WO2007111231A1 - Process for production of copper powder and copper powder obtained by the process - Google Patents

Process for production of copper powder and copper powder obtained by the process Download PDF

Info

Publication number
WO2007111231A1
WO2007111231A1 PCT/JP2007/055956 JP2007055956W WO2007111231A1 WO 2007111231 A1 WO2007111231 A1 WO 2007111231A1 JP 2007055956 W JP2007055956 W JP 2007055956W WO 2007111231 A1 WO2007111231 A1 WO 2007111231A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper powder
slurry
reducing agent
powder
Prior art date
Application number
PCT/JP2007/055956
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Sakaue
Katsuhiko Yoshimaru
Yoshinobu Nakamura
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2007111231A1 publication Critical patent/WO2007111231A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • Copper powder manufacturing method and copper powder obtained by the manufacturing method are Copper powder manufacturing method and copper powder obtained by the manufacturing method
  • the present invention relates to a method for producing copper powder by a wet reduction method, and particularly relates to a method for efficiently producing copper powder that is uniform in fine particles and has high conductivity, and copper powder produced by this production method.
  • copper powder has been widely used as a raw material for copper paste and copper ink. Because of its ease of handling, copper paste is applied to circuit formation of printed wiring boards using screen printing, various electrical contacts, etc., and is used as a means of ensuring electrical continuity. In order to control the viscosity of the copper paste according to the field of use, it is necessary to consider various characteristics of the copper powder.
  • a copper paste is obtained by appropriately blending a resin component with a copper powder having a fine particle size of several ⁇ m, and is used for forming a circuit shape and the like, and is fired or solidified to form a conductor film. As such, it exhibits conductivity.
  • the copper powder used in the copper paste is required to have higher properties in terms of the conductivity and reliability of the circuit formed by the paste.
  • the copper powder used for the copper paste has been desired to reduce the paste viscosity, facilitate the handling as a paste, and improve the via hole filling property of the printed wiring board.
  • various solutions such as optimization of the particle size and specific surface area of the copper powder and surface treatment with an organic agent on the surface of the powder are adopted to reduce the viscosity of the copper paste. I have been.
  • Patent Document 1 discloses a method for producing a fine copper powder controlled to have a good particle size using a wet reduction method.
  • Patent Document 2 discloses a method for efficiently producing copper powder having a fine particle diameter and a smooth surface in order to cope with fine wiring by using the atomizing method.
  • Patent Document 1 Japanese Patent Publication No. 5-57324
  • Patent Document 2 JP 2002-343135 A
  • copper powder by the conventional wet reduction method which makes it easy to obtain uniform and fine particles, is due to the dispersing agent contained in the reducing system, which often uses organic reducing agents, although the primary particles themselves are fine and uniform.
  • the amount of adsorbed organic agent becomes high, the gas generated due to the diffusion of the organic matter adsorbed during firing causes the surface of the fired film to become rough, causes internal defects, and is immediately problematic in terms of conductivity. It was.
  • D ZD specific surface area
  • tap packing density are evaluated using current analyzers
  • the copper powder disclosed in Patent Document 1 has an average yield of 85.8% and a standard deviation ⁇ of yield of 8.5, which varies greatly between lots.
  • the characteristics related to grain size vary considerably from lot to lot.
  • the invention disclosed in Patent Document 1 may show good powder characteristics, it can be said that it is a technique for which further improvement is desired in terms of stable production.
  • the present inventor verified the above-mentioned Patent Document 1. As a result, in Patent Document 1, hydrazine hydrate is added and reacted while maintaining the pH of a solution obtained by adding water to a copper hydroxide slurry, and a cuprous oxide slurry is produced.
  • the present invention is a method for producing fine and uniform copper powder by a wet reduction method, which increases the electrical conductivity and makes a homogeneous and high-quality copper powder stable and high.
  • the present invention provides a method for producing copper powder obtained in a yield and a copper powder obtained by this production method. Means for solving the problem
  • a method for producing a copper powder according to the present invention Obtaining a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution with an alkaline solution (step 1), and adding a reducing agent to the copper hydroxide slurry.
  • the first reduction treatment is performed as a cuprous oxide slurry (step 2), the cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles, the supernatant is removed, and water is added to add cuprous oxide.
  • the particles are washed to form a washed cuprous oxide slurry, and a reducing agent is added to the washed cuprous oxide slurry to perform a second reduction treatment to obtain copper powder (step 3) in the copper powder production method by wet reduction!
  • the first reduction treatment is a production method characterized in that hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to a copper hydroxide slurry in combination.
  • the process 2 is characterized in that hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to the copper hydroxide slurry in combination.
  • hydrazines as a reducing agent
  • an aqueous ammonia solution as a pH adjuster
  • Step 2 first reduction treatment
  • hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to the copper hydroxide slurry in combination with a pH of 3.0. It is preferable to control the fluctuation of pH in the range of ⁇ pH 7.0.
  • the fluctuation control of the pH is based on the starting point pH at the start of the addition of the reducing agent and the pH adjusting agent. It is preferable to control the difference from the end point pH at the end of the addition to 3.0 or less.
  • starting pH is the pH of a solution before the combined addition of a hydrazine as a reducing agent and an aqueous ammonia solution as a pH adjusting agent is started.
  • end-point pH is defined as reducing agent and p
  • step 2 the pH is changed by adding to the copper hydroxide slurry a combination of hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster.
  • a combination of hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster.
  • the alkaline solution to be reacted with the copper ion-containing aqueous solution is an aqueous ammonia solution when producing the copper hydroxide slurry.
  • the washed cuprous oxide slurry has a pH of
  • Copper powder obtained by the production method according to the present invention The copper powder production method according to the invention is used.
  • V a copper powder characterized by being manufactured.
  • the method for producing copper powder according to the present invention employs a two-stage reduction process in which copper particles are precipitated and reduced through cuprous oxide, and in particular as a reducing agent during reduction from copper ions to cuprous oxide.
  • a two-stage reduction process in which copper particles are precipitated and reduced through cuprous oxide, and in particular as a reducing agent during reduction from copper ions to cuprous oxide.
  • the reaction slurry can be brought into a good reduced state by controlling the fluctuation of the pH of the reaction solution as small as possible. This improves the process stability of the copper powder manufacturing process, suppresses the occurrence of agglomeration, and makes it possible to obtain a copper powder with a sharp particle size distribution with little particle variation. It can be made more homogeneous and the yield is improved.
  • Method for producing copper powder according to the present invention comprises the following steps: This can be classified into steps 1 to 3. Hereinafter, it demonstrates for every process.
  • Step 1 a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution with an alkaline solution is obtained.
  • the said copper hydroxide slurry means the slurry containing copper hydroxide, and may contain other components other than copper hydroxide.
  • copper ion-containing aqueous solution and “al strength solution” will be described.
  • the copper ion-containing aqueous solution here is a solution obtained by adding a water-soluble copper salt to water and dissolving it, and contains a divalent copper ion.
  • the copper salt here means copper sulfate, copper nitrate, copper acetate, copper chloride, etc., with copper sulfate and copper nitrate being particularly preferred.
  • the copper salt content in the copper ion-containing aqueous solution is 2.2 mol / l to 3. Omol / 1, more preferably 2.5 molZl to 3. OmolZl. .
  • the copper concentration in the copper ion-containing aqueous solution is less than 2.2 molZl, the copper concentration in the solution is too low, and the particle diameter of the copper powder particles is difficult to be uniform.
  • the copper concentration in the copper ion-containing aqueous solution exceeds 3. OmolZl, the copper concentration becomes too high, and the aggregation of the copper powder particles that are reduced and precipitated becomes remarkable.
  • the alkaline solution used here includes potassium hydroxide, sodium hydroxide, an aqueous ammonia solution, and the like. Most preferably, it is an aqueous ammonia solution. This is because it is easy to control the variation in pH during the reduction reaction in Step 2 described later, and there are few residual components on the surface of the obtained copper powder particles.
  • the added amount of the alkaline solution is 1.4 mol to 1.8 mol with respect to 1 mol of copper. When the alkali is less than 1.4 mol with respect to 1 mol of copper, a copper hydroxide slurry suitable for copper powder production cannot be obtained, a good yield cannot be achieved, and the powder characteristics of the obtained copper powder vary. Also grows.
  • the liquid temperature of the copper ion-containing aqueous solution is set to 30 ° C. to 70 ° C. (more preferably 40 ° C. to 60 ° C.). It is preferable to neutralize the solution so that the pH becomes 3.0 to 7.0.
  • the liquid temperature of the copper ion-containing aqueous solution was set to 30 ° C to 70 ° C when the liquid temperature was lower than 30 ° C. This is because the salt cannot be dissolved properly and a solution with an appropriate copper concentration cannot be obtained.
  • the liquid temperature of the copper ion-containing aqueous solution exceeds 70 ° C, it is likely to be highly crystalline copper hydroxide. As a result, the dissolution rate of copper hydroxide is slowed down in the next step 2 and the obtained cuprous oxide particles become large, so that uniform copper can be obtained in the subsequent step, and the process and quality are unstable. Become.
  • the pH of the copper hydroxide slurry is preferably controlled in the range of 3.0 to 7.0. Outside this range, it becomes difficult to bring the solution pH in Step 2 described below closer to the neutral region.
  • This pH range is a range that can be controlled when the copper concentration in the above-described copper hydroxide slurry is set to 2.2 molZl to 3. OmolZl and the amount of alkali relative to copper lmol is set to 1.4 mol to 1.8 mol.
  • Step 2 In Step 2, a first reducing treatment is performed by adding a reducing agent to the copper hydroxide slurry to obtain a cuprous oxide slurry.
  • the copper powder production method according to the present invention is characterized in that, in Step 2, hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to the copper hydroxide slurry in combination.
  • step 2 hydrazines (reducing agent) are added to the copper hydroxide slurry, and mainly a process of reducing the copper hydroxide to cuprous oxide to produce a cuprous oxide slurry is performed.
  • the said cuprous oxide slurry means the slurry containing cuprous oxide, and may contain components other than cuprous oxide.
  • the reason why hydrazines are used as a reducing agent in this step is that they are less likely to be adsorbed on the surface of the cuprous oxide particles and are unlikely to become pollutants.
  • the hydrazines have various abilities such as hydrazine hydrate, hydrazine sulfate, and hydrazine anhydride, and most preferably hydrazine hydrate. These hydrazines can be used alone or in combination. And it is preferable to use for reaction as a solution. This is because it diffuses rapidly into the reaction system solution and does not cause a heterogeneous reaction.
  • the amount of added hydrazines is 0.3 mol to 0.00 mol with respect to 1 mol of copper in the copper hydroxide slurry.
  • an aqueous ammonia solution as a pH adjuster is added while adding hydrazines as the reducing agent. Addition and reduction treatment while controlling pH fluctuation.
  • the reason why the aqueous ammonia solution is used here is that when ammonia is used as the neutralizing agent in the formation of the copper hydroxide slurry, the consistency between the type of the neutralizing agent and the pH adjusting agent is improved, and different components are used. As much as possible, the adsorption of foreign elements to the particle surface is avoided as much as possible, and the purity of the resulting copper powder can be easily controlled. Further, in order to bring the solution pH shifted to the acidic side due to the addition of hydrazines close to neutrality with high accuracy, it is preferable to use the characteristics of ammonia as a neutralizing agent.
  • FIG. 1 shows the pH fluctuation state of the solution from the start of the addition of hydrazines to the copper hydroxide slurry until the end of the step 2 in the step 2.
  • FIG. 1 shows the pH fluctuation curve of Example 1 in which hydrazine and an aqueous ammonia solution were used in combination, and the pH fluctuation curve of a comparative example in which hydrazine was used alone.
  • the pH is adjusted to the acidic side so that it falls within the range of pH 3.0 to 7.0 compared to the case where the aqueous ammonia solution is not used. It is preferable to control the shift width to be small. As a result, copper powder obtained with less influence of particle aggregation and the like can produce copper powder with higher dispersibility and sharp particle size distribution in high yield.
  • the addition of the hydrazines and the aqueous ammonia solution to the copper hydroxide slurry is more preferably performed as follows in order to control the pH within the range of pH 3.0 to 7.0. . That is, the hydrazines and the aqueous ammonia solution are 0.3 mol to 0.5 mol of hydrazine and 0.5 mol of ammonia aqueous solution (as ammonia) at the end of the addition with respect to 1 mol of copper in the copper hydroxide slurry. It is preferable to add continuously so that the ratio is ⁇ 0.4mol.
  • the pH of the slurry thus added may be adjusted so that the difference between the starting pH at the start of the addition of the reducing agent and the pH adjusting agent and the end pH at the end of the addition is 3.0 or less. Further, it is more preferable to control the fluctuation of the pH within the range of pH 3.5 to 5.0.
  • the total amount of alkali used in step 1 and step 2 is preferably 1.85 mol to 2.0 mol of the alkali component with respect to 1 mol of copper.
  • step 2 when the addition of hydrazines to the copper hydroxide slurry is started, the pH of the solution changes suddenly to the acidic side as shown in the comparative example of FIG.
  • the fluctuation range varies depending on the amount of addition, but if an aqueous ammonia solution is not used, the copper hydroxide slurry in which the addition of hydrazine has started becomes strongly acidic below pH 2.8. In such a strongly acidic region, the powder characteristics of the obtained copper powder deteriorate, and the variation in production yield increases. Therefore, as shown in Example 1 of FIG.
  • the temperature of the solution in Step 2 is preferably a temperature range of 40 ° C to 60 ° C. At temperatures below 40 ° C, industrial productivity is not satisfactory because the reduction reaction rate is slow. On the other hand, when the reduction temperature exceeds 60 ° C, the reduction reaction becomes too fast and a non-uniform reduction reaction occurs, so that the powder characteristics of the obtained copper powder deteriorate.
  • the obtained cuprous oxide has a fine particle size, if it is kept constant at a low temperature, and if it has a larger particle size, it should be kept constant at a higher temperature.
  • the obtained cuprous oxide has a fine particle size, if it is kept constant at a low temperature, and if it has a larger particle size, it should be kept constant at a higher temperature.
  • Step 3 In Step 3, the cuprous oxide slurry is allowed to stand to precipitate the cuprous oxide particles, and the supernatant is removed and water is added to wash the cuprous oxide particles and to wash the cuprous oxide particles.
  • a copper oxide slurry copper powder is obtained by adding a reducing agent to the washed cuprous oxide slurry and performing a reduction treatment.
  • step 3 the cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles.
  • the solution pH at this stage is approximately 3.9.
  • the supernatant is removed and the cuprous oxide particles are washed by adding water and calcining.
  • the cleaning method at this time it is possible to adopt any cleaning method without any particular limitation.
  • the recuperation cleaning is adopted as follows, and the cleaning level of the cuprous oxide slurry ( The pH value of the “washed cuprous oxide slurry” described below) is preferably controlled.
  • the slurry state when the wash water is poured when the supernatant is discarded and the wash water is added several times during the washing is referred to as a washed cuprous oxide slurry.
  • the washing cuprous oxide slurry is repeatedly washed until the pH becomes any constant between pH 4.1 and 6.0. If the pH of the washed cuprous oxide slurry is more acidic than 4.1, the powder properties such as agglomeration of copper powder obtained when adding a reducing agent to make copper powder become stronger, and the dispersibility is poor. Deteriorate. On the other hand, when the pH of the washed cuprous oxide slurry is more alkaline than 6.0, the amount of ions is small and the electron transfer reaction becomes worse, and when a reducing agent is added to form a copper powder, agglomeration occurs and particles are generated. The uniformity of the powder is reduced, and the powder properties are also bad, and the reduction efficiency is poor. In other words, it can be said that the pH between 4.1 and 6.0 is an appropriate range to avoid particle aggregation.
  • the washed cuprous oxide slurry is any one between pH 4.3 and 4.7. Wash until constant pH.
  • the pH of the washed cuprous oxide slurry is set to 4.3 to 4.7, it is possible to obtain high-quality copper powder with less coarse particles and less variation in addition to suppressing aggregation, at a low cost. However, it is most excellent in process stability for obtaining fine particles and high dispersibility.
  • a reducing agent is added to the washed cuprous oxide slurry obtained as described above.
  • the pH at the end of the addition may be adjusted to 7.0 to 9.0. That is, in the case of hydrazines, the reducing agent to be added is preferably added at a ratio of 0.4 mol to 0.7 mol with respect to 1 mol of copper contained in the washed cuprous oxide slurry at the end of the addition. More preferably, the total amount of hydrazines added in step 2 and step 3 is 0.885 mol to l.2 mol relative to 1 mol of copper.
  • the temperature of the reducing agent is preferably maintained at a constant level between 40 ° C and 55 ° C. If the temperature of the reducing agent is lower than 40 ° C, the reduction reaction becomes dull and the industrially desirable productivity is not satisfied. On the other hand, if the temperature is higher than 55 ° C, the reduction rate becomes too fast and the particle size tends to be uneven. Further, as the reducing agent in Step 3, it is preferable to use the hydrazines used in Step 2 described above. The reason is that the reducing ability of hydrazine as a reducing agent is suitable for obtaining copper powder with good powder characteristics.
  • the amount of foreign components related to the reduction of copper powder is reduced as much as possible, and the amount of contaminating components adhering to the copper powder particle surface is reduced. This is to make it happen.
  • the agglomerated particles can be rapidly separated from each other by using a fluid mill method (such as a fin flow mill) or a laminar flow mixing method (such as TK fill mix) while the slurry is in a state of being reduced to copper powder. It is also preferable to improve the particle dispersibility by colliding with a centrifugally flowing slurry in order to break up the agglomerated state and bring it closer to the primary particles, and at the same time smoothing the particle surface.
  • a fluid mill method such as a fin flow mill
  • TK fill mix laminar flow mixing method
  • the copper powder obtained as described above is subjected to general steps such as filtration, washing, and drying to obtain copper powder. And commercialized.
  • the copper powder is preferably subjected to a surface treatment with fatty acid diamines such as oleic acid and stearic acid, if necessary.
  • fatty acid diamines such as oleic acid and stearic acid
  • the particles can be dispersed using a device capable of colliding the agglomerated particles, such as a classifier, a high pretizer, and a turbo classifier. It is also possible to improve.
  • the copper powder obtained by the production method according to the present invention can stably produce a copper powder having fine powder characteristics and uniform powder characteristics. Further, since adsorption of foreign elements to the particle surface is suppressed, it is possible to suppress the gas diffusion during baking, to avoid internal defects of the fired film as much as possible, and to produce copper powder with good conductivity.
  • Copper sulfate As copper sulfate pentahydrate
  • Ammonia Aqueous ammonia solution with a concentration of 25 w t%
  • Reducing agent hydrazine monohydrate
  • PH adjusting agent Aqueous ammonia solution with a concentration of 25 w t%
  • Step 1 50. Add 6000 g (24. Omol) of copper sulfate pentahydrate to 6.5 liters of pure water of C to prepare a copper ion-containing aqueous solution containing divalent copper ions. Then, an aqueous ammonia solution (concentration: 25 wt%) 2500 ml (36.7 mol) was added to the copper ion-containing aqueous solution kept at a temperature of 50 ° C. in 30 minutes for neutralization to obtain a copper hydroxide slurry. After that, pure water was added to the copper hydroxide slurry to make the copper concentration 2 molZl and ⁇ 6.3.
  • Step 2 Hydrazine monohydrate and a pH adjuster as a reducing agent are added to the copper hydroxide slurry.
  • the ammonia solution was added to control pH fluctuation. That is, the liquid temperature of the copper hydroxide slurry at pH 6.3 was kept at 50 ° C, and hydrazine monohydrate 450g (9. Omol) and ammonia aqueous solution (concentration 25wt%) 590ml (8.7 mol) The solution was continuously added over a period of minutes, and the pH at the end of the addition was 3.9.
  • the pH fluctuation the starting point pH was 6.3, the end point pH was 3.9, the minimum pH was 3.5, and the difference between the starting point pH and the end point pH was 2.4. Stirring was continued for another 30 minutes in order to complete the reduction reaction.
  • repulp washing was performed. That is, add pure water to the slurry after step 2 and adjust to 18 liters, leave it to stand, and remove 14 liters of the supernatant after standing until the pH after washing with repulp reaches 4.7. This was used as a washed cuprous oxide slurry.
  • Step 3 Next, water was added to the washed cuprous oxide slurry, the liquid temperature was maintained at 50 ° C, and the copper concentration was adjusted to 2 molZl. Thereafter, 600 g (12. Omol) of hydrazine monohydrate was added over 30 minutes. The solution pH at the end of the addition was 8.2. The mixture was further stirred for 60 minutes to complete the reduction reaction to reduce and precipitate copper powder (second reduction treatment).
  • the copper powder thus obtained was collected by filtration. Then, the copper powder was put into 5 liters of a methanol solution in which 1.5 g of dodecylamine was dissolved, subjected to surface treatment, stirred for 30 minutes, and heated and dried at 80 ° C. for 5 hours to obtain a powder.
  • Table 3 shows the results of calculating the average value and standard deviation ⁇ for the lot.
  • the standard deviation for each lot is expressed as SD, and the standard deviation for 10 lots of data is expressed as ⁇ to distinguish the two.
  • Step 1 A copper hydroxide slurry was obtained in the same manner as in Example 1.
  • Step 2 To the copper hydroxide slurry, an aqueous ammonia solution as hydrazine monohydrate and P H adjusting agent as a reducing agent was added to control pH fluctuation. That is, the temperature of the copper hydroxide slurry at pH 6.3 was kept at 40 ° C, and 450 g (9. OmolZl) of hydrazine monohydrate and 350 ml (5. Continuous addition over 15 minutes, the pH at the end of the addition was 4.8. The pH variation here was a starting point pH of 6.3, an ending point pH of 4.8, a minimum pH of 3.8, and a difference between the starting point pH and the ending point pH of 1.5. Stirring was continued for another 30 minutes in order to complete the reduction reaction. Then, repulp washing was performed in the same manner as in Example 1 to obtain a washed cuprous oxide slurry.
  • Step 3 Next, copper powder was reduced and deposited in the same manner as in Step 3 of Example 1 except that the temperature of the reaction slurry during the reduction was maintained at 45 ° C.
  • Example 3 copper powder was obtained in the same manner as in Example 1, except that the liquid temperature during the reduction in Step 3 was changed to 45 ° C.
  • the starting point pH was 6.3
  • the end point pH was 3.9
  • the minimum pH was 3.5
  • the difference between the starting point pH and the end point pH was 2.4.
  • D 0.85 ⁇ ⁇
  • D 1.99 ⁇ ⁇
  • D 4. 05 m
  • standard deviation (SD) 1.2
  • SD 1.2
  • D ZD 4. 79, specific surface area 0.46 m 2 Zg, tap packing density 5.
  • step 2 an ammonia aqueous solution as a pH adjuster is used as a comparative example. Therefore, description of other processes is omitted.
  • Step 2 The liquid temperature of the copper hydroxide slurry was kept at 50 ° C., and 450 g (9.0 mol) of hydrazine monohydrate was continuously added over 30 minutes.
  • the minimum pH was 2.4, and the pH at the end of the addition was 3.2. That is, since the pH after the copper hydroxide slurry adjustment step was 6.3, the difference between the starting point pH and the ending point pH was 3.1. Thereafter, stirring was continued for another 30 minutes in order to complete the reduction reaction.
  • repulp washing was performed. That is, add pure water to the slurry after step 2 and adjust to 18 liters, leave it to stand, and remove 14 liters of supernatant after standing until the pH after repulping is 4.5. This was used as a washed cuprous oxide slurry. At this time, compared with the number of repeated washings in the above-mentioned example (average of 2 times), the number of repeated washings in this comparative example is pH 4.5 when the number of repulp washings is 4 times, and the washing is costly. I understand.
  • Powder characteristics of copper powder The average value of 10 lots of the powder characteristics of copper powder obtained in the comparative example is D
  • volume cumulative particle size and particle size distribution In the particle size distribution, the comparative example D is slightly larger.
  • the power that proves to be strong The average value of the particle size distribution is not much different. However, focusing on the standard deviation of the particle size distribution, the standard deviation ⁇ of Examples 1 to 3 is smaller than that of the comparative example. That is, it can be understood that Examples 1 to 3 have a good particle size distribution and sharp powder characteristics as compared with the comparative example.
  • Tap packing density (TD) As shown in Table 7, Examples 1 to 3 are clearly higher than Comparative Examples. Therefore, when the conductor is formed by pasting the copper powder of the example, and when the conductor is formed by pasting the copper powder of the comparative example, the conductor density is higher in the example. Will be possible.
  • Step 2 by adding a combination of hydrazines and aqueous ammonia solution, the pH fluctuation can be controlled within a certain range. Aggregation due to fluctuations in the particle size can be suppressed, and a stable production process and copper powder with little noise and a sharp particle size distribution can be produced with high yield.
  • the copper powder of the comparative example has a large variation in powder characteristics, a low yield, and a poor yield stability. This is thought to be due to the reducing agent addition method in Step 2.
  • the production method of copper powder according to the present invention makes it possible to improve the production efficiency of copper powder having excellent powder characteristics. As a result, high quality copper powder can be provided to the market at a low cost.
  • the copper powder production method according to the present invention does not require the use of special additives, nor does it require special production equipment, so that existing facilities can be used effectively and capital investment is not required. Since it becomes a thing, it is excellent in cost merit.
  • step 3 since the same reducing agent as that used in step 2 can be used in step 3, it is possible to reduce different components involved in the reduction of copper powder. Is possible. As a result, it is possible to produce copper powder in which the amount of contaminating components adhering to the particle surface of the obtained copper powder is reduced, and it is possible to provide high-quality fine copper powder with excellent conductivity. Effective for use in fine wiring.
  • FIG. 1 is a view showing a pH variation state of a solution from the start of addition of hydrazines to a copper hydroxide slurry in step 2 until the end of step 2.

Abstract

The invention aims at providing a process for producing copper powder composed of uniform fine particles by a wet reduction method efficiently and high-quality copper powder excellent in particle size distribution. In order to attain the aim, a process for the production of copper powder is employed, which comprises reacting an aqueous solution of copper ions with an alkali solution to form a copper hydroxide slurry, adding a reducing agent to the slurry to conduct the first reduction treatment of the slurry and thereby form a copper suboxide slurry, allowing the copper suboxide slurry to stand to precipitate copper suboxide particles, removing the formed supernatant, washing the copper suboxide particles by the addition of water to form a washed copper suboxide slurry, and adding a reducing agent to the suboxide slurry to conduct the second reduction treatment of the slurry and thereby form copper powder, characterized in that in the first reduction treatment, both a hydrazine as a reducing agent and aqueous ammonia as a pH regulator are added to the copper hydroxide slurry.

Description

明 細 書  Specification
銅粉の製造方法及びその製造方法で得られた銅粉  Copper powder manufacturing method and copper powder obtained by the manufacturing method
技術分野  Technical field
[0001] 本件発明は、湿式還元法による銅粉の製造方法に関するもので、特に微粒均一で あり、導電性が高い銅粉を効率良く製造する方法及びこの製造方法により製造され る銅粉に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing copper powder by a wet reduction method, and particularly relates to a method for efficiently producing copper powder that is uniform in fine particles and has high conductivity, and copper powder produced by this production method.
背景技術  Background art
[0002] 従来から銅粉は、銅ペーストや銅インクの原料として広く用いられてきた。銅ペース トは、その取り扱いの容易さ故に、スクリーン印刷法を用いたプリント配線板の回路形 成、各種電気的接点部等に応用され、電気的導通確保の手段に用いられている。そ の利用分野に応じて、銅ペースト粘度を制御するためには、銅粉の各種特性にも配 慮する必要がある。  Conventionally, copper powder has been widely used as a raw material for copper paste and copper ink. Because of its ease of handling, copper paste is applied to circuit formation of printed wiring boards using screen printing, various electrical contacts, etc., and is used as a means of ensuring electrical continuity. In order to control the viscosity of the copper paste according to the field of use, it is necessary to consider various characteristics of the copper powder.
[0003] 例えば、銅ペーストは、粒径数 μ mの微小な粒子力 なる銅粉に榭脂成分を適宜 配合してなるものであり、回路形状等の形成に用い、焼成または固化させ導体膜とし て導電性を発揮するものである。プリント配線板等の小型化を受けて、銅ペーストに 用いる銅粉は、当該ペーストにより形成された回路の導電性、信頼性等の点でより高 い性質が求められている。  [0003] For example, a copper paste is obtained by appropriately blending a resin component with a copper powder having a fine particle size of several μm, and is used for forming a circuit shape and the like, and is fired or solidified to form a conductor film. As such, it exhibits conductivity. In response to miniaturization of printed wiring boards and the like, the copper powder used in the copper paste is required to have higher properties in terms of the conductivity and reliability of the circuit formed by the paste.
[0004] そして、銅ペーストに用いる銅粉は、ペースト粘度を減少させ、ペーストとしての取り 扱いを容易にし、プリント配線板のビアホールの穴埋め性を向上させることが望まれ てきた。この巿場要求に応えるため、銅粉の粒度や比表面積の適正化、粉粒体表面 の有機剤による表面処理等の種々の解決手段が採用され、銅ペースト粘度の低減を 図ること等が行われてきた。  [0004] The copper powder used for the copper paste has been desired to reduce the paste viscosity, facilitate the handling as a paste, and improve the via hole filling property of the printed wiring board. In order to meet this demand, various solutions such as optimization of the particle size and specific surface area of the copper powder and surface treatment with an organic agent on the surface of the powder are adopted to reduce the viscosity of the copper paste. I have been.
[0005] このような銅粉の製造方法として一般に利用されているのが湿式還元法である。特 許文献 1には、湿式還元法を用いて、良好な粒径に制御された銅微粉末の製造方 法が開示されている。一方、特許文献 2では、アトマイズ法を用いて、微細配線に対 応するために、微細な粒径を有し、表面が平滑な銅粉を効率的に製造する方法が開 示されている。 [0006] 特許文献 1 :特公平 5— 57324号公報 [0005] The wet reduction method is generally used as a method for producing such copper powder. Patent Document 1 discloses a method for producing a fine copper powder controlled to have a good particle size using a wet reduction method. On the other hand, Patent Document 2 discloses a method for efficiently producing copper powder having a fine particle diameter and a smooth surface in order to cope with fine wiring by using the atomizing method. [0006] Patent Document 1: Japanese Patent Publication No. 5-57324
特許文献 2:特開 2002— 343135号公報  Patent Document 2: JP 2002-343135 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 近時、利用技術の進歩に伴!、、銅粉の粉体特性の更なる改良が巿場にぉ 、て求 められている。即ち、表面が平滑、微細且つ粒径均一であり導電性の高い銅粉を、 低コストで製造する方法が望まれている。ここで、アトマイズ法により製造された微粒 銅粉の場合、炭素量が低ぐ粒度分布、分散性の点でも優れた銅粉を製造すること ができる力 粗粒を含み、微細配線などには不向きであるとともに不純物を含む傾向 があり、収率が低い傾向がある。そして、粗粒を解消するために分級を強化すれば製 造コストが高くなるといった問題があった。一方、均一で微細な粒子を得やすい従来 の湿式還元法による銅粉は、一次粒子自体は微粒で均一であるものの、有機還元剤 を用いることが多ぐ還元系に含まれる分散剤等に起因した有機剤吸着量が高くなる ので、焼成時に吸着した有機物の気散に伴うガスが発生することにより焼成膜の表 面に荒れが生じ、且つ内部欠陥が生じやすぐ導電性の点で課題となっていた。 [0007] Recently, as the utilization technology has advanced, further improvement of the powder characteristics of copper powder has been demanded from the factory. That is, a method for producing a copper powder having a smooth surface, a fine surface and a uniform particle size and high conductivity at a low cost is desired. Here, in the case of fine copper powder produced by the atomizing method, it is possible to produce copper powder that is excellent in terms of particle size distribution and dispersibility with low carbon content. And tends to contain impurities, and the yield tends to be low. In addition, there is a problem that if the classification is strengthened to eliminate coarse grains, the manufacturing cost increases. On the other hand, copper powder by the conventional wet reduction method, which makes it easy to obtain uniform and fine particles, is due to the dispersing agent contained in the reducing system, which often uses organic reducing agents, although the primary particles themselves are fine and uniform. As the amount of adsorbed organic agent becomes high, the gas generated due to the diffusion of the organic matter adsorbed during firing causes the surface of the fired film to become rough, causes internal defects, and is immediately problematic in terms of conductivity. It was.
[0008] また、特許文献 1のように、無機還元剤を用いた湿式還元法の場合、上記課題は解 消されるものの、得られる銅粉の粒度や収率にバラツキが生じやすいという問題があ つた o [0008] In addition, as in Patent Document 1, in the case of a wet reduction method using an inorganic reducing agent, the above problem is solved, but there is a problem that the particle size and yield of the obtained copper powder are likely to vary. I
[0009] ここで、上記特許文献 1に開示の製造方法を用いて銅粉を製造した結果を示す。  [0009] Here, the result of manufacturing copper powder using the manufacturing method disclosed in Patent Document 1 is shown.
即ち、硫酸銅 80kg (320mol)を水に溶解し、温度を 40°Cに保持しながらアンモニア 水を添加し、水溶液の pHを 4. 0に調製し銅水酸化物スラリーを形成後、水を添加し 、全液量を 160リットルとした。この溶液を温度 50°C、 pH4. 0に保持しながら抱水ヒド ラジン 6. 01kg (120. lmol)を添加し、 60分間反応させて酸化銅スラリーを生成さ せた。反応終了後、 60分間静置し、上澄液を除去して力も水を添加し全液量を 160 リットノレとした。  That is, 80 kg (320 mol) of copper sulfate was dissolved in water, ammonia water was added while maintaining the temperature at 40 ° C., the pH of the aqueous solution was adjusted to 4.0, a copper hydroxide slurry was formed, and then water was added. The total liquid volume was 160 liters by addition. While maintaining this solution at a temperature of 50 ° C. and a pH of 4.0, 6.01 kg (120. lmol) of hydrazine hydrate was added and reacted for 60 minutes to form a copper oxide slurry. After completion of the reaction, the mixture was allowed to stand for 60 minutes, the supernatant was removed, and water was also added to make the total liquid volume 160 liters.
[0010] 次に、これを温度 50°Cに保持しながら、抱水ヒドラジン 8. Olkg (160. Omol)を添 加し、 60分間反応させた。これにより亜酸化銅は還元されて金属銅粉末となる。  Next, while maintaining this at a temperature of 50 ° C., 8. Olkg (160. Omol) of hydrazine hydrate was added and allowed to react for 60 minutes. Thereby, cuprous oxide is reduced to become metallic copper powder.
[0011] 次いで、これを自然重力濾過器により濾過し、水にて洗浄後、膠濃度 0. 5gZlの膠 溶液 40リットルを通液濾過(水にて通液洗浄濾過、ォレイン酸濃度 0. 2容量%のメタ ノール溶液 9リットルにて通液濾過)の各処理をした後、温度 80°Cの通常雰囲気で乾 燥し銅微粉末 20kgを得た。 [0011] Next, this was filtered with a natural gravity filter, washed with water, and then glued with a glue concentration of 0.5gZl. 40 liters of solution through filtration (water washing filtration with water, filtration with 9 liters of methanol solution with oleic acid concentration of 0.2% by volume), and normal atmosphere at a temperature of 80 ° C And dried to obtain 20 kg of copper fine powder.
[0012] 上記で得られた 10ロットの銅粉について、ロット毎に D 、D 、D 、標準偏差 (SD [0012] For the 10 lots of copper powder obtained above, D, D, D, standard deviation (SD
10 50 90  10 50 90
)、D ZD 、比表面積、タップ充填密度を現行の分析装置を用いて評価し、併せて ), D ZD, specific surface area, tap packing density are evaluated using current analyzers,
90 10 90 10
、各粉体特性について 10ロット分の平均値、標準偏差 σの各データを算出した。  For each powder property, the average value for 10 lots and the standard deviation σ were calculated.
[0013] 上記工程を経て得られた銅粉の粉体特性の 10ロットの平均値は、 D = 1. 03 m [0013] The average value of the powder properties of the copper powder obtained through the above process for 10 lots is D = 1.03 m
10  Ten
、D = 3. 42 μ τ , Ό = 7. 46 ;z m、標準偏差(SD) = 2. 85 ;z m、 D /Ό = 7.  , D = 3. 42 μ τ, Ό = 7. 46; z m, standard deviation (SD) = 2. 85; z m, D / Ό = 7.
50 90 90 10 50 90 90 10
29、比表面積(SSA) O. 89m2Zg、タップ充填密度 (TD) 3. 4gZccであり、平均収 率は 85. 8%であった。この結果を表 1に示す。なお、収率は、用いた銅塩量から算 出される理論上の銅粉量に対する実際に得られた銅粉の量で算出した。 29, specific surface area (SSA) O. 89m 2 Zg, tap packing density (TD) 3.4g Zcc, average yield was 85.8%. The results are shown in Table 1. The yield was calculated by the amount of copper powder actually obtained relative to the theoretical amount of copper powder calculated from the amount of copper salt used.
[0014] [表 1] 特許文献 1の実施結果 [0014] [Table 1] Results of Patent Document 1
Figure imgf000005_0001
Figure imgf000005_0001
[0015] 表 1より、特許文献 1で示された銅粉は、収率の平均が 85. 8%であり、収率の標準 偏差 σが 8. 5と、ロット間に変動が大きい。また、粒度に関する特性もロット間でかな り大きなバラツキが生じていることが分かる。即ち、特許文献 1に開示の発明は、良好 な粉体特性を示す場合もあるが、安定生産の点で更なる改善が望まれる技術である と言える。 [0016] そこで、本件発明者は上記特許文献 1を検証した。その結果、特許文献 1では、銅 水酸ィ匕物スラリーに水を添加した溶液の pHを保持しながら抱水ヒドラジンを添加、反 応させ亜酸化銅スラリーを生成させるとしているが、その pHを一定範囲内で保持す ることは可能であるものの、還元反応中常に反応スラリーを一定 pHに維持することは 困難である。従って、還元時には必ず pH変動があり、この pHの変動状態が安定した 収率の阻害や銅粉の特性に悪影響をもたらすものと考えた。 [0015] From Table 1, the copper powder disclosed in Patent Document 1 has an average yield of 85.8% and a standard deviation σ of yield of 8.5, which varies greatly between lots. In addition, it can be seen that the characteristics related to grain size vary considerably from lot to lot. In other words, although the invention disclosed in Patent Document 1 may show good powder characteristics, it can be said that it is a technique for which further improvement is desired in terms of stable production. [0016] Therefore, the present inventor verified the above-mentioned Patent Document 1. As a result, in Patent Document 1, hydrazine hydrate is added and reacted while maintaining the pH of a solution obtained by adding water to a copper hydroxide slurry, and a cuprous oxide slurry is produced. Although it can be maintained within a certain range, it is difficult to maintain the reaction slurry at a constant pH throughout the reduction reaction. Therefore, there was always a pH fluctuation during the reduction, and it was considered that this pH fluctuation state had a negative effect on stable yield inhibition and copper powder characteristics.
[0017] 本件発明は上記課題を受けて、微粒で均一な粒子の銅粉を湿式還元法により製 造する方法であって、導電率を高め、均質で高品質な銅粉を安定的且つ高収率で 得られる銅粉の製造方法及びこの製造方法で得られる銅粉を提供するものである。 課題を解決するための手段  [0017] In response to the above problems, the present invention is a method for producing fine and uniform copper powder by a wet reduction method, which increases the electrical conductivity and makes a homogeneous and high-quality copper powder stable and high. The present invention provides a method for producing copper powder obtained in a yield and a copper powder obtained by this production method. Means for solving the problem
[0018] そこで、本件発明者は鋭意研究の結果、前記課題を解決するため、以下のような手 段を採用した。 [0018] Therefore, as a result of earnest research, the present inventor has adopted the following means in order to solve the above problems.
[0019] 本件発明に係る銅粉の製造方法: 銅イオン含有水溶液とアルカリ溶液とを反応さ せた水酸化銅スラリーを得て(工程 1)、当該水酸化銅スラリーに還元剤を添加して第 1還元処理を行い亜酸化銅スラリーとして(工程 2)、当該亜酸化銅スラリーを静置し て亜酸化銅粒子を沈殿させ、上澄液を除去して水を添加することにより亜酸化銅粒 子を洗浄し洗浄亜酸化銅スラリーとして、当該洗浄亜酸化銅スラリーに還元剤を添加 して第 2還元処理を行 ヽ銅粉を得る(工程 3)湿式還元による銅粉製造方法にお!ヽて 、第 1還元処理は、水酸化銅スラリーに、還元剤としてのヒドラジン類と pH調整剤とし てのアンモニア水溶液とを併用して添加することを特徴とする製造方法である。  [0019] A method for producing a copper powder according to the present invention: Obtaining a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution with an alkaline solution (step 1), and adding a reducing agent to the copper hydroxide slurry. The first reduction treatment is performed as a cuprous oxide slurry (step 2), the cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles, the supernatant is removed, and water is added to add cuprous oxide. The particles are washed to form a washed cuprous oxide slurry, and a reducing agent is added to the washed cuprous oxide slurry to perform a second reduction treatment to obtain copper powder (step 3) in the copper powder production method by wet reduction! Thus, the first reduction treatment is a production method characterized in that hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to a copper hydroxide slurry in combination.
[0020] ここで、工程 2において、水酸化銅スラリーに還元剤としてのヒドラジン類と、 pH調 整剤としてのアンモニア水溶液とを併用して添加する点に特徴がある。上記製造方 法は、工程を大きく分類すれば、上記のように工程 1〜工程 3に分類して考えることが 可能である。詳しくは、後述する実施形態の中で説明する。  [0020] Here, the process 2 is characterized in that hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to the copper hydroxide slurry in combination. The above manufacturing methods can be classified into steps 1 to 3 as described above if the steps are roughly classified. Details will be described in an embodiment described later.
[0021] また、前記工程 2 (第 1還元処理)において、水酸化銅スラリーに、還元剤としてのヒ ドラジン類と pH調整剤としてのアンモニア水溶液とを併用して添加することにより pH 3. 0〜pH7. 0の範囲で pHの変動制御をすることが好ましい。  [0021] In Step 2 (first reduction treatment), hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to the copper hydroxide slurry in combination with a pH of 3.0. It is preferable to control the fluctuation of pH in the range of ~ pH 7.0.
[0022] なお、前記 pHの変動制御は、還元剤及び pH調整剤の添カ卩開始時の始点 pHと添 加終了時の終点 pHとの差を 3. 0以下に制御することが好ましい。 [0022] It should be noted that the fluctuation control of the pH is based on the starting point pH at the start of the addition of the reducing agent and the pH adjusting agent. It is preferable to control the difference from the end point pH at the end of the addition to 3.0 or less.
[0023] ここで、「始点 pH」とは、還元剤としてのヒドラジン類と pH調整剤としてのアンモニア 水溶液との併用添加開始前の溶液の pHである。一方、「終点 pH」は、還元剤及び p[0023] Here, the "starting pH" is the pH of a solution before the combined addition of a hydrazine as a reducing agent and an aqueous ammonia solution as a pH adjusting agent is started. On the other hand, “end-point pH” is defined as reducing agent and p
H調整剤の添加終了時の溶液の pHである。 This is the pH of the solution at the end of the addition of the H modifier.
[0024] また、前記工程 2 (第 1還元処理)において、水酸化銅スラリーに、還元剤としてのヒ ドラジン類と pH調整剤としてのアンモニア水溶液とを併用して添加することにより変 動する pHの最低 pHが 2. 8以上であることが好まし 、。 [0024] Further, in step 2 (first reduction treatment), the pH is changed by adding to the copper hydroxide slurry a combination of hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster. Preferably, the minimum pH of 2.8 or higher.
[0025] 更に、本件発明に係る銅粉の製造方法では、水酸化銅スラリーの作製に際し、銅ィ オン含有水溶液と反応させるアルカリ溶液は、アンモニア水溶液であることが好まし い。 [0025] Furthermore, in the method for producing copper powder according to the present invention, it is preferable that the alkaline solution to be reacted with the copper ion-containing aqueous solution is an aqueous ammonia solution when producing the copper hydroxide slurry.
[0026] そして、本件発明に係る銅粉の製造方法では、前記洗浄亜酸化銅スラリーは、 pH [0026] In the method for producing copper powder according to the present invention, the washed cuprous oxide slurry has a pH of
4. 1〜ρΗ6. 0であることが好ましい。 4. It is preferably 1 to ρ〜6.0.
[0027] 本件発明に係る製造方法で得られる銅粉: 上記発明に係る銅粉の製造方法を用[0027] Copper powder obtained by the production method according to the present invention: The copper powder production method according to the invention is used.
V、て製造されたことを特徴とする銅粉である。 V, a copper powder characterized by being manufactured.
発明の効果  The invention's effect
[0028] 本件発明に係る銅粉の製造方法は、亜酸化銅を経て、銅粒子を析出還元させる 2 段還元プロセスを採用し、特に、銅イオンから亜酸化銅まで還元する間に還元剤とし てのヒドラジン類と pH調整剤としてのアンモニア水溶液とを併用して、反応溶液の p Hの変動を可能な限り小さく制御することにより、反応スラリーを良好な還元状態とす ることができる。これにより銅粉の製造プロセスの工程安定性を高め、凝集の発生を 抑えて、粒子のバラツキが少なぐ粒度分布がシャープな銅粉とすることができるので 、得られる銅粉の粉体特性をより均質にすることができて、収率も向上する。  [0028] The method for producing copper powder according to the present invention employs a two-stage reduction process in which copper particles are precipitated and reduced through cuprous oxide, and in particular as a reducing agent during reduction from copper ions to cuprous oxide. By using both hydrazines and an aqueous ammonia solution as a pH adjuster in combination, the reaction slurry can be brought into a good reduced state by controlling the fluctuation of the pH of the reaction solution as small as possible. This improves the process stability of the copper powder manufacturing process, suppresses the occurrence of agglomeration, and makes it possible to obtain a copper powder with a sharp particle size distribution with little particle variation. It can be made more homogeneous and the yield is improved.
[0029] そして、上記銅粉の製造方法を採用することにより、銅粉の安定的な製造が可能と なり、製造コストが抑えられるのみならず、粒子のバラツキが少なぐ粒度分布がシャ ープで高品質な銅粉の提供が可能となる。  [0029] By adopting the above-described method for producing copper powder, it becomes possible to stably produce copper powder, which not only suppresses the production cost but also sharpens the particle size distribution with less particle variation. This makes it possible to provide high-quality copper powder.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明に係る銅粉の製造方法の最良の実施の形態に関して説明する。 Hereinafter, the best embodiment of the method for producing copper powder according to the present invention will be described.
[0031] 本件発明に係る銅粉の製造方法: 本件発明に係る銅粉の製造方法は、以下のェ 程 1〜工程 3に分類して考えることのできるものである。以下、工程毎に説明する。 [0031] Method for producing copper powder according to the present invention: The method for producing copper powder according to the present invention comprises the following steps: This can be classified into steps 1 to 3. Hereinafter, it demonstrates for every process.
[0032] 工程 1:工程 1では、銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラ リーを得る。当該水酸化銅スラリーは、水酸化銅を含有するスラリーを意味し、水酸化 銅以外の他の構成成分も含む場合もある。ここで、「銅イオン含有水溶液」と「アル力 リ溶液」とに関して説明する。 [0032] Step 1: In Step 1, a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution with an alkaline solution is obtained. The said copper hydroxide slurry means the slurry containing copper hydroxide, and may contain other components other than copper hydroxide. Here, “copper ion-containing aqueous solution” and “al strength solution” will be described.
[0033] ここで言う銅イオン含有水溶液は、水に水溶性銅塩を加え溶解させたものであり、 二価の銅イオンを含むものである。ここで言う銅塩とは、硫酸銅、硝酸銅、酢酸銅、塩 ィ匕銅等を意図し、特に硫酸銅、硝酸銅が好ましい。そして、この銅塩の含有量は、銅 イオン含有水溶液中の銅濃度として 2. 2mol/l〜3. Omol/1であり、より好ましくは 2. 5molZl〜3. OmolZlの濃度とすることが好ましい。銅イオン含有水溶液中の銅 濃度として 2. 2molZl未満の場合には、溶液中の銅濃度が低すぎ、銅粉粒子の粒 径が均一になりにくい。一方、銅イオン含有水溶液中の銅濃度として 3. OmolZlを 超えると、銅濃度が高くなりすぎて、還元析出する銅粉の粒子の凝集が顕著になるた め好ましくない。 [0033] The copper ion-containing aqueous solution here is a solution obtained by adding a water-soluble copper salt to water and dissolving it, and contains a divalent copper ion. The copper salt here means copper sulfate, copper nitrate, copper acetate, copper chloride, etc., with copper sulfate and copper nitrate being particularly preferred. The copper salt content in the copper ion-containing aqueous solution is 2.2 mol / l to 3. Omol / 1, more preferably 2.5 molZl to 3. OmolZl. . When the copper concentration in the copper ion-containing aqueous solution is less than 2.2 molZl, the copper concentration in the solution is too low, and the particle diameter of the copper powder particles is difficult to be uniform. On the other hand, if the copper concentration in the copper ion-containing aqueous solution exceeds 3. OmolZl, the copper concentration becomes too high, and the aggregation of the copper powder particles that are reduced and precipitated becomes remarkable.
[0034] そして、ここで言うアルカリ溶液とは、水酸ィ匕カリウム、水酸化ナトリウム、アンモニア 水溶液等を用いる。し力しながら、アンモニア水溶液であることが最も好ましい。これ は、後述する工程 2における還元反応時の pHの変動を制御することが容易で、且つ 、得られる銅粉の粒子表面への残留成分が少ないからである。このアルカリ溶液の添 加量は、銅 lmolに対して 1. 4mol〜l. 8molとなるように用いる。アルカリが銅 lmol に対して 1. 4mol未満の場合には、銅粉製造に適した水酸化銅スラリーは得られず 、良好な収率が達成できず、得られる銅粉の粉体特性のバラツキも大きくなる。一方 、水酸化銅スラリー中のアルカリ濃度が銅 lmolに対して 1. 8molを超えると、水酸ィ匕 銅スラリーの pHが強アルカリになり、還元工程における適正な pH範囲へのコント口 一ノレが困難となる。  [0034] The alkaline solution used here includes potassium hydroxide, sodium hydroxide, an aqueous ammonia solution, and the like. Most preferably, it is an aqueous ammonia solution. This is because it is easy to control the variation in pH during the reduction reaction in Step 2 described later, and there are few residual components on the surface of the obtained copper powder particles. The added amount of the alkaline solution is 1.4 mol to 1.8 mol with respect to 1 mol of copper. When the alkali is less than 1.4 mol with respect to 1 mol of copper, a copper hydroxide slurry suitable for copper powder production cannot be obtained, a good yield cannot be achieved, and the powder characteristics of the obtained copper powder vary. Also grows. On the other hand, when the alkali concentration in the copper hydroxide slurry exceeds 1.8 mol with respect to 1 mol of copper, the pH of the hydroxide and copper slurry becomes strong alkali, and the control port is adjusted to an appropriate pH range in the reduction process. It becomes difficult.
[0035] 当該水酸化銅スラリーの調整においては、銅イオン含有水溶液の液温を 30°C〜7 0°C (より好ましくは 40°C〜60°C)として、ここに中和剤としてアルカリ溶液を添加して pH3. 0〜7. 0となるように中和するのが好ましい。ここで、銅イオン含有水溶液の液 温を 30°C〜70°Cとしたのは、液温が 30°C未満の場合には、上述の最低限の量の銅 塩を適正に溶解させることができず、適正な銅濃度の溶液とならないからである。これ に対し、銅イオン含有水溶液の液温が 70°Cを超えるものとすると、結晶性の高い水 酸化銅となりやすい。その結果、次の工程 2において水酸化銅の溶解速度が遅くなり 、得られる亜酸化銅粒子が大きくなるので、後工程で均一な銅が得られに《なり、ェ 程と品質が不安定となる。 In the preparation of the copper hydroxide slurry, the liquid temperature of the copper ion-containing aqueous solution is set to 30 ° C. to 70 ° C. (more preferably 40 ° C. to 60 ° C.). It is preferable to neutralize the solution so that the pH becomes 3.0 to 7.0. Here, the liquid temperature of the copper ion-containing aqueous solution was set to 30 ° C to 70 ° C when the liquid temperature was lower than 30 ° C. This is because the salt cannot be dissolved properly and a solution with an appropriate copper concentration cannot be obtained. On the other hand, if the liquid temperature of the copper ion-containing aqueous solution exceeds 70 ° C, it is likely to be highly crystalline copper hydroxide. As a result, the dissolution rate of copper hydroxide is slowed down in the next step 2 and the obtained cuprous oxide particles become large, so that uniform copper can be obtained in the subsequent step, and the process and quality are unstable. Become.
[0036] また、水酸化銅スラリーの pHは 3. 0〜7. 0の範囲に制御することが好ましい。この 範囲を外れると、後述する工程 2における溶液 pHを中性領域に近付けることが困難 となる。この pH領域は、上述の水酸化銅スラリー中の銅濃度を 2. 2molZl〜3. Om olZlとし、銅 lmolに対するアルカリ量を 1. 4mol〜l . 8molとしたときに制御できる 範囲である。 [0036] The pH of the copper hydroxide slurry is preferably controlled in the range of 3.0 to 7.0. Outside this range, it becomes difficult to bring the solution pH in Step 2 described below closer to the neutral region. This pH range is a range that can be controlled when the copper concentration in the above-described copper hydroxide slurry is set to 2.2 molZl to 3. OmolZl and the amount of alkali relative to copper lmol is set to 1.4 mol to 1.8 mol.
[0037] 工程 2 : 工程 2では、当該水酸化銅スラリーに還元剤を添加して亜酸化銅スラリーと する第 1還元処理を行う。本件発明に係る銅粉の製造方法では、工程 2において、水 酸化銅スラリーに還元剤としてのヒドラジン類と pH調整剤としてのアンモニア水溶液 とを併用して添加する点に大きな特徴がある。  [0037] Step 2: In Step 2, a first reducing treatment is performed by adding a reducing agent to the copper hydroxide slurry to obtain a cuprous oxide slurry. The copper powder production method according to the present invention is characterized in that, in Step 2, hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster are added to the copper hydroxide slurry in combination.
[0038] 工程 2では、前記水酸化銅スラリーにヒドラジン類 (還元剤)を添加して、主に水酸 ィ匕銅を亜酸化銅にまで還元し、亜酸化銅スラリーを生成させる処理を行う。当該亜酸 ィ匕銅スラリーは、亜酸化銅を含有するスラリーを意味し、亜酸化銅以外の構成成分を 含む場合もある。後述する工程 3の洗浄亜酸化銅スラリーについても同様である。本 工程で還元剤としてヒドラジン類を用いるのは、亜酸化銅粒子の表面に対して吸着 残留する可能性が低ぐ汚染物質となりにくいためである。そして、ヒドラジン類とは、 抱水ヒドラジン、硫酸ヒドラジン、無水ヒドラジンなど種々のものがある力 最も好ましく は抱水ヒドラジンである。これらヒドラジン類は単独または混合して用いることが可能 である。そして、溶液として反応に供されることが好ましい。反応系の溶液に迅速に拡 散し、不均一な反応を起こさないからである。  [0038] In step 2, hydrazines (reducing agent) are added to the copper hydroxide slurry, and mainly a process of reducing the copper hydroxide to cuprous oxide to produce a cuprous oxide slurry is performed. . The said cuprous oxide slurry means the slurry containing cuprous oxide, and may contain components other than cuprous oxide. The same applies to the washed cuprous oxide slurry in Step 3 described later. The reason why hydrazines are used as a reducing agent in this step is that they are less likely to be adsorbed on the surface of the cuprous oxide particles and are unlikely to become pollutants. The hydrazines have various abilities such as hydrazine hydrate, hydrazine sulfate, and hydrazine anhydride, and most preferably hydrazine hydrate. These hydrazines can be used alone or in combination. And it is preferable to use for reaction as a solution. This is because it diffuses rapidly into the reaction system solution and does not cause a heterogeneous reaction.
[0039] このヒドラジン類の添カ卩量は、水酸化銅スラリー中の銅 lmolに対して 0. 3mol〜0.  [0039] The amount of added hydrazines is 0.3 mol to 0.00 mol with respect to 1 mol of copper in the copper hydroxide slurry.
5molとするのが好ましい。ヒドラジン類の添カ卩量力 上記銅 lmolに対して 0. 3mol 未満の場合には、未反応の水酸化銅が多く残留するため好ましくない。これに対し、 ヒドラジン類の添カ卩量力 上記銅 lmolに対して 0. 5molを超えるように添加すると、 亜酸化銅の段階で還元反応を止めることができず、結果として凝集などを起こしやす ぐ良好な粉体特性を備えた銅粉の製造が困難となる。 5 mol is preferable. Addition capacity of hydrazines Less than 0.3 mol with respect to lmol of copper is not preferable because a large amount of unreacted copper hydroxide remains. On the other hand, when the addition amount of hydrazine exceeds 0.5 mol with respect to lmol of copper, The reduction reaction cannot be stopped at the cuprous oxide stage, and as a result, it becomes difficult to produce copper powder having good powder characteristics that easily cause aggregation and the like.
[0040] なお、工程 2において、前記水酸化銅スラリーを亜酸化銅スラリーに還元する処理 では、上述の還元剤としてのヒドラジン類を添カ卩しつつ、 pH調整剤としてのアンモ- ァ水溶液も添加して、 pH変動を制御しながら還元処理を行う。ここでアンモニア水溶 液を用いるのは、水酸化銅スラリー生成にアンモニアを中和剤として用いた場合を考 慮すると、中和剤と pH調整剤との種類の整合性が図られて、異種成分を可能な限り 排除して粒子表面への異種元素吸着を極力避け、得られる銅粉の純度コントロール が容易だ力もである。また、ヒドラジン類の添カ卩により酸性側にシフトした溶液 pHを、 精度良く中性に近付けるためにはアンモニアの持つ中和剤としての特徴を利用する ことが好ましい。  [0040] In the process of reducing the copper hydroxide slurry to the cuprous oxide slurry in step 2, an aqueous ammonia solution as a pH adjuster is added while adding hydrazines as the reducing agent. Addition and reduction treatment while controlling pH fluctuation. The reason why the aqueous ammonia solution is used here is that when ammonia is used as the neutralizing agent in the formation of the copper hydroxide slurry, the consistency between the type of the neutralizing agent and the pH adjusting agent is improved, and different components are used. As much as possible, the adsorption of foreign elements to the particle surface is avoided as much as possible, and the purity of the resulting copper powder can be easily controlled. Further, in order to bring the solution pH shifted to the acidic side due to the addition of hydrazines close to neutrality with high accuracy, it is preferable to use the characteristics of ammonia as a neutralizing agent.
[0041] ここで、工程 2において、水酸化銅スラリーに、ヒドラジン類の添加を開始して工程 2 が終了するまでの、溶液の pH変動状態を図 1に示す。この図 1に、ヒドラジンとアンモ ユア水溶液とを併用した実施例 1の pH変動曲線と、ヒドラジンを単独で用いた比較例 の pH変動曲線とを示した。これらを対比することから明らかなように、実施例 1及び比 較例ともに、ヒドラジンの添加が開始されると、水酸化銅スラリーの pHは、ー且急激に 酸性側に変化する。その後、アルカリ側に一定幅分の pHがシフトして定常状態とな る。このような pH変動があることを前提として、以下の内容を説明する。  [0041] Here, FIG. 1 shows the pH fluctuation state of the solution from the start of the addition of hydrazines to the copper hydroxide slurry until the end of the step 2 in the step 2. FIG. 1 shows the pH fluctuation curve of Example 1 in which hydrazine and an aqueous ammonia solution were used in combination, and the pH fluctuation curve of a comparative example in which hydrazine was used alone. As is clear from the comparison, in both Example 1 and Comparative Example, when the addition of hydrazine is started, the pH of the copper hydroxide slurry changes to the acidic side abruptly. Thereafter, the pH is shifted to the alkali side by a certain width, and a steady state is obtained. The following contents are explained on the assumption that there is such pH fluctuation.
[0042] 水酸化銅スラリーにヒドラジン類とアンモニア水溶液とを併用して添加することにより 、アンモニア水溶液を使用しない場合に比べ、 pH3. 0〜7. 0の範囲に入るよう、 pH の酸性側へのシフト幅が小さくなるように制御するのが好ましい。その結果、粒子の 凝集等の影響が少なぐ得られる銅粉はより分散性が高ぐ粒度分布がシャープな銅 粉を高収率で製造することができる。  [0042] By adding hydrazines and an aqueous ammonia solution in combination to the copper hydroxide slurry, the pH is adjusted to the acidic side so that it falls within the range of pH 3.0 to 7.0 compared to the case where the aqueous ammonia solution is not used. It is preferable to control the shift width to be small. As a result, copper powder obtained with less influence of particle aggregation and the like can produce copper powder with higher dispersibility and sharp particle size distribution in high yield.
[0043] 水酸化銅スラリーに対する、上述のヒドラジン類とアンモニア水溶液との添カ卩は、 p H3. 0〜7. 0の範囲に pH制御するために、以下のようにして行うことがより好ましい。 即ち、ヒドラジン類とアンモニア水溶液とは、前記水酸化銅スラリー中の銅 lmolに対 し、添カ卩終了時におけるヒドラジン類が 0. 3mol〜0. 5mol及びアンモニア水溶液が (アンモニアとして) 0. 2mol〜0. 4molの割合となるように連続添加することが好まし ぐこうして添加されたスラリーの pHは、還元剤及び pH調整剤の添加開始時の始点 pHと添加終了時の終点 pHとの差が 3. 0以下となるように調整すれば良い。そして、 pH3. 5〜5. 0の範囲で pHを変動制御することがより好ましい。なお、工程 1及びェ 程 2に用いるアルカリ量の総量は、銅 lmolに対し、アルカリ成分が 1. 85mol〜2. 0 molであることが望ましい。 [0043] The addition of the hydrazines and the aqueous ammonia solution to the copper hydroxide slurry is more preferably performed as follows in order to control the pH within the range of pH 3.0 to 7.0. . That is, the hydrazines and the aqueous ammonia solution are 0.3 mol to 0.5 mol of hydrazine and 0.5 mol of ammonia aqueous solution (as ammonia) at the end of the addition with respect to 1 mol of copper in the copper hydroxide slurry. It is preferable to add continuously so that the ratio is ~ 0.4mol. The pH of the slurry thus added may be adjusted so that the difference between the starting pH at the start of the addition of the reducing agent and the pH adjusting agent and the end pH at the end of the addition is 3.0 or less. Further, it is more preferable to control the fluctuation of the pH within the range of pH 3.5 to 5.0. The total amount of alkali used in step 1 and step 2 is preferably 1.85 mol to 2.0 mol of the alkali component with respect to 1 mol of copper.
[0044] ここで、ヒドラジン類を単独で添加すると、溶液の pHが添加量に応じて随時変動し 、当初の pHから 3を超える変動が起こる。この溶液 pHの変動があると、得られる亜酸 ィ匕銅粒子の粒径のバラツキが大きくなり、最終的製品である銅粉粒子の粒度分布が 悪化する。その為、ヒドラジン類とアンモニア水溶液とを併用し、これらを連続添加す ることで、還元操作時の溶液 pHの変動を最小限にして、一定の pHに維持するので ある。 [0044] Here, when hydrazines are added alone, the pH of the solution fluctuates from time to time depending on the amount of addition, resulting in a fluctuation exceeding 3 from the initial pH. If the solution pH fluctuates, the particle size variation of the obtained cuprous oxide copper particles will increase, and the particle size distribution of the final product copper powder particles will deteriorate. Therefore, hydrazines and aqueous ammonia are used in combination, and these are added continuously to minimize the fluctuation of the solution pH during the reduction operation and maintain a constant pH.
[0045] ここで、ヒドラジン類及びアンモニア水溶液の当該下限値未満の添加量では、水酸 ィ匕銅の亜酸化銅への還元が良好に行えない。一方、ヒドラジン類及びアンモニア水 溶液の当該上限値を超える添加量とすると、亜酸化銅で還元操作を止めることがで きなくなる。また、上述の添加範囲を外れると、添加溶液の pHを 3. 0〜7. 0の間で 変動制御することができず、結果として、粉体特性の良好な銅粉を得ることができな い。  [0045] Here, when the addition amount of the hydrazines and the aqueous ammonia solution is less than the lower limit, it is not possible to satisfactorily reduce hydroxide to cuprous oxide. On the other hand, if the addition amount of the hydrazines and aqueous ammonia solution exceeds the upper limit, the reduction operation cannot be stopped with cuprous oxide. Further, if the addition range is out of the above range, the pH of the addition solution cannot be controlled to vary between 3.0 and 7.0, and as a result, copper powder with good powder characteristics cannot be obtained. Yes.
[0046] また、工程 2において、水酸化銅スラリーに、ヒドラジン類の添加を開始すると、溶液 の pHが図 1の比較例に示すように、ー且急激に酸性側に変動する。この変動幅は、 添加量に応じて変化するが、アンモニア水溶液を使用しないと、ヒドラジンの添加を 開始した水酸化銅スラリーは、 pH2. 8を下回る強酸性となる。このような強酸性領域 になると、得られる銅粉の粉体特性が劣化し、且つ、製造歩留まりのバラツキが大きく なるのである。そこで、本件発明に係る銅粉の製造方法のように、還元剤としてのヒド ラジン類と pH調整剤としてのアンモニア水溶液とを併用して添加することにより、図 1 の実施例 1に示すように、ヒドラジン類の添加を開始した直後の pHの急激な酸性側 へのシフトが、 pH2. 8以上のアルカリ側にある状態とし、 pH変動曲線の強酸性側へ のシフトをトータル的に小さくすることで、得られる銅粉の粉体特性を向上させ、且つ 、安定して高い製造歩留まりを得るのである。以上及び以下において、この急激に酸 性側に変動し、最も酸性側にある pHを「最低 pH」と称する。 [0046] In addition, in step 2, when the addition of hydrazines to the copper hydroxide slurry is started, the pH of the solution changes suddenly to the acidic side as shown in the comparative example of FIG. The fluctuation range varies depending on the amount of addition, but if an aqueous ammonia solution is not used, the copper hydroxide slurry in which the addition of hydrazine has started becomes strongly acidic below pH 2.8. In such a strongly acidic region, the powder characteristics of the obtained copper powder deteriorate, and the variation in production yield increases. Therefore, as shown in Example 1 of FIG. 1, by adding hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjuster in combination, as in the method for producing copper powder according to the present invention. Immediately after the start of the addition of hydrazines, the pH shift to the acidic side should be on the alkali side at pH 2.8 or higher, and the shift to the strongly acidic side of the pH fluctuation curve should be reduced in total. Thus, the powder characteristics of the obtained copper powder are improved, and a high production yield is stably obtained. Above and below, this abrupt acid The pH that varies to the sex side and is on the most acidic side is referred to as the “minimum pH”.
[0047] そして、工程 2の際の溶液温度は、 40°C〜60°Cの温度範囲を採用することが好ま しい。 40°C未満の温度では、還元反応速度が遅ぐ工業生産性を満足しない。一方 、還元温度が 60°Cを超えると、還元反応が速くなりすぎて不均一な還元反応が起こ るため、得られる銅粉の粉体特性が劣化する。一般的に上記温度範囲において、得 られる亜酸化銅の粒径を微粒にした 、場合は低温で一定に保ち、粒径を大きくした V、場合は高めの温度で一定に保つようにすることが好ま 、。  [0047] The temperature of the solution in Step 2 is preferably a temperature range of 40 ° C to 60 ° C. At temperatures below 40 ° C, industrial productivity is not satisfactory because the reduction reaction rate is slow. On the other hand, when the reduction temperature exceeds 60 ° C, the reduction reaction becomes too fast and a non-uniform reduction reaction occurs, so that the powder characteristics of the obtained copper powder deteriorate. In general, in the above temperature range, the obtained cuprous oxide has a fine particle size, if it is kept constant at a low temperature, and if it has a larger particle size, it should be kept constant at a higher temperature. Favored ,.
[0048] 工程 3 : 工程 3では、当該亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させ、 上澄液を除去して水を添加することにより亜酸化銅粒子を洗浄し洗浄亜酸化銅スラリ 一として、当該洗浄亜酸化銅スラリーに還元剤を添加して還元処理を行うことにより 銅粉を得る。  [0048] Step 3: In Step 3, the cuprous oxide slurry is allowed to stand to precipitate the cuprous oxide particles, and the supernatant is removed and water is added to wash the cuprous oxide particles and to wash the cuprous oxide particles. As a copper oxide slurry, copper powder is obtained by adding a reducing agent to the washed cuprous oxide slurry and performing a reduction treatment.
[0049] 工程 3では、前記亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させる。この段 階での溶液 pHは、およそ 3. 9程度である。そして、その上澄液を除去して水を添カロ することにより亜酸化銅粒子を洗浄する。このときの洗浄方法に関しては、特段の限 定はなぐあらゆる洗浄方法を採用することが可能であるが、以下のようにリバルプ洗 浄を採用して、洗浄レベルを洗浄中の亜酸化銅スラリー(以下に言う「洗浄亜酸化銅 スラリー」)の pH値で管理することが好ましい。ここで、この洗浄の際に、上澄みを廃 棄して、洗浄水を注ぎ足すという操作を複数回行う際の、洗浄水を注いだ場合のスラ リー状態を洗浄亜酸化銅スラリーと称する。  [0049] In step 3, the cuprous oxide slurry is allowed to stand to precipitate cuprous oxide particles. The solution pH at this stage is approximately 3.9. Then, the supernatant is removed and the cuprous oxide particles are washed by adding water and calcining. As for the cleaning method at this time, it is possible to adopt any cleaning method without any particular limitation. However, the recuperation cleaning is adopted as follows, and the cleaning level of the cuprous oxide slurry ( The pH value of the “washed cuprous oxide slurry” described below) is preferably controlled. Here, the slurry state when the wash water is poured when the supernatant is discarded and the wash water is added several times during the washing is referred to as a washed cuprous oxide slurry.
[0050] リパルプ洗浄では、洗浄亜酸化銅スラリーが、 pH4. 1〜6. 0の間のいずれか一定 の pHになるまで繰り返し洗浄するのが好ましい。洗浄亜酸化銅スラリーの pHが 4. 1 より酸性側にあると、更に還元剤を加え銅粉とする際に得られる銅粉の凝集が強くな り、分散性が劣る等、粉体特性が悪くなる。一方、洗浄亜酸化銅スラリーの pHが 6. 0 よりアルカリ性側にあると、イオン量が少なくて電子の授受反応が悪くなり、更に還元 剤を加え銅粉とする際に、凝集が生じて粒子の均一性が低下する等、粉体特性も悪 ぐ還元効率が悪くなる。即ち、 pH4. 1〜6. 0の間は、粒子の凝集を避けるのに適 正な範囲であると言える。  [0050] In the repulp washing, it is preferable that the washing cuprous oxide slurry is repeatedly washed until the pH becomes any constant between pH 4.1 and 6.0. If the pH of the washed cuprous oxide slurry is more acidic than 4.1, the powder properties such as agglomeration of copper powder obtained when adding a reducing agent to make copper powder become stronger, and the dispersibility is poor. Deteriorate. On the other hand, when the pH of the washed cuprous oxide slurry is more alkaline than 6.0, the amount of ions is small and the electron transfer reaction becomes worse, and when a reducing agent is added to form a copper powder, agglomeration occurs and particles are generated. The uniformity of the powder is reduced, and the powder properties are also bad, and the reduction efficiency is poor. In other words, it can be said that the pH between 4.1 and 6.0 is an appropriate range to avoid particle aggregation.
[0051] そして、より好ましくは、洗浄亜酸化銅スラリーは、 pH4. 3〜4. 7の間のいずれか 一定の pHになるまで洗浄する。この洗浄亜酸化銅スラリーの pHを 4. 3〜4. 7とする ことにより、凝集抑制に加え粗粒も少なぐ微粒でバラツキの少ない良質な銅粉を低 コストで得ることができ、この範囲に於いて、微粒且つ高分散性を得るための工程安 定性に最も優れるのである。 [0051] And, more preferably, the washed cuprous oxide slurry is any one between pH 4.3 and 4.7. Wash until constant pH. By setting the pH of the washed cuprous oxide slurry to 4.3 to 4.7, it is possible to obtain high-quality copper powder with less coarse particles and less variation in addition to suppressing aggregation, at a low cost. However, it is most excellent in process stability for obtaining fine particles and high dispersibility.
[0052] そして、上述のようにして得られた洗浄亜酸化銅スラリーに還元剤を添加する。この 際、添加終了時の pHが 7. 0〜9. 0になるように調整すれば良い。即ち、添加する還 元剤量は、ヒドラジン類の場合、添加終了時において、洗浄亜酸化銅スラリーに含ま れる銅 lmolに対して 0. 4mol〜0. 7molの割合で添加することが好ましい。より望ま しくは、工程 2及び工程 3において添加するヒドラジン類の合計量が銅 lmolに対して 0. 85mol〜l. 2molの割合にする。この pHが 9. 0よりアルカリ性側にあると、還元 剤が多い状態となり、微粒が生じやすくなり凝集しやすい。一方、 pHが 7. 0より酸性 側であると、粗粒が増えて凝集しやすぐ分散性が悪くなる。従って、添加終了時の p Hが 7. 0〜9. 0の範囲から外れると、得られる銅粉の粉体特性の劣化が顕著になり 、ブロードな粒度分布を示すようになる。  [0052] Then, a reducing agent is added to the washed cuprous oxide slurry obtained as described above. At this time, the pH at the end of the addition may be adjusted to 7.0 to 9.0. That is, in the case of hydrazines, the reducing agent to be added is preferably added at a ratio of 0.4 mol to 0.7 mol with respect to 1 mol of copper contained in the washed cuprous oxide slurry at the end of the addition. More preferably, the total amount of hydrazines added in step 2 and step 3 is 0.885 mol to l.2 mol relative to 1 mol of copper. If this pH is on the alkaline side of 9.0, there will be a large amount of reducing agent, which tends to form fine particles and easily aggregate. On the other hand, if the pH is on the acidic side from 7.0, coarse particles increase and aggregate, and dispersibility soon deteriorates. Therefore, when the pH at the end of addition is out of the range of 7.0 to 9.0, the resulting powder characteristics of the copper powder are significantly deteriorated, and a broad particle size distribution is exhibited.
[0053] 還元剤の温度は、 40°C〜55°Cの間の一定のレベルに保つことが好ましい。還元剤 の温度が 40°Cより低いと、還元反応が鈍くなり、工業上望ましい生産性を満たさない 。一方、 55°Cより高いと、還元速度が速くなりすぎて粒径が不揃いとなりやすい。また 、工程 3の還元剤としては、上述の工程 2で用いたヒドラジン類を用いることが好まし い。その理由は、還元剤としてのヒドラジン類力 Sもつ還元能が粉体特性の良好な銅粉 を得るために適しているからである。また、工程 2で用いた還元剤と同種の還元剤を 採用することで、銅粉の還元に関わる異種成分を可能な限り少なくし、銅粉の粒子表 面への汚染成分の付着量を減少させるためである。  [0053] The temperature of the reducing agent is preferably maintained at a constant level between 40 ° C and 55 ° C. If the temperature of the reducing agent is lower than 40 ° C, the reduction reaction becomes dull and the industrially desirable productivity is not satisfied. On the other hand, if the temperature is higher than 55 ° C, the reduction rate becomes too fast and the particle size tends to be uneven. Further, as the reducing agent in Step 3, it is preferable to use the hydrazines used in Step 2 described above. The reason is that the reducing ability of hydrazine as a reducing agent is suitable for obtaining copper powder with good powder characteristics. Also, by adopting the same reducing agent as the reducing agent used in step 2, the amount of foreign components related to the reduction of copper powder is reduced as much as possible, and the amount of contaminating components adhering to the copper powder particle surface is reduced. This is to make it happen.
[0054] また、銅粉への還元処理が終了した段階のスラリー状態のまま、流体ミル法 (フアイ ンフローミル等)、層流混合法 (T. K.フィルミックス等)を用いて、凝集粒子同士を高 速で遠心流動するスラリー内で衝突させ、凝集状態を破壊し一次粒子に近付け、同 時に粒子表面の平滑ィ匕を行う解粒処理を施し、粒子分散性を向上させることも好まし い。  [0054] In addition, the agglomerated particles can be rapidly separated from each other by using a fluid mill method (such as a fin flow mill) or a laminar flow mixing method (such as TK fill mix) while the slurry is in a state of being reduced to copper powder. It is also preferable to improve the particle dispersibility by colliding with a centrifugally flowing slurry in order to break up the agglomerated state and bring it closer to the primary particles, and at the same time smoothing the particle surface.
[0055] 以上のようにして得た銅粉は、濾過、洗浄、乾燥等の一般的工程を経て、銅粉とし て製品化される。そして、この銅粉は、耐酸化性を向上させるため、必要に応じてォ レイン酸、ステアリン酸等の脂肪酸ゃァミン類による表面処理を施すことも好まし 、。 また、この乾燥した銅粉の状態でも、必要に応じて分級装置、ハイプリタイザ一、ター ボクラシファイア等の凝集粒子同士の衝突処理が可能な装置を用いて解粒処理を行 い、粒子分散性を向上させることも可能である。 [0055] The copper powder obtained as described above is subjected to general steps such as filtration, washing, and drying to obtain copper powder. And commercialized. In order to improve the oxidation resistance, the copper powder is preferably subjected to a surface treatment with fatty acid diamines such as oleic acid and stearic acid, if necessary. Even in this dried copper powder state, if necessary, the particles can be dispersed using a device capable of colliding the agglomerated particles, such as a classifier, a high pretizer, and a turbo classifier. It is also possible to improve.
[0056] 以上より、本件発明に係る製造方法で得られる銅粉は、微粒でバラツキが少ない粉 体特性が均質な銅粉を安定的に製造可能となる。また、粒子表面への異種元素吸 着を抑えるので、焼成時のガスの気散を抑えて、焼成膜の内部欠陥を極力避け、導 電率の良好な銅粉を製造することができる。  [0056] As described above, the copper powder obtained by the production method according to the present invention can stably produce a copper powder having fine powder characteristics and uniform powder characteristics. Further, since adsorption of foreign elements to the particle surface is suppressed, it is possible to suppress the gas diffusion during baking, to avoid internal defects of the fired film as much as possible, and to produce copper powder with good conductivity.
[0057] 以下、実施例及び比較例を示して本件発明を具体的に説明する。なお、本件発明 は以下の実施例に制限されるものではない。また、以下の実施例及び比較例におけ る銅粉の製造条件が理解しやすいように、表 2に製造条件の概略を一覧にして掲載 する。  Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples. In order to make it easier to understand the copper powder production conditions in the following examples and comparative examples, Table 2 lists the outline of the production conditions.
[0058] [表 2]  [0058] [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
注) 硫酸銅 : 硫酸銅 5水和物として  Note) Copper sulfate: As copper sulfate pentahydrate
アンモニア : 2 5 w t %濃度のアンモニア水溶液  Ammonia: Aqueous ammonia solution with a concentration of 25 w t%
還元剤 : ヒ ドラジン 1 水和物  Reducing agent: hydrazine monohydrate
P H調整剤 : 2 5 w t %濃度のアンモニア水溶液 実施例 1  PH adjusting agent: Aqueous ammonia solution with a concentration of 25 w t% Example 1
[0059] 工程 1 : 50。Cの純水 6. 5リツ卜ルに硫酸銅 5水和物 6000g (24. Omol)を添加し、 二価の銅イオンを含む銅イオン含有水溶液を準備する。そして、温度 50°Cに保持し た当該銅イオン含有水溶液に、アンモニア水溶液 (濃度 25wt%) 2500ml (36. 7m ol)を 30分で添加して中和し、水酸化銅スラリーを得た。その後、当該水酸化銅スラリ 一に純水を加え、銅濃度を 2molZl、 ρΗ6. 3とした。  [0059] Step 1: 50. Add 6000 g (24. Omol) of copper sulfate pentahydrate to 6.5 liters of pure water of C to prepare a copper ion-containing aqueous solution containing divalent copper ions. Then, an aqueous ammonia solution (concentration: 25 wt%) 2500 ml (36.7 mol) was added to the copper ion-containing aqueous solution kept at a temperature of 50 ° C. in 30 minutes for neutralization to obtain a copper hydroxide slurry. After that, pure water was added to the copper hydroxide slurry to make the copper concentration 2 molZl and ρΗ6.3.
[0060] 工程 2 : 前記水酸化銅スラリーに、還元剤としてのヒドラジン 1水和物及び pH調整剤 としてのアンモニア水溶液を pH変動制御するために添カ卩した。即ち、 pH6. 3の前記 水酸化銅スラリーの液温を 50°Cに保ち、ヒドラジン 1水和物 450g (9. Omol)とアンモ ニァ水溶液 (濃度 25wt%) 590ml(8. 7mol)とを 30分間かけて連続添カ卩し、添カロ終 了時の pHは 3. 9とした。ここでの pH変動は、始点 pHが 6. 3で、終点 pHが 3. 9であ り、最低 pHが 3. 5、始点 pHと終点 pHとの差が 2. 4であった。そして、還元反応を完 全に行うため、更に 30分間撹拌を続けた。 [0060] Step 2: Hydrazine monohydrate and a pH adjuster as a reducing agent are added to the copper hydroxide slurry. The ammonia solution was added to control pH fluctuation. That is, the liquid temperature of the copper hydroxide slurry at pH 6.3 was kept at 50 ° C, and hydrazine monohydrate 450g (9. Omol) and ammonia aqueous solution (concentration 25wt%) 590ml (8.7 mol) The solution was continuously added over a period of minutes, and the pH at the end of the addition was 3.9. As for the pH fluctuation, the starting point pH was 6.3, the end point pH was 3.9, the minimum pH was 3.5, and the difference between the starting point pH and the end point pH was 2.4. Stirring was continued for another 30 minutes in order to complete the reduction reaction.
[0061] その後、リパルプ洗浄を行った。即ち、工程 2の終了したスラリーに純水をカ卩えて 18 リットルに調整して静置し、静置後の上澄みを 14リットル抜く操作を、リパルプ洗浄後 の pHが 4. 7になるまで繰り返し、これを洗浄亜酸化銅スラリーとした。  [0061] Thereafter, repulp washing was performed. That is, add pure water to the slurry after step 2 and adjust to 18 liters, leave it to stand, and remove 14 liters of the supernatant after standing until the pH after washing with repulp reaches 4.7. This was used as a washed cuprous oxide slurry.
[0062] 工程 3 : 次に、前記洗浄亜酸化銅スラリーに水を加え、液温を 50°Cに維持して、銅 濃度を 2molZlに調整した。その後、ヒドラジン 1水和物 600g (12. Omol)を 30分間 で添加した。添加終了時の溶液 pHは 8. 2であった。更に 60分間撹拌を行い、還元 反応を完全に行わせ銅粉を還元析出させた (第 2還元処理)。  [0062] Step 3: Next, water was added to the washed cuprous oxide slurry, the liquid temperature was maintained at 50 ° C, and the copper concentration was adjusted to 2 molZl. Thereafter, 600 g (12. Omol) of hydrazine monohydrate was added over 30 minutes. The solution pH at the end of the addition was 8.2. The mixture was further stirred for 60 minutes to complete the reduction reaction to reduce and precipitate copper powder (second reduction treatment).
[0063] このようにして得た銅粉を濾過して採取した。そして、当該銅粉に、ドテシルァミン 1 . 5gを溶解させたメタノール溶液 5リットルに入れて表面処理を施し、 30分間撹拌し、 80°C X 5時間の加熱乾燥を行って粉体を得た。  [0063] The copper powder thus obtained was collected by filtration. Then, the copper powder was put into 5 liters of a methanol solution in which 1.5 g of dodecylamine was dissolved, subjected to surface treatment, stirred for 30 minutes, and heated and dried at 80 ° C. for 5 hours to obtain a powder.
[0064] 実施例 1で得られた銅粉の粉体特性及び収率のバラツキを検証するため、上記実 施例 1で得られた 10ロットの銅粉について、ロット毎に D 、D 、D 、標準偏差 (SD  [0064] In order to verify the dispersion of the powder characteristics and yield of the copper powder obtained in Example 1, D, D, D for each lot of the 10 lots of copper powder obtained in Example 1 above. , Standard deviation (SD
10 50 90  10 50 90
)、D ZD 、比表面積、タップ充填密度の測定結果と併せて、各特性について 10 ), D ZD, specific surface area, tap fill density
90 10 90 10
ロット分の平均値、標準偏差 σの各データを算出した結果を表 3に示す。なお、 1ロッ ト毎の標準偏差を SDで表し、 10ロット分のデータに対する標準偏差を σで表して両 者を区別する。  Table 3 shows the results of calculating the average value and standard deviation σ for the lot. The standard deviation for each lot is expressed as SD, and the standard deviation for 10 lots of data is expressed as σ to distinguish the two.
[0065] 銅粉の粉体特性: 以上の工程を経て得られた銅粉の粉体特性の 10ロットの平均 値は、 D =0. ΊΊ μ ι, Ό = 1. 75 ,u m, D = 3. 68 m、標準偏差(SD) = 1. 1 [0065] Powder characteristics of copper powder: The average value of 10 lots of powder characteristics of copper powder obtained through the above process is D = 0. ΊΊ μ ι, Ό = 1. 75, um, D = 3. 68 m, standard deviation (SD) = 1.1
10 50 90 10 50 90
ZD =4. 77、比表面積(SSA) O. 54m2Zg、タップ充填密度 (TD) 4.ZD = 4.77, specific surface area (SSA) O. 54m 2 Zg, tap packing density (TD) 4.
90 10 90 10
7gZ ccで teつた。  7gZ cc and te.
[0066] ロット毎の銅粉の収率を算出したところ、いずれも 97%以上で、収率の標準偏差 σ は 0. 8となり、安定した収率を得ることができた。なお、収率は、用いた銅塩量から算 出される理論上の銅粉量に対する実際に得られた銅粉の量で算出した。 [0066] When the yield of copper powder for each lot was calculated, all were 97% or more, and the standard deviation σ of yield was 0.8, and a stable yield could be obtained. The yield is calculated from the amount of copper salt used. It calculated with the quantity of the copper powder actually obtained with respect to the theoretical copper powder quantity taken out.
[0067] [表 3]  [0067] [Table 3]
Figure imgf000016_0001
実施例 2
Figure imgf000016_0001
Example 2
[0068] 工程 1 : 実施例 1と同様の方法で水酸化銅スラリーを得た。  Step 1: A copper hydroxide slurry was obtained in the same manner as in Example 1.
[0069] 工程 2 : 前記水酸化銅スラリーに、還元剤としてのヒドラジン 1水和物及び PH調整剤 としてのアンモニア水溶液を、 pH変動制御するために添加した。即ち、 pH6. 3の前 記水酸化銅スラリーの液温を 40°Cに保ち、ヒドラジン 1水和物 450g (9. OmolZl)と アンモニア水溶液 (濃度 25wt%) 350ml (5. lmol)とを 15分間かけて連続添カロし、 添加終了時の pHは 4. 8とした。ここでの pH変動は、始点 pHが 6. 3で、終点 pHが 4 . 8であり、最低 pHが 3. 8、始点 pHと終点 pHとの差が 1. 5であった。そして、還元反 応を完全に行うため、更に 30分間撹拌を続けた。その後、リパルプ洗浄を実施例 1と 同様に行い、洗浄亜酸化銅スラリーを得た。 [0069] Step 2: To the copper hydroxide slurry, an aqueous ammonia solution as hydrazine monohydrate and P H adjusting agent as a reducing agent was added to control pH fluctuation. That is, the temperature of the copper hydroxide slurry at pH 6.3 was kept at 40 ° C, and 450 g (9. OmolZl) of hydrazine monohydrate and 350 ml (5. Continuous addition over 15 minutes, the pH at the end of the addition was 4.8. The pH variation here was a starting point pH of 6.3, an ending point pH of 4.8, a minimum pH of 3.8, and a difference between the starting point pH and the ending point pH of 1.5. Stirring was continued for another 30 minutes in order to complete the reduction reaction. Then, repulp washing was performed in the same manner as in Example 1 to obtain a washed cuprous oxide slurry.
[0070] 工程 3 : 次に、還元の際の反応スラリーの液温を 45°Cに維持した以外は実施例 1の 工程 3と同様に行い、銅粉を還元析出させた。  Step 3: Next, copper powder was reduced and deposited in the same manner as in Step 3 of Example 1 except that the temperature of the reaction slurry during the reduction was maintained at 45 ° C.
[0071] このようにして得た銅粉を実施例 1と同様の後処理を行 、、粉体を得た。  [0071] The copper powder thus obtained was subjected to the same post treatment as in Example 1 to obtain a powder.
[0072] 実施例 2で得られた 10ロットの銅粉について、実施例 1と同様に、ロット毎に D 、 D  [0072] About 10 lots of copper powder obtained in Example 2, as in Example 1, D and D for each lot.
10 Ten
、D 、標準偏差 (SD)、D ZD 、比表面積、タップ充填密度の測定結果と併せ, D, standard deviation (SD), D ZD, specific surface area, tap packing density measurement results
50 90 90 10 50 90 90 10
て、各特性について 10ロット分の平均値、標準偏差 σの各データを算出した。その 結果を表 4に示す。 For each characteristic, the average value for 10 lots and the standard deviation σ were calculated. That The results are shown in Table 4.
[0073] 銅粉の粉体特性: 以上の工程を経て得られた銅粉の粉体特性の 10ロットの平均 値は、 D =0. 63^πι, D =1.49μ ι, D =3. 08 m、標準偏差(SD) =0. 9 [0073] Powder characteristics of copper powder: The average value of 10 lots of the powder characteristics of copper powder obtained through the above process is D = 0.63 ^ πι, D = 1.49μι, D = 3. 08 m, standard deviation (SD) = 0.9
10 50 90 10 50 90
l^m.D ZD =4.89、比表面積 0.62m2Zg、タップ充填密度 4. lgZccであ l ^ mD ZD = 4.89, specific surface area 0.62m 2 Zg, tap packing density 4. lgZcc
90 10  90 10
つた。また、ロット毎の銅粉の収率を算出したところ、いずれも 97%以上となり、収率 の標準偏差 σは 0. 9となり、安定した収率を得ることができた。  I got it. Moreover, when the yield of copper powder for each lot was calculated, all were 97% or more, and the standard deviation σ of yield was 0.9, and a stable yield could be obtained.
[0074] [表 4] [0074] [Table 4]
Figure imgf000017_0001
実施例 3
Figure imgf000017_0001
Example 3
[0075] 実施例 3では、工程 3の還元の際の液温を 45°Cに変更した以外は実施例 1と同様 の方法で銅粉を得た。なお、工程 2での pH変動は、始点 pHが 6. 3で、終点 pHが 3 . 9であり、最低 pHが 3. 5、始点 pHと終点 pHとの差が 2. 4であった。  In Example 3, copper powder was obtained in the same manner as in Example 1, except that the liquid temperature during the reduction in Step 3 was changed to 45 ° C. As for the pH fluctuation in step 2, the starting point pH was 6.3, the end point pH was 3.9, the minimum pH was 3.5, and the difference between the starting point pH and the end point pH was 2.4.
[0076] 実施例 3で得られた 10ロットの銅粉について、実施例 1と同様に、各ロット毎に D 、  [0076] About 10 lots of the copper powder obtained in Example 3, as in Example 1, D,
10 Ten
D 、D 、標準偏差 (SD)、D ZD 、比表面積、タップ充填密度の測定結果と併Combined with measurement results of D, D, standard deviation (SD), D ZD, specific surface area, and tap packing density
50 90 90 10 50 90 90 10
せて、各特性について 10ロット分の平均値、標準偏差 σの各データを算出した。結 果を表 5に示す。ロット毎の銅粉の収率を算出したところ、いずれも 97%以上となり、 収率の標準偏差 σは 0. 9となり、安定した収率を得ることができた。  The average value for 10 lots and the standard deviation σ were calculated for each characteristic. The results are shown in Table 5. When the yield of copper powder for each lot was calculated, all were 97% or more, and the standard deviation σ of yield was 0.9, and a stable yield could be obtained.
[0077] 銅粉の粉体特性: 以上の工程を経て得られた銅粉の粉体特性の 10ロットの平均 値は、 D =0. 85^πι, D =1. 99^πι, D =4. 05 m、標準偏差(SD) = 1. 2 O ^ m, D ZD =4. 79、比表面積 0. 46m2Zg、タップ充填密度 5. OgZccであ[0077] Powder characteristics of copper powder: The average value of 10 lots of the powder characteristics of copper powder obtained through the above process is D = 0.85 ^ πι, D = 1.99 ^ πι, D = 4. 05 m, standard deviation (SD) = 1.2 O ^ m, D ZD = 4. 79, specific surface area 0.46 m 2 Zg, tap packing density 5. OgZcc
90 10 90 10
つた o  I
[0078] [表 5]  [0078] [Table 5]
Figure imgf000018_0001
比較例
Figure imgf000018_0001
Comparative example
[0079] 工程 2にお 、て pH調整剤としてのアンモニア水溶液を用いて ヽな 、点で実施例と 異なる例を比較例として示す。従って、それ以外の工程の説明を割愛する。  [0079] In step 2, an ammonia aqueous solution as a pH adjuster is used as a comparative example. Therefore, description of other processes is omitted.
[0080] 工程 2: 前記水酸化銅スラリーの液温を 50°Cに保ち、ヒドラジン 1水和物 450g(9. 0 mol)のみを 30分間かけて連続添カ卩した。そして、最低 pHが 2. 4、添加終了時の p Hは 3. 2であった。即ち、水酸化銅スラリー調整工程後の pHは 6. 3であったので、 始点 pHと終点 pHとの差は 3. 1となった。この後、還元反応を完全に行うため、更に 30分間撹拌を続けた。  Step 2: The liquid temperature of the copper hydroxide slurry was kept at 50 ° C., and 450 g (9.0 mol) of hydrazine monohydrate was continuously added over 30 minutes. The minimum pH was 2.4, and the pH at the end of the addition was 3.2. That is, since the pH after the copper hydroxide slurry adjustment step was 6.3, the difference between the starting point pH and the ending point pH was 3.1. Thereafter, stirring was continued for another 30 minutes in order to complete the reduction reaction.
[0081] その後、リパルプ洗浄を行った。即ち、工程 2の終了したスラリーに純水をカ卩えて 18 リットルに調整して静置し、静置後の上澄みを 14リットル抜く操作をリパルプ洗浄後の pHが 4. 5になるまで繰り返し、これを洗浄亜酸化銅スラリーとした。なお、このとき、 上述の実施例での繰り返し洗浄回数 (平均 2回)に比べ、この比較例の繰り返し洗浄 回数はリパルプ洗浄の回数が 4回で pH4. 5となり、洗浄にコストが係ることが分かる。  [0081] Thereafter, repulp washing was performed. That is, add pure water to the slurry after step 2 and adjust to 18 liters, leave it to stand, and remove 14 liters of supernatant after standing until the pH after repulping is 4.5. This was used as a washed cuprous oxide slurry. At this time, compared with the number of repeated washings in the above-mentioned example (average of 2 times), the number of repeated washings in this comparative example is pH 4.5 when the number of repulp washings is 4 times, and the washing is costly. I understand.
[0082] 比較例で得られた 10ロットの銅粉について、実施例 1と同様に、ロット毎に D 、D  [0082] About 10 lots of copper powder obtained in the comparative example, as in Example 1, D and D for each lot.
10 50 10 50
、D 、標準偏差 (SD)、D ZD 、タップ充填密度、比表面積の測定結果と併せて 、各特性について 10ロット分の平均値、標準偏差 σの各データを算出した。結果を 表 6に示す。この結果からわ力るように、収率の平均は 84. 5%と低いものであった。 , D, standard deviation (SD), D ZD, tap packing density, and specific surface area measurement results For each characteristic, the average value for 10 lots and the standard deviation σ were calculated. The results are shown in Table 6. As can be seen from this result, the average yield was as low as 84.5%.
[表 6]  [Table 6]
Figure imgf000019_0001
Figure imgf000019_0001
[0084] 銅粉の粉体特性: 比較例で得られた銅粉の粉体特性の 10ロットの平均値は、 D [0084] Powder characteristics of copper powder: The average value of 10 lots of the powder characteristics of copper powder obtained in the comparative example is D
10 Ten
=0. 63 ^ πι, D = 1. 71 ^ πι, D = 5. 13 m、標準偏差(SD) = 1. m、 D = 0. 63 ^ πι, D = 1. 71 ^ πι, D = 5.13 m, standard deviation (SD) = 1. m, D
50 90  50 90
ZD =8. 63、比表面積(SSA) 1. 51m2Zg、タップ充填密度 (TD) 3. Og/ccZD = 8.63, Specific surface area (SSA) 1. 51m 2 Zg, Tap packing density (TD) 3. Og / cc
90 10 90 10
であった。  Met.
[0085] ここで、本件明細書における各特性の評価方法及び評価装置に関して述べておく 。体積累積粒径及び粒度分布 (D 、 D 、 D 、 SD)の測定は、銅粉 0. lgを SNディ  [0085] Here, the evaluation method and the evaluation apparatus for each characteristic in this specification will be described. Measurement of volume cumulative particle size and particle size distribution (D, D, D, SD)
10 50 90  10 50 90
スパーサント 5468の 0. 1%水溶液 (サンノプコ社製)と混合し、超音波ホモジナイザ( 日本精機製作所製 US— 300T)で 5分間分散させた後、レーザー回折散乱式粒 度分布測定装置 Micro Trac HRA 9320— 100型(1^6(15 +?^0 111:1^社製 )を用いて行った。そして、「タップ充填密度」の測定は、パウダースター PT— E (ホソ カヮミクロン株式会社製)を用いて測定した。比表面積は、試料 2. OOgを 75°Cで 10 分間の脱気処理を行った後、モノソープ (カンタクロム社製)を用いて BET1点法で測 し 7こ。  After mixing with a 0.1% aqueous solution of Spar Santo 5468 (San Nopco) and dispersing with an ultrasonic homogenizer (US—300T, manufactured by Nippon Seiki Seisakusho) for 5 minutes, the laser diffraction scattering particle size distribution analyzer Micro Trac HRA 9320 — 100 type (1 ^ 6 (15 +? ^ 0 111: 1 ^ company)) was used, and “tap packing density” was measured using Powder Star PT—E (Hosoka Micron Corporation). Specific surface area was measured by BET 1-point method using monosoap (manufactured by Kantachrome Co., Ltd.) after deaeration treatment of Sample 2. OOg at 75 ° C for 10 minutes.
[0086] [実施例と比較例との対比] 以下、実施例と比較例の平均値及び標準偏差 σを示す表 7を参照して、評価項目 毎に実施例と比較例とを対比する。 [0086] [Contrast between Example and Comparative Example] Hereinafter, referring to Table 7 showing the average values and standard deviations σ of the examples and comparative examples, the examples and comparative examples are compared for each evaluation item.
[0087] [表 7] [0087] [Table 7]
Figure imgf000020_0001
Figure imgf000020_0001
[0088] 体積累積粒径及び粒度分布:粒度分布においては、比較例の D がやや大きぐ凝  [0088] Volume cumulative particle size and particle size distribution: In the particle size distribution, the comparative example D is slightly larger.
90  90
集が強いことが窺われる力 粒度分布の平均値には大差ない。しかし、粒度分布の 標準偏差に着目すると、比較例に比べ、実施例 1〜実施例 3の標準偏差 σが小さく なっている。即ち、比較例に比べ、実施例 1〜実施例 3は良好な粒度分布を備え、シ ヤープな粉体特性を備えることが理解できる。  The power that proves to be strong The average value of the particle size distribution is not much different. However, focusing on the standard deviation of the particle size distribution, the standard deviation σ of Examples 1 to 3 is smaller than that of the comparative example. That is, it can be understood that Examples 1 to 3 have a good particle size distribution and sharp powder characteristics as compared with the comparative example.
[0089] タップ充填密度 (TD):表 7から分力るように、実施例 1〜実施例 3の方が比較例よりも 明らかに高い。従って、実施例の銅粉をペースト化して導体を形成した場合と、比較 例の銅粉をペーストイ匕して導体を形成した場合の導体密度は、実施例の方が高ぐ 低抵抗の導体形成が可能となると考えられる。  [0089] Tap packing density (TD): As shown in Table 7, Examples 1 to 3 are clearly higher than Comparative Examples. Therefore, when the conductor is formed by pasting the copper powder of the example, and when the conductor is formed by pasting the copper powder of the comparative example, the conductor density is higher in the example. Will be possible.
[0090] 比表面積 (SSA):実施例 1〜実施例 3は比較例と比べて低ぐ一次粒子の粒度が同 程度であるとすれば、粒子表面の平滑性は向上していると考えられる。  [0090] Specific surface area (SSA): In Examples 1 to 3, it is considered that the smoothness of the particle surface is improved if the particle size of the primary particles is lower than that of the comparative example. .
[0091] ロット毎の実施結果:各特性の標準偏差 σは実施例 1〜実施例 3は比較例と比べて いずれも小さぐ実施例 1〜実施例 3は比較例に比べて粉体特性のノ ラツキが少な い均質なものであると言える。特に、収率については、実施例 1〜実施例 3は比較例 と比べて高収率且つ収率変動が少なく安定した生産性で製造でき、結果としてコスト 低減に繋がる銅粉の製造方法と言える。  [0091] Results for each lot: standard deviation σ of each characteristic is smaller in Examples 1 to 3 than in Comparative Examples Examples 1 to 3 are smaller in powder characteristics than in Comparative Examples It can be said that it is homogeneous with little noise. In particular, with regard to the yield, Examples 1 to 3 can be manufactured with high yield and less yield fluctuation and stable productivity compared to the comparative example, and as a result, it can be said to be a method for producing copper powder that leads to cost reduction. .
[0092] 以上を総じて考えるに、実施例では工程 2において、ヒドラジン類とアンモニア水溶 液とを併用添加することによって、一定範囲内で pH変動を制御することができ、 pH の変動による凝集等を抑止し、安定した製造工程と、ノ ツキが少なく粒度分布がシ ヤープな銅粉を収率良く製造することができる。これに対し比較例の銅粉は、粉体特 性のバラツキが大きぐ収率も低い上に収率の安定性も悪い。これは、工程 2におけ る還元剤添加方法に起因して ヽるものと考えられる。 [0092] Considering the above as a whole, in the example, in Step 2, by adding a combination of hydrazines and aqueous ammonia solution, the pH fluctuation can be controlled within a certain range. Aggregation due to fluctuations in the particle size can be suppressed, and a stable production process and copper powder with little noise and a sharp particle size distribution can be produced with high yield. On the other hand, the copper powder of the comparative example has a large variation in powder characteristics, a low yield, and a poor yield stability. This is thought to be due to the reducing agent addition method in Step 2.
産業上の利用可能性  Industrial applicability
[0093] 本件発明に係る銅粉の製造方法により、粉体特性に優れた銅粉の生産効率の向 上が可能となる。その結果、高品質の銅粉を安価に市場に提供可能となる。また、本 件発明に係る銅粉の製造方法は、特殊な添加剤を用いるものでもなぐ更には特殊 な製造装置を要するものでもないため、既存設備の有効活用が図られ、設備投資の 不要なものとなるためコストメリットに優れる。  [0093] The production method of copper powder according to the present invention makes it possible to improve the production efficiency of copper powder having excellent powder characteristics. As a result, high quality copper powder can be provided to the market at a low cost. In addition, the copper powder production method according to the present invention does not require the use of special additives, nor does it require special production equipment, so that existing facilities can be used effectively and capital investment is not required. Since it becomes a thing, it is excellent in cost merit.
[0094] また、本件発明に係る製造方法は、工程 2で用いた還元剤と同種の還元剤を、ェ 程 3でも採用することができるので、銅粉の還元に拘わる異種成分を少なくすることが できる。この結果、得られる銅粉の粒子表面への汚染成分の付着量を減少させた銅 粉を製造することができ、導電性に優れた高品質な微粒銅粉を提供することが可能と なり、微細配線等への利用に有効である。  [0094] Further, in the production method according to the present invention, since the same reducing agent as that used in step 2 can be used in step 3, it is possible to reduce different components involved in the reduction of copper powder. Is possible. As a result, it is possible to produce copper powder in which the amount of contaminating components adhering to the particle surface of the obtained copper powder is reduced, and it is possible to provide high-quality fine copper powder with excellent conductivity. Effective for use in fine wiring.
図面の簡単な説明  Brief Description of Drawings
[0095] [図 1]工程 2で水酸化銅スラリーにヒドラジン類の添加を開始して工程 2が終了するま での溶液の pH変動状態を示す図である。  [0095] FIG. 1 is a view showing a pH variation state of a solution from the start of addition of hydrazines to a copper hydroxide slurry in step 2 until the end of step 2.

Claims

請求の範囲 The scope of the claims
[1] 銅イオン含有水溶液とアルカリ溶液とを反応させた水酸化銅スラリーを得て、当該水 酸化銅スラリーに還元剤を添加して第 1還元処理を行い亜酸化銅スラリーとして、当 該亜酸化銅スラリーを静置して亜酸化銅粒子を沈殿させ、上澄液を除去して水を添 加することにより亜酸化銅粒子を洗浄し洗浄亜酸化銅スラリーとして、当該洗浄亜酸 ィ匕銅スラリーに還元剤を添加して第 2還元処理を行い銅粉を得る湿式還元による銅 粉製造方法において、  [1] Obtain a copper hydroxide slurry obtained by reacting a copper ion-containing aqueous solution with an alkaline solution, add a reducing agent to the hydrous copper oxide slurry, and perform a first reduction treatment to obtain a cuprous oxide slurry. The cuprous oxide slurry is allowed to stand to precipitate the cuprous oxide particles, and the supernatant is removed and water is added to wash the cuprous oxide particles to form a washed cuprous oxide slurry. In the copper powder manufacturing method by wet reduction to obtain a copper powder by adding a reducing agent to the copper slurry,
第 1還元処理は、水酸化銅スラリーに、還元剤としてのヒドラジン類と pH調整剤とし てのアンモニア水溶液とを併用して添加することを特徴とする銅粉の製造方法。  The first reduction treatment is a method for producing copper powder, characterized in that hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to a copper hydroxide slurry in combination.
[2] 前記第 1還元処理において、水酸化銅スラリーに、還元剤としてのヒドラジン類と pH 調整剤としてのアンモニア水溶液とを併用して添加することにより ρΗ3. 0〜pH7. 0 の範囲で pHの変動制御をすることを特徴とする請求項 1に記載の銅粉の製造方法。 [2] In the first reduction treatment, hydrazines as a reducing agent and an aqueous ammonia solution as a pH adjusting agent are added to the copper hydroxide slurry in combination with a pH in the range of ρpH3.0 to pH 7.0. 2. The method for producing copper powder according to claim 1, wherein fluctuation control is performed.
[3] 前記 pHの変動制御は、還元剤及び pH調整剤の添カ卩開始時の始点 pHと添加終了 時の終点 pHとの差を 3. 0以下に制御することを特徴とする請求項 1または請求項 2 に記載の銅粉の製造方法。 [3] The variation control of the pH is characterized in that the difference between the starting pH at the start of the addition of the reducing agent and the pH adjusting agent and the end pH at the end of the addition is controlled to 3.0 or less. The manufacturing method of the copper powder of Claim 1 or Claim 2.
[4] 前記第 1還元処理において、水酸化銅スラリーに、還元剤としてのヒドラジン類と pH 調整剤としてのアンモニア水溶液とを併用して添加することにより変動する pHの最低 pHが 2. 8以上であることを特徴とする請求項 1〜請求項 3のいずれかに記載の銅粉 の製造方法。 [4] In the first reduction treatment, a minimum pH of 2.8 or more that fluctuates by adding hydrazine as a reducing agent and an aqueous ammonia solution as a pH adjuster to the copper hydroxide slurry in combination. The method for producing a copper powder according to any one of claims 1 to 3, wherein:
[5] 前記アルカリ溶液は、アンモニア水溶液であることを特徴とする請求項 1〜請求項 4 の!、ずれかに記載の銅粉の製造方法。  [5] The method for producing copper powder according to any one of claims 1 to 4, wherein the alkaline solution is an aqueous ammonia solution.
[6] 前記洗浄亜酸化銅スラリーは、 ρΗ4. 1〜ρΗ6. 0であることを特徴とする請求項 1〜 請求項 5の 、ずれかに記載の銅粉の製造方法。 [6] The method for producing copper powder according to any one of claims 1 to 5, wherein the washed cuprous oxide slurry is ρΗ4.1 to ρΗ6.0.
[7] 請求項 1〜請求項 6のいずれかに記載の銅粉の製造方法で得られることを特徴とす る銅粉。 [7] A copper powder obtained by the method for producing a copper powder according to any one of claims 1 to 6.
PCT/JP2007/055956 2006-03-24 2007-03-23 Process for production of copper powder and copper powder obtained by the process WO2007111231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-082457 2006-03-24
JP2006082457A JP5144022B2 (en) 2006-03-24 2006-03-24 Copper powder manufacturing method and copper powder obtained by the manufacturing method

Publications (1)

Publication Number Publication Date
WO2007111231A1 true WO2007111231A1 (en) 2007-10-04

Family

ID=38541149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055956 WO2007111231A1 (en) 2006-03-24 2007-03-23 Process for production of copper powder and copper powder obtained by the process

Country Status (5)

Country Link
JP (1) JP5144022B2 (en)
KR (1) KR20080104020A (en)
CN (1) CN101394961A (en)
TW (1) TW200744954A (en)
WO (1) WO2007111231A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274979A (en) * 2011-09-20 2011-12-14 南京林业大学 Method for preparing nano copper powder in micromolecular viscous medium
CN103480855A (en) * 2013-05-28 2014-01-01 昆明物语科技有限公司 Preparation method of superfine copper powder for copper paste
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101722314B (en) * 2009-11-20 2014-08-20 云南大学 Method for preparing Cu2O-Cu composite microsphere by adopting bean flour as template
TWI450778B (en) * 2010-01-11 2014-09-01 Oriental Happy Entpr Co Ltd A method of industry-scale for producing sub-micro and nano copper powder
JP2011174144A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Fine powder of copper and method for producing the same
JP5720693B2 (en) * 2010-10-06 2015-05-20 旭硝子株式会社 Method for producing conductive copper particles
JP5785433B2 (en) * 2011-04-28 2015-09-30 三井金属鉱業株式会社 Low carbon copper particles
JP5926644B2 (en) * 2011-09-30 2016-05-25 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method for producing the same
KR101408137B1 (en) * 2012-11-02 2014-06-17 한국과학기술연구원 Method of fabricating copper nano particle having oxidation resistance and copper nano particle having oxidation resistance
KR102118308B1 (en) 2012-11-26 2020-06-03 미쓰이금속광업주식회사 Copper powder and method for producing same
CN103658675B (en) * 2013-12-23 2015-06-24 广东东硕科技有限公司 Copper nanowire and preparation method thereof
CN105705276B (en) 2014-02-14 2018-01-19 三井金属矿业株式会社 Copper powder
CN104028763B (en) * 2014-06-11 2017-01-04 杭州前进齿轮箱集团股份有限公司 A kind of pyrite strengthens the manufacture method of wet copper-based friction plate
CN104858415B (en) * 2015-04-23 2017-03-01 金川集团股份有限公司 A kind of washing methods of super fine silver powder
JP6811012B2 (en) * 2015-12-02 2021-01-13 Dowaエレクトロニクス株式会社 How to make copper powder
CN109475942B (en) 2016-08-03 2022-10-28 株式会社Adeka Method for producing copper powder
JP6549298B1 (en) 2018-09-21 2019-07-24 Jx金属株式会社 Pulverizable copper powder and method for producing the same
CN111957986B (en) * 2020-08-20 2023-04-18 湖南泽宇新材料有限公司 Spherical nano copper powder and preparation method and application thereof
CN113523269B (en) * 2021-06-08 2023-06-16 五邑大学 Copper powder and preparation method and application thereof
JP7000621B1 (en) * 2021-06-17 2022-01-19 古河ケミカルズ株式会社 Method for manufacturing copper fine particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JP2005163141A (en) * 2003-12-04 2005-06-23 Ishihara Sangyo Kaisha Ltd Copper powder, its production method, flowable composition with the same blended, and electrode obtained by using the same
JP2005206931A (en) * 2003-12-26 2005-08-04 Sumitomo Electric Ind Ltd Method for producing metal powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728726B2 (en) * 1989-05-10 1998-03-18 正同化学工業株式会社 Method for producing fine copper powder
JP2638271B2 (en) * 1990-09-06 1997-08-06 住友金属工業株式会社 Production method of copper fine powder
JPH06235006A (en) * 1993-02-09 1994-08-23 Sumitomo Metal Mining Co Ltd Laminated silver powder, flaky silver powder, their production, conductive paste composition and conductive adhesive composition
JP2911429B2 (en) * 1997-06-04 1999-06-23 三井金属鉱業株式会社 Production method of copper fine powder
JP4639395B2 (en) * 2001-08-09 2011-02-23 Dowaエレクトロニクス株式会社 Method for producing silver particles
JP4145127B2 (en) * 2002-11-22 2008-09-03 三井金属鉱業株式会社 Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder
JP4252349B2 (en) * 2003-04-11 2009-04-08 石原産業株式会社 Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
JP4868716B2 (en) * 2004-04-28 2012-02-01 三井金属鉱業株式会社 Flake copper powder and conductive paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JP2005163141A (en) * 2003-12-04 2005-06-23 Ishihara Sangyo Kaisha Ltd Copper powder, its production method, flowable composition with the same blended, and electrode obtained by using the same
JP2005206931A (en) * 2003-12-26 2005-08-04 Sumitomo Electric Ind Ltd Method for producing metal powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274979A (en) * 2011-09-20 2011-12-14 南京林业大学 Method for preparing nano copper powder in micromolecular viscous medium
CN102274979B (en) * 2011-09-20 2013-04-24 南京林业大学 Method for preparing nano copper powder in micromolecular viscous medium
CN103480855A (en) * 2013-05-28 2014-01-01 昆明物语科技有限公司 Preparation method of superfine copper powder for copper paste
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same

Also Published As

Publication number Publication date
JP2007254846A (en) 2007-10-04
JP5144022B2 (en) 2013-02-13
CN101394961A (en) 2009-03-25
TW200744954A (en) 2007-12-16
KR20080104020A (en) 2008-11-28

Similar Documents

Publication Publication Date Title
WO2007111231A1 (en) Process for production of copper powder and copper powder obtained by the process
JP5392884B2 (en) Method for producing copper powder
JP5355007B2 (en) Method for producing spherical silver powder
JP5519938B2 (en) Method for producing copper powder for conductive paste
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP3984534B2 (en) Copper powder for conductive paste and method for producing the same
WO2005009652A1 (en) Fine-grain silver powder and process for producing the same
JP2010077495A (en) Silver-covered copper fine particle, dispersed liquid thereof and method for producing the same
JP4651533B2 (en) Method for producing copper particles
JP5155840B2 (en) Method for producing metal hydroxide particles
JP4204849B2 (en) Production method of fine copper powder
KR101236246B1 (en) Copper powder
JP2012126942A (en) Fine spherical copper powder and method for producing the same
JP4756652B2 (en) Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP4433743B2 (en) Method for producing copper fine particles
JP4448962B2 (en) Manufacturing method of nickel-coated fine copper powder
JP2008285761A (en) Fine granular copper powder
JP2009052146A (en) Copper powder and its manufacturing method
JP5500237B1 (en) Silver powder
JP4352121B2 (en) Copper powder manufacturing method
JP5729842B2 (en) Copper powder
JP7380947B2 (en) Method for producing conductive metal particles and conductive metal particles
JP2008223101A (en) Method for producing metal grain
TW202030033A (en) Method for producing monodispersed ag powder
JP5954473B2 (en) Silver powder manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780007353.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087023094

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739397

Country of ref document: EP

Kind code of ref document: A1