja) * 1985-10-18 1987-04-28
JPH04116441U (ja) * 1991-03-29 1992-10-19 シヤープ株式会社 スイツチング回路
JP2000165274A (ja) * 1998-11-20 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
WO2005046070A1 (ja) * 2003-11-11 2005-05-19 Murata Manufacturing Co., Ltd. 高周波モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054114A (en) * 1988-09-27 1991-10-01 Rockwell International Corporation Broadband RF transmit/receive switch
JP3581607B2 (ja) * 1999-09-24 2004-10-27 松下電器産業株式会社 送受切替スイッチ
WO2002017505A1 (en) * 2000-08-25 2002-02-28 Matsushita Electric Industrial Co., Ltd. Communication device
US7020225B2 (en) 2001-01-19 2006-03-28 Qualcomm Inc. Frequency searcher and frequency-locked data demodulator using a programmable rotator
JP2003018040A (ja) * 2001-06-28 2003-01-17 Kyocera Corp 高周波回路及びその高周波回路部品
JP3904151B2 (ja) * 2002-10-01 2007-04-11 日立金属株式会社 複合積層モジュール及びこれを用いた通信機
JP4029779B2 (ja) 2003-06-05 2008-01-09 株式会社村田製作所 高周波モジュールおよび通信装置
JP2005244860A (ja) * 2004-02-27 2005-09-08 Hitachi Metals Ltd 高周波スイッチモジュール及びこれを用いた通信装置
JP2008109535A (ja) * 2006-10-27 2008-05-08 Hitachi Media Electoronics Co Ltd スイッチ回路、それを有するフロントエンドモジュール及び無線端末
EP2144377B8 (en) * 2007-05-10 2013-03-06 Murata Manufacturing Co. Ltd. Composite high-frequency component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268324U (ja) * 1985-10-18 1987-04-28
JPH04116441U (ja) * 1991-03-29 1992-10-19 シヤープ株式会社 スイツチング回路
JP2000165274A (ja) * 1998-11-20 2000-06-16 Murata Mfg Co Ltd 複合高周波部品及びそれを用いた移動体通信装置
WO2005046070A1 (ja) * 2003-11-11 2005-05-19 Murata Manufacturing Co., Ltd. 高周波モジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139819A1 (ja) * 2007-05-10 2008-11-20 Murata Manufacturing Co., Ltd. 複合高周波部品
US7852220B2 (en) 2007-05-10 2010-12-14 Murata Manufacturing Co., Ltd. Composite high-frequency component
WO2009069353A1 (ja) * 2007-11-28 2009-06-04 Murata Manufacturing Co., Ltd. 低電圧制御高周波スイッチおよび複合高周波部品
JPWO2009069353A1 (ja) * 2007-11-28 2011-04-07 株式会社村田製作所 低電圧制御高周波スイッチおよび複合高周波部品
US8160511B2 (en) 2007-11-28 2012-04-17 Murata Manufacturing Co., Ltd. Low-voltage control high-frequency switch and composite high-frequency component
CN102171927A (zh) * 2008-09-30 2011-08-31 双信电机株式会社 高频开关

Also Published As

Publication number Publication date
CN101416405A (zh) 2009-04-22
US8179206B2 (en) 2012-05-15
KR100995300B1 (ko) 2010-11-19
JPWO2007114114A1 (ja) 2009-08-13
GB0817065D0 (en) 2008-10-29
GB2449818A (en) 2008-12-03
CN101416405B (zh) 2013-03-27
GB2449818B (en) 2011-11-16
US20080310382A1 (en) 2008-12-18
KR20080091849A (ko) 2008-10-14

Similar Documents

Publication Publication Date Title
JP4289440B2 (ja) 複合高周波部品
US7471962B2 (en) High-frequency switch circuit, high-frequency switch module and wireless communications device comprising it
JP4678408B2 (ja) 複合高周波部品および移動体通信装置
JP5463669B2 (ja) 分波回路、高周波回路及び高周波モジュール
JP5630441B2 (ja) 高周波回路、高周波回路部品、及び通信装置
WO2007114114A1 (ja) 低電圧制御高周波スイッチおよび複合高周波部品
TWI442621B (zh) High frequency parts
JPWO2007114114A6 (ja) 低電圧制御高周波スイッチおよび複合高周波部品
US20140097999A1 (en) High-frequency module
JP5582400B2 (ja) 高周波回路部品、及び通信装置
CN103125078A (zh) 高频模块
US8160511B2 (en) Low-voltage control high-frequency switch and composite high-frequency component
CN101542917B (zh) 信号处理设备
JP4389207B2 (ja) アンテナスイッチ回路及びアンテナスイッチモジュール並びにこれらを用いた通信機
JP2004135316A (ja) 高周波部品及び高周波モジュール並びにこれらを用いた通信機
WO2010101130A1 (ja) 高周波モジュール
JP2004146916A (ja) 高周波スイッチ回路および高周波スイッチモジュール
KR100614936B1 (ko) 쿼드 밴드 프런트 엔드 모듈
JP2005136606A (ja) 高周波モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508538

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087021654

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 0817065

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070327

WWE Wipo information: entry into national phase

Ref document number: 0817065.6

Country of ref document: GB

Ref document number: 817065

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 200780012470.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739798

Country of ref document: EP

Kind code of ref document: A1