JP2005163141A - Copper powder, its production method, flowable composition with the same blended, and electrode obtained by using the same - Google Patents

Copper powder, its production method, flowable composition with the same blended, and electrode obtained by using the same Download PDF

Info

Publication number
JP2005163141A
JP2005163141A JP2003406218A JP2003406218A JP2005163141A JP 2005163141 A JP2005163141 A JP 2005163141A JP 2003406218 A JP2003406218 A JP 2003406218A JP 2003406218 A JP2003406218 A JP 2003406218A JP 2005163141 A JP2005163141 A JP 2005163141A
Authority
JP
Japan
Prior art keywords
copper
compound
copper powder
sulfur compound
copper particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003406218A
Other languages
Japanese (ja)
Other versions
JP4208704B2 (en
Inventor
Masanori Tomonari
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003406218A priority Critical patent/JP4208704B2/en
Publication of JP2005163141A publication Critical patent/JP2005163141A/en
Application granted granted Critical
Publication of JP4208704B2 publication Critical patent/JP4208704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper powder which has more excellent oxidation resistance, and has excellent conductivity as well. <P>SOLUTION: The surface of copper grains are coated with a sulfur compound such as acid thiols, e.g., mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid and thioacetic acid, and a silicon oxide. The copper powder is produced by reacting a copper compound and a reducing agent in the presence of a sulfur compound to obtain copper grains coated with the sulfur compound, and next subjecting a silicon compound such as alkoxysilane to hydrolysis in the presence of the obtained copper grains. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐酸化性に優れた銅粉末及びその製造方法、並びに銅粉末を配合した流動性組成物、更には銅粉末を用いて形成した電極に関する。   The present invention relates to a copper powder excellent in oxidation resistance, a method for producing the same, a fluid composition containing the copper powder, and an electrode formed using the copper powder.

銅粉末は良好な電気伝導性を有する廉価な材料であり、コンデンサー等の外部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いられている。また、近年、積層セラミックスコンデンサーの内部電極にも用いられ始めている。積層セラミックスコンデンサーは、電解コンデンサー、フィルムコンデンサー等他の形式のコンデンサーと比較して、大容量が得られ易く、実装性に優れ、安全性・安定性が高いので、急速に普及している。最近の電子機器の小型化に伴い、積層セラミックスコンデンサーも小型化する方向にあるが、大容量を維持するには、セラミックスシートの積層数を減らさずに小型化する必要があり、強度等の点でシートの薄層化には限界があるため、パラジウム、ニッケルや銅などの微細な金属粒子を用い内部電極を薄層化することで、積層セラミックスコンデンサーの小型化を実現している。   Copper powder is an inexpensive material with good electrical conductivity, and as a material to ensure electrical continuity such as external electrodes such as capacitors, electrode members such as printed wiring board circuits, and various electrical contact members. Widely used. In recent years, it has begun to be used for internal electrodes of multilayer ceramic capacitors. Multilayer ceramic capacitors are rapidly spreading because they are easy to obtain a large capacity compared to other types of capacitors such as electrolytic capacitors and film capacitors, are excellent in mountability, and have high safety and stability. With the recent miniaturization of electronic equipment, multilayer ceramic capacitors are also in the direction of miniaturization, but in order to maintain a large capacity, it is necessary to miniaturize without reducing the number of laminated ceramic sheets. However, since there is a limit to thinning the sheet, the miniaturization of the multilayer ceramic capacitor is realized by thinning the internal electrode using fine metal particles such as palladium, nickel and copper.

このような分野では、一般的に、金属粒子をエポキシ樹脂、フェノール樹脂などのバインダーと混合してペースト化あるいは塗料化し、この金属ペースト・塗料を、例えば、プリント配線板であれば、基板にスクリーン印刷した後、積層セラミックスコンデンサーであれば、薄層のセラミックスシート上に塗布し、シートを積層した後、それぞれ加熱焼成して電気回路、電極等を形成している。電気的導通を確保するには、用いる金属粒子に金属酸化物ができる限り含まれないものが良いが、銅粉末は非常に酸化され易く、加熱焼成を窒素ガス等の不活性ガスを用いて非酸化性雰囲気下で行っても、銅粒子表面の酸化を十分に防げず、所望の性能の電極等が得られない。   In such fields, generally, metal particles are mixed with a binder such as an epoxy resin or a phenol resin to form a paste or paint, and the metal paste / paint is, for example, a printed wiring board on a substrate. In the case of a multilayer ceramic capacitor after printing, it is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form an electric circuit, an electrode, and the like. In order to ensure electrical continuity, the metal particles used should not contain metal oxides as much as possible. However, copper powder is very easy to oxidize, and heat firing is performed using an inert gas such as nitrogen gas. Even if it is performed in an oxidizing atmosphere, the oxidation of the surface of the copper particles cannot be sufficiently prevented, and an electrode having a desired performance cannot be obtained.

このため、耐酸化性に優れた銅粉末が求められており、例えば、水溶性の有機溶媒中で、銅粉、アルコキシシラン、水を反応させてアルコキシシランの加水分解生成物を生成させ、得られた懸濁液にゲル化剤を添加して銅粉の粒子表面にSiOゲルコーティング膜を被着させる技術が提案されている(特許文献1参照)。また一方、金属銅微粒子が液中に分散しているスラリーに、珪酸のアルカリ金属塩等を含む水溶液を添加し、次いで酸もしくはアルカリでpHを調整して、該水溶性塩から誘導される金属酸化物や複合酸化物を銅微粒子表面に固着させて、熱収縮特定を改善する技術が提案されている(特許文献2参照)。更には、シリコーンオイルと硫黄化合物とで銅粒子を処理する技術も提案されている(特許文献3)。 For this reason, copper powder excellent in oxidation resistance is required, for example, by reacting copper powder, alkoxysilane, and water in a water-soluble organic solvent to produce a hydrolysis product of alkoxysilane. A technique has been proposed in which a gelling agent is added to the resulting suspension to deposit a SiO 2 gel coating film on the surface of the copper powder particles (see Patent Document 1). On the other hand, a metal derived from the water-soluble salt by adding an aqueous solution containing an alkali metal salt of silicic acid to a slurry in which metal copper fine particles are dispersed in the liquid, and then adjusting the pH with an acid or alkali. There has been proposed a technique for improving heat shrinkage specification by fixing an oxide or a composite oxide on the surface of a copper fine particle (see Patent Document 2). Furthermore, the technique which processes a copper particle with a silicone oil and a sulfur compound is also proposed (patent document 3).

特開2003−16832号公報JP 2003-16832 A 特開2000−345201号公報JP 2000-345201 A 特願2003−292861号Japanese Patent Application No. 2003-292861

銅粒子の表面に珪素酸化物等を被覆することにより、銅粒子と大気中の酸素との接触はある程度回避され、銅粒子の耐酸化性は改善されるものの、その効果は十分ではなく更なる改善が求められている。即ち、特許文献1記載の技術では、銅粒子の表面にSiOゲルコーティング膜を形成させるが、平均粒子径が1〜10μm程度の比較的大きい銅粒子の耐酸化性は向上するものの、微細電極に用いられる平均粒子径が1μm以下の微粒子に対しては十分な膜形成ができないためその効果が十分ではない。一方、特許文献2記載の技術では、熱収縮特性を改善し、積層セラミックスコンデンサー製造時に生じるデラミネーションやクラックは抑制されるものの、耐酸化性の効果は不十分であり、そのため、銅粒子として予め表面を酸化処理したものを用いているが、それでも所望の耐酸化性は得られていない。また、特許文献3記載の技術は、500℃程度の高温度下では優れた耐酸化性を示すが、200℃未満の比較的低い温度から酸化が始まるので、電極の種類や製法によっては適当ではなかった。そこで、本発明は、より一層耐酸化性に優れ、しかも導電性に優れた銅粉末を提供するものである。 By covering the surface of the copper particles with silicon oxide or the like, contact between the copper particles and oxygen in the atmosphere is avoided to some extent, and the oxidation resistance of the copper particles is improved, but the effect is not sufficient and further There is a need for improvement. That is, in the technique described in Patent Document 1, a SiO 2 gel coating film is formed on the surface of the copper particles. Although the oxidation resistance of relatively large copper particles having an average particle diameter of about 1 to 10 μm is improved, the fine electrode For fine particles having an average particle size of 1 μm or less used in the above, a sufficient film cannot be formed, so that the effect is not sufficient. On the other hand, in the technique described in Patent Document 2, although heat shrinkage characteristics are improved and delamination and cracks generated during the production of the multilayer ceramic capacitor are suppressed, the effect of oxidation resistance is insufficient. Although the surface is oxidized, the desired oxidation resistance is still not obtained. The technique described in Patent Document 3 shows excellent oxidation resistance at a high temperature of about 500 ° C., but the oxidation starts from a relatively low temperature of less than 200 ° C., so it is not appropriate depending on the type of electrode and the manufacturing method. There wasn't. Therefore, the present invention provides a copper powder that is further excellent in oxidation resistance and excellent in conductivity.

本発明者は、銅粒子の耐酸化性をより改善するために、銅粒子全面に緻密な珪素酸化物の被覆層を均質に形成させる必要があると考え、鋭意研究を重ねた結果、珪素酸化物の被覆工程において硫黄化合物を存在させると、その銅粒子の表面に珪素酸化物の被覆が形成され易く、耐酸化性が改善できることなどを見出し、本発明を完成した。   The present inventor considered that it is necessary to form a dense silicon oxide coating layer uniformly on the entire surface of the copper particles in order to further improve the oxidation resistance of the copper particles. The present inventors completed the present invention by discovering that when a sulfur compound is present in the object coating step, a coating of silicon oxide is easily formed on the surface of the copper particles, and the oxidation resistance can be improved.

即ち、本発明は、
(1)銅粒子の表面を硫黄化合物と珪素酸化物で被覆したことを特徴とする銅粉末、(2)硫黄化合物と銅粒子の存在下、加水分解性珪素化合物を加水分解して、銅粒子の表面を硫黄化合物と珪素酸化物とで被覆することを特徴とする銅粉末の製造方法、である。
また、本発明は、前記銅粉末を配合してなる流動性組成物であり、更に前記銅粉末を用いて形成した電極である。
That is, the present invention
(1) Copper powder characterized by covering the surface of copper particles with a sulfur compound and silicon oxide, (2) Copper particles by hydrolyzing a hydrolyzable silicon compound in the presence of the sulfur compound and copper particles The copper powder is coated with a sulfur compound and silicon oxide.
Moreover, this invention is a fluid composition formed by mix | blending the said copper powder, Furthermore, it is an electrode formed using the said copper powder.

本発明は耐酸化性に優れた銅粉末であって、銅粒子の表面を硫黄化合物及び珪素酸化物を併用して被覆することで、珪素酸化物の被覆が緻密なものになり易く、また、銅粒子全面に均一な被覆層が形成され易く、銅粒子の耐酸化性をより一層改善できると考えられる。このため、比表面積が大きい微細な銅粒子にも効果が高く、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いることができる。特に、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材に適用すると、薄膜で高密度の電極が得られる。また、珪素酸化物としてアルコキシシランの加水分解生成物を用いると、バインダー樹脂や溶媒との親和性を改良する効果もあり、分散が容易で、少量のバインダー樹脂、溶媒でペースト化や塗料化が容易にできる。   The present invention is a copper powder excellent in oxidation resistance, and by covering the surface of the copper particles in combination with a sulfur compound and silicon oxide, the silicon oxide coating tends to be dense, It is considered that a uniform coating layer is easily formed on the entire surface of the copper particles, and the oxidation resistance of the copper particles can be further improved. For this reason, it is highly effective for fine copper particles with a large specific surface area, ensuring electrical continuity such as external electrodes and internal electrodes such as capacitors, electrode members such as circuits of printed wiring boards, and various electrical contact members. It can be widely used as a material for this purpose. In particular, when applied to an electrode member such as an external electrode such as a capacitor, an internal electrode, or a circuit of a printed wiring board, a thin film and a high-density electrode can be obtained. In addition, when an alkoxysilane hydrolysis product is used as a silicon oxide, there is an effect of improving the affinity with a binder resin or a solvent, and it is easy to disperse and can be made into a paste or paint with a small amount of a binder resin or a solvent. Easy to do.

本発明は、銅粒子の表面を硫黄化合物と珪素酸化物で被覆した銅粉末である。一般的に、珪素酸化物は銅粒子の表面に被覆し難いと言われ、このため、珪素酸化物では緻密な被覆層が得られず、十分な耐酸化性が得られなかったと考えられる。一方の硫黄化合物は銅粒子に被覆し易いものであり、本発明では、おそらくは、銅粒子の表面に存在する硫黄化合物を介して、緻密な珪素酸化物の被覆層が形成されるのではないかと推測される。金属銅が酸化されるとCuOとなり重量が増加するので、非酸化性雰囲気下60℃の温度で10時間加熱後の重量に対し、重量の増加率が0.5%となる温度を耐酸化性の指標に用いると、本発明の銅粉末ではこの温度が250℃以上300℃未満となり、比較的低温度の加熱焼成ではほとんど酸化しない。   The present invention is a copper powder in which the surface of copper particles is coated with a sulfur compound and silicon oxide. In general, it is said that silicon oxide is difficult to coat on the surface of copper particles. For this reason, it is considered that a dense coating layer cannot be obtained with silicon oxide, and sufficient oxidation resistance cannot be obtained. One sulfur compound is easily coated on copper particles, and in the present invention, a dense silicon oxide coating layer is probably formed via the sulfur compound present on the surface of the copper particles. Guessed. When metallic copper is oxidized, it becomes CuO and the weight increases. Therefore, the temperature at which the rate of weight increase is 0.5% with respect to the weight after heating for 10 hours at a temperature of 60 ° C. in a non-oxidizing atmosphere. When used as an index, this temperature is 250 ° C. or higher and lower than 300 ° C. in the copper powder of the present invention, and hardly oxidizes when heated and fired at a relatively low temperature.

本発明で被覆とは、硫黄化合物や珪素酸化物が何らかの形態で銅粒子の表面に付着している状態を言い、具体的には硫黄化合物や珪素酸化物が銅粒子の表面と化学的に反応し結合した状態、銅粒子の表面に物理的に吸着した状態、これらが複合した状態、あるいは、銅粒子の表面に硫黄化合物が付着し、その硫黄化合物と珪素酸化物が化学的に結合したり、物理的に吸着した状態などを含める。好ましい被覆形態は、銅粒子の表面に硫黄化合物の吸着層が形成され、その上に珪素酸化物の被覆層を形成させたものであり、珪素酸化物の被覆層がより緻密なものとなる。被覆状態は、電子顕微鏡観察の他、例えば、XPSやオージェ分光法などにより推認できる。被覆層の厚みには特に制限はなく、通常、約1〜100nm程度、好ましくは1〜50nm、より好ましくは1〜25nm、更に好ましくは2〜15nmである。   In the present invention, coating means a state in which sulfur compound or silicon oxide is attached to the surface of copper particles in some form, specifically, sulfur compound or silicon oxide reacts chemically with the surface of copper particles. In a state of being bonded to each other, in a state of being physically adsorbed on the surface of the copper particles, a state in which these are combined, or a sulfur compound is adhered to the surface of the copper particles, and the sulfur compound and silicon oxide are chemically bonded. Include physically adsorbed state. In a preferred coating form, a sulfur compound adsorption layer is formed on the surface of the copper particles, and a silicon oxide coating layer is formed thereon, so that the silicon oxide coating layer becomes denser. The covering state can be inferred by, for example, XPS or Auger spectroscopy in addition to observation with an electron microscope. There is no restriction | limiting in particular in the thickness of a coating layer, Usually, about 1-100 nm grade, Preferably it is 1-50 nm, More preferably, it is 1-25 nm, More preferably, it is 2-15 nm.

本発明において珪素酸化物とは、珪素の酸化物、珪素の含水酸化物、珪素の水酸化物を包含する化合物であり、アルコキシシラン、クロロシラン等の珪素化合物の加水分解生成物、あるいは水ガラス等の珪酸塩の中和加水分解生成物などが挙げられ、シリコーンオイルは含まない。特に、アルコキシシランの加水分解生成物が、より緻密な膜を形成できるため好ましい。珪素酸化物の被覆層には、本発明の効果が損なわれない範囲で、未反応の加水分解性珪素化合物のモノマー、オリゴマーや、水ガラスのアルカリ成分などが含まれていても良い。珪素酸化物の被覆量は、銅粒子に対し、SiO換算で5〜20重量%の範囲であれば優れた耐酸化性が得られるので好ましく、6〜15重量%の範囲が更に好ましい。 In the present invention, the silicon oxide is a compound including silicon oxide, silicon hydrated oxide, silicon hydroxide, hydrolyzed products of silicon compounds such as alkoxysilane and chlorosilane, water glass, etc. And silicate neutralized hydrolysis products, and silicone oil is not included. In particular, a hydrolysis product of alkoxysilane is preferable because a denser film can be formed. The silicon oxide coating layer may contain an unreacted hydrolyzable silicon compound monomer or oligomer, an alkali component of water glass, or the like as long as the effects of the present invention are not impaired. The coating amount of silicon oxide is preferably in the range of 5 to 20% by weight in terms of SiO 2 with respect to the copper particles because excellent oxidation resistance is obtained, and more preferably in the range of 6 to 15% by weight.

硫黄化合物としては、メルカプト基(−SH)を持つ有機化合物RSH(Rはアルキル基などの炭化水素基)であるチオール類、チオグリコール類、チオアミド類、ジチオール類、チオール酸(チオン酸)類及びその誘導体の他に、チオン類、ポリチオール類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等を用いることができ、これらを1種または2種以上を用いても良い。具体的には、チオール類としては、例えば、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等の酸チオール類、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、ドデカンチオール、ヘキサンチオール、アリルメルカプタン、ジメチルメルカプタン、メルカプトエタノール、アミノエチルメルカプタン、チオジエチルアミン、システイン等の脂肪族チオール類、シクロヘキシルチオール等の脂環式チオール類、チオフェノール等の芳香族チオール類等が、チオグリコール類としては、例えば、チオジエチレングリコール、チオジグリコール酸、チオグリコール酸メチル、エチレンチオグリコール等が、チオアミド類としては、例えば、チオホルムアミド等が挙げられる。その中でも、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等の酸チオール類などの末端に水酸基を有する硫黄化合物が耐酸化性が一層改善されるため好ましい。硫黄化合物の含有量は適宜設定することができ、少なくとも、銅1000重量部に対し0.5〜50重量部の範囲に設定するとその効果が得られ易いので好ましく、1〜20重量部の範囲が更に好ましい。   Sulfur compounds include thiols, thioglycols, thioamides, dithiols, thiolic acids (thionic acids), which are organic compounds RSH (R is a hydrocarbon group such as an alkyl group) having a mercapto group (—SH), and In addition to the derivatives, sulfur compounds such as thiones, polythiols, thiocarbonates, thioureas, hydrogen sulfide, and derivatives thereof can be used, and one or more of these may be used. . Specifically, examples of the thiols include acid thiols such as mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, and thioacetic acid, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n- Aliphatic thiols such as butyl mercaptan, dodecanethiol, hexanethiol, allyl mercaptan, dimethyl mercaptan, mercaptoethanol, aminoethyl mercaptan, thiodiethylamine, cysteine, alicyclic thiols such as cyclohexylthiol, and aromatic thiols such as thiophenol Examples of thioglycols include, for example, thiodiethylene glycol, thiodiglycolic acid, methyl thioglycolate, ethylenethioglycol, Te is, for example, thioformamide and the like. Among them, a sulfur compound having a hydroxyl group at the terminal, such as acid thiols such as mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, and thioacetic acid is preferable because the oxidation resistance is further improved. The content of the sulfur compound can be appropriately set, and at least, it is preferable to set it in the range of 0.5 to 50 parts by weight with respect to 1000 parts by weight of copper because the effect is easily obtained, and the range of 1 to 20 parts by weight is preferable. Further preferred.

銅粒子の形状は球状、板状、フレーク状、角形状などあらゆる形状のものであっても良く、優れた充填性を有するほぼ真球の球状粒子であるのが好ましい。また、銅粒子の大きさはどのようなものであっても良く、平均粒子径として10μm以下であればペースト、インキ、塗料に用いられ易い。特に、0.005〜1μmの範囲であると、欠陥がほとんどない高密度の電極が得られ易く、しかも塗料等への分散性に優れているので、好ましい。より好ましい範囲は、0.05〜1.0μmであり、更に好ましい範囲は0.1〜1.0μmであり、最も好ましい範囲は0.2〜1.0μmである。平均粒子径は電子顕微鏡法により測定した累積50%径で表される。銅の粒子形状は電子顕微鏡で観察される。   The shape of the copper particles may be any shape such as a spherical shape, a plate shape, a flake shape, and a square shape, and is preferably a substantially spherical particle having excellent filling properties. Moreover, what kind of thing may be sufficient as the magnitude | size of a copper particle, and if it is 10 micrometers or less as an average particle diameter, it will be easy to use for a paste, ink, and a coating material. In particular, the range of 0.005 to 1 μm is preferable because a high-density electrode having almost no defects can be easily obtained and the dispersibility in a paint or the like is excellent. A more preferable range is 0.05 to 1.0 μm, a further preferable range is 0.1 to 1.0 μm, and a most preferable range is 0.2 to 1.0 μm. The average particle diameter is expressed as a cumulative 50% diameter measured by electron microscopy. The particle shape of copper is observed with an electron microscope.

次に、本発明は、銅粒子の表面を硫黄化合物と珪素酸化物で被覆した銅粉末の製造方法であって、硫黄化合物と銅粒子の存在下、加水分解性珪素化合物を加水分解して、銅粒子の表面を硫黄化合物と珪素酸化物とで被覆する。ここで加水分解とは、加水分解性化合物と水とを反応させる通常の加水分解の他に、中和加水分解、加熱加水分解を包含する反応を言う。具体的には、銅粒子を水媒液またはアルコール類等の有機系媒液に分散させた懸濁液の状態とし、その懸濁液と珪素化合物を混合し、常法により珪素化合物を加水分解あるいは中和して、銅粒子の表面に珪素酸化物を被覆する際に、硫黄化合物を存在させる。硫黄化合物は、銅粒子の懸濁液中に予め存在させておいても良く、珪素化合物を含む溶液に添加し存在させることもでき、あるいは、珪素化合物の加水分解あるいは中和の際に別に添加し存在させることができる。好ましい形態は、予め銅粒子の表面に硫黄化合物を被覆させて存在させておくと、珪素酸化物の被覆層がより緻密なものとなる。硫黄化合物は銅粒子に吸着し易いので、銅粒子を製造する工程で硫黄化合物を添加したり、珪素化合物との混合前に予め懸濁液に添加するだけでも、銅粒子の表面に硫黄化合物の吸着層が形成される。   Next, the present invention is a method for producing a copper powder in which the surface of a copper particle is coated with a sulfur compound and silicon oxide, wherein the hydrolyzable silicon compound is hydrolyzed in the presence of the sulfur compound and the copper particle, The surface of the copper particles is covered with a sulfur compound and silicon oxide. Here, the hydrolysis refers to a reaction including neutralization hydrolysis and heat hydrolysis in addition to normal hydrolysis in which a hydrolyzable compound and water are reacted. Specifically, it is in a suspension state in which copper particles are dispersed in an aqueous medium solution or an organic medium solution such as alcohol, the suspension and the silicon compound are mixed, and the silicon compound is hydrolyzed by a conventional method. Or when neutralizing and coat | covering the silicon oxide on the surface of a copper particle, a sulfur compound is made to exist. The sulfur compound may be present in advance in the suspension of copper particles, and may be added to the solution containing the silicon compound, or may be added separately during the hydrolysis or neutralization of the silicon compound. Can exist. In a preferred embodiment, when the surface of the copper particles is preliminarily coated with a sulfur compound, the silicon oxide coating layer becomes denser. Since sulfur compounds easily adsorb to copper particles, adding sulfur compounds in the process of producing copper particles, or adding them to the suspension in advance before mixing with silicon compounds, the sulfur compounds on the surface of the copper particles. An adsorption layer is formed.

硫黄化合物としては、前記の硫黄化合物を用いることができ、例えば、メルカプト基(−SH)を持つ有機化合物RSH(Rはアルキル基などの炭化水素基)であるチオール類、チオグリコール類、チオアミド類、ジチオール類、チオール酸(チオン酸)類及びその誘導体の他に、チオン類、ポリチオール類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等を用いることができ、これらを1種または2種以上を用いても良い。中でも、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等の酸チオール類などの末端に水酸基を有する硫黄化合物を用いると、緻密な珪素酸化物の被覆層が得られ易いので好ましい。   As the sulfur compound, the above-described sulfur compounds can be used. For example, thiols, thioglycols, and thioamides, which are organic compounds RSH (R is a hydrocarbon group such as an alkyl group) having a mercapto group (-SH). In addition to dithiols, thiolic acids (thionic acids) and derivatives thereof, sulfur compounds such as thiones, polythiols, thiocarbonates, thioureas, hydrogen sulfide, and derivatives thereof can be used. You may use 1 type (s) or 2 or more types. In particular, when a sulfur compound having a hydroxyl group at the terminal, such as acid thiols such as mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, and thioacetic acid, a dense silicon oxide coating layer is easily obtained. Therefore, it is preferable.

加水分解性珪素化合物としては、アルコキシ基、ハロゲン基などの加水分解性基を有する珪素化合物、水ガラス等の珪酸塩などを用いることができる。中でもアルコキシシランは加水分解反応を制御し易いので好ましい。アルコキシシランは、化学式:R'4−nSi(OR)(式中、R、R'は同種または異種のアルキル基、nは1〜4の整数)で表される化合物や、それを部分縮合させたオリゴマーを包含する化合物である。前記化学式で表されるアルコキシシランは、反応性を有するアルコキシ基の数が多い、例えばnが4のテトラアルコキシシランが好ましく、Rの分子量が小さい方が加水分解が進み易いので、例えば、テトラメトキシシラン、テトラエトキシシラン等が更に好ましい。また、オリゴマーを用いると、モノマーに比べ加水分解・縮重合の速度制御や取扱いが容易であるため好ましく、平均重合度が3〜10程度のものがより好ましい。珪素化合物はそのままでも用いることができ、水やアルコール等の媒液に適宜溶解して用いることもできる。珪素化合物と銅粒子の懸濁液との混合は、懸濁液に珪素化合物を添加し混合するなど通常の方法により行うことができ、混合後任意の時間熟成しても良い。 As the hydrolyzable silicon compound, a silicon compound having a hydrolyzable group such as an alkoxy group or a halogen group, or a silicate such as water glass can be used. Of these, alkoxysilane is preferable because it easily controls the hydrolysis reaction. Alkoxysilane is a compound represented by the chemical formula: R ′ 4-n Si (OR) n (wherein R and R ′ are the same or different alkyl groups, and n is an integer of 1 to 4) or a part thereof. It is a compound that includes a condensed oligomer. The alkoxysilane represented by the above chemical formula is preferably a tetraalkoxysilane having a large number of reactive alkoxy groups, for example, n = 4, and the smaller the R molecular weight, the easier the hydrolysis proceeds. Silane, tetraethoxysilane and the like are more preferable. In addition, when an oligomer is used, it is preferable because the rate control and handling of hydrolysis / condensation polymerization are easier than those of the monomer, and those having an average degree of polymerization of about 3 to 10 are more preferable. The silicon compound can be used as it is, or can be used by appropriately dissolving in a liquid such as water or alcohol. Mixing of the silicon compound and the suspension of copper particles can be performed by an ordinary method such as adding and mixing the silicon compound to the suspension, and may be aged for an arbitrary time after mixing.

前記の硫黄化合物と銅粒子の存在下、加水分解性珪素化合物を加水分解する際に、更に保護コロイドを存在させた状態で、加水分解を行うと、保護コロイドには銅粒子同士の凝集を抑制する効果があり、銅粒子が分散した状態で珪素酸化物を被覆できるため、個々の銅粒子に均質に被覆されるので、より一層緻密な被覆層が得られ易くなるため好ましい。保護コロイドとしては公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ステアリン酸等の高級脂肪酸、ポリエチレングリコール等の合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。保護コロイドは、銅粒子の分散安定化剤として作用するものであり、その使用量は銅100重量部に対し1〜100重量部の範囲にすると、銅粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。   When hydrolyzing a hydrolyzable silicon compound in the presence of the sulfur compound and copper particles, if the hydrolysis is carried out in the presence of a protective colloid, the protective colloid suppresses aggregation of copper particles. Since the silicon oxide can be coated in a state in which the copper particles are dispersed, the individual copper particles are uniformly coated, which is preferable because a denser coating layer can be easily obtained. As the protective colloid, known ones can be used. For example, protein systems such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, natural polymers such as starch, dextrin, agar, sodium alginate, hydroxy Synthesis of celluloses such as ethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, vinyls such as polyvinyl alcohol and polyvinyl pyrrolidone, acrylic acids such as sodium polyacrylate and ammonium polyacrylate, higher fatty acids such as stearic acid, polyethylene glycol, etc. Examples thereof include polymers, polyvalent carboxylic acids such as citric acid, aniline or derivatives thereof, and these may be used alone or in combination. The protective colloid acts as a dispersion stabilizer for the copper particles. When the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of copper, the copper particles are preferably dispersed and stabilized. The range of 50 parts by weight is more preferred.

また、予め硫黄化合物を被覆した銅粒子を用いるのであれば、この銅粒子を含むアルカリ性水系懸濁液と加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することが好ましい。硫黄化合物を被覆した銅粒子を懸濁したアルカリ性水系懸濁液は、媒液に水または水とアルコール等の親水性有機媒液との混合物を用い、水系懸濁液のpHを好ましくは8〜13の範囲、より好ましくは9〜12の範囲とする。水系懸濁液がアルカリ性であると、前記加水分解生成物の縮重合が進行し、被覆層を形成し易いので好ましい。pH調整に用いる塩基性物質としては種々のものを用いることができ、特に、アンモニウム化合物やアミン類を用いると、洗浄によって除去し易く、洗浄後に銅粒子に残留しても容易に熱分解するので、電極にした場合に導電性を阻害し難いので好ましい。アンモニウム化合物としは、例えば、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム等が、アミン類としては、例えば、エチルアミン、プロピルアミン、ブチルアミン等の第1級アミン類、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の第2級アミン類、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の第3級アミン類や、2−(ジメチルアミノ)エタノール、2−(ジエチルアミノ)エタノール、2−アミノエタノール、ジエタノールアミン、N−ブチルジエタノールアミン、トリエタノールアミン等のアルカノールアミンなどが挙げられ、これらを1種用いても、2種以上を混合して用いても良い。このようなアルカリ性水系懸濁液に前記の加水分解性珪素化合物を混合すると水と反応して加水分解し、珪素酸化物の被覆が形成される。   If copper particles previously coated with a sulfur compound are used, it is preferable to hydrolyze the hydrolyzable silicon compound by mixing an alkaline aqueous suspension containing the copper particles and a hydrolyzable silicon compound. . The alkaline aqueous suspension in which the copper particles coated with the sulfur compound are suspended uses water or a mixture of water and a hydrophilic organic medium such as alcohol as the medium, and the pH of the aqueous suspension is preferably 8 to The range is 13, and more preferably 9-12. It is preferable that the aqueous suspension is alkaline because condensation polymerization of the hydrolysis product proceeds and a coating layer is easily formed. Various basic substances can be used for pH adjustment. Particularly, when ammonium compounds and amines are used, they are easily removed by washing, and even if they remain in the copper particles after washing, they are easily decomposed. In the case of using an electrode, it is preferable because the conductivity is hardly hindered. Examples of the ammonium compound include ammonia, ammonium carbonate, and ammonium hydrogen carbonate. Examples of the amine include primary amines such as ethylamine, propylamine, and butylamine, and primary amines such as diethylamine, dipropylamine, and dibutylamine. Tertiary amines such as secondary amines, triethylamine, tripropylamine, tributylamine, 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol, 2-aminoethanol, diethanolamine, N-butyldiethanolamine, Examples thereof include alkanolamines such as ethanolamine, and these may be used singly or in combination of two or more. When such a hydrolyzable silicon compound is mixed with such an alkaline aqueous suspension, it reacts with water and hydrolyzes to form a silicon oxide coating.

本発明で用いる銅粒子は、公知の方法で得られたものを用いることができ、例えば、(a)アトマイズ法等の気相で銅化合物を還元反応する方法、(b)湿式還元法の液相で銅化合物を還元する方法等が挙げられる。中でも、特別な設備を要しない(b)の方法が工業的に有利である。   As the copper particles used in the present invention, those obtained by a known method can be used. For example, (a) a method of reducing a copper compound in a gas phase such as an atomizing method, and (b) a liquid of a wet reduction method. And a method of reducing the copper compound in the phase. Among these, the method (b) that does not require special equipment is industrially advantageous.

湿式法を適用する場合は、硫黄化合物の存在下で還元反応を行うと、銅粒子が生成すると同時に、銅粒子の表面に硫黄化合物を被覆できるので好ましい。本発明においては、硫黄化合物の存在下、銅化合物と還元剤とを反応させて、硫黄化合物を被覆した銅粒子を得る第1の工程、得られた銅粒子の存在下、加水分解性珪素化合物を加水分解する第2の工程からなる方法を適用できる。具体的には、銅化合物を水またはアルコール類等の有機系媒液に溶解し、次いで、還元剤と混合して還元反応を行う際に硫黄化合物を存在させる。硫黄化合物は、銅化合物溶液あるいは還元剤に添加しても良く、還元反応中に硫黄化合物を別途添加しても良い。硫黄化合物の使用量は適宜設定することができ、少なくとも、銅化合物1000重量部に対し0.5〜50重量部の範囲に設定するとその効果が得られ易いので好ましく、1〜20重量部の範囲が更に好ましい。   When applying the wet method, it is preferable to perform the reduction reaction in the presence of a sulfur compound because copper particles are formed and at the same time the surface of the copper particles can be coated with the sulfur compound. In the present invention, a first step of obtaining copper particles coated with a sulfur compound by reacting a copper compound with a reducing agent in the presence of a sulfur compound, a hydrolyzable silicon compound in the presence of the obtained copper particles It is possible to apply a method comprising a second step of hydrolysis. Specifically, the copper compound is dissolved in an organic medium such as water or alcohols, and then mixed with a reducing agent to cause the sulfur compound to exist when the reduction reaction is performed. The sulfur compound may be added to the copper compound solution or the reducing agent, or the sulfur compound may be added separately during the reduction reaction. The amount of the sulfur compound used can be set as appropriate, and is preferably at least 0.5 to 50 parts by weight with respect to 1000 parts by weight of the copper compound because the effect is easily obtained, preferably 1 to 20 parts by weight. Is more preferable.

第1の工程で使用する硫黄化合物は、前記の硫黄化合物を用いることができ、例えば、メルカプト基(−SH)を持つ有機化合物RSH(Rはアルキル基などの炭化水素基)であるチオール類、チオグリコール類、チオアミド類、ジチオール類、チオール酸(チオン酸)類及びその誘導体の他に、チオン類、ポリチオール類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等を用いることができ、これらを1種または2種以上を用いても良い。中でも、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等の酸チオール類などの末端に水酸基を有する硫黄化合物を用いると、第2の工程で緻密な珪素酸化物の被覆層が得られ易いので好ましい。硫黄化合物の混合量は適宜設定することができ、少なくとも、銅1000重量部に対し0.5〜50重量部の範囲に設定するとその効果が得られ易いので好ましく、1〜20重量部の範囲が更に好ましい。   As the sulfur compound used in the first step, the above-described sulfur compound can be used. For example, thiols that are organic compounds RSH (R is a hydrocarbon group such as an alkyl group) having a mercapto group (-SH), In addition to thioglycols, thioamides, dithiols, thiolic acid (thionic acid) and derivatives thereof, thiones, polythiols, thiocarbonates, thioureas, hydrogen sulfide and other sulfur compounds and their derivatives, etc. These may be used, and one or more of these may be used. In particular, when a sulfur compound having a hydroxyl group at the end, such as an acid thiol such as mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, thioacetic acid, etc. is used, a dense silicon oxide coating is formed in the second step. Since a layer is easy to be obtained, it is preferable. The mixing amount of the sulfur compound can be appropriately set. At least, it is preferable to set the amount in the range of 0.5 to 50 parts by weight with respect to 1000 parts by weight of copper because the effect is easily obtained, and the range of 1 to 20 parts by weight is preferable. Further preferred.

銅化合物としては、銅酸化物、塩化銅、塩素酸銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、炭酸水酸化銅、テトラアンミン銅硫酸塩、テトラシアノ銅酸カリウム等やそれらの水和物の無機銅化合物、蟻酸銅、酢酸銅、シュウ酸銅等やそれらの水和物の有機銅化合物を用いることができ、中でも銅酸化物が好ましい。尚、本発明では銅酸化物を、通常の銅の酸化物の他に、銅の含水酸化物、銅の水酸化物を包含する意味で用いており、銅の酸化物としては亜酸化銅(または酸化第一銅)、酸化銅(または酸化第二銅)等を用いることができる。   Copper compounds include copper oxide, copper chloride, copper chlorate, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, copper carbonate hydroxide, tetraammine copper sulfate, potassium tetracyanocuprate, etc. Inorganic copper compounds of hydrates, copper formate, copper acetate, copper oxalate and the like, and organic copper compounds of these hydrates can be used, among which copper oxide is preferred. In the present invention, a copper oxide is used in the sense of including a copper hydrated oxide and a copper hydroxide in addition to a normal copper oxide. As the copper oxide, cuprous oxide ( Alternatively, cuprous oxide), copper oxide (or cupric oxide), or the like can be used.

また、還元剤としては公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその金属塩、次亜リン酸及び次亜リン酸ナトリウム等のその金属塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。還元剤の使用量は、銅化合物から銅粒子を生成できる量であれば適宜設定することができ、銅化合物中に含まれる銅1モルに対し0.2〜5モルの範囲にあるのが好ましい。還元反応温度は10℃〜用いた媒液の沸点の範囲であれば反応が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。   Moreover, a well-known thing can be used as a reducing agent, For example, hydrazine type reducing agents, such as hydrazine, hydrazine hydrochloride, hydrazine sulfate, hydrazine compounds, such as hydrazine hydrate, sodium borohydride, sodium sulfite, hydrogen sulfite Sodium, sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and its metal salts such as sodium phosphite, hypophosphorous acid and its metal salts such as sodium hypophosphite, aldehydes, alcohols , Amines, saccharides and the like, and one or more of these may be used. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power. The amount of the reducing agent used can be appropriately set as long as it is an amount capable of generating copper particles from the copper compound, and is preferably in the range of 0.2 to 5 mol with respect to 1 mol of copper contained in the copper compound. . The reduction reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, since the reaction is easy to proceed, and more preferably in the range of 40 to 95 ° C.

また、第1の工程の還元反応においては、塩基性物質を添加して、好ましくはpHを8〜13の範囲、より好ましくは9〜12の範囲に調整してから還元反応を行っても良く、予めpH調整を行っておくと、粒子形状が整い粒度分布が均一な銅粒子が得られ易いので好ましい。pH調整に用いる塩基性物質としては種々のものを用いることができ、特に、前記のアンモニウム化合物や、第1級アミン、第2級アミン、第3級アミン、アルカノールアミン等のアミン類を用いると、容易に熱分解するので好ましい。これらの塩基性物質は、1種用いても、2種以上を混合して用いても良い。   In the reduction reaction of the first step, a basic substance may be added, and the reduction reaction may be performed after preferably adjusting the pH to a range of 8 to 13, more preferably 9 to 12. It is preferable to adjust the pH in advance, because it is easy to obtain copper particles having a uniform particle shape and a uniform particle size distribution. Various basic substances can be used for adjusting the pH. Particularly, when the above-mentioned ammonium compound or amines such as primary amine, secondary amine, tertiary amine, alkanolamine are used. It is preferable because it is easily pyrolyzed. These basic substances may be used alone or in combination of two or more.

更に、第1の工程の還元反応においては、保護コロイドを存在させると、生成した銅粒子の凝集が抑制されるので、より好ましい。保護コロイドとしては公知のものを用いることができ、例えば、前記の天然高分子、合成高分子、多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。その使用量は銅化合物100重量部に対し1〜100重量部の範囲にすると、生成した銅粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。第1の工程の後、必要に応じて適宜、ろ別、洗浄、乾燥を行っても良く、第1の工程の後そのまま、第2の工程に進んでも良い。   Further, in the reduction reaction in the first step, it is more preferable to make a protective colloid present because aggregation of the produced copper particles is suppressed. As the protective colloid, known ones can be used. For example, the above-mentioned natural polymer, synthetic polymer, polyvalent carboxylic acid, aniline or derivatives thereof can be used, and these can be used alone or in combination. May be. The amount used is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the copper compound, since the produced copper particles are easily dispersed and stabilized, and more preferably in the range of 2 to 50 parts by weight. After the first step, filtration, washing, and drying may be appropriately performed as necessary, and the second step may be directly performed after the first step.

次いで、第2の工程において、硫黄化合物を被覆した銅粒子を水媒液またはアルコール類等の有機系媒液に分散させた懸濁液と、前記の加水分解性珪素化合物とを混合して、この化合物を加水分解し、銅粒子の表面を更に珪素酸化物で被覆する。第2の工程の好ましい形態は、加水分解性珪素化合物の加水分解を前記の保護コロイドの存在下で行うことであり、銅粒子の凝集が抑制される。第2の工程で用いる保護コロイドは、第1の工程で用いたものと同じであっても良いし、異なるものであっても良く、第1の工程で用いたものを洗浄等で除くことなく引き続き第2の工程で用いることができる。   Next, in the second step, a suspension obtained by dispersing copper particles coated with a sulfur compound in an aqueous medium or an organic medium such as alcohol is mixed with the hydrolyzable silicon compound, This compound is hydrolyzed, and the surface of the copper particles is further coated with silicon oxide. A preferred form of the second step is that the hydrolyzable silicon compound is hydrolyzed in the presence of the protective colloid, and the aggregation of the copper particles is suppressed. The protective colloid used in the second step may be the same as or different from that used in the first step, without removing the one used in the first step by washing or the like. It can be subsequently used in the second step.

また、第2の工程の好ましい形態は、硫黄化合物を被覆した銅粒子をアルカリ性媒液に分散させたアルカリ性水系懸濁液を用い、加水分解性珪素化合物を加水分解するもので、加水分解生成物の縮重合が進行し、被覆層を形成し易い。このアルカリ性水系懸濁液は、媒液に水または水とアルコール等の親水性有機媒液との混合物を用い、水系懸濁液のpHを好ましくは8〜13の範囲、より好ましくは9〜12の範囲とする。pH調整に用いる塩基性物質としては種々のものを用いることができ、特に、前記のアンモニウム化合物や、第1級アミン、第2級アミン、第3級アミン、アルカノールアミン等のアミン類を用いると、容易に熱分解するので好ましい。これらの塩基性物質は、1種用いても、2種以上を混合して用いても良い。このようなアルカリ性水系懸濁液に前記の加水分解性珪素化合物を混合すると水と反応して加水分解し、珪素酸化物の被覆が形成される。   A preferred form of the second step is to hydrolyze the hydrolyzable silicon compound using an alkaline aqueous suspension in which copper particles coated with a sulfur compound are dispersed in an alkaline medium. As the polycondensation proceeds, a coating layer is easily formed. This alkaline aqueous suspension uses water or a mixture of water and a hydrophilic organic medium such as alcohol as a medium, and the pH of the aqueous suspension is preferably in the range of 8 to 13, more preferably 9 to 12. The range. Various basic substances can be used for adjusting the pH. Particularly, when the above-mentioned ammonium compound or amines such as primary amine, secondary amine, tertiary amine, alkanolamine are used. It is preferable because it is easily pyrolyzed. These basic substances may be used alone or in combination of two or more. When such a hydrolyzable silicon compound is mixed with such an alkaline aqueous suspension, it reacts with water and hydrolyzes to form a silicon oxide coating.

また、硫黄化合物を被覆した銅粒子を含有したアルカリ性水系懸濁液に前記の保護コロイドを存在させると、加水分解性珪素化合物の加水分解・縮重合を制御でき、更に緻密な被覆層が形成され易いので、より好ましい。アルコキシシランなどの加水分解性珪素化合物はアルカリ性の領域で加水分解し易く、得られた加水分解生成物と銅粒子が表面に有する水酸基との縮重合が進み、銅粒子と強固に結合する。しかし、アルカリ性下では前記加水分解生成物同士の縮重合も進み、粒子表面とは別相でポリシロキサンが形成されるので、被覆層が嵩高く緻密になり難いのではないかと推測される。そこで、保護コロイドを存在させると、加水分解生成物の縮重合を制御する働きをし、前記加水分解生成物が銅粒子の表面と結合してからポリマー化するので、緻密なポリシロキサンの被覆層が得られ易く、耐酸化性が向上すると考えられる。また、保護コロイドには銅粒子同士の凝集を抑制する効果もあると考えられ、銅粒子が分散した状態で加水分解性珪素化合物の加水分解生成物を表面に被覆できるため、個々の銅粒子に均質に縮重合物が被覆されるので、より一層緻密な被覆層が得られ易くなると考えられる。   In addition, when the protective colloid is present in an alkaline aqueous suspension containing copper particles coated with a sulfur compound, hydrolysis / condensation polymerization of the hydrolyzable silicon compound can be controlled, and a denser coating layer is formed. Since it is easy, it is more preferable. Hydrolyzable silicon compounds such as alkoxysilanes are easily hydrolyzed in an alkaline region, and the resulting hydrolysis product and polycondensation of hydroxyl groups on the copper particles proceed to bond firmly to the copper particles. However, under the alkalinity, the polycondensation of the hydrolysis products also proceeds, and polysiloxane is formed in a phase different from the particle surface. Therefore, it is estimated that the coating layer is difficult to be bulky and dense. Therefore, when a protective colloid is present, it functions to control the condensation polymerization of the hydrolysis product and polymerizes after the hydrolysis product is bonded to the surface of the copper particles, so a dense polysiloxane coating layer. It is considered that the oxidation resistance is improved. In addition, the protective colloid is considered to have an effect of suppressing aggregation of copper particles, and since the surface of the hydrolyzable silicon compound can be coated with the hydrolyzable silicon compound in a state where the copper particles are dispersed, Since the condensation polymerization product is uniformly coated, it is considered that a denser coating layer is easily obtained.

以上のようにして銅粒子を得た後、適宜、ろ別、洗浄、乾燥を行い、必要に応じて粉砕する。乾燥は銅粒子が酸化し難いように、窒素ガス、ヘリウムガス、アルゴンガス等の非酸化性ガス(不活性ガス)の雰囲気下で行うのが好ましい。   After obtaining copper particles as described above, filtration, washing, and drying are performed as appropriate, and pulverized as necessary. Drying is preferably performed in an atmosphere of a non-oxidizing gas (inert gas) such as nitrogen gas, helium gas, or argon gas so that the copper particles are not easily oxidized.

本発明の銅粉末は、必要に応じて溶媒あるいはバインダー樹脂と混合して、銅ペースト、銅インキあるいは銅塗料(銅インク)などの流動性を有する組成物にして用いられる。溶媒は用途に応じて適宜選択することができ、例えば、比較的高沸点の非極性溶剤あるいは低極性溶剤、具体的には、テルピネオール、ミネラルスピリット、キシレン、トルエン、エチルベンゼン、メシチレン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロヘキサン、シクロオクタン等を用いることができる。また、バインダー樹脂も用途に応じて適宜選択することができ、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイミドトリアジン樹脂、フラン樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコン樹脂等の熱硬化性樹脂を挙げることができ、フェノール樹脂、エポキシ樹脂は、基板との密着性が良好であるので、樹脂成分としてより好ましいものである。溶媒、バインダー樹脂の配合量は用途に応じて適宜設定することができ、例えば、銅粉末100重量部に対して、溶媒は1〜500重量部程度、バインダー樹脂は1〜50重量部程度とすることができる。このような流動性組成物には、粘度調整剤等の流動性調整剤やガラスなどの各種添加剤を配合しても良い。   The copper powder of the present invention is used as a composition having fluidity such as copper paste, copper ink or copper paint (copper ink) by mixing with a solvent or a binder resin as necessary. The solvent can be appropriately selected depending on the application, for example, a relatively high boiling nonpolar solvent or low polarity solvent, specifically, terpineol, mineral spirit, xylene, toluene, ethylbenzene, mesitylene, hexane, heptane, Octane, decane, dodecane, cyclohexane, cyclooctane and the like can be used. Further, the binder resin can also be appropriately selected according to the application, for example, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleimide triazine resin, Examples include thermosetting resins such as furan resin, urea resin, polyurethane resin, melamine resin, and silicon resin. Phenol resin and epoxy resin are more preferable as resin components because they have good adhesion to the substrate. It is. The blending amount of the solvent and the binder resin can be appropriately set according to the use. For example, the solvent is about 1 to 500 parts by weight and the binder resin is about 1 to 50 parts by weight with respect to 100 parts by weight of the copper powder. be able to. Such a fluid composition may be blended with a fluidity modifier such as a viscosity modifier and various additives such as glass.

このような流動性組成物は、通常の方法により基板に塗布後、加熱焼成して、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極を製造するのに用いることができる。本発明の銅粉末は耐酸化性に優れているので、これを用いて製造した前記の電極は電気特性の優れたものとなる。   Such a flowable composition can be used to produce an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes after being applied to a substrate by a normal method and then heated and fired. . Since the copper powder of the present invention is excellent in oxidation resistance, the electrode manufactured using the copper powder has excellent electrical characteristics.

以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例により制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
銅化合物として工業用酸化銅(N−120:エヌシーテック社製)32g、硫黄化合物として3−メルカプトプロピオン酸0.5g、保護コロイドとしてポリビニルアルコール(平均重合度1000〜1500)3g、還元剤としてヒドラジン一水和物(80%)15.65gを、室温下、純水400ミリリットルに添加した後、2−(ジメチルアミノ)エタノールでpHを10に調整した。その後、40分かけて80℃の温度に昇温し、80℃で2時間還元反応させ、3−メルカプトプロピオン酸が被覆した銅粒子を媒液中に生成させた。次いで、この媒液の温度を80℃に保持しながら、テトラエトキシシラン8.9g(銅粒子に対しSiOとして10重量%に相当)をエタノール100ミリリットルに溶解した処理液を30分間で添加し、2時間熟成させた。熟成後、濾液の電気伝導度が100μS/cm以下になるまで水洗してから銅粒子をろ別し、乾燥窒素ガスの雰囲気下で60℃の温度で10時間乾燥して本発明の銅粉末(試料A)を得た。
Example 1
Industrial copper oxide (N-120: manufactured by NTC) as a copper compound, 0.5 g of 3-mercaptopropionic acid as a sulfur compound, 3 g of polyvinyl alcohol (average polymerization degree 1000 to 1500) as a protective colloid, hydrazine as a reducing agent After adding 15.65 g of monohydrate (80%) to 400 ml of pure water at room temperature, the pH was adjusted to 10 with 2- (dimethylamino) ethanol. Thereafter, the temperature was raised to 80 ° C. over 40 minutes, and a reduction reaction was carried out at 80 ° C. for 2 hours to form copper particles coated with 3-mercaptopropionic acid in the liquid medium. Next, while maintaining the temperature of the medium at 80 ° C., a treatment solution in which 8.9 g of tetraethoxysilane (corresponding to 10% by weight as SiO 2 with respect to the copper particles) was dissolved in 100 ml of ethanol was added over 30 minutes. Aged for 2 hours. After aging, the filtrate is washed with water until the electric conductivity of the filtrate becomes 100 μS / cm or less, and then the copper particles are filtered off and dried at 60 ° C. for 10 hours in an atmosphere of dry nitrogen gas. Sample A) was obtained.

実施例2
テトラエトキシシランに替えてテトラエトキシシランのオリゴマー(エチルシリケート40:コルコート社製、平均重合度=5)6.4g(銅粒子に対しSiOとして10重量%に相当)を用いたこと以外は実施例1と同様にして本発明の銅粉末(試料B)を得た。
Example 2
Implemented except that 6.4 g of tetraethoxysilane oligomer (ethyl silicate 40: Colcoat, average polymerization degree = 5) (equivalent to 10% by weight as SiO 2 with respect to copper particles) was used instead of tetraethoxysilane. The copper powder (sample B) of the present invention was obtained in the same manner as in Example 1.

実施例3
テトラエトキシシランの使用量を13.4g(銅粒子に対しSiOとして15重量%に相当)に替えたこと以外は実施例1と同様にして本発明の銅粉末(試料C)を得た。
Example 3
A copper powder (sample C) of the present invention was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane used was changed to 13.4 g (corresponding to 15% by weight as SiO 2 with respect to the copper particles).

実施例4
エチルシリケート40の使用量を9.6g(銅粒子に対しSiOとして15重量%に相当)に替えたこと以外は実施例2と同様にして本発明の銅粉末(試料D)を得た。
Example 4
A copper powder (sample D) of the present invention was obtained in the same manner as in Example 2 except that the amount of ethyl silicate 40 used was changed to 9.6 g (corresponding to 15% by weight as SiO 2 with respect to the copper particles).

実施例5
3−メルカプトプロピオン酸に替えてメルカプト酢酸を用い、ポリビニルアルコールの使用量を2g、テトラエトキシシランの使用量を5.3g(銅粒子に対しSiOとして6重量%に相当)に替えたこと以外は実施例1と同様にして本発明の銅粉末(試料E)を得た。
Example 5
Other than using mercaptoacetic acid instead of 3-mercaptopropionic acid, changing the amount of polyvinyl alcohol used to 2 g and the amount of tetraethoxysilane to 5.3 g (corresponding to 6% by weight as SiO 2 with respect to copper particles) Obtained the copper powder (sample E) of this invention like Example 1. FIG.

実施例6
テトラエトキシシランに替えてテトラエトキシシランのオリゴマー(エチルシリケート40:コルコート社製、平均重合度=5)3.8g(銅粒子に対しSiOとして6重量%に相当)を用いたこと以外は実施例5と同様にして本発明の銅粉末(試料F)を得た。
Example 6
Implemented except using 3.8 g of tetraethoxysilane oligomer (ethyl silicate 40: Colcoat, average polymerization degree = 5) (equivalent to 6 wt% as SiO 2 with respect to copper particles) instead of tetraethoxysilane In the same manner as in Example 5, a copper powder (sample F) of the present invention was obtained.

比較例1
テトラエトキシシランを用いなかったこと以外は実施例1と同様にして銅粉末(試料G)を得た。
Comparative Example 1
A copper powder (sample G) was obtained in the same manner as in Example 1 except that tetraethoxysilane was not used.

比較例2
テトラエトキシシランを用いなかったこと以外は実施例5と同様にして銅粉末(試料H)を得た。
Comparative Example 2
A copper powder (sample H) was obtained in the same manner as in Example 5 except that tetraethoxysilane was not used.

比較例3
銅化合物として工業用酸化銅(N−120:エヌシーテック社製)32g、保護コロイドとしてポリビニルアルコール(平均重合度1000〜1500)3g、還元剤としてヒドラジン一水和物(80%)15.65gを、室温下、純水400ミリリットルに添加した後、2−(ジメチルアミノ)エタノールでpHを10に調整した。その後、40分かけて80℃の温度に昇温し、80℃で2時間還元反応させ、実質的に粒子表面に硫黄化合物が処理されていない銅粒子を媒液中に生成させた。次いで、濾液の電気伝導度が100μS/cm以下になるまで水洗し、保護コロイド及びその他の塩類を除去してから銅粒子をろ別し、銅粒子の湿ケーキを得た。この湿ケーキを400ミリリットルの純水に分散したところ、pHが6.4の銅粒子の懸濁液が得られた。この懸濁液の温度を80℃に保持しながら、テトラエトキシシラン8.9g(銅粒子に対しSiOとして10重量%に相当)をエタノール100ミリリットルに溶解した処理液を30分間で添加し、2時間熟成させた。その後は実施例1と同様に、水洗、ろ別、乾燥して銅粉末(試料I)を得た。
Comparative Example 3
Industrial copper oxide (N-120: manufactured by NC Tech Co.) 32 g as a copper compound, polyvinyl alcohol (average polymerization degree 1000 to 1500) 3 g as a protective colloid, hydrazine monohydrate (80%) 15.65 g as a reducing agent After adding to 400 ml of pure water at room temperature, the pH was adjusted to 10 with 2- (dimethylamino) ethanol. Then, it heated up to the temperature of 80 degreeC over 40 minutes, and it was made to reduce-react at 80 degreeC for 2 hours, and the copper particle which the sulfur compound was not substantially processed on the particle | grain surface was produced | generated in the liquid medium. Next, the filtrate was washed with water until the electrical conductivity reached 100 μS / cm or less, and after removing the protective colloid and other salts, the copper particles were filtered off to obtain a wet cake of copper particles. When this wet cake was dispersed in 400 ml of pure water, a suspension of copper particles having a pH of 6.4 was obtained. While maintaining the temperature of this suspension at 80 ° C., a treatment solution in which 8.9 g of tetraethoxysilane (corresponding to 10% by weight as SiO 2 with respect to copper particles) was dissolved in 100 ml of ethanol was added over 30 minutes, Aged for 2 hours. Thereafter, in the same manner as in Example 1, it was washed with water, filtered and dried to obtain a copper powder (Sample I).

評価1:平均粒子径の測定
実施例1〜6、比較例1〜3で得られた試料A〜Iに含まれる銅粒子の50%累積平均粒子径を、電子顕微鏡法により測定した。結果を表1に示す。
Evaluation 1: Measurement of average particle diameter The 50% cumulative average particle diameter of the copper particles contained in Samples A to I obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was measured by electron microscopy. The results are shown in Table 1.

評価2:耐酸化性の評価
実施例1〜6、比較例1〜3で得られた試料A〜I10gを、窒素ガス雰囲気下60℃の温度で10時間加熱した後、TAS−200型熱天秤(リガク社製、昇温速度5℃/分)を用いて重量増加率が0.5%になる温度を測定し、これを酸化開始温度とした。また、前記の加熱後の試料10gを、更に酸化性空気雰囲気下150℃、200℃、300℃、400℃の温度で、それぞれ20分間加熱焼成した後の重量を測定し、重量増加率を算出した。結果を表1に示す。酸化開始温度が高く、重量増加が少ない程、耐酸化性が優れていることを示しており、本発明の銅粉末は耐酸化性が優れていることが判る。特に、本発明の銅粉末は、酸化開始温度が250℃以上300℃未満であり、良好である。
Evaluation 2: Evaluation of oxidation resistance Samples A to I obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were heated at a temperature of 60 ° C. for 10 hours in a nitrogen gas atmosphere, and then a TAS-200 type thermobalance. The temperature at which the rate of weight increase was 0.5% was measured using (Rigaku Corporation, temperature rising rate 5 ° C./min), and this was used as the oxidation start temperature. In addition, 10 g of the heated sample was further heated and fired at 150 ° C., 200 ° C., 300 ° C., and 400 ° C. in an oxidizing air atmosphere for 20 minutes, and the weight increase rate was calculated. did. The results are shown in Table 1. The higher the oxidation start temperature and the smaller the weight increase, the better the oxidation resistance, and it can be seen that the copper powder of the present invention is excellent in oxidation resistance. In particular, the copper powder of the present invention has a favorable oxidation start temperature of 250 ° C. or higher and lower than 300 ° C.

Figure 2005163141
Figure 2005163141

本発明の実施例で得られた銅粉末を用いて、溶媒、バインダー樹脂と混合して、銅ペースト、銅インキあるいは銅塗料(銅インク)の流動性組成物を調製し、通常の方法により基板に塗布後、加熱焼成して、電極とした。得られた電極は電気特性の優れたものとなることを確認した。   Using the copper powder obtained in the examples of the present invention, a fluid composition of copper paste, copper ink or copper paint (copper ink) is prepared by mixing with a solvent and a binder resin, and the substrate is prepared by a usual method. After application, the electrode was baked by heating to obtain an electrode. It was confirmed that the obtained electrode had excellent electrical characteristics.

本発明は、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として有用である。特に、本発明の銅粉末を銅ペースト、銅インキ、銅塗料(銅インク)等の流動性組成物にして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極に用いると、電気特性の優れたものが得られると期待される。
INDUSTRIAL APPLICABILITY The present invention is useful as a material for ensuring electrical continuity, such as external electrodes such as capacitors, internal electrodes, electrode members such as printed wiring board circuits, and various electrical contact members. In particular, the copper powder of the present invention is made into a fluid composition such as copper paste, copper ink, copper paint (copper ink), etc., for example, for internal electrodes of multilayer ceramic capacitors, circuits of printed wiring boards, and other electrodes. If used, it is expected that an excellent electrical property can be obtained.

Claims (14)

銅粒子の表面を硫黄化合物と珪素酸化物で被覆したことを特徴とする銅粉末。 A copper powder comprising a surface of copper particles coated with a sulfur compound and silicon oxide. 珪素酸化物がアルコキシシランの加水分解生成物であることを特徴とする請求項1に記載の銅粉末。 The copper powder according to claim 1, wherein the silicon oxide is a hydrolysis product of alkoxysilane. 硫黄化合物と銅粒子の存在下、加水分解性珪素化合物を加水分解して、銅粒子の表面を硫黄化合物と珪素酸化物とで被覆することを特徴とする銅粉末の製造方法。 A method for producing a copper powder, comprising hydrolyzing a hydrolyzable silicon compound in the presence of a sulfur compound and copper particles, and coating the surfaces of the copper particles with a sulfur compound and silicon oxide. 加水分解性珪素化合物としてアルコキシシランを用いることを特徴とする請求項3に記載の銅粉末の製造方法。 4. The method for producing copper powder according to claim 3, wherein alkoxysilane is used as the hydrolyzable silicon compound. 更に保護コロイドを存在させた状態で、加水分解性珪素化合物を加水分解することを特徴とする請求項3に記載の銅粉末の製造方法。 The method for producing copper powder according to claim 3, wherein the hydrolyzable silicon compound is hydrolyzed in the presence of a protective colloid. 予め表面に硫黄化合物を被覆した銅粒子を用いることを特徴とする請求項3に記載の銅粉末の製造方法。 The method for producing a copper powder according to claim 3, wherein copper particles whose surfaces are previously coated with a sulfur compound are used. 硫黄化合物を被覆した銅粒子を含むアルカリ性水系懸濁液と加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することを特徴とする請求項6に記載の銅粉末の製造方法。 The production of copper powder according to claim 6, wherein the hydrolyzable silicon compound is hydrolyzed by mixing an alkaline aqueous suspension containing copper particles coated with a sulfur compound and a hydrolyzable silicon compound. Method. 硫黄化合物の存在下、銅化合物と還元剤とを反応させて、硫黄化合物を被覆した銅粒子を得る第1の工程、得られた銅粒子の存在下、加水分解性珪素化合物を加水分解して、銅粒子の表面を硫黄化合物と珪素酸化物とで被覆する第2の工程からなることを特徴とする銅粉末の製造方法。 A first step of obtaining a copper particle coated with a sulfur compound by reacting a copper compound with a reducing agent in the presence of a sulfur compound, hydrolyzing a hydrolyzable silicon compound in the presence of the obtained copper particle A method for producing a copper powder comprising the second step of coating the surfaces of copper particles with a sulfur compound and silicon oxide. 第1の工程を更に保護コロイドの存在下で行うことを特徴とする請求項8に記載の銅粉末の製造方法。 The method for producing a copper powder according to claim 8, wherein the first step is further performed in the presence of a protective colloid. 第2の工程を保護コロイドの存在下で行うことを特徴とする請求項8に記載の銅粉末の製造方法。 The method for producing a copper powder according to claim 8, wherein the second step is performed in the presence of a protective colloid. 第2の工程において、硫黄化合物を被覆した銅粒子を含むアルカリ性水系懸濁液と加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することを特徴とする請求項8に記載の銅粉末の製造方法。 9. The hydrolyzable silicon compound is hydrolyzed by mixing an alkaline aqueous suspension containing copper particles coated with a sulfur compound and a hydrolyzable silicon compound in the second step. The manufacturing method of the copper powder of description. 加水分解性珪素化合物としてアルコキシシランを用いることを特徴とする請求項11に記載の銅粉末の製造方法。 The method for producing a copper powder according to claim 11, wherein alkoxysilane is used as the hydrolyzable silicon compound. 請求項1に記載の銅粉末を配合してなることを特徴とする流動性組成物。 A fluid composition comprising the copper powder according to claim 1. 請求項1に記載の銅粉末を用いて形成したことを特徴とする電極。
An electrode formed using the copper powder according to claim 1.
JP2003406218A 2003-12-04 2003-12-04 Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same Expired - Fee Related JP4208704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406218A JP4208704B2 (en) 2003-12-04 2003-12-04 Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406218A JP4208704B2 (en) 2003-12-04 2003-12-04 Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same

Publications (2)

Publication Number Publication Date
JP2005163141A true JP2005163141A (en) 2005-06-23
JP4208704B2 JP4208704B2 (en) 2009-01-14

Family

ID=34728658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406218A Expired - Fee Related JP4208704B2 (en) 2003-12-04 2003-12-04 Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same

Country Status (1)

Country Link
JP (1) JP4208704B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046406A1 (en) * 2005-10-19 2007-04-26 Fujifilm Corporation Method for producing shape-anisotropic metal particles, colored composition, photosensitive transfer material, substrate with black image, color filter and liquid crystal display
JP2007128864A (en) * 2005-10-07 2007-05-24 Ishihara Sangyo Kaisha Ltd Fluid composition, and electrode, wiring pattern, as well as coating film formed by using it, and decoration goods forming the coating film
WO2007111231A1 (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co., Ltd. Process for production of copper powder and copper powder obtained by the process
KR100882095B1 (en) * 2006-12-20 2009-02-10 주식회사 포스코 Method of surface treatment of metal particle using self assembly, metal particle thereby, making method of polymer solution containing the metal particle and coating steel panel thereby
JP2009509032A (en) * 2005-09-02 2009-03-05 ザ キュレイターズ オブ ザ ユニバーシティ オブ ミズーリ Method and article for producing gold nanoparticles
WO2011043198A1 (en) * 2009-10-08 2011-04-14 上村工業株式会社 Neutralizing/reducing agent, and desmear method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509032A (en) * 2005-09-02 2009-03-05 ザ キュレイターズ オブ ザ ユニバーシティ オブ ミズーリ Method and article for producing gold nanoparticles
JP2007128864A (en) * 2005-10-07 2007-05-24 Ishihara Sangyo Kaisha Ltd Fluid composition, and electrode, wiring pattern, as well as coating film formed by using it, and decoration goods forming the coating film
WO2007046406A1 (en) * 2005-10-19 2007-04-26 Fujifilm Corporation Method for producing shape-anisotropic metal particles, colored composition, photosensitive transfer material, substrate with black image, color filter and liquid crystal display
WO2007111231A1 (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co., Ltd. Process for production of copper powder and copper powder obtained by the process
JP2007254846A (en) * 2006-03-24 2007-10-04 Mitsui Mining & Smelting Co Ltd Production method for copper powder and copper powder obtained by the production method
KR100882095B1 (en) * 2006-12-20 2009-02-10 주식회사 포스코 Method of surface treatment of metal particle using self assembly, metal particle thereby, making method of polymer solution containing the metal particle and coating steel panel thereby
WO2011043198A1 (en) * 2009-10-08 2011-04-14 上村工業株式会社 Neutralizing/reducing agent, and desmear method
CN102550137A (en) * 2009-10-08 2012-07-04 上村工业株式会社 Neutralizing/reducing agent, and desmear method

Also Published As

Publication number Publication date
JP4208704B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP5596609B2 (en) Metal colloid solution and paint using the same
JP4646906B2 (en) Anti-adhesive high temperature layer
EP1780732B1 (en) Conductive metal paste
WO2006109410A1 (en) Ink composition and metallic material
KR100935168B1 (en) Nonaqueous conductive nanoink composition
TWI783947B (en) Conductive film composite and production method thereof
KR102035115B1 (en) Conductive coated composite body and method for producing same
WO2008001741A1 (en) Nickel fine particle, method for producing the same, and fluid composition using the same
WO2007116649A1 (en) Nickel ink
JP4252349B2 (en) Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
JP4208704B2 (en) Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same
JP4242176B2 (en) Copper fine particles and method for producing the same
JP4164009B2 (en) Copper powder, copper paste and paint using the same, electrode
JP4586141B2 (en) Conductive paste
JP4208705B2 (en) Method for producing metal powder
JP2004079211A (en) Silver powder for conductive paste, its manufacturing method, and conductive paste using the same
EP4261190A1 (en) Alumina-based composite sol composition, production method therefor, and production method for alumina-based composite thin film
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
JP4977041B2 (en) Copper powder for conductive paste for external electrodes with excellent oxidation resistance and sinterability
JP4176627B2 (en) Colloidal metal particles, method for producing the same, fluid composition containing the same, and electrode formed using the fluid composition
JP4164008B2 (en) Copper powder, method for producing the same, copper paste / paint using the same, and electrode
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP2000247767A (en) Primer material for preventing oxidation and refractory using the primer material and having oxygen-preventing layer
JP2006028565A (en) Method for producing metallic particle
JP4706699B2 (en) Metal colloids with good stability and their applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R151 Written notification of patent or utility model registration

Ref document number: 4208704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees