WO2007108517A1 - 血液検査装置 - Google Patents

血液検査装置 Download PDF

Info

Publication number
WO2007108517A1
WO2007108517A1 PCT/JP2007/055918 JP2007055918W WO2007108517A1 WO 2007108517 A1 WO2007108517 A1 WO 2007108517A1 JP 2007055918 W JP2007055918 W JP 2007055918W WO 2007108517 A1 WO2007108517 A1 WO 2007108517A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
battery
power supply
laser
test apparatus
Prior art date
Application number
PCT/JP2007/055918
Other languages
English (en)
French (fr)
Inventor
Toshiki Matsumoto
Masaki Fujiwara
Toshihiro Akiyama
Keisuke Matsumura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2007800100027A priority Critical patent/CN101404933B/zh
Priority to US12/293,624 priority patent/US8204568B2/en
Priority to CA002646721A priority patent/CA2646721A1/en
Priority to JP2008506340A priority patent/JP5017256B2/ja
Priority to EP07739361.9A priority patent/EP1997434B1/en
Publication of WO2007108517A1 publication Critical patent/WO2007108517A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150076Means for enhancing collection by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150106Means for reducing pain or discomfort applied before puncturing; desensitising the skin at the location where body is to be pierced
    • A61B5/150145Means for reducing pain or discomfort applied before puncturing; desensitising the skin at the location where body is to be pierced by negative pressure, e.g. suction, vacuum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150213Venting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150229Pumps for assisting the blood sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150259Improved gripping, e.g. with high friction pattern or projections on the housing surface or an ergonometric shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150755Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150954Means for the detection of operative contact with patient, e.g. by temperature sensitive sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15134Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids
    • A61B5/15136Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser
    • A61B5/15138Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser provided with means to ensure the protection of the user, e.g. to avoid laser light entering the eyes of a user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14535Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring haematocrit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31525Dosing

Definitions

  • the present invention relates to a blood test apparatus used for testing blood components and the like.
  • a diabetic patient needs to regularly measure a blood glucose level, administer insulin based on the blood glucose level, and keep the blood glucose level normal. In order to keep this blood glucose level normal, it is necessary to measure the blood glucose level regularly.To this end, the patient collects a small amount of blood from the fingertip using a blood test device, and the blood glucose level is collected from the collected blood. Les, which must be measured.
  • a conventional blood test apparatus generally uses a needle as a means for puncturing the skin (see, for example, Patent Document 1).
  • a blood test apparatus 1 using a conventional needle as a puncture means includes a housing 2 forming a housing 2; a cylinder 3 in which one of the housings 2 is opened; a plunger 4 reciprocating in the cylinder 3; Handle 5 connected at one side to the plunger 4; Locking portion 6 at which the handle 5 is locked at the housing 2; Spring 7 for biasing the handle 5 toward the opening 3a side of the cylinder 3; A lancet 9 is attached to the other end and a blood collection needle (hereinafter referred to as a needle) 8 is attached to the other end 9; a holding part 11 that holds the blood sensor 10 on the opening 3a side; and an output of the sensor 10 is connected And the electric circuit section 12.
  • the blood test apparatus 1 is brought into contact with the patient's skin and the locking portion 6 is unlocked. Then handle 5 urged by panel 7 is fired in the direction of arrow 14 . When the handle 5 is unlocked, the needle 8 connected to the handle 5 via the plunger 4 and the lancet 9 is simultaneously fired. Needle 8 pierces skin 13 through sensor 10
  • the blood that has flowed out is taken into the blood sensor 10.
  • the blood taken into the sensor 10 causes a chemical change in the sensor 10 according to the blood glucose level of the patient.
  • the electric current generated by the chemical change is guided to the electric circuit unit 12, and the blood glucose level is calculated.
  • the calculated blood glucose level is displayed on the display unit 15. Based on the obtained blood glucose level, for example, basic data on the amount of insulin administered to the patient is provided.
  • Patent Document 1 Japanese Translation of Special Publication 2003—524496
  • Patent Document 2 Japanese Translation of Special Publication 2004—533866
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-195245
  • the laser device consumes a large amount of electricity.
  • the battery capacity may be used up by several punctures. If the battery power as a power source is used up, not only the puncture but also the measurement circuit for blood test cannot be operated.
  • the blood test device is a life-threatening device for the patient (for example, diabetic patient), so that the blood test (for example, blood glucose level measurement) can be performed even if the puncture means does not operate. Need to be. This is because puncturing can be performed by other means without using a laser.
  • the present invention is a blood test apparatus using a laser as a puncture means that does not require replacement of a blood collection needle, and only a blood test is performed even if laser puncture is impossible due to a lack of electric capacity.
  • An object of the present invention is to provide a device that can be used.
  • the first of the present invention relates to a blood test apparatus shown below.
  • a main body a blood sensor attached to the main body for analyzing blood, a puncture means provided in the main body and puncturing the patient's skin via the blood sensor, and connected to the blood sensor And an electric circuit section
  • the puncturing means includes a laser emitting device
  • a blood test apparatus comprising: a power supply control circuit for controlling power supply of a power supply section, including a power supply for driving the electric circuit section and a power supply for driving the laser emitting apparatus.
  • a battery level measuring circuit for measuring at least one remaining battery level of the one or more batteries, the measured battery level value, and a predetermined battery level value.
  • a battery voltage measuring circuit that measures at least one battery voltage of the one or more batteries, and a comparison unit that compares the measured battery voltage value with a predetermined battery voltage value
  • the blood test apparatus according to [2], wherein the power control circuit controls power supply based on an output result of the comparison unit.
  • the blood test apparatus of [3] or [4] may further include a display unit for displaying a test result of the blood test.
  • the second of the present invention relates to a method for controlling a blood test apparatus described below.
  • the pre-operation battery remaining amount measuring step for measuring the remaining amount of the battery after the power supply of the main body is activated, and the pre-operation battery remaining amount measuring step, and a laser is emitted from the laser emitting device After the battery level measurement step after the operation to measure the remaining battery level, the battery level measured in the battery level measurement step before operation, and the battery level measurement step after the operation are measured. And a step of measuring the battery consumption based on a difference in remaining battery power.
  • the blood test apparatus can prevent a situation in which, even though a laser is used as a puncturing means, a test cannot be performed due to a lack of power from a power source. In particular, even if a battery with limited capacity is used as the power source, it is possible to provide the user with stable inspection. Therefore, the present invention is particularly effectively applied to a portable blood test apparatus.
  • FIG. 1 is a cross-sectional view showing an example of a conventional blood test apparatus
  • FIG. 2 is an exploded perspective view showing a first example of the blood test apparatus of the present invention.
  • FIG. 3 is an exploded perspective view showing a second example of the blood test apparatus of the present invention.
  • FIG. 4 Side view of the blood test apparatus of FIG.
  • FIG. 5 is an external perspective view showing an example of a laser emitting device in the blood test apparatus of the present invention.
  • FIG. 6A is a cross-sectional view showing an example of the configuration of the laser emitting device in FIG.
  • FIG. 6B is a cross-sectional view showing another configuration example of the laser emitting apparatus in FIG.
  • FIG. 7 is a partially cutaway perspective view showing another example of a laser emitting device in the blood test apparatus of the present invention.
  • FIG. 8 is a sectional view showing an example of a blood sensor in the blood test apparatus of the present invention.
  • FIG. 9 is a sectional view showing another example of a blood sensor in the blood test apparatus of the present invention.
  • FIG. 10 is a cross-sectional view of the blood sensor of FIG. 9 at the time of puncture
  • FIG. 11 is a sectional view showing still another example of a blood sensor in the blood test apparatus of the present invention.
  • FIG. 12 is a perspective plan view of the blood sensor in FIG.
  • FIG. 13 is a perspective plan view showing still another example of a blood sensor in the blood test apparatus of the present invention.
  • FIG. 14 is a perspective plan view showing still another example of a blood sensor in the blood test apparatus of the present invention.
  • 15 is an exploded plan view of the blood sensor of FIG. 8, FIG. 15A is a plan view of the cover, FIG. 15B is a plan view of the spacer, and FIG. 15C is a plan view of the substrate.
  • FIG. 22 is a sectional view of the blood sensor unit of FIG.
  • FIG. 23 is a sectional view showing another example of the blood sensor unit in the blood test apparatus of the present invention.
  • FIG. 24 is a sectional view showing still another example of the blood sensor unit in the blood test apparatus of the present invention.
  • FIG. 27 is an enlarged cross-sectional view of the main part showing one example of a negative pressure chamber and a negative pressure path in the blood test apparatus of the present invention.
  • FIG. 28 is an enlarged cross-sectional view of the main part showing another example of the negative pressure chamber and the negative pressure path in the blood test apparatus of the present invention.
  • FIG. 34 is a flow chart showing another example of a detection procedure using the blood test apparatus of the present invention.
  • FIG. 36 is a diagram for explaining an example of negative pressure control in the blood test apparatus of the present invention.
  • FIG. 37 A diagram schematically illustrating how the skin swells by negative pressure control as described. 37] A diagram for explaining another example of negative pressure control in the blood test apparatus of the present invention. 38] Blood test apparatus of the present invention. Is an exploded perspective view showing an example of a laser drilling device included in
  • FIG. 40 is a diagram for explaining laser branch control in FIG.
  • FIG. 41 Perspective view of a cube-shaped optical element that can be used for laser splitting control in FIG.
  • FIG. 42 is a diagram showing an example of a cube that can be used for laser splitting control in FIG. 39
  • FIG. 42A is a diagram showing a three-dimensional image of laser beam branching
  • FIG. 42B is a cube that realizes the branching.
  • FIG. 46 A diagram showing an example of laser pulse control in the blood test apparatus of the present invention. 47] A sectional view showing a puncture state by laser pulse control of FIG.
  • FIG. 48 is a diagram showing still another example of laser output control in the blood test apparatus of the present invention
  • FIG. 48A is a circuit diagram
  • FIG. 48B is a diagram showing a time change of input current to the flash lamp
  • FIG. 48C is a laser diagram. Figure showing time change of output
  • FIG. 49 is a diagram showing still another example of laser output control in the blood test apparatus of the present invention
  • FIG. 49A is a circuit diagram
  • FIG. 49B is a diagram showing a time change of input current to the flash lamp
  • FIG. 49C is a laser diagram.
  • FIG. 50 is a block diagram showing a first example of a power control unit of the blood test apparatus of the present invention.
  • FIG. 51 is a flowchart showing a first example of a control procedure of the power control unit of FIG.
  • FIG. 52 is a flowchart showing a second example of the control procedure of the power control unit of FIG.
  • FIG. 53 is a flowchart showing a third example of the control procedure of the power control unit of FIG.
  • FIG. 54 is a flowchart showing a fourth example of the control procedure of the power control unit of FIG.
  • FIG. 55 is a block diagram showing a second example of the power control unit of the blood test apparatus of the present invention.
  • FIG. 56 is a flowchart showing a first example of a control procedure of the power control unit of FIG.
  • FIG. 57 is a flowchart showing a second example of the control procedure of the power control unit of FIG.
  • FIG. 58 is a block diagram showing a third example of the power control unit of the blood test apparatus of the present invention.
  • FIG. 59 is a flowchart showing a first example of a control procedure of the power control unit of FIG.
  • FIG. 60 is a flowchart showing a second example of the control procedure of the power control unit of FIG.
  • FIG. 61A is a graph illustrating a method of setting the charging amount for charging the laser emitting device in stages based on the remaining battery level
  • FIG. 61B is a graph illustrating a method for continuously setting the amount of charge for charging the laser emitting device based on the remaining battery level.
  • FIG. 61C is a graph illustrating a method for setting the charge amount for charging the laser emitting device according to the variable curve based on the remaining battery level.
  • FIG.62 Graph showing the relationship between battery voltage (Y axis) and remaining battery level (X axis) when the charge level is changed
  • FIG. 63 is a diagram showing another example of laser branch control in the blood test apparatus including the laser perforation device of the present invention
  • FIG. 63A is a diagram showing a case of two branches
  • FIG. 63B is a diagram of a case of four branches Figure
  • FIG. 64 is a schematic diagram showing the configuration of an optical fiber directional coupler used for laser branch control in FIG. 63.
  • FIG. 65 is a diagram showing still another example of laser branch control in a blood test apparatus including the laser perforation apparatus of the present invention.
  • the present invention is a blood test apparatus using a laser as a means for puncturing the skin, and has a suction force By this, the skin can be defined at a predetermined position.
  • the focus position of the laser is accurately set with respect to the skin defined at a predetermined position. Since the skin is brought into close contact with the blood sensor by the suction force, the blood flowing out from the skin punctured by the laser can be surely guided to the inside (detection unit) of the blood sensor.
  • FIG. 2 is an exploded perspective view showing a first example of the entire configuration of the blood test apparatus of the present invention.
  • a negative pressure means 34 comprising a laser emitting device 33, a suction pump (negative pressure pump) 34a, a pump valve unit 34b, and an air release switch 34c.
  • the apparatus main body 39 is configured by covering the lower case 32 in which each member is stored with the upper case 38.
  • the upper case 38 is provided with a transparent display window 38 a at a position corresponding to the display unit 37.
  • the apparatus main body 39 is connected to the blood sensor unit 44 via the adapter 40.
  • One of the adapters 40 is a cylindrical tube, and the blood sensor unit 44 is detachably attached.
  • the blood sensor unit 44 includes a holoreda 41 and a blood sensor 42 mounted inside the holder 41.
  • the window 43 provided in the center of the blood sensor unit 44 is a part through which the laser from the laser emitting hole of the laser emitting device 33 passes.
  • the window 43 may be a through hole or a member made of a material that transmits laser.
  • FIG. 3 is an exploded perspective view showing a second example of the overall configuration of the blood test apparatus of the present invention.
  • Figure 4 shows the side view.
  • the blood test apparatus 31a shown in FIGS. 3 and 4 is different from the blood test apparatus 31 shown in FIG. 2 in that it has a manual pump that can be manually suctioned as a negative pressure pump constituting the negative pressure means 140. This difference will be described.
  • Blood test apparatus 31a has negative pressure means 140 including a manual pump (negative pressure pump) 141 and a manual pump knob 142 for manually driving manual pump 141.
  • the atmosphere release switch 144 releases the negative pressure generated in the pump valve unit 143 to the atmosphere.
  • the manual pump knob 142 has an arcuate shape, one of which is a support shaft 142a and the other of which is an action portion 142b (see FIG. 4).
  • the manual pump knob 142 can be rotated around a support shaft 142a.
  • the action part 142b transmits power to the manual pump 141.
  • the patient can hold the manual pump knob 142 together with the apparatus main body 39 to move the action part 142b up and down. This vertical movement causes the manual pump 141 to operate, generating negative pressure.
  • the blood inside the negative pressure chamber 60 (see Fig. 16 etc.) can be visually observed. It is preferable to form the exterior of the sensor unit 44 with a transparent material.
  • the exterior of blood sensor unit 44 may be entirely formed of a transparent member, or only the tip 41h side (negative pressure chamber 60 side) of blood sensor unit 44 may be formed of a transparent member.
  • the gripped portion 142c of the manual pump knob 142 may be provided with irregularities in the shape of fingers to prevent slipping.
  • the battery 35 can have a long life and is suitable for a portable blood test apparatus.
  • Embodiment 1 of laser emitting device including lens
  • the blood test apparatus of the present invention uses a laser as means for puncturing the skin.
  • the laser is irradiated to the skin, the laser is absorbed by the OH groups in the skin water, and the heat rises and vaporizes instantaneously. At this time, the surrounding cells are also vaporized and a hole is made in the skin.
  • the blood test apparatus houses a laser emitting device.
  • FIG. 5 is an external perspective view of the laser emitting device 33 housed in the blood test apparatus.
  • 6A and 6B are cross-sectional views of the laser emitting device 33, respectively.
  • the laser crystal 33d is located inside the wall surrounded by the wall where the partial transmission mirror 33f and the total reflection mirror 33g are installed.
  • the laser crystal 33d is provided with partial transmission mirrors on both sides.
  • the laser crystal 33d is attached to the outer wall and inner wall (partition plate) of the cylindrical body 33b. That is, in FIG. 6B, the laser crystal (laser rod) 33d is elongated and extends before the inner wall (partition plate).
  • the laser emitting device 33 includes an oscillation tube 33a and a cylindrical tube body 33b connected in front of the oscillation tube 33a.
  • a laser emission hole 33c is provided at the front center of the cylinder 33b.
  • a partial transmission mirror 33f is attached to one end of the oscillation tube 33a (particularly FIG. 6A).
  • the transmittance of the partial transmission mirror 33f should be about 1% to 10%. 99 at the other end of the oscillation tube 33a. /. ⁇ 100% total reflection mirror 33g is installed (Fig. 6A, Fig. 6B).
  • a film having the same characteristics may be formed by sputtering or the like on the end face of the laser crystal without using the partial transmission mirror 33f and the total reflection mirror 33g.
  • a convex lens (focus lens) 33h is mounted inside the cylindrical body 33b.
  • the convex lens 33h collects the laser near the surface of the blood sensor 42 (details will be described later).
  • the total reflection mirror 33g, the YAG laser crystal 33d, the partial transmission mirror 33f, the lens 33h, and the laser emission hole 33c are arranged in this order.
  • Excitation light emitted from the excitation light source 33e enters, for example, the Er: YAG laser crystal 33d, excites Er (erbium) ions to create a high energy state, and becomes an inversion distribution state. Reflected and resonated between the total reflection mirror 33g, the YAG laser crystal 33d, and the partial transmission mirror 33f, it is amplified. The same is true for Ho.
  • a part of the amplified laser passes through the partial transmission mirror 33f by stimulated emission.
  • the laser that has passed through the partial transmission mirror 33f passes through the lens 33h and is emitted from the laser emission hole 33c. As will be described later, the laser emitted from the laser emitting hole 33c punctures (irradiates) the skin.
  • FIG. 7 shows another example of a laser emitting device.
  • a laser emitting device 189 shown in FIG. 7 irradiates two types of laser crystals with excitation light using one flash lamp 185 as an excitation light source. At this time, laser is output from each crystal. By using two types of crystals, lasers with different laser intensities and wavelengths can be output.
  • laser emitting apparatus 189 excites a casing 188 having a shape in which two cylinders having an elliptical cross section are stacked, and a laser disposed at the center of casing 188. And a first crystal 186 and a second crystal 187 for lasing disposed on both sides of the flash lamp 185.
  • the oval enclosure 188 has three focal points.
  • each ellipse has two focal points, but one focal point is arranged to be a common focal point, so there are three focal points. .
  • the first crystal 186 is disposed at one focal point, and the second crystal 187 is disposed at the other focal point.
  • a flash lamp 185 is disposed in the central portion sharing the two focal points. Since a single flash lamp 185 can obtain a laser from each of the two crystals 186 and 187, the laser emitting device can be reduced in size and cost.
  • the output intensity of the laser is also proportional to the volume of the force crystal 186 and the crystal 187, which is also proportional to the emission intensity of the flash lamp 185. Therefore, if two crystals having the same diameter but different lengths are arranged, a single flash lamp 185 can obtain two lasers having different intensities.
  • the laser emitting device 189 When irradiating two lasers, it is preferable to irradiate in order of Er: YAG and Nd: YAG with a slight time difference.
  • the wavelength of the laser can be selected and used.
  • the output intensity can be improved.
  • the blood test apparatus of the present invention uses a laser emitting apparatus that can puncture without touching the skin as means for puncturing the skin of the patient, so that the puncture required for the conventional blood test apparatus is used. Needle is not required. It is also hygienic because it uses a puncture means that does not contact the patient's skin. Further, although the puncture needle needs to be replaced for each examination, the exchanging work is not necessary for the examination using the blood examination apparatus of the present invention.
  • the movable part that moves the needle required for puncturing with the needle is not necessary in the blood sampling device of the present invention, the failure is reduced.
  • the blood test apparatus of the present invention requires a small number of parts, parts management is easy.
  • a transparent waterproof wall is provided in front of the laser emission hole 33c, it is possible to wash the entire blood test apparatus.
  • the blood test apparatus of the present invention has a blood sensor for taking in blood that has flowed out from the punctured skin and testing its blood component.
  • FIG. 8 is a cross-sectional view of a first example of the blood sensor.
  • the blood sensor 42 shown in FIG. 8 has a circular or polygonal outer shape.
  • the base body 45 constituting the blood sensor 42 includes a substrate 46, a spacer 47 bonded to the upper surface of the substrate 46, and a cover 48 bonded to the upper surface of the spacer 47.
  • a blood reservoir 49 is provided in the approximate center of the substrate 45.
  • the reservoir 49 is formed in communication with a hole 46 a provided in the substrate 46 and a hole 47 a provided in the spacer 47.
  • the reservoir 49 is opened downward to collect blood from the skin.
  • the volume of the reservoir 49 is not particularly limited, but for example, 0.904 x L.
  • One end of a supply channel 50 is connected to the storage unit 49.
  • the volume of the supply path 50 is not particularly limited, but for example, it may be 0.144 x L.
  • a detection unit 51 is disposed inside the supply path 50.
  • the blood accumulated in the reservoir 49 is introduced into the supply channel 50 by capillarity, and enters the detector 51. Led.
  • the other end of the supply path 50 is connected to the air hole 52.
  • the diameter of the air hole 52 should be about 50 / im to 250 / im. If the diameter of the air hole 52 is reduced, excessive outflow of blood from the air hole 52 can be suppressed.
  • the air hole 52 also acts as a negative pressure path for storing a negative pressure in the reservoir 49 in a state where the skin is in close contact with the reservoir 49.
  • the reagent 53 placed on the detection unit 51 may be appropriately prepared according to the test target.
  • CMC carboxylmethylcellulose
  • enzyme PQ Q— GDH
  • ferricyanium potassium 10 to 200 mM, maltitol To 50 mM
  • a reagent solution prepared by adding and dissolving each of taurine to 20 to 200 mM is dropped on the detection unit 51 arranged on the substrate 46 and dried to obtain a reagent 53.
  • Reservoir 49 of blood sensor 42 is sealed with a surface 49a (hereinafter also referred to as "top surface”).
  • the cover 48 may be formed of a material that allows the laser to pass therethrough (for example, glass or plastic such as polyimide is included).
  • the irradiated laser cannot pass through the top surface 49a, it is sufficient that the laser can perforate the top surface 49a.
  • the substrate 46, the spacer 47 and the cover 48 can be formed of the same material.
  • the hole formed in the top surface 49a can be a negative pressure path for the negative pressure means to make the reservoir 49 negative pressure together with the air hole 52.
  • FIG. 9 is a cross-sectional view of a second example of the blood sensor.
  • the top surface 49a of the storage part 49 of the blood sensor 42 shown in FIG. 8 is sealed off, while the top surface of the storage part 49 of the blood sensor 103 shown in FIG. 9 is open.
  • a hole 103b is formed in the cover 48 of the blood sensor 103.
  • the diameter of the hole 103b (for example, 1.0 mm) is smaller than the diameter of the reservoir 49 (for example, 2.0 mm) and larger than the diameter of the air hole 52 (50 ⁇ m to 250 ⁇ m). Is preferred.
  • Hole 103b is a reservoir
  • the hole 103b together with the air hole 52, can serve as a negative pressure path for the negative pressure means 34, 140 to make the reservoir 49 have a negative pressure.
  • the surface tension force of blood 16 generated inside hole 103b suppresses the outflow of blood 16 collected by skin puncture to the upper surface of the cover. Blood 16 reaches the inside of the reservoir 49. Therefore, an appropriate amount of blood 16 can be collected.
  • the blood 16 filling the reservoir 49 is caused to flow into the supply channel 50 by capillary action.
  • the hole 103b is made water repellent, the blood 16 is more unlikely to overflow from the hole 103b. Therefore, the inside of the blood test apparatus is not contaminated with blood.
  • PET polyethylene terephthalate
  • the same material as the substrate 46 spacers 47 can be used. Therefore, material management is easy.
  • the laser passes through the hole 103b of the reservoir 49, but the hole 1 may pass through the center of the hole 103b.
  • hole 103b is formed in the top surface of reservoir 49 in advance. As described above, since the bulging hole 103b is formed, it is not necessary to align the laser axis with the position to be drilled. Therefore, the blood sensor 103 can be easily attached to the blood sensor unit 44.
  • the hole 103b may be made as small as about 0.05 to 0.25 mm, and it is preferable to suppress the outflow of blood 16 from the puncture hole.
  • the blood sensor in the blood test apparatus of the present invention preferably has a reservoir 49 and a supply path 50.
  • the inner wall surface of the supply path 50 is preferably hydrophilic. This is because blood is smoothly fed into the supply path 50 where the detection unit 51 is arranged.
  • the hydrophilicity of the inner wall surface of the supply channel 50 is preferably stronger than the hydrophilicity of the inner wall surface of the reservoir 49. Blood stored in the reservoir 49 is smoothly supplied to the supply channel 50. It is to do.
  • the blood sensor in the blood test apparatus of the present invention has a cover 48 as shown in FIGS. 8 and 9, and the cover 48 forms the top surface of the reservoir 49.
  • the upper surfaces 48a and 103a (surfaces irradiated with laser) of the cover 48 preferably have water repellency. Further, the water repellency of the upper surfaces 48 a and 103 a of the cover 48 is preferably stronger than the water repellency of the inner wall surface of the reservoir 49. This is to prevent blood stored in the storage unit 49 from flowing out from a hole formed in the cover 48 (a hole by the laser hole or the hole 103b).
  • the wetness of the patient's skin 13 varies depending on the environment.
  • the skin 13 to be punctured by laser has appropriate moisture. Therefore, it is preferable to moisten the vicinity of the skin 13 before laser puncturing in advance to give the skin 13 a proper amount of moisture so as to make the wetness constant. This is to perform measurement under stable conditions.
  • FIG. 11 shows a blood sensor 42 a in which a water storage part 195 for storing water is provided on the lower surface side of the blood sensor 42 (see FIG. 8 for details) that contacts the skin 13.
  • a water storage part 195 for storing water is provided on the lower surface side of the blood sensor 42 (see FIG. 8 for details) that contacts the skin 13.
  • the water storage unit 195 may be a softer bag or a bag made of a plastic material such as PET that contains water, and may be a sponge or cotton-like member soaked in water. Good.
  • the water storage unit 195 is not disposed in the transmission part 196 through which the laser passes. This is because the intensity of the laser is reduced by water.
  • FIG. 12 is a perspective plan view of blood sensor 42.
  • the blood sensor 42 is provided with detection electrodes 54 to 57, and in order from the reservoir 49 toward the air hole 52, the detection electrode 57 (Hct (hematocrit) electrode), the detection electrode 56 (counter electrode), and the detection electrode 54 (Working electrode), detection electrode 56 (counter electrode), and detection electrode 55 (detection electrode).
  • Detection electrodes 54 to 56 are arranged on the detection unit 51.
  • connection electrode 54 a to 57 a extend to the outer periphery of the substrate 46.
  • Contact portions 54b to 57b are provided on the connection electrodes 54a to 57a, respectively.
  • connection electrode 56a is provided with a contact part 56c in addition to the contact part 56b, and two contact parts are formed.
  • the reference electrode 56d may be provided on a connection electrode (54a, 55a, 57a) other than the connection electrode 56a.
  • the contact parts 54b to 57b and the contact part 56c are arranged in the vicinity of the outer periphery of the sensor 42 at substantially equal intervals.
  • the contact part 56b and the contact part 56c are electrically connected, and the other contact parts are insulated from each other.
  • the contact part 56c As the reference contact part, that is, the reference electrode 56d, it is possible to identify each connection electrode S. That is, the insulation resistance of adjacent contact parts is measured by the electric circuit section 36 (see FIG. 2), and the contact part where the insulation resistance is zero is identified as the reference electrode 56d.
  • the connection electrode 56a, the connection electrode 57a, the connection electrode 54a, and the connection electrode 55a are specified clockwise.
  • blood sensor 42 has reference electrode 56d, so that each connection electrode can be specified. Therefore, even if contact parts (54b to 57b, 56c) are arbitrarily connected to each of the five connectors arranged in the apparatus main body 39, each connection electrode is specified and measurement is possible. Therefore, the blood sensor 42 (or blood sensor unit 44 including the blood sensor 42) can be symmetrically mounted on the apparatus main body 39, so that the mounting operation becomes very easy.
  • An alignment recess 46 c may be provided on the outer periphery of the substrate 46.
  • alignment recesses 47c and 48c are provided on the outer circumferences of the spacer 47 and the cover 48, respectively.
  • the blood sensor 42 can be mounted in a predetermined position on the blood sensor unit 44 by the alignment recesses 46c to 48c.
  • FIG. 13 is a perspective plan view of a circular blood sensor.
  • the blood sensor 101 shown in FIG. 13 is different from the blood sensor 42 (see FIG. 12) in that the reference electrode 56d is formed from the connection electrode 56a through a predetermined pattern. In the following, this difference will be mainly described.
  • the reference electrode 56d is provided with a reference contact portion 56c.
  • the reference contact part 56c and the contact parts 54b to 57b are arranged at equal intervals in the vicinity of the outer periphery. That is, the contact parts 54b, 55b, 56b, 56c, 57b form a regular pentagon and are laid out.
  • connection electrode 56a and the reference electrode 56d are connected by a laser-processed pattern 56e. By changing the width of the pattern 56e, the resistance value between the contact part 56b and the reference contact part 56c can be changed.
  • the reference electrode 56d serves as a reference for specifying the positions of the connection electrodes 54a to 57a.
  • the reference electrode 56d can be used to identify the product specification of the blood sensor 101. For example, if the resistance value of pattern 56e is 200 ohms to 1000 ohms, calibration curve 1 will be used. If the resistance value is 1000 ohms to 2000 ohms, calibration curve 2 will be used. If the resistance value is 2000 ohms to 3000 ohms, It is set to use calibration curve 3 respectively, and the calibration curve of the sensor is automatically recognized, and the blood glucose level is measured using the optimal calibration curve.
  • the reference electrode can be used to identify various product specifications. For example, it can be used to identify the user of the shipping destination, such as the specifications of Company A and Company B.
  • Inductors having various values are formed with the pattern 56e, and this inductor is connected to a resonator constituting the oscillator, and the oscillation frequency is changed depending on the value of the inductor, and various information is held. Can be made.
  • each connection electrode 54a can be mounted even if the angle about the axis about the mounting direction is arbitrarily set. ⁇ 57a can be identified. Therefore, when the blood sensor unit 44 is mounted, it is easy to mount the blood sensor unit 44 without having to visually match the mounting direction.
  • FIG. 14 is a perspective plan view of a quadrilateral blood sensor.
  • the outer shape of blood sensor 102 shown in FIG. 14 is a quadrangle, but it may be a polygon such as a hexagon or an octagon. If the shape is rectangular or hexagonal, the yield of material collection is improved.
  • an alignment recess 102a with the blood sensor unit 44 may be provided on one of the four sides to make it asymmetrical.
  • the recess 102a replaces blood sensor 102 with blood sensor unit 44. It becomes the standard when installing.
  • the detection electrodes 54 to 54 can be provided without providing the reference electrode 56d. 57 positions can be specified.
  • the contact portions 54b to 57b are provided at each corner of the rectangular substrate 102b.
  • a spacer 102c and a cover 102d are bonded to the substrate 102b.
  • the substrate 102b corresponds to the substrate 46
  • the spacer 102c corresponds to the spacer 47
  • the cover 102d corresponds to the cover 48 (see FIG. 8).
  • FIG. 15 is an exploded plan view of blood sensor 42.
  • 15A is a plan view of the cover 48
  • FIG. 15B is a plan view of the spacer 47
  • FIG. 15C is a plan view of a circular substrate 46 constituting blood sensor 42.
  • the diameter of the substrate 46 may be about 8.0 mm.
  • the material of the substrate 46 is a resin such as polyethylene terephthalate (PET), and the thickness is about 0.075 to 0.250 mm (for example, 0.188 mm).
  • detection electrodes 54 to 57 and connection electrodes 54a to 57a led out from the detection electrodes 54 to 57 are formed in a body.
  • the detection electrode and the connection electrode may be formed by forming a conductive layer by a sputtering method or a vapor deposition method using gold, platinum, palladium, or the like as a material and performing laser scanning.
  • the diameter of the hole 46a provided in the approximate center of the substrate 46 may be about 2. Omm.
  • the wall surface of the hole 46a is preferably weaker than the supply channel 50, or weaker than the upper surface 48a of the cover 48, and preferably has water repellency.
  • the hole 46a is preferably formed by punching from the detection electrodes 54 to 57 side using a convex mold. This is because if the detection electrodes 54 to 57 are punched out, the detection electrodes 54 to 57 are hardly damaged. Moreover, even if burrs are generated in the hole 46a by punching, the burrs go downward (skin side). Therefore, the blood 16 is prevented from flowing out from the reservoir 49.
  • the alignment recess 46c provided on the outer periphery of the substrate 46 meshes with the alignment protrusion formed on the cylinder 41e of the blood sensor unit 44 (see FIG. 16). Therefore, the blood of the blood sensor 42 The mounting position on the liquid sensor unit 44 is determined.
  • FIG. 15B is a plan view of the spacer 47.
  • the diameter of the spacer 47 should be about 5.2mm. If the material of the spacer 47 is a resin such as polyethylene terephthalate, the thickness is 0.025 to 0.25 mm (for example, 0.1 mm).
  • the hole 47 a provided in the approximate center of the spacer 47 has a diameter of 2. Omm and is provided at a position corresponding to the hole 46 a provided in the substrate 46. It is preferable that the wall surface of the hole 47 a has a hydrophilic force weaker than that of the supply path 50 or a water repellency weaker than that of the upper surface 48 a of the cover 48.
  • the reservoir 49 is formed by a hole 46a and a hole 47a.
  • a slit 47b is formed from L47a toward the outer periphery.
  • the slit 47b serves as a blood supply path 50.
  • the wall surface of the slit 47b and the upper surface of the substrate 46 corresponding to the wall surface are also hydrophilized.
  • the width of slit 47b should be about 0.6mm, and the length should be about 2.4mm. As a result, the capacity of the supply path 50 is about 0.144 zL.
  • the alignment recess 47 c provided on the outer periphery of the spacer 47 is formed at a position corresponding to the alignment recess 46 c formed in the substrate 46.
  • FIG. 15A is a plan view of the cover 48.
  • the diameter of cover 48 should be about 5.2mm.
  • the thickness of the cover 48 may be about 0.050 to 0.125 mm (for example, 0.075 mm).
  • the material of the cover 48 may be a material that does not absorb laser.
  • materials for cover 48 include glass and plastics such as polyimide. If the laser is not absorbed by the cover 48, it can pass through the top 49a of the reservoir 49 and puncture the skin.
  • the cover 48 may be made of a material that absorbs laser. In that case, the cover 48 may be perforated by the irradiated laser, or a hole for the laser to penetrate the cover 48 may be formed before the laser is irradiated.
  • the air hole 52 is provided corresponding to the tip of the supply path 50.
  • the diameter of the air hole 52 is 50 ⁇ m.
  • the upper surface 48a (see FIG. 8) of the cover 48 that forms the upper surface of the base body 45 is preferably subjected to water repellency treatment.
  • the top surface of the supply path 50 is preferably subjected to a hydrophilic treatment. Further, the top surface 49a of the reservoir 49 may be weaker than the upper surface 48a of the force bar 48 or subjected to water repellent treatment, or may be subjected to water repellency treatment. I like it.
  • the hydrophobizing material applied to the hydrophobic material may be removed to increase the hydrophobicity.
  • the removal of the hydrophilic material is performed, for example, by decomposing the hydrophilic material by UV (ultraviolet) irradiation.
  • a hydrophobic material can be used as it is.
  • hydrophilicity or hydrophobicity of each member of blood sensor 42 can be adjusted as follows.
  • a water repellent treatment is performed on the upper surface 48 a of the cover 48 in advance.
  • the entire bottom surface of the cover 48 is subjected to a hydrophilic treatment.
  • the lower surface of the cover 48 includes the top surface of the supply path 50.
  • the substrate 46, the spacer 47, and the cover 48 are bonded together. After these are pasted together, short wavelength UV is irradiated from the opening of the reservoir 49 to decompose and remove the hydrophilic material on the top surface 49a.
  • the upper surface 48a of the cover 48 can be made water-repellent and the inner surface of the powerful supply path 50 can be made hydrophilic.
  • the inner surface of the reservoir 49 may have a hydrophilicity that is weaker than that of the supply path 50 or a water repellency that is weaker than that of the upper surface 48a.
  • the ratio of the thickness of the substrate 46 (0.188 mm), the thickness of the spacer 47 (0.100 mm), and the thickness of the cover 48 (0.075 mm) is about 2.5: 1.3: 1.
  • the thickness (0.100 mm) of the spacer 47 can sufficiently obtain a capillary effect of the supply channel 50.
  • the ratio of the volume (0.904 ⁇ L) of the reservoir 49 of the blood sensor 42 to the volume (0.144 ⁇ L) of the supply channel 50 is not particularly limited, and may be approximately 6: 1. Due to the lack of blood 16 Will not be inaccurate. In addition, the volume of the reservoir 49 is not too large for the required volume of the supply channel 50. A large amount of blood 16 may flow through the supply channel 50 and push away the reagent 53 (see FIG. 8). Les. Therefore, the flow of blood 16 becomes a rate-determining state, and the examination of blood 16 can be performed accurately without causing variations in the meltability of reagent 53.
  • the amount of blood 16 to be collected is set to a microvolume that is necessary and sufficient for the examination of blood 16, and only blood 16 that is about 6 times the volume of supply channel 50 is collected. Therefore, the burden on the patient can be extremely reduced.
  • the volume of the reservoir 49 is more than 5 times the volume of the supply channel 50, And it is preferably 7 times or less.
  • the blood sensor in the blood test apparatus of the present invention may be included in the blood sensor unit.
  • the blood sensor unit is a detachable member that can be attached to and detached from the apparatus main body.
  • FIG. 16 is a cross-sectional view of blood sensor unit 44 and the vicinity thereof.
  • Blood sensor unit 44 is configured to have an “H” cross section by a cylindrical holder 41 that is open in both the vertical direction and a mounting portion 41 b that is provided so as to close the inside of holder 41.
  • the material of the holder 41 is preferably a resin that can be injection-molded.
  • Thermoplastic resin such as ABS resin, AS resin, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate; or phenol resin, epoxy resin, Examples are thermosetting resins such as silicon resins.
  • Blood sensor 42 is attached to attachment portion 41b. Blood sensor 42 is detachable. In FIG. 16, the blood sensor 42 is mounted on the upper side (laser emitting device 33 side) of the mounting part 41b, but may be mounted on the lower side (skin 13 to be punctured) of the mounting part 41b.
  • a window 43 in the center of the mounting portion 41b corresponding to the storage portion 49 is preferably larger than the opening area of the storage portion 49.
  • a negative pressure passage 41c is provided that penetrates the upper and lower sides of the mounting portion 41b.
  • the negative pressure path 41c may be provided between the outer periphery of the blood sensor 42 and the inner periphery of the holder 41.
  • the cylinder 41d below the attachment portion 41b forms a negative pressure chamber 60 between the skin 13 and the cylinder 41d. Further, the inner wall of the cylinder 41e above the mounting portion 41b of the blood sensor unit 44 is locked to the outside of the adapter 40.
  • a connector 61 is provided inside the adapter 40.
  • the connector 61 includes a plurality of (for example, five) connectors 61a to 61e that are independent of each other.
  • the connectors 61a to 61e come into contact with the contact portions 54b to 57b and 56c of the blood sensor 42, respectively. Signals from the connectors 61a to 61e are guided to the electric circuit section 36.
  • the first skin contact sensor 62 provided at the tip 41h of the cylinder 41d detects that the blood sensor unit 44 has come into contact with the skin 13.
  • the first skin contact sensor 62 is also connected to a connecting portion 62c provided in the adapter 40 via a conductor 62a disposed in the holder 41, and further connected to a conductor 62b on the adapter 40 side.
  • the conductor 62b is led to the electric circuit section 36.
  • a first skin contact sensor 62 composed of a plurality of (for example, two) conductors at different portions of the tip 41h of the cylinder 41d (in FIG. 16, in the center of the cylinder 41d).
  • the contact with the skin 13 is detected by measuring the resistance value between the two conductors of the first skin contact sensor 62. For this reason, it is possible to detect force S that the skin 13 has surely contacted the tip of the blood sensor unit 44 without a gap.
  • the first skin contact sensor 62 may be a mechanical micro switch or a reflective optical switch.
  • the capillary in the skin 13 is damaged by the laser, and the blood 16 flows out.
  • the spilled blood 16 is stored in the reservoir 49.
  • FIG. 17 is an exploded front view of the main part of the guide part 63 that guides insertion of the blood sensor unit 44 into the adapter 40.
  • a convex portion 41f is formed inside the cylindrical body 41d, and a convex portion 40f is formed outside the adapter 40.
  • the tip 41g and the tip 40g at the ends of the protrusion 41f and the protrusion 40f are acute angles, respectively.
  • the tip 41g and the tip 40g face each other.
  • the convex portion 40f and its tip portion 40g, and the convex portion 41f and its tip portion 41g form a guide portion 63.
  • the blood sensor unit 44 is inserted into the adapter 40, the blood sensor unit 44 is inserted along the guide portion 63 while correcting the course, even if the positions of the blood sensor unit 44 are slightly shifted (see arrow 64). ).
  • the connectors 61a to 61e provided on the adapter 40 and the contact portions 54b to 57b and 56c provided on the sensor 42 are reliably contacted with each other with force. Therefore, the blood sensor unit 44 can be inserted without considering the rotation angle about the insertion direction, so that the blood sensor unit 44 can be easily mounted.
  • FIG. 18 is a perspective view of the blood sensor unit.
  • the blood sensor unit 110 shown in FIG. 18 may have the same structure as the blood sensor unit 44 unless otherwise specified.
  • Blood sensor unit 110 has a cylindrical shape whose cross section is an “H” shape.
  • Blood sensor unit 110 Honoreta, 110a Inner collar J (This is a blood night sensor (any of blood night sensors 42, 101, 102, 103) contact signal) 5 connectors 11 1 are provided for transmission to the connector (however, in the case of blood sensor 102, 4 connectors are used)
  • Connector 111 is the adapter 40 at the upper end of holder 110a. To the electric circuit section 36 through the adapter 40.
  • the connector 111 is provided on the adapter, and the connector 111 is brought into contact with the blood sensor contact portion of the blood sensor unit 110.
  • Blood sensor 42 is attached to the back side (lower end 110h side, that is, the side where the skin to be punctured is disposed) of attachment part 110b provided to close the opening of holder 110a.
  • a window 110c provided substantially in the center of the mounting portion 11 Ob is provided corresponding to the position of the storage portion 49 of the blood sensor 42. The laser passes through the window 110c and the reservoir 49 and punctures the skin 13.
  • the air hole 110d provided in the mounting portion 110b is provided at a position corresponding to the air hole 52 of the blood sensor 42.
  • the air hole 110 d is provided to allow blood 16 to flow into the supply path 50 of the blood sensor 42 and to store a negative pressure in the reservoir 49.
  • the blood sensor unit 110 is engaged with the adapter 40 by the elasticity of the engaging portion 110e that engages with the adapter 40.
  • the holder 110a is provided with two engaging portions 110e facing each other.
  • the engaging portion 110e is formed with slits on both sides thereof to give elasticity, and is formed integrally with the holder 110a. Therefore, the engaging portion 110e can be manufactured at a low price.
  • a deodorizing member storage 110f is provided concentrically.
  • Deodorant member A deodorizing member is placed in the storage area l lOf.
  • the skin 13 may be carbonized to generate odors, which can be deodorized with a deodorizing member (such as a deodorant).
  • a blood reservoir 110g is provided concentrically on the upper surface of the mounting portion 110b. Therefore, even if the blood 16 overflows from the hole 103b of the blood sensor 103 (see FIG. 10), the blood 16 stays in the blood reservoir 110g, so that the blood 16 is in the main body of the blood test apparatuses 31 and 31a. It is possible to prevent the problem from occurring.
  • Fig. 19 is a cross-sectional view of a principal part showing one configuration example in the vicinity of the lower end 110h of the holder 110a.
  • the end of the lower end 110h contacts the patient's skin 13 to form a negative pressure chamber 60.
  • the lower end 1 10 h is required to have close contact with the skin 13. Therefore, the lower end 110h may be formed by two concentric lines 110j that are sharply sharpened. Since the line 110j comes into contact with the skin 13 by line contact, the closed chamber property of the negative pressure chamber 60 is maintained.
  • the line 110j does not have to be two lines, either one or more than two lines.
  • FIG. 20 is a cross-sectional view of a main part showing another configuration example near the lower end 110h of the holder 110a.
  • the lower end 110h is formed with a concentric contact portion 110k made of an elastic body such as rubber, silicon, urethane, or sponge. Accordingly, the contact portion 110k is in close contact with the skin 13 due to its elasticity, and the closed chamber property of the negative pressure chamber 60 is maintained.
  • the contact surface of the contact portion 110k is preferably a flat surface in order to increase the contact area with the skin 13.
  • the contact portion 110k is formed of an absorbent member having a water absorption property such as a sponge, excess blood 16 that has flowed out by puncture can be wiped off after measurement. This eliminates the need to prepare paper for wiping. Moreover, it is hygienic if a disinfectant is added to the absorbent member.
  • the wetness of the skin 13 varies depending on the external environment such as the season. Therefore, it is preferable to keep the wetness in the vicinity of the skin 13 to be punctured constant. Therefore, measurement may be performed under stable conditions by moistening the skin 13 with appropriate moisture in advance before puncturing.
  • the lower end 110 of the holder 110a of the blood sensor unit 110 A water storage part 197 containing water may be provided over the entire circumference of h, and the skin 13 near the puncture part may be immersed in water in advance before puncturing with a laser.
  • the water storage unit 197 may be any porous material having elasticity such as sponge.
  • FIG. 22 is a cross-sectional view of blood sensor unit 110.
  • blood sensor 42 is disposed on the lower surface of mounting portion 110b of blood sensor unit 110, and is held by mounting portion 110b.
  • the skin 13 is raised by the negative pressure means 34 and 140 (see FIG. 2, FIG. 3, etc.) and comes into close contact with the blood sensor 42. Since blood sensor 42 is held by mounting portion 110b, blood sensor 42 is less likely to be distorted by closely contacting skin 13.
  • Connector 111 is contacted with blood sensor 42 M 54b to 57b, 56c (This is a horned insect. Honoreta, 'l lOa, data 40, and corresponding guide section 63 (see Fig. 17) It is preferable to be provided.
  • the blood test apparatus of the present invention has negative pressure means, and the negative pressure means makes the inside of blood sensor unit 110 a negative pressure.
  • a groove 110f may be formed in the mounting portion 110b of the blood sensor unit 110.
  • the groove 110f extends from the outer peripheral side of the mounting portion 110b of the holder 110a to a window 110e formed substantially at the center of the mounting portion 110b.
  • the groove 110f is also set to a negative pressure, and the blood sensor 42 comes into close contact with the mounting portion 110b.
  • the negative pressure is released to the atmosphere, the blood sensor 42 is detached from the mounting portion 110b.
  • the connector 111 contacts the blood sensor 42 at the contact surface 11 la.
  • the connector 111 is built in the holder 110a and is formed so as to cut into a part of the mounting portion 110b. As a result, the contact portion of the connection electrode formed on the upper surface of blood sensor 42 and the contact portion (both not shown) provided on connector 111 are connected.
  • a second skin contact sensor 110m may be provided on the lower surface of blood sensor 42. Thus, it is detected that the skin 13 has come into contact with the second skin contact sensor 110m due to the negative pressure in the negative pressure chamber 60.
  • the second skin contact sensor 110m may be configured with a counter electrode, for example. Second skin contact sensor 110m force It is preferable not to emit laser unless contact with skin is detected.
  • a first skin contact sensor 62 may be provided at the lower end l lOh of the holder 110a.
  • FIG. 23 is a cross-sectional view of another blood sensor unit.
  • Blood sensor unit 120 shown in FIG. 23 may have the same structure as blood sensor unit 110 unless otherwise specified.
  • Blood sensor unit 120 is different from blood sensor unit 110 in that blood sensor 42 is placed on the upper side of mounting portion 120b formed so as to close the opening of holder 120a.
  • the connector 61 connected to the electric circuit section 36 is electrically connected to the contact site (54b to 57b, 56c) of the blood sensor 42.
  • the upper space and the lower space of the mounting portion 120b of the blood sensor unit 120 formed in the “H” cross section are communicated with each other through a negative pressure path 120c.
  • the lower space forms a negative pressure chamber 60.
  • a first skin contact sensor 62 is provided at the lower end 120h of the holder 120a.
  • the second skin contact sensor 120m may be provided on the lower surface of the mounting portion 120b.
  • the contact pressure between connector 61 and contact portions (54b to 57b, 56c) of blood sensor 42 can be increased.
  • the blood sensor 42 can be easily attached to the attachment portion 120b.
  • the space on the device body 39 side (upper space in the figure) and the space on the skin 13 side (lower space in the figure) divided by the blood sensor 42 and the mounting part 120b are a negative pressure path. Communicates via 120c.
  • the space on the skin 13 side can be made negative pressure through the negative pressure path 120c.
  • the negative pressure is released to the atmosphere, air quickly flows into the space on the apparatus main body 39 side through the negative pressure path 120c. Therefore, it is possible to prevent blood taken into the blood sensor 42 from being scattered to the apparatus main body 39 side.
  • a groove 120f may be formed above the mounting portion 120b.
  • the groove 120f extends from the outer peripheral side of the mounting portion 120b of the holder 120a to a window 120e formed in the approximate center of the mounting portion 120b. With the groove 120f, there is no need to provide a hole (negative pressure path 120c) that penetrates the mounting portion 120b.
  • FIG. 24 is a cross-sectional view of still another blood sensor unit.
  • the blood sensor unit 130 shown in FIG. 24 may have the same structure as the blood sensor unit 44, unless otherwise specified.
  • the sensor 42 is mounted on the upper surface of the mounting portion 130b of the blood sensor unit 130.
  • the inner diameter of the lower end 130d of the Honoreda 130a is smaller than the inner diameter of the upper end 130c.
  • the diameter of the opening 130e of the negative pressure chamber 60 formed below the mounting portion 130b is preferably 2 to 20 mm. 3 to 10 is more preferable, and 5 to 7 mm is more preferable. This is to increase the negative pressure efficiency on the skin to be punctured.
  • the outer shape of the lower end 130d is made smaller than the outer shape of the upper end 130c, a plurality of blood sensor units 130 can be stacked vertically and stored efficiently. In general, since the blood sensor 42 needs a certain size, the outer shape of the upper end 130c may be difficult to reduce.
  • the locking projection 13 Og provided in the holder 130a so as to protrude in the direction of the blood sensor 42 locks the blood sensor 42 and prevents the holder 130a from coming off.
  • FIG. 25 is a plan view of blood sensor unit 130.
  • the honorder 130a of the blood sensor unit 130 is formed with two convex portions 130f that fit into the concave portions 46c and 47c (see FIG. 15) for alignment of the blood sensor 42 (an angle of approximately 120 degrees).
  • the position of the blood sensor 42 in the blood sensor unit 130 is determined by the convex portion 130f of the holder 130a and the positioning concave portion 46c of the blood sensor 42.
  • Blood sensor unit 130 in which blood sensor 42 is appropriately disposed is attached to adapter 40 at a predetermined position by guide portion 63 (see FIG. 17). In this way, signals from the detection electrodes 54 to 57 of the blood sensor 42 are transmitted to the electric circuit unit 36.
  • the number of the convex portions 130f may be one, but in that case, it is preferable that the mounting portion 130b has a structure in which the blood sensor 42 can be fitted.
  • the blood test apparatus of the present invention uses a laser as a puncturing means, and a laser emitting apparatus is accommodated in the apparatus body (see FIG. 2 and the like).
  • the emitted laser beam is collected by the focus lens and applied to the skin.
  • the laser is focused near the surface of the blood sensor. As described above, since the skin to be punctured is sucked by the negative pressure means and is in close contact with the blood sensor, the laser focused near the surface of the blood sensor can puncture the skin effectively.
  • the focus of the laser may be on the skin side of the blood sensor surface or on the laser emitting device side of the blood sensor surface.
  • the laser pattern paper ZAP-IT: Z-48
  • the laser pattern paper is used to display the “burn pattern diameter (m m) ”(Y axis) and“ target to be punctured from laser focus (puncture target: distance of laser alignment pen (mm) ”here (X axis).
  • “Burn pattern diameter” is the diameter of a hole that is opened when laser irradiation is performed.
  • FIG. 26 is a graph showing the relationship between the distance (X axis) of the target to be punctured and the burn pattern diameter (Y axis) from the laser focus in the blood test apparatus of the present invention.
  • “0” is the focal position of the laser beam.
  • the negative (“one”) area is when the puncture target position is set closer to the laser emitting device 33 than the focal position of the laser beam, and the plus (“ten”) area is larger than the focal position of the laser beam. The case where the puncture target position is set on the side far from the laser emitting device 33 is shown.
  • the burn pattern diameter does not change much even if the puncture target position is slightly shifted. Therefore, it can be punctured reliably.
  • the burn pattern diameter varies greatly depending on the displacement of the puncture target position. This is true even when the focal position of the laser beam is in a relative relationship with the puncture target position.
  • the burn pattern diameter when the puncture target position is fixed, in the A zone (when the focus is in the vicinity of the puncture target), even if there is a slight shift in the focus position of the laser beam, the burn pattern diameter will not change much. Shinare. Therefore, it is possible to puncture reliably.
  • the burn pattern diameter changes greatly due to the deviation of the focal position of the laser beam.
  • the puncture is not performed, so that safety is improved. For example, if the focal position of the laser beam is adjusted to the B zone, the puncture is not performed unless the puncture target position is close to the laser emission position to a predetermined position. In other words, unless the skin is sufficiently aspirated and raised by negative pressure, puncture is not performed.
  • the puncture target position is set to a predetermined position.
  • the puncture is not performed. In other words, even if the skin is sucked more than necessary due to negative pressure, it will not puncture.
  • the blood test apparatus of the present invention has a negative pressure means, and a mechanical sucking I pump (see 34a in FIG. 2) or a manual suction pump (see 141 in FIG. 3) as a component of the negative pressure means in the apparatus body. ) Etc. are accommodated.
  • the negative pressure means makes a negative pressure in the negative pressure chamber and sucks and swells the skin that is the puncture site, thereby bringing it into close contact with the blood sensor.
  • the negative pressure means 34 includes the suction pump 34a, the pump valve unit 34b, and the air release switch 34c (see FIG. 2).
  • the negative pressure means 140 is composed of a manual pump 141 and a manual pump knob 142 in addition to the pump valve unit 143 and the atmosphere release switch 144 (see FIG. 3).
  • the term “negative pressure means” broadly includes a negative pressure path in addition to a pump (a suction pump or a negative pressure pump) and a valve (a negative pressure valve or an open valve). Further, here, “to drive the negative pressure means” means to drive the pump and valve, and “to release the negative pressure” means to open the valve to open the atmospheric pressure (for example, atmospheric pressure) Means to introduce
  • FIG. 27 and 28 show a negative pressure chamber (suction chamber) and a negative pressure path.
  • FIG. 27 shows a negative pressure path when the negative pressure chamber is maximum
  • FIG. 28 shows a negative pressure path when the negative pressure chamber is minimum.
  • the blood test apparatus 31 in FIG. 2 will be described as an example.
  • the suction chamber 60a shown in FIG. 27 and the suction chamber 60b shown in FIG. It is provided in a space closer to the blood sensor 42 than the laser emission hole 33c of the device 33.
  • the negative pressure chamber 60 broadly means a space where the skin 13 comes into contact with the blood sensor unit 44 during measurement and is in a negative pressure state.
  • the negative pressure chamber 60 moves into the suction chambers 60a and 60b in the main body 39 of the blood sensor unit 44. Space is also included.
  • the negative pressure chamber 60 (especially the suction chambers 60a and 60b) is, for example, sucked by the pump 34a (that is, made negative pressure) and is turned by the valve 34b as shown in FIGS
  • the negative pressure chamber 60 is made smaller, less energy is required for generating negative pressure, and the time required for detection is also shortened. Therefore, the negative pressure chamber 60 (especially the suction chambers 60a and 60b) inside the blood test apparatuses 31 and 31a of the present invention is formed by the wall provided on the blood sensor 42 side of the laser emitting hole 33c of the laser emitting apparatus 33. It is preferable that it is partitioned off.
  • the wall (negative pressure partition or partition wall) 70 that separates the suction chambers 60a and 60b may be disposed at the same position as the laser emission hole 33c or the same position as the focus lens 33h. (That is, the wall and the focusing lens 33h are the body) or the focusing lens 33h itself may be the wall.
  • the example shown in Fig. 27 and Fig. 28 is the latter case.
  • the shape of the suction chamber may be a weight (see suction chamber 60b in FIG. 28).
  • the apparatus main body 39 is provided with a negative pressure path 71 communicating with the suction chambers 60a and 60b, and the negative pressure path 71 is connected to the suction port of the pump 34a.
  • the reservoir 49, the supply path 50, and the air hole 52 that also function as the negative pressure path 72 are provided.
  • the suction chambers 60 a and 60 b are also communicated with the negative pressure path 72 in the blood sensor 42.
  • a fine negative pressure path 73 connecting the suction chamber 60b and the air hole 52 is further provided in the apparatus main body 39.
  • the negative pressure paths 72 and 73 are fine channels whose volume is almost equal to zero.
  • the internal space V is the front of the laser crystal (laser rod) 33d and the focus lens 33h
  • the internal space V is the blood in the focus lens 33h and blood sensor unit 44.
  • the liquid sensor 42 and the space between the holders 41) correspond to the suction chambers 60a and 60b in the apparatus main body 39 in the configuration examples of FIGS.
  • Internal space V is a blood sensor
  • the negative pressure chamber 60 shown in FIG. 27 is composed of V and V, and the suction chamber 60a has a maximum volume of about 9 cc.
  • the negative pressure chamber 60 shown in FIG. 28 has a capacity of about 0.45 cc with the volume of the force suction chamber 60b composed of V and V being minimized. (See the area surrounded by the broken line in Fig. 30).
  • FIG. 31 is a block diagram of the electric circuit section 36.
  • 54 b to 57 b and 56 c are contact sites formed on the blood sensor 42.
  • Contact parts 54b to 57b and 56c are connected to switching circuit 71 via connectors 61a to 61e.
  • the output of the switching circuit 71 is connected to the input of the current Z voltage converter 72.
  • the output of the current / voltage converter 72 is connected to the input of the arithmetic unit 74 via an analog / digital converter (hereinafter referred to as “AZD converter”) 73.
  • the output of the calculation unit 74 is connected to a display unit 37 formed of liquid crystal.
  • a reference voltage source 78 is connected to the switching circuit 71.
  • the reference voltage source 78 may be a ground potential.
  • the input / output of the control unit 76 includes the control terminal of the switching circuit 71, the calculation unit 74, the puncture button 75, the transmission unit 77, the timer 79, the laser emitting device 33, the negative pressure means 34 (especially the suction pump 34a) and the first It is connected to the first skin contact sensor 62, and is also connected to an alarm means (not shown) and a second skin contact sensor 110m (see FIG. 22).
  • the output of the calculation unit 74 is also connected to the input of the transmission unit 77.
  • the suction port of the negative pressure means 34 (particularly the pump valve unit 34 b) is led into the negative pressure chamber 60 and the blood sensor unit 44 via the negative pressure path 71.
  • the contact part 56c where the electrical resistance between adjacent terminals is zero among the connectors 61a to 61e is specified.
  • the connection electrode connected to the identified contact part 56c is determined to be the reference electrode 56d.
  • the connector 61 is specified to be connected to the connection electrodes 56a, 57a, 54a, 55a in order. In this way, the connector 61 connected to each of the connection electrodes 54a to 57a is specified.
  • a blood test is then performed.
  • the switching circuit 71 is switched, and the detection electrode 54 serving as a working electrode for measuring the blood component amount is connected to the current / voltage converter 72 via the determined connector 61.
  • a detection electrode 54 serving as a detection electrode for detecting the inflow of blood 16 is connected to the reference voltage source 78 through the connector 61 determined as described above.
  • a constant voltage is applied between the detection electrode 54 and the detection electrode 55.
  • a current flows between detection electrodes 54 and 55.
  • This current is converted into a voltage by the current / voltage converter 72, and the voltage value is converted into a digital value by the A / D converter 73.
  • This digital value is output toward the calculation unit 74.
  • the computing unit 74 detects that the blood 16 has sufficiently flowed in based on the digital value.
  • glucose which is a blood component
  • the measurement of the glucose component amount is performed by first switching the switching circuit 71 according to a command from the control unit 76 so that the detection electrode 54 serving as the working electrode for measuring the glucose component amount is connected to the current / voltage converter 72 via the connector 61. Connect to. Further, a detection electrode 56 serving as a counter electrode for measuring the amount of glucose component is connected to a reference voltage source 78 via a connector 61.
  • the current / voltage converter 72 and the reference voltage source 78 are kept off while glucose in the blood reacts with its oxidoreductase for a certain period of time. Then, after a predetermined time (1 to 10 seconds) has elapsed, a constant voltage (0.2 to 0.5 V) is applied between the detection electrode 54 and the detection electrode 56 according to a command from the control unit 76. Then, the current flowing between the detection electrode 54 and the detection electrode 56 is converted into a voltage by the current / voltage converter 72. This voltage value is converted into a digital value by the A / D converter 73. The digital value is output to the calculation unit 74. The computing unit 74 determines the amount of the nocose course component based on the digital value.
  • the Hct (hematocrit) value is measured after measurement of the amount of the gnolecose component.
  • the switching circuit 71 is switched by a command from the control unit 76.
  • a detection electrode 57 serving as a working electrode for measuring the Hct value is connected to a current / voltage converter 72 via a connector 61.
  • the detection electrode 54 serving as a counter electrode for measuring the Hct value is connected to the reference voltage source 78 via the connector 61.
  • a constant voltage (2 V to 3 V) is applied between the detection electrode 57 and the detection electrode 54 according to a command from the control unit 76.
  • the current that flows between the detection electrode 57 and the detection electrode 54 It is converted into a voltage by the pressure converter 72.
  • This voltage value is converted into a digital value by the A / D converter 73.
  • the digital value is output to the calculation unit 74.
  • the computing unit 74 obtains an Hct value based on the digital value.
  • the glucose component amount is corrected with the Hct value by referring to the calibration curve or the calibration curve table obtained in advance.
  • the corrected result is displayed on the display unit 37.
  • the corrected result may be transmitted from the transmission unit 77 to an injection device that injects insulin (used as an example of a therapeutic agent).
  • an injection device that injects insulin used as an example of a therapeutic agent.
  • transmission may be performed using radio waves, it is preferable to transmit by optical communication that does not interfere with medical devices.
  • the injection device can automatically set the dose of insulin based on the measurement data sent to the injection device, it is not necessary for the patient to set the amount of insulin to be administered to the injection device. It is reduced. In addition, since the amount of insulin can be set in the injection device without using human means, setting errors are prevented.
  • the blood test apparatus of the present invention is also useful for measuring blood components (lactate level, cholesterol, etc.) other than force glucose as described in the example of measuring glucose using the blood test apparatus of the present invention. is there.
  • a blood test flow using the blood test apparatus 31 shown in FIG. 2 will be described with reference to FIG.
  • the blood sensor unit 44 is attached to the blood test apparatus 31 (step 81).
  • the blood sensor unit 44 is inserted into the adapter 40.
  • the tip of the adapter 40 comes into contact with 4 lb of the mounting portion of the blood sensor unit 44.
  • Blood sensor unit 44 is locked to adapter 40 by the elasticity of holder 41.
  • connection electrodes 54a to 57a of the blood sensor 42 are specified (step 82).
  • the reference electrode 56d is specified from the resistance value between the adjacent connectors 61a to 61e.
  • the connection electrodes 56a, 57a, 54a, and 55a are determined clockwise from the identified reference electrode 56d.
  • the connection electrodes 54a to 57a of the blood sensor 42 of the blood sensor unit 44 inserted at an arbitrary angle are identified in step 82, and as a result, the detection electrodes 54 to 57 is identified.
  • the tip 41h of the blood sensor unit 44 is pressed against the skin 13 of the patient to be brought into close contact (step 83).
  • the suction pump 34a of the negative pressure means 34 operates to start generation of negative pressure.
  • the load current applied to the suction pump 34a may be detected by the control unit 76, and the display unit 37 may display whether the negative pressure is puncturable.
  • a predetermined time after the negative pressure is generated may be measured by the timer 79 and the display unit 37 may display whether or not puncturing is possible.
  • a second skin contact sensor (FIG. 22: 110 m, etc.) is provided, the swell of the skin 13 due to negative pressure suction can be detected.
  • the detection may be displayed on the display unit 37.
  • puncture button 75 is pressed (step 84).
  • the signal of the puncture button 75 is recognized by the electric circuit unit 36.
  • the electric circuit unit 36 drives the laser emitting device 33, the laser is emitted toward the skin 13. If the puncture voltage with the laser is about 300V, less pain is given to the patient.
  • blood is collected (step 85).
  • the blood 16 that has flowed out of the patient's skin 13 by laser puncture is stored in the storage part 49 of the blood sensor 42 (see FIG. 8 and the like).
  • the blood 16 stored in the storage unit 49 enters the supply channel 50 by capillary action and is guided to the detection unit 51.
  • the negative pressure means 34 may be stopped.
  • the negative pressure means 34 may be stopped after the skin contact sensor 62 detects non-contact of the skin.
  • the detection unit 51 does not detect blood 16 or the amount of blood 16 is appropriate (detection electrode 54 and detection electrode 55). With resistance between For detection, the alarm means may be activated to give a warning, and an appropriate treatment content may be displayed on the display unit 37.
  • glucose is measured (step 86). After a reaction between glucose in the blood and glucose oxidoreductase for a certain period of time, a voltage is applied between the detection electrodes 54 and 56 with the detection electrode 54 as a working electrode and the detection electrode 56 as a counter electrode. Just measure it.
  • the Hct value is measured (step 87). If a voltage is applied between the detection electrodes 54 and 57 using the detection electrode 57 as a working electrode and the detection electrode 54 as a counter electrode, a current depending on the Hct value is detected. The Hct value can be measured based on this current.
  • the blood component is corrected (step 88). That is, using the Hct value detected in step 87, the amount of glucose obtained in step 86 is corrected. After correction, the result is displayed on display section 37. When the blood glucose level measurement is completed by the above steps, the used blood sensor unit 44 is discarded.
  • FIG. 33 is a diagram for schematically explaining the flowchart of the measurement step in more detail.
  • step 151 shows a state before the blood sensor unit 44 is attached to the adapter 40 of the blood test apparatus 31.
  • Step 152 shows a state where the blood sensor unit 44 is inserted into the adapter 40 along the guide portion 63 (see FIG. 7).
  • Step 153 shows a state in which the connector 61 is pushed down and the connector 61 comes into contact with the contact parts 54b to 57b and 56c of the sensor 42.
  • step 154 the process proceeds to step 154, and the main switch of blood test apparatus 31 is activated. Then, the electric circuit section 36 automatically detects the reference electrode 56d and specifies the detection electrodes 54 to 57. Thereafter, the display unit 37 displays that the preparation for measurement is completed.
  • step 155 the end of blood sensor unit 44 is brought into contact with skin 13 puncturing blood test apparatus 31.
  • the apparatus main body 39 of the blood test apparatus 31 is omitted, and only the blood sensor unit 44 is shown.
  • step 156 the blood test apparatus 31 is brought into contact with the skin 13 of the patient.
  • the first skin contact sensor 62 detects this contact with the skin 13.
  • the negative pressure means 34 starts to operate and sucks the negative pressure chamber 60 as indicated by an arrow 157a. As a result of the suction, the skin 13 rises.
  • the display unit 37 displays a message to start manual operation, and the patient starts operating the manual pump knob 142.
  • step 158 When negative pressure is applied, as shown in step 158, the skin 13 further rises and comes into contact with the second skin contact sensor (skin contact electrode) 11 Om.
  • the second skin contact sensor 110m is a force formed on the back surface of the blood sensor 42 attached to the lower surface of the blood sensor unit 44 (see FIG. 22), or the blood sensor 42 is attached to the upper surface of the blood sensor unit 44. (See FIG. 23), it may be formed on the lower surface of the mounting portion 120b.
  • second skin contact sensor 110m only needs to detect contact of skin 13 with blood sensor 42, an optical sensor, mechanism switch, or electrical resistance detection element may be used instead of the electrode.
  • Step 159 the suction of the skin 13 in the negative pressure chamber 60 is stopped. If the second skin contact sensor 110m is not provided, the suction may be stopped after a lapse of a predetermined time from the start of the operation of the negative pressure means 34. The elapsed time may be measured by the timer 79 of the electric circuit section 36.
  • step 160 skin 13 is irradiated with a laser and punctured. Blood 16 flows out from the skin 13 by puncture.
  • puncture may be performed automatically. Further, by displaying the contact of the skin 13 on the display unit 37, the patient may press the puncture button 75 (see FIG. 29). If the patient himself presses the puncture button 75, the patient can be ready.
  • the blood 16 that has flowed out fills the reservoir 49 and flows into the supply channel 50 as shown in step 161.
  • the inflow of blood 16 is performed by capillary action through the supply channel 50 and suction from the air holes 52 through the negative pressure means 34.
  • step 162 the blood 16 is guided to the detection unit 51 of the blood sensor 42.
  • the operation of the negative pressure means 34 is stopped (step 1 63).
  • detection electrode 55 of sensor 42 see Fig. 6
  • the inflow of blood 16 is detected. Be known.
  • the atmosphere release switch 34c is operated to bring the inside of the negative pressure chamber 60 to the external pressure.
  • step 164 blood test apparatus 31 is separated from skin 13.
  • a message to that effect is displayed on display unit 37.
  • step 165 to collect the collected blood
  • the flow of performing a blood test using the blood test apparatus of the present invention may include a step of authenticating a user who is a patient. Because this is a laser device, it is forbidden to use by anyone other than those authorized for safety reasons.
  • FIG. 34 shows a verification flow including the authentication step 261. Authentication can be performed by identifying whether or not the patient is a predetermined authorized person using fingerprints, voiceprints, irises, vein patterns, etc.
  • Step 262 If the user is permitted to use, go to Step 262. The patient operates the dial to set the puncture depth (laser power). Then, the process proceeds to step 263, and the blood sensor unit 44 having the blood sensor 42 is attached to the adapter 40 of the blood test apparatus 31. When the blood sensor unit 44 is attached, the power source of the apparatus body 39 is automatically activated and enters a measurement standby state. Step 263 for attaching blood sensor unit 44 may be performed before step 261. The measurement operation cannot be performed unless the blood sensor unit 44 is attached, but the measurement result can be displayed.
  • step 264 whether or not the blood sensor unit 44 is in contact with the skin 13 is detected by the first skin contact sensor 62 (see FIG. 16 and the like). Instead of the first skin contact sensor 62, it may be detection of the presence or absence of blood vessels, detection of body temperature, detection of electrical resistance of skin, detection of pulsation. In any case, for the sake of safety, the operation after step 265 is performed while the contact with the skin 13 is detected. Wait in step 264 until contact with skin 13 can be detected.
  • step 265. the operation of the negative pressure means 34 is started in step 265.
  • the drive voltage charging of the laser emitting device 33 is started.
  • step 266 the value of the current flowing to the negative pressure means 34 is monitored for 1 to 5 seconds. If the current value is abnormal, a message to that effect is displayed on the display unit 37, and the process returns to step 264.
  • step 267 it is determined whether or not the negative pressure is appropriate. Whether the negative pressure is appropriate is determined by comparing the current flowing to the negative pressure means 34 with a predetermined threshold value. If a constant negative pressure is reached, go to step 268 and allow laser firing. If the negative pressure does not exceed the threshold value, air suction (blood sensor unit 44 is poorly in contact with skin 13), suction by negative pressure means 34 is stopped, a retry is instructed, and the process returns to step 264. .
  • the second skin contact sensor 110m (see Fig. 22) is arranged, the swell of the skin 13 sucked by the negative pressure can be detected. When the skin 13 is properly raised and close to the blood sensor 42, the laser is allowed to fire.
  • step 268 the laser 13 is fired to puncture the skin 13. Then, the process proceeds to step 269, and blood 16 flowing out from skin 13 by puncture is taken into blood sensor 42. At this time, the negative pressure means 34 continues to drive.
  • step 270 it is checked whether or not the blood 16 has been taken into the detection unit 51 (see FIG. 8) of the blood sensor 42. It is detected whether blood 16 has reached detection electrode 55 within a certain elapsed time after puncture (2 to: sometimes 10 seconds). If blood 16 is not detected within a certain period of time, return to step 264 and repuncture. Therefore, once mounted blood sensor 42 is not wasted and unused. The force can be re-punctured quickly.
  • step 271 If blood 16 is detected, the process proceeds to step 271 to start measuring the blood sugar level.
  • step 271 the pump valve unit 34b (see Fig. 2) is controlled to start the release of negative pressure outside air.
  • the negative pressure means 34 is still operating. This is to prevent the patient from removing the blood test device 31 from the skin 13 by making the patient recognize that the measurement is being performed by the sound and vibration generated when the negative pressure means 34 is driven. . With such consideration, it is possible to prevent the blood test apparatus 31 from being subjected to vibrations and shocks during the measurement of blood components and to perform stable measurement. Also, immediately after releasing the negative pressure, the patient removes the device from the skin 13 to prevent the blood 16 from being scattered and contaminated.
  • step 271 When the measurement is completed in step 271, the process proceeds to step 272 and the measurement result is displayed on the display unit 37. Then, the process proceeds to step 273, where the negative pressure means 34 (especially the suction pump 34a and Stop the pump valve unit 34b) (see Fig. 2). Thereafter, the patient separates blood test apparatus 31 from skin 13.
  • the negative pressure means 34 especially the suction pump 34a and Stop the pump valve unit 34b
  • step 274 the process moves to step 274, and the patient removes the blood sensor unit 44 from the apparatus main body 39 of the blood test apparatus 31 and discards it. Then, the process proceeds to step 275, where the removal of the blood sensor unit 44 is detected, and the power source of the apparatus main body 39 is automatically stopped.
  • the blood test apparatus 31 of the present invention may hold the negative pressure intermittently several times after puncturing. With reference to FIG. 35 and FIG. 36, the timing and operation of applying negative pressure will be described.
  • the negative pressure means 34 starts to drive at time 166a (corresponding to step 156 in FIG. 33). Negative pressure is applied in the negative pressure chamber 60, and the skin 13 is tensioned and raised as shown in state 167a (corresponding to step 157 in FIG. 33). The skin 13 swells and contacts the second skin contact sensor 110m at time 166b (corresponding to step 158 in FIG. 33). At time 166b, the skin 13 is in the state 167b shown in FIG. Here, the negative pressure supplied to the negative pressure chamber 60 is stopped (corresponding to step 159 in FIG. 33). Then, at time 166c, the skin 13 is punctured (corresponding to step 160 in FIG. 33). Here, the skin 13 is in the state 167c, and the blood 16 oozes out.
  • the opening of the skin 13 is expanded as in the state 167d, and the blood 16 is likely to flow out (corresponding to step 161 in FIG. 33).
  • the negative pressure means 34 is operated intermittently so that no extra blood 16 overflows. In this way, the suction force is weakened to save power and an appropriate amount of blood 16 is collected.
  • blood 16 may not easily flow out of skin 13 even by laser puncture.
  • the negative pressure after puncturing may be increased compared to the negative pressure before puncturing so that blood 16 can easily flow out.
  • the negative pressure is controlled by controlling the closing time of the valve 34b because the maximum pressure (negative pressure) is constant.
  • the negative pressure may be continuously detected without intermittently driving the negative pressure.
  • the blood test apparatus 31 of the present invention may perform a so-called “smearing operation” before and after the puncture.
  • the stagnation operation will be described with reference to FIG.
  • the stagnation operation is performed, for example, by opening and closing the valve (for example, an electromagnetic valve) 34b at a predetermined timing while the pump (for example, the electric suction pump) 34a is driven at a constant voltage.
  • the valve for example, an electromagnetic valve
  • the pump for example, the electric suction pump
  • the air pressure level 90 is a negative pressure level that hardly feels suction (eg, _ 10kPa), and level 91 is the highest pressure (negative pressure) when the pump 34a is driven at a constant voltage. (For example, _70kPa).
  • the valve (solenoid valve) 34b that causes the stagnation is opened / closed by changing the air pressure in the negative pressure chamber 60 between the level 90 and level 91, and the cycle of the change is the skin 13 At a timing that is longer than the minimum time to react to changes in negative pressure (for example, 0.1 seconds or more) Do.
  • Such opening / closing operation of the valve (solenoid valve) 34b is performed during the period from the start of suction until spotting detection 'solenoid valve closing.
  • the reason why the solenoid valve is closed after the spotting is detected is to facilitate the collection of blood 16 by expanding the puncture hole of skin 13 as described above.
  • the driving of the negative pressure means 34 is stopped (pump suction stop and valve open).
  • the blood test apparatuses 31 and 3 la of the present invention include the laser perforation apparatus shown in FIG.
  • This laser perforation apparatus has a structure in which blood sensor unit 44 and members related to blood sensor unit 44 (for example, a connector connected to blood sensor 42) are removed from blood test apparatuses 31 and 3la.
  • This laser punching device has a function of controlling the laser output of the laser emitting device 33 so as to “divide and puncture” the same puncturing position in one puncturing operation.
  • “divided puncture” refers to performing a single puncture operation by dividing it spatially or temporally.
  • the former is a case where a laser beam is divided into a plurality of optical paths to perform a puncturing operation (laser output branching control), and the latter is performed by dividing the laser beam into a plurality of times. This is the case (laser output control).
  • Blood test apparatuses 31 and 31a of the present invention may puncture skin 13 by branching one laser beam emitted from laser emitting apparatus 33 into a plurality of laser beams.
  • reference numeral “33” denotes a laser emitting device
  • “13” denotes a patient's skin.
  • Reference numerals “170a”, “170b”, and “170c” are splitters that transmit half of the incident light and reflect the other half of the light to distribute the incident light evenly. is there.
  • the splitters 170a, 170b and 170c are formed of half mirrors.
  • Reference numerals “171a”, “171b”, and “171c” are total reflection mirrors that totally reflect incident light, respectively. These total reflection mirrors (hereinafter simply referred to as “mirrors”) 171a, 171b, 171c Pretter 170a, 170b, 170c and threaded respectively. As shown in FIG. 39, these spitters 170a, 170b, 170c and mirrors 171a, 171b, 171c are set at a predetermined angle with respect to the incident light so as to puncture the same irradiation position 177.
  • the laser beam 172 emitted from the laser emitting device 33 is split into a laser beam 173a and a laser beam 173b by a splitter 170a.
  • the branched laser beam 173b enters the mirror 171a, and is totally reflected by the mirror 171a to become a laser beam 174.
  • This laser beam 174 is split into a laser beam 175a and a laser beam 175b by a splitter 170b.
  • the branched laser beam 175a directly punctures the irradiation position 177 of the skin 13.
  • the laser beam 175b branched by the splitter 170b is totally reflected by the mirror 171b to become the laser beam 175c, and punctures the irradiation position 177 of the skin 13.
  • the laser beam 173a that has passed through the splitter 170a is split into a laser beam 176a and a laser beam 176b by the splitter 170c.
  • the branched laser beam 176a directly punctures the irradiation position 177 of the skin 13.
  • the laser beam 176b branched by the splitter 170c is totally reflected by the mirror 171c to become the laser beam 176c, and punctures the irradiation position 177 of the skin 13.
  • one laser beam 172 is branched into a plurality of optical paths and punctures the irradiation position 177 of the skin 13, puncture is performed with a laser beam having a small output, and pain can be reduced. Therefore, the laser light can be concentrated and punctured into the capillaries inside the skin 13.
  • the laser beam 176b branched by the splitter 170c is totally reflected by the mirror 171c. It takes a long time to reach the irradiation position 177 of the skin 13 with the laser beam 176c.
  • the laser output can be controlled so that a plurality of branched laser beams can be sequentially irradiated to the same irradiation position.
  • a cube-shaped optical element 178 in which a rectangular parallelepiped is divided into two by a diagonal line 178a.
  • Ritters 170a, 170b, and 170cf, mating surfaces (mirrors with different refractive indexes are bonded together, and cube-shaped mirrors 171a, 171b, and 171c are bonded with a totally reflecting surface and a completely transmitting surface.
  • the optical element 178 can maintain high accuracy with respect to changes in the splitting or bending of the optical path because there is no deviation of the transmitted optical path and no ghost.
  • the splitters 170a, 170b, 170c and the mirrors 171a, 171b, 171c can be entirely or partially configured with one cube-shaped optical element.
  • the laser branch shown in FIG. 39 or FIG. 40 is configured by a cube-shaped optical element
  • the branch of the laser beam 172 is expressed by a two-dimensional image.
  • FIG. 42A the laser light 172 emitted from the laser emitting device 33 is branched into a plurality of optical paths, and finally condensed at one irradiation position 177.
  • Figure 42B shows an example of a cube that realizes this branch. Within cube 179, shown in Figure 42B, a sufu.
  • Jitters 170a, 170b, 170c and mirrors 171a, 171b, 171c force S are fixedly arranged at predetermined positions, respectively.
  • the splitters 170a, 170b, 170c used for laser branching and the mirrors 171a, 171b, 171c in the cube 179 fine positioning becomes unnecessary, and the cube 179 is placed on the optical axis of the laser. It is possible to irradiate a desired position with a laser beam whose branch is controlled simply by arranging it.
  • the laser beam may be branched using an optical fiber.
  • 63A and 63B show a method of splitting laser light by an optical fiber.
  • FIG. 63A shows a case where the laser beam is split into two by the branch fiber cable 421 from the laser emitting device 33.
  • a laser beam 422 that is bifurcated toward the same irradiation position 177 of the skin 13 is emitted from the bifurcated fiber cable 421.
  • the bifurcated fiber cable 421 includes one optical fiber directional coupler 423.
  • FIG. 63B shows a case where the laser light is branched from the laser emitting device 33 into four branches by the branch fiber cable 424.
  • the four-branch fiber cable 424 is also irradiated with the four-branched laser beam 425 toward the same irradiation position 177 of the skin 13.
  • the four-branch fiber cable 424 includes three optical fiber directional couplers 423. As described above, even when an optical fiber is used, the skin 13 can be punctured by branching one laser beam emitted from the laser emitting device 33 into a plurality of laser beams as in the case shown in FIG. In particular, when using a fiber cable, the laser beam does not leak outside, so it is handled more than when using a splitter. It is very easy.
  • FIG. 64 is a schematic diagram showing the configuration of the optical fiber directional coupler 423.
  • a directional coupler is an optical element that branches light.
  • the optical fiber directional coupler 423 is configured by removing the clad 428 of the coupling portion 427 of the two optical fibers 426 and bringing the cores 429 closer together.
  • the optical fiber directional coupler 423 when light enters from one optical fiber 426, light propagates to the other core 429 in the vicinity of the two cores 429 due to the light interference effect, and the light is branched. Can do.
  • FIG. 65 shows a case where the branch joint portion 430 and the fiber cable 431 are used as a method of branching the laser beam using the optical fiber.
  • the laser beam 432 emitted from the laser emitting device 33 is branched into two via a branch joint portion (T-type branch) 430.
  • the branch joint unit 430 includes a triangular total reflection mirror 433, and branches the laser beam 432 into a reverse letter.
  • Each of the branched laser beams punctures the same irradiation position 177 of the skin 13 via the fiber cable 431.
  • the irradiated portion rapidly increases in temperature due to light absorption. With this temperature rise, blood 16 evaporates and pushes skin 13 into a balloon shape. Further, when the skin 13 is further pushed up, the skin 13 is destroyed and blood 16 flows out. After blood 16 has flowed out, the bottom surface punctured by the laser is carbonized, producing a carbonized odor.
  • the carbonized odor should be deodorized with a deodorant.
  • the laser is designed to puncture the patient's skin 13 by about 0.5 mm.
  • the pulse width is 50 to 400 ⁇ 3, preferably 200 xs, and the output is 300 mJ to 3000 mJ. Hare.
  • the shot diameter should be between 0.1mm and 0.5mm, and the shot depth should be between 0.3 and 0.7mm.
  • the charge voltage is in the range of 200 to 700V, preferably 500V. This high voltage is obtained by charging the capacitor with a charge using a battery and then discharging the charged charge at once.
  • Irradiation angle in laser irradiation It is possible to puncture skin 13 by irradiating skin 13 with a single laser beam from an oblique direction.
  • the inside of the negative pressure chamber 60 of the blood sensor unit 44 is negatively pressurized by the negative pressure means 34, and the skin 13 is raised.
  • the laser beam 181 is irradiated at an angle of less than 90 degrees with respect to the tangential direction of the top 180 of the skin 13 swell.
  • the laser beam when laser light is irradiated at an angle of less than 90 degrees with respect to the tangential direction, the laser beam is viewed from an oblique direction with respect to the surface where the capillaries are covered, compared to the case where laser light is irradiated from the vertical direction.
  • Light 181 is illuminated. Therefore, although the irradiation intensity per unit area of the laser beam 181 is weakened, the probability of damaging the capillaries increases. Therefore, blood collection efficiency is increased. Therefore, sufficient blood 16 can be collected even when the puncture depth is shallow, and the pain given to the patient is reduced.
  • the irradiation form of the laser beam 181 is not a perfect circle, but may be an ellipse 183 or an elongated rectangle 184 as shown in FIG.
  • the irradiation shape is an elliptical shape 183 or an elongated rectangle 184, the probability of damaging the capillaries covered by the laser light 181 increases, and the blood collection efficiency increases. Therefore, since sufficient blood 16 can be collected even when the puncture depth is shallow, the patient is unlikely to suffer pain.
  • the laser output intensity can be varied.
  • a plurality of types of filters having different amounts of transmitted laser light for example, neutral density (ND) filters 19 la to 191d force S shell
  • ND filters 19 la to 191d force S shell It is also possible to provide an attached plate 193.
  • the plate 193 is installed in the irradiation path of the laser beam 194. By rotating the plate 193, the amount of laser light 194 irradiated on the skin 13 is controlled.
  • the puncture depth can be controlled by controlling the amount of laser light.
  • the applied voltage is controlled in the case of a flash lamp, and the current is controlled in the case of a semiconductor laser.
  • the output can be adjusted. Therefore, finer control of the laser output becomes possible.
  • the laser output intensity is determined by the voltage applied to the flash lamp.
  • the voltage is made variable, the stability of the voltage value deteriorates, which causes the laser output to fluctuate.
  • the ND filters 191a to 191d which have different transmitted light amounts, are used when the output of the laser beam 194 decreases (changes) even if the voltage is fixed.
  • the laser output can be kept constant. Therefore, stable laser output can be obtained.
  • puncture to a certain depth may be performed several times.
  • the laser beam is irradiated three times. Divide into Nores 198a, 198b, and 198c, and puncture multiple times at intervals of 200 z s to lmsec (rest period), using small pulses of about 210V each.
  • the skin 13 is divided into three levels P, such as Levenole 199a, 199b, and 199c. .
  • a high voltage is obtained by charging the capacitor during the rest period of 200 / is to lmsec.
  • the depth of puncturing skin 13 with one pulse is shallow, so that puncturing can be performed to a predetermined depth while reducing pain.
  • it is important to shorten the interval between pulses 1 98a, 198b, and 198c to 200 / is ⁇ : 1msec. S is important, and it is preferable to perform the next puncture before blood ⁇ night 16 oozes out. .
  • the object to be punctured in the present invention is, for example, the skin of the belly of a finger.
  • the skin is formed of the epidermis having a stratum corneum outside and the dermis in which pain points and capillaries are present in order from the surface. Therefore, if the dermis is punctured with low energy after giving the energy to remove only the epidermis in the first or several irradiations, the pain is reduced.
  • the above case is a case of puncturing once.
  • the switching speed is high with a large current, and a high signal is input to the transistor (IGBT) 411.
  • the transistor (IGBT) 411 When the transistor (IGBT) 411 is turned on, the negative electrode of the flash lamp 33e is connected to the ground, the voltage from the electrolytic capacitor 412 is applied to the flash lamp 33e, and at the same time, a boosted voltage of several kV is applied from the trigger coil 413. Is output. Thereby, the xenon gas filled in the flash lamp 33e is ionized, the main discharge of the electrolytic capacitor 412 starts, and the flash lamp 33e emits light.
  • the transistor (IGBT) 411 when a low signal is input to the transistor (IGBT) 411, the transistor (IGBT) 411 is turned off and the voltage application to the flash lamp 33e is stopped. As a result, the flash lamp 33e stops emitting light and the laser output also stops. By repeating this operation, the laser output can be divided into several times. Here, the case of dividing into two times is shown.
  • Reference numeral “414” denotes a resistor (R1).
  • this puncturing method first the epidermis of the skin 13 is removed, and then the dermis is punctured with low energy, so the laser beam does not reach the deep part of the dermis. Therefore, it is possible to puncture to a predetermined depth while reducing pain. In addition, puncture the epidermis so that blood 16 does not bleed.
  • the blood test apparatus of the present invention is equipped with a laser emitting apparatus with high electrical consumption
  • Power management is important. In the case of a portable device that uses a battery as a power source, the capacity management is particularly important, because the capacity is limited.
  • the blood test apparatus of the present invention preferably has a power supply control circuit for controlling the power supply of the power supply for driving the laser emitting apparatus included in the apparatus and the power supply for driving the electric circuit section. Furthermore, it is preferable that the power supply control circuit independently controls a power supply for driving the laser emitting device and a power supply for driving the electric circuit section.
  • Independent control determines whether or not to supply the power to drive the laser emitting device and the power to drive the electric circuit according to the remaining power and voltage of the power supply (especially the battery). And determining which power source to supply from.
  • the power supply of the blood test apparatus of the present invention preferably includes a battery power supply. This is because it can be used as a portable device. There may be one battery power source or two or more battery power sources.
  • the battery may be a secondary battery or a primary battery, or a combination of both.
  • secondary batteries include lithium ion batteries, lithium polymer batteries, nickel metal hydride batteries, nickel cadmium batteries, and the like.
  • primary batteries include lithium batteries, manganese batteries, alkaline batteries, oxyride batteries, and the like.
  • the power supply of the blood test apparatus of the present invention may have a connection terminal for an emergency power supply in addition to the battery power supply. This is because, when the battery of the battery power source is consumed, the blood sampler is used by connecting to another power source.
  • emergency power sources include batteries and personal computers that are easily available. USB terminals, fuel cells, manual generators (dynamo), etc. used in computers and the like are included. These power supplies can be easily connected.
  • the power source of the blood test apparatus of the present invention may have an external power source in addition to the battery power source.
  • the external power supply be used preferentially to stop the electrical output from the battery or to charge the battery.
  • the blood test apparatus may have a battery remaining amount measuring circuit for measuring the remaining amount of the battery of the battery power supply. Furthermore, the blood test apparatus preferably has a comparison unit that compares the remaining battery level measured by the remaining battery level measurement circuit with a predetermined value (electric energy). This is because the remaining battery level is grasped to determine whether laser puncture or inspection is possible.
  • a predetermined value electrical energy
  • the first predetermined amount of power is the amount of power required for a predetermined number of tests (including laser puncture and measurement). This value is called the first remaining amount threshold.
  • the first remaining amount threshold may be set to a fixed value as long as it is appropriately set by the designed circuit.
  • the second predetermined amount of electric power is the amount of electric power required for one examination (including puncture and measurement). This value is called the second remaining amount threshold. If the remaining battery level is equal to or greater than the second remaining level threshold, it is determined that at least one test can be performed, and the test is performed. However, as described above, when the remaining battery level is below the first remaining level threshold, it is preferable to issue a battery level warning.
  • the measured remaining battery level is less than the second remaining level threshold value, normal inspection cannot be performed, and laser puncture is prohibited to indicate to the user that inspection is not possible. Preferred (unusable indication). However, even if laser puncture is impossible, a measurement process with low power consumption may be performed. Therefore, measurement can be performed after puncturing by means other than laser.
  • the second remaining amount threshold value is preferably set based on the battery consumption consumed in the previous inspection. Specifically, the second remaining amount threshold value is preferably the sum of the consumed amount and the electric energy for driving the electric circuit for measurement. Laser output of laser launcher Since the battery consumption changes due to changes in settings, the latest data is stored for the battery consumption consumed in the inspection. Thus, the second remaining amount threshold is variable.
  • the third of the predetermined amounts of power is the sum of the amount of power required for one charge of the laser emitting device and the amount of power for driving the measurement electric circuit. This value is called the third remaining amount threshold. Whether the laser launcher is charged using the power supply for driving the electrical circuit in an emergency when the power supply for charging the laser launcher and the power supply for driving the electrical circuit are separate The third remaining amount threshold is used as a criterion for judging the above.
  • the amount of power required for a single charge to the laser launcher is determined by the capacitor capacity, charge voltage, charge current, and battery internal resistance charged for laser excitation.
  • the charge amount for charging the laser emitting device may be set based on the remaining battery level measured by the remaining battery level measurement circuit.
  • FIG. 61A to FIG. 61C show an example in which the charge amount is set according to the remaining battery level.
  • FIG. 61A shows a method of changing the charging current step by step according to the ratio of the remaining battery level (Y axis). For example, if the remaining battery level is 75 to 100% (first zone), the charging current value is set to the maximum value (100%); if the remaining battery level is 50 to 75% (second zone), charging is performed. Assuming that the current value is 50% of the maximum value; if the remaining battery level is 25% to 50% (Zone 3), the charging current is set to 25%. In this way, the charging current (X axis) is continuously changed.
  • Fig. 61C shows a method of continuously changing the charging current (X-axis) so that it becomes a variable curve that is the opposite of the curve based on the change curve of the remaining battery level (Y-axis). .
  • the blood test apparatus of the present invention preferably has a battery voltage measurement circuit for measuring the voltage of the battery of the battery power supply.
  • the blood test equipment can measure the voltage measured by the battery voltage measurement circuit. It is preferable to have a comparison unit that compares the battery voltage with a predetermined voltage value.
  • the battery voltage measurement circuit checks whether the battery outputs a sufficient voltage.
  • a predetermined voltage value is stored in the comparison unit.
  • the first of the predetermined voltage values is preferably a voltage value that is somewhat higher than the minimum voltage required for driving the electric circuit section for measurement. This voltage value is called the first voltage threshold.
  • the first voltage threshold is set so that the battery voltage does not fall below the required minimum voltage even if the battery voltage drops due to charging of the laser launcher. The degree to which the battery voltage drops due to charging varies depending on the nature of the battery, so the first voltage threshold is set appropriately according to the nature of the battery.
  • the comparison unit determines that the current is lower than the normal current. It is preferable to charge the laser emitting device. This is because if the battery is charged at a low current, the battery voltage is unlikely to decrease.
  • FIG. 62 shows the relationship between the battery voltage (Y axis) and the remaining battery level (X axis) when the charge amount is changed.
  • Curve 410 is when the charging current is 0 (no load); curve 420 is when the charging current is; curve 430 is the battery voltage (Y-axis) and remaining battery level when the charging current is ⁇ (> 1)
  • the relationship with (X axis) is shown. It can be seen that the battery voltage is lowered for both curve 420 and curve 430 with respect to curve 410. This is due to the resistance inside the battery (421 and 431).
  • the second of the voltage values predetermined in the comparison unit is a voltage value that is equal to or larger than the first voltage threshold and is sufficiently marginally. This voltage value is called the second voltage threshold. For example, the first voltage threshold +0.5 to about IV.
  • the comparison unit determines that the battery voltage measured by the battery voltage measurement circuit before charging the laser emitting device exceeds the second voltage threshold, the laser emitting device is charged with a high charging current. It is preferable to carry out.
  • the blood test apparatus of the present invention has a display unit (see Fig. 1) for displaying the blood test results. It is preferable that the above-mentioned battery remaining amount warning display and unusable display are displayed on the display unit.
  • FIG. 50 shows a power supply control unit 200-1 of the first example of the blood test apparatus.
  • a outlet 201 connected to a household AC power source (used as an example of an external power source) is connected to an AC adapter 202.
  • the output of the AC adapter 202 can be detachably connected to one input of the power control circuit 203 using a connector.
  • the battery 210 is connected to a remaining battery level and battery voltage measurement circuit 212.
  • a first output of the circuit 212 is connected to the power supply control circuit 203, and a second output of the circuit 212 is connected to the comparison unit 211.
  • the emergency power supply connection terminal 204 is connected to the power supply control circuit 203.
  • the first output of the power supply control circuit 203 is connected to the electric circuit section 36a.
  • the second output of 03 is connected to the input of the booster circuit 205, and the output of the booster circuit 205 is connected to the laser emitting device 33.
  • the first output of the comparison unit 211 is connected to the power supply control circuit 203.
  • the second output of the comparison unit 211 is connected to the boost control unit 208, and the output of the boost control unit 208 is the boost circuit.
  • the third output of the comparison unit 211 is connected to the display control unit 209,
  • the output of the display control unit 209 is connected to the display unit 37.
  • the puncture button 75 is connected to the input of the electric circuit unit 36a, and the pressing signal of the puncture button 75 is connected to the input of the boost control unit 208 via the electric circuit unit 36a.
  • An emergency button 207 is connected to the other input of the boost control unit 208.
  • the output of the electric circuit section 36a is connected to the display section 37.
  • Step 311 turns on the power.
  • Step 312 moves to Step 312 and measure the remaining battery power.
  • step 313 the measured remaining battery level is compared with the first remaining level threshold value
  • step 314 the measured remaining battery level is compared with the second remaining level threshold value.
  • the first remaining threshold is the amount of power required for a predetermined number of tests (including laser puncture and measurement); the second remaining threshold is a single test (such as puncture and measurement). (Including power).
  • step 313 If it is determined in step 313 that the remaining battery level is greater than or equal to the first remaining threshold, the process proceeds to step 318 to charge the laser emitting device.
  • step 313 If it is determined in step 313 that the remaining battery level is less than the first remaining threshold value, and if it is determined in step 314 that the remaining battery level is greater than or equal to the second remaining threshold value, the user is prompted in step 315.
  • a battery level warning display for prompting battery replacement is displayed, and the process proceeds to step 318 to charge the laser emitting device.
  • step 313 If it is determined in step 313 that the remaining battery level is less than the first remaining battery level threshold, and if it is determined in step 314 that it is less than the second remaining battery level threshold, the user is prompted in step 316.
  • An unusable display for notifying that the normal inspection cannot be performed is displayed on the display unit, and power supply to the laser emitting device is prohibited in step 317.
  • step 318 When a predetermined amount of charge is charged in the laser emitting device in step 318, laser is emitted in step 319 to puncture the skin. In step 321, the blood component flowing out from the punctured skin is measured, and the obtained measurement result is displayed to complete the blood test.
  • step 322 the remaining battery level is measured.
  • step 323 the difference between the remaining battery level measured in step 312 and the remaining battery level measured in step 322 is obtained to obtain the current battery consumption. Further, in step 323, the sum of the current battery consumption and the minimum required power amount for driving the electric circuit unit for measurement is obtained, and the second remaining amount threshold value is reset. Ste Stop the power at 324.
  • Step 311 turns on the power.
  • step 331 the battery voltage is measured.
  • step 332 the remaining battery capacity is measured.
  • step 333 the difference between the voltage measured in step 331 and the voltage drop value calculated in step 347 of the previous inspection (described later) is obtained.
  • step 333 the difference is compared with the minimum voltage required to drive the electric circuit section for measurement.
  • step 313 the remaining battery level measured in step 332 is compared with the first remaining threshold value; in step 314, the remaining battery level measured in step 332 is compared with the second remaining threshold value.
  • the first remaining amount threshold is the amount of power required for a predetermined number of tests (including laser puncture and measurement); the second remaining amount threshold is a single detection. This is the amount of power required for (including puncture and measurement).
  • step 333 If it is determined in step 333 that the difference is greater than or equal to the required minimum voltage, and if it is determined in step 313 that the remaining battery level is greater than or equal to the first remaining threshold, The process proceeds to 341, and the laser emitting device is charged with the normal current.
  • step 333 If it is determined in step 333 that the difference is greater than or equal to the required minimum voltage, it is determined in step 313 that the remaining battery level is less than the first remaining threshold, and in step 314 the remaining battery level is (2) If it is determined that the battery level is equal to or greater than the remaining battery level threshold value, a battery level warning display is displayed to prompt the user to replace the battery in step 315, and the process proceeds to step 341, where the laser is driven by the normal current. Charge the launcher.
  • step 333 If it is determined in step 333 that the difference is greater than or equal to the required minimum voltage, it is determined in step 313 that the remaining battery level is less than the first remaining threshold, and in step 314 the remaining battery level is If it is determined that it is less than the second remaining amount threshold value, an unusable indication is displayed in step 316 to inform the user that normal inspection cannot be performed, and in step 317 the laser emitting device is displayed. Prohibit the supply of power.
  • step 333 determines whether the difference is less than the minimum required voltage. If it is determined in step 333 that the difference is less than the minimum required voltage, the process proceeds to step 335 and the laser emitting device cannot be charged normally (for example, the charging time is long). To display to the user a normal charging failure indication, In step 336, the user is required to press the emergency button when performing an inspection.
  • step 336 If the emergency button is not pressed in step 336, the process proceeds to step 317, and power supply to the laser emitting device is prohibited.
  • the laser emitting device is charged at a lower current than usual at step 337.
  • the step-up control unit 208 controls the current value for charging.
  • the laser emitting device emits a laser to puncture the skin, and in step 339, the blood component flowing out from the punctured skin is measured, and the measurement result is displayed. After the inspection, turn off the power at step 348.
  • step 341 when the laser emitting device is charged with the normal current in step 341, the voltage of the battery being charged is measured in step 342.
  • step 343 the laser is emitted from the charged laser emitting device to puncture the skin.
  • step 344 the blood component flowing out from the punctured skin is measured and the measurement result is displayed.
  • step 345 measure the remaining battery level after measurement.
  • step 346 the difference between the remaining battery level measured in step 332 and the remaining battery level measured in step 345 is obtained and used as the current battery consumption. Further, in step 346, the sum of the current battery consumption and the minimum electric energy required for driving the electric circuit unit for measurement is obtained, and the second remaining amount threshold value is reset.
  • step 347 the voltage drop value is calculated by calculating the difference between the voltage measured in step 331 and the voltage measured in step 342.
  • the voltage drop value is used in step 33 3 (described above) in the next test. Thereafter, in step 348, the power supply is stopped.
  • Step 311 turns on the power.
  • Step 312 moves to Step 312 and measure the remaining battery power.
  • step 313 the measured remaining battery level is compared with the first remaining threshold; in step 314, the measured remaining battery level is compared with the second remaining threshold.
  • the first remaining amount threshold is the amount of power required for a predetermined number of tests (including laser puncture and measurement); the second remaining amount threshold is a single test (puncture). And electric power required for measurement).
  • step 313 If it is determined in step 313 that the remaining battery level is greater than or equal to the first remaining battery level threshold, 351, the charging current value (see step 358 described later) for charging the laser emitting device in the previous inspection is set as the charging current value in the current inspection.
  • step 315 displays a battery level warning display to prompt the user to replace the battery, and proceeds to step 351 to charge the current value for charging the laser emitting device in the previous inspection (described later).
  • Step 358) is set as the charge current value for the current test.
  • step 313 If it is determined in step 313 that the remaining battery level is less than the first remaining battery level threshold, and if it is determined in step 314 that it is less than the second remaining battery level threshold, the user is prompted in step 316. An unusable display is displayed to inform that the inspection cannot be performed, and in step 317, power supply to the laser emitting device is prohibited.
  • step 352 the laser emitting apparatus is charged according to the charging current value set in step 351.
  • charging is performed according to the specified charging current value.
  • step 353 the voltage of the battery being charged is measured.
  • step 35 4 compare the voltage of the battery being charged with the first voltage threshold.
  • step 356 the voltage of the battery being charged is compared with the second voltage threshold.
  • the first voltage threshold is a voltage value that is somewhat higher than the minimum voltage required to drive the electrical circuit section for measurement; the second voltage threshold is greater than or equal to the first voltage threshold and is inherently Is a voltage value with a sufficient margin. This voltage value is called the second voltage threshold.
  • the first voltage threshold +0.5 to about IV.
  • step 354 If it is determined in step 354 that the voltage of the battery being charged is greater than or equal to the first voltage threshold, and if it is determined in step 356 that it is less than or equal to the second voltage threshold, then step 358 The charge current value is stored as the charge current value for the next inspection (used in step 351 in the next inspection).
  • step 354 If it is determined in step 354 that the voltage of the battery being charged is less than the first voltage threshold value, the charging current value is decreased in step 355. On the other hand, in step 356, If it is determined that the battery voltage exceeds the second voltage threshold, in step 357, the charging current is increased.
  • step 359 laser is emitted from the laser emitting device to puncture the skin.
  • step 3 In 61 measure the blood component that has flowed out of the punctured skin and display the measurement results.
  • step 362 measure the remaining battery level after the test.
  • step 363 the difference between the remaining amount measured in step 312 and the remaining amount measured in step 362 is obtained and used as the current battery consumption. Furthermore, in step 363, the sum of the current battery consumption and the minimum electric energy necessary for driving the electric circuit unit for measurement is reset as the second remaining amount threshold value. In step 364, turn off the power.
  • FIG. 54 A fourth example of the operation of power supply control section 200-1 shown in FIG. 50 will be described with reference to FIG.
  • the flow shown in FIG. 54 is different from the flow shown in FIG. 53 in the method of setting the charging current value for charging the force laser emitting device. That is, in the flow shown in FIG. 54, in step 350, the charging current value is set based on the remaining battery level.
  • the specific setting method is as described above. Basically, the higher the percentage of remaining battery power, the higher the current value.
  • FIG. 55 shows a power supply control unit 200-2 of the second example of the blood test apparatus.
  • a outlet 201 connected to a household AC power source (used as an example of an external power source) is connected to an AC adapter 202.
  • the output of the AC adapter 202 can be detachably connected to one input of the power control circuit 203 using a connector.
  • the battery 210a is connected to the remaining battery level and battery voltage measurement circuit 212.
  • the first output of the circuit 212 is connected to the power supply control circuit 203, and the second output of the circuit 212 is connected to the comparison unit 211.
  • the battery 210b is connected to the electric circuit unit 36a.
  • the emergency power connection terminal 204 is connected to the power control circuit 203.
  • the power supply control circuit 203 When connected to the AC adapter 202, the power supply control circuit 203 preferentially uses the power supply of the AC adapter 202, and controls not to use the battery 210a. When the voltage output from the AC adapter 202 is detected and this voltage is output, the battery 35 Forcibly stop charging or charge battery 210a.
  • the output of the power supply control circuit 203 is connected to the booster circuit 205, and the output of the booster circuit 205 is connected to the laser emitting device 33.
  • the first output of the comparison unit 211 is connected to the power supply control circuit 203.
  • the second output of the comparison unit 211 is connected to the boost control unit 208, and the output of the boost control unit 208 is connected to the boost circuit 205.
  • the third output of the comparison unit 211 is connected to the display control unit 209, and the output of the display control unit 209 is connected to the display unit 37.
  • the puncture button 75 is connected to the input of the electric circuit unit 36a, and the pressing signal of the puncture button 75 is connected to the input of the boost control unit 208 via the electric circuit unit 36a.
  • An emergency button 207 is connected to the other input of the boost control unit 208.
  • the other output of the electric circuit section 36a is connected to the display section 37.
  • step 312 ′ the remaining battery level of the laser battery is measured; in step 313 ′, the remaining capacity measured in step 312 ′ is compared with the first remaining threshold value; in step 314 ′, Compare the remaining capacity measured at 312 'with the second remaining capacity threshold.
  • FIG. 57 A second example of the operation of power supply control section 200-2 shown in FIG. 55 will be described with reference to FIG.
  • the flow shown in FIG. 57 is different from the flow shown in FIG. 56 in the method of setting the charging current value for charging the force laser emitting device. That is, in the flow shown in FIG. 57, in step 350, the charging current value is set based on the remaining battery level.
  • the specific setting method is as described above. Basically, the higher the percentage of remaining battery power, the higher the current value.
  • FIG. 58 shows a power supply control unit 200-3 of the third example of the blood test apparatus.
  • a outlet 201 connected to a household AC power source (used as an example of an external power source) is connected to an AC adapter 202.
  • the output of the AC adapter 202 can be detachably connected to one input of the power control circuit 203 using a connector.
  • the battery 210a is connected to the remaining battery level and battery voltage measurement circuit 212a.
  • the first output of the circuit 212a is connected to the power supply control circuit 203, and the second output of the circuit 212a is connected to the comparison unit 211.
  • the battery 210b is connected to the remaining battery level and battery voltage measurement circuit 212b.
  • the first output of the circuit 212b is connected to the power supply control circuit 203, and the second output of the circuit 212b is connected to the comparison unit 211.
  • the emergency power connection terminal 204 is connected to the power control circuit 203.
  • the battery 212a and the battery 212b are both connected to the power supply control unit 203, the battery 212a and the battery 212b are used for charging the laser emission device 33 and driving the electric circuit unit 36a. Normally, the battery 21 2a charges the laser emitting device, and the battery 212b drives the electric circuit unit 36a. However, when the remaining amount of the battery 212a is insufficient and the laser emitting device cannot be charged, and the battery 212b has a sufficient remaining amount, the battery 212b charges the laser emitting device as an emergency means.
  • the power supply control circuit 203 When connected to the AC adapter 202, the power supply control circuit 203 preferentially uses the power supply of the AC adapter 202 and controls the battery 210a and the battery 210b not to be used. When the voltage output from the AC adapter 202 is detected and this voltage is output, the supply from the battery 210a and the battery 210b is forcibly stopped or the battery 210a and the battery 210b are charged.
  • the first output of the power supply control circuit 203 is connected to the electric circuit section 36a.
  • the second output of the power supply control circuit 203 is connected to the input of the booster circuit 205, and the output of the booster circuit 205 is connected to the laser emitting device 33.
  • the first output of the comparison unit 211 is connected to the power supply control circuit 203.
  • the second output of the comparison unit 211 is connected to the boost control unit 208, and the output of the boost control unit 208 is connected to the boost circuit 205.
  • the third output of the comparison unit 211 is connected to the display control unit 209, and the output of the display control unit 209 is connected to the display unit 37.
  • the puncture button 75 is connected to the input of the electric circuit section 36a, and the puncture button 75 is pressed.
  • the signal is connected to the input of the boost control unit 208 via the electric circuit unit 36a.
  • An emergency button 207 is connected to the other input of the boost control unit 208.
  • the output of the electric circuit section 36a is connected to the display section 37.
  • FIG. 59 A first example of the operation of the source control unit 200-3 shown in Fig. 58 will be described with reference to Fig. 59.
  • the flow shown in Fig. 59 is similar to the flow shown in Fig. 56.
  • the power supply control unit 200-3 has two batteries (210a and 210b), both of which are connected to the power supply control circuit 203.
  • the battery 210a laser battery
  • the battery 210b system battery
  • the battery 210b may be used for charging the laser emitting device in an emergency such as when the battery 210a is insufficient.
  • step 371 Similar to the flow shown in Fig. 56, the power at which the remaining amount of the laser battery is compared with the second remaining amount threshold value in step 314 'If the remaining amount of the laser battery is less than the second remaining amount threshold value If yes, in step 371, a display is made to inform the user that the laser battery cannot be used.
  • step 372 the remaining battery capacity of the system is measured.
  • step 373 the remaining amount measured in step 372 is compared with the third remaining amount threshold.
  • the third remaining threshold value may be the sum of the amount of power that should be charged to the laser emitting device required to fire the laser and the minimum power amount of the system.
  • step 316 If it is determined in step 373 that the remaining battery capacity of the system battery is less than the third remaining capacity threshold value, in step 316, an unusable indication to inform the user that the test cannot be performed. Is displayed. In step 317, power supply to the laser emitting device is prohibited.
  • step 373 if it is determined in step 373 that the remaining capacity of the system battery is greater than or equal to the third remaining capacity threshold value, in step 374, the user cannot normally charge the laser emitting device (for example, If it is still necessary to carry out the inspection, it is requested to press the emergency button. [0270] If the emergency button is not pressed in step 375, the process proceeds to step 317, and the power supply to the laser emitting device is prohibited.
  • step 375 charging of the laser emitting device by the system battery is permitted in step 376, and charging of the laser emitting device is performed in step 377.
  • Charging in step 377 is preferably performed at a lower current than usual to avoid a voltage drop in the system battery.
  • the boosting control unit 208 controls the current value for charging.
  • step 378 the laser is emitted from the laser emitting device to puncture the skin.
  • step 3 In 79 measure the component of blood flowing out of the punctured skin and display the measurement result.
  • step 381 a system battery replacement warning display is displayed to prompt the user to replace the system battery.
  • Step 382 turns off the power.
  • FIG. 60 A second example of the operation of the power control unit 200-3 shown in FIG. 58 will be described with reference to FIG.
  • the flow shown in FIG. 60 is different from the flow shown in FIG. 59 in the setting method of the charging current value for charging the force laser emitting device. That is, in the flow shown in FIG. 60, in step 350, the charging current value is set based on the remaining battery level.
  • the specific setting method is as described above. Basically, the higher the percentage of remaining battery power, the higher the current value.
  • the blood test apparatus of the present invention uses a laser as means for puncturing the skin, it is not necessary to replace the puncture needle, and the blood sensor can be easily replaced.
  • the power supply is properly managed, so it is difficult to make inspections impossible due to power shortage. Therefore, it can be applied not only to blood test apparatuses in the medical field, but also to portable or household medical instruments used by diabetic patients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Manufacturing & Machinery (AREA)
  • Pain & Pain Management (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 本発明は、レーザを穿刺手段とする血液検査装置に関する。具体的に本発明は、レーザを穿刺手段とする血液検査装置であって、測定のための電気回路部を駆動する電源と、前記レーザ発射装置を駆動する電源とを含む電源部の電源供給を制御する電源制御回路を有する血液検査装置に関する。特に電源として電池を用いた場合に、電池の残量や電圧を測定することによって、電力不足により測定が不可能になることがならないように電源を制御する。

Description

明 細 書
血液検査装置
技術分野
[0001] 本発明は、血液の成分などの検査に用いる血液検査装置に関する。
背景技術
[0002] 糖尿病患者は、定期的に血糖値を測定し、その血糖値に基づいてインスリンを投 与し、血糖値を正常に保つ必要がある。この血糖値を正常に保っため、血糖値を定 期的に測定する必要があり、そのために患者は血液検査装置を用いて指先等から、 少量の血液を採取し、この採取した血液から血糖値を測定しなければならなレ、。
[0003] 従来の血液検査装置は、一般的に皮膚を穿刺する手段として針を用いていた(例 えば、特許文献 1参照)。従来の針を穿刺手段とする血液検査装置 1は、図 1に示す ように、筐体を形成するハウジング 2 ;ハウジング 2の一方が開口した筒体 3 ;筒体 3内 を往復するプランジャ 4;プランジャ 4に一方が連結されたハンドル 5;ハンドル 5がハ ウジング 2に係止される係止部 6;ハンドル 5を筒体 3の開口部 3a側に付勢するバネ 7 ;プランジャ 4に一方の端が把持されるとともに他方の端には採血針 (以下、針という) 8が装着されるランセット 9;開口部 3a側に血液センサ 10を保持する保持部 11;セン サ 10の出力が接続された電気回路部 12とを含む。
[0004] 従来の血液検査装置 1を用いて血液検査をするには、以下に述べる準備作業が必 要である。すでに検査した血液の影響を排除するため、血液センサ 10と針 8とを交換 する。使用済みの血液センサ 10を取り外して、新しい血液センサ 10を装着するには 、保持部 11を外し、使用済みのセンサ 10を取り外す。次に、新しい血液センサ 10を 保持部 11に装着する。そして再び開口部 3aに装着する。このとき保持部 11の近傍 が血液等で汚れてレ、たら清掃する。
[0005] これらの準備作業は、眼の悪い糖尿病患者にとっては煩雑な作業である。しかも、 これらの作業を一日数回行なわなければならず、その負担が大きかった。
[0006] このような準備作業の後、血液検査装置 1を患者の皮膚に当接し、係止部 6の係止 を解除する。するとパネ 7によって付勢されたハンドル 5が、矢印 14方向に発射される 。ハンドル 5の係止解除により、このハンドル 5にプランジャ 4とランセット 9を介して連 結された針 8も同時に発射される。針 8は、センサ 10を突き破って皮膚 13を穿刺する
[0007] 穿刺された皮膚 13から、少量の血液が流出する。流出した血液は、血液センサ 10 の内部に取り込まれる。センサ 10に取り込まれた血液は、センサ 10の内部で患者の 血糖値に応じた化学変化を起こす。化学変化により生じた電流は、電気回路部 12に 導かれ、血糖値が計算される。計算された血糖値は表示部 15に表示される。求めら れた血糖値に基づいて、例えば、患者に投与するインスリン量の基礎データが提供 される。
[0008] 一方、穿刺手段としてレーザを用いた血液サンプルを採取する装置も提案されてい る(特許文献 2および 3を参照)。レーザを用いれば、針の交換が不要になるなどの利 点があり、また穿刺の際の患者への痛みも軽減されうる。
特許文献 1 :特表 2003— 524496号公報
特許文献 2:特表 2004— 533866号公報
特許文献 3:特開 2004— 195245号公報
発明の開示
発明が解決しょうとする課題
[0009] レーザ装置は電気消費量が大きぐ例えば電源として電池を用いた場合には、数 回の穿刺で電池容量を使いきることもある。電源としての電池の電力を使いきつてし まえば、穿刺はもちろん、血液検査をするための測定回路も動作できない。
血液検査装置は、その使用者である患者 (例えば糖尿病患者)にとつては、生命に かかわる装置であるので、穿刺手段は動作しなくても血液検査 (例えば血糖値測定) だけは実施できるようにされている必要がある。穿刺は、レーザを用いなくても他の手 段で行なうことができるからである。
[0010] 本発明は、採血針の交換を不要とする、レーザを穿刺手段として用いる血液検査 装置であって、たとえ電気容量の不足によってレーザ穿刺が不可能であっても、血液 検査だけは実施できる装置を提供することを目的とする。
課題を解決するための手段 [0011] 本発明の第一は、以下に示す血液検査装置に関する。
[1]本体と、前記本体に装着されて血液の分析を行なう血液センサと、前記本体内 に設けられるとともに前記血液センサを介して患者の皮膚を穿刺する穿刺手段と、前 記血液センサに接続された電気回路部とを備え、
前記穿刺手段はレーザ発射装置を含み、
前記電気回路部を駆動する電源と、前記レーザ発射装置を駆動する電源とを含む 電源部の電源供給を制御する電源制御回路を有する血液検査装置。
[2]前記電源部は、 1又は 2以上の電池電源を含む、 [1]に記載の血液検査装置。
[3]前記 1または 2以上の電池の少なくとも一つの電池残量を測定する電池残量測 定回路と、前記測定された電池残量の値と、予め定められた電池残量の値とを比較 する比較部とをさらに具備し、前記比較部の出力結果を基に、前記電源制御回路が 電源供給を制御する、 [2]に記載の血液検査装置。
[4]前記 1または 2以上の電池の少なくとも一つの電池電圧を測定する電池電圧測 定回路と、前記測定された電池電圧の値と、予め定められた電池電圧の値とを比較 する比較部とをさらに具備し、前記比較部の出力結果を基に、前記電源制御回路が 電源供給を制御する、 [2]に記載の血液検査装置。
[0012] [3]や [4]の血液検査装置は、血液検査の検査結果を表示する表示部をさらに具 備していてもよい。
[0013] 本発明の第二は、以下に示す血液検査装置の制御方法に関する。
[5] [3]に記載の血液検査装置を制御する方法であって、
前記本体の電源を起動した後の前記電池の残量を測定する動作前電池残量測定 ステップと、前記動作前電池残量測定ステップの後であって、前記レーザ発射装置 からレーザが発射された後の前記電池の残量を測定する動作後電池残量測定ステ ップと、前記動作前電池残量測定ステップで測定された電池残量と、前記動作後電 池残量測定ステップで測定された電池残量の差から、前記電池消費量を測定するス テツプと、を含む制御方法。
[6] [4]に記載の血液検査装置を制御する方法であって、
前記電池の残量を測定する電池残量測定ステップと、前記測定された電池残量と 、予め定められた電池残量である残量閾値とを比較するステップと、前記測定された 電池残量が、前記残量閾値以下の場合には、前記表示部に前記電池の交換を促す 表示を行なう表示ステップとを含む制御方法。
発明の効果
[0014] 本発明の血液検査装置は、穿刺手段としてレーザを用いているにもかかわらず、電 源の電力の不足により検查ができなくなる事態を未然に防止することができる。特に 容量に制限のある電池を電源として用いたとしても、使用者に検査を安定して提供す ること力 Sできる。したがって本発明は、携帯型の血液検査装置に特に有効に適用され る。
図面の簡単な説明
[0015] [図 1]従来の血液検査装置の一例を示す断面図
[図 2]本発明の血液検査装置の第一の例を示す分解組立斜視図
[図 3]本発明の血液検査装置の第二の例を示す分解組立斜視図
[図 4]図 3の血液検査装置の側面図
[図 5]本発明の血液検査装置におけるレーザ発射装置の一例を示す外観斜視図 [図 6A]図 5のレーザ発射装置の一構成例を示す断面図
[図 6B]図 5のレーザ発射装置の他の構成例を示す断面図
[図 7]本発明の血液検査装置におけるレーザ発射装置の他の例を示す部分切欠斜 視図
[図 8]本発明の血液検査装置における血液センサの一例を示す断面図
[図 9]本発明の血液検査装置における血液センサの他の例を示す断面図
[図 10]図 9の血液センサの穿刺時の断面図
[図 11]本発明の血液検査装置における血液センサのさらに他の例を示す断面図 [図 12]図 8の血液センサの透視平面図
[図 13]本発明の血液検査装置における血液センサのさらに他の例を示す透視平面 図
[図 14]本発明の血液検査装置における血液センサのさらに他の例を示す透視平面 図 [図 15]図 8の血液センサの分解平面図であり、図 15Aはカバーの平面図、図 15Bは スぺーサの平面図、図 15Cは基板の平面図
園 16]本発明の血液検査装置における血液センサユニットとその近傍を示す断面図 園 17]本発明の血液検査装置における血液センサユニットを当該血液検査装置に 装着するためのガイド部の一例を示す要部展開正面図
園 18]本発明の血液検査装置における血液センサユニットの一例を示す斜視図 園 19]図 18の血液センサユニットにおけるホルダの下端近傍の一構成例を示す要部 断面図
園 20]本発明の血液検査装置における血液センサユニットの下端近傍の他の構成 例を示す要部断面図
園 21]本発明の血液検査装置における血液センサユニットの下端近傍のさらに他の 例を示す要部断面図
[図 22]図 18の血液センサユニットの断面図
[図 23]本発明の血液検査装置における血液センサユニットの他の例を示す断面図 [図 24]本発明の血液検査装置における血液センサユニットのさらに他の例を示す断 面図
[図 25]図 24の血夜センサユニットの平面図
園 26]本発明の血液検査装置におけるレーザ焦点からの穿刺対象の距離 (X軸)と バーンパターン径 (Y軸)の関係を示すグラフ
[図 27]本発明の血液検査装置における負圧室および負圧経路の一例を示す要部拡 大断面図
[図 28]本発明の血液検査装置における負圧室および負圧経路の他の例を示す要部 拡大断面図
園 29]図 27に示す負圧室の容積の説明図
園 30]図 28に示す負圧室の容積の説明図
園 31]本発明の血液検査装置における電気回路部のブロック図
園 32]本発明の血液検査装置を用いた検查手順の一例を示すフローチャート 園 33A]本発明の血液検査装置を用いた検查手順の一例をより具体的に示す工程 別断面図
園 33B]図 33Aに続く工程別断面図
園 33C]図 33Bに続く工程別断面図
園 33D]図 33Cに続く工程別断面図
[図 34]本発明の血液検査装置を用いた検查手順の他の例を示すフローチャート 園 35]本発明の血液検査装置における負圧制御の一例を説明するための図 園 36]図 35で説明される負圧制御による皮膚の盛り上がりの様子を模式的に示す図 園 37]本発明の血液検査装置における負圧制御の他の例を説明するための図 園 38]本発明の血液検査装置に含まれるレーザ穿孔装置の一例を示す分解組立斜 視図
園 39]本発明の血液検査装置におけるレーザ分岐制御の一例を示す図
[図 40]図 39のレーザ分岐制御を説明するための図
園 41]図 39のレーザ分割制御に使用可能なキューブ状光学素子の斜視図
[図 42]図 39のレーザ分割制御に使用可能なキューブの一例を示す図であり、図 42 Aはレーザ光の分岐を三次元のイメージで示す図、図 42Bはその分岐を実現するキ ユーブの一例を示す斜視図
園 43]本発明の血液検査装置においてレーザ光を斜め方向から照射して穿刺する 様子を示す図
[図 44]レーザ光の照射形のバリエーションを示す図
園 45]本発明の血液検査装置におけるレーザ出力制御の他の例を示す概略図
[図 46]本発明の血液検査装置におけるレーザパルス制御の一例を示す図 園 47]図 46のレーザパルス制御による穿刺状態を示す断面図
園 48]本発明の血液検査装置におけるレーザ出力制御のさらに他の例を示す図で あり、図 48Aは回路図、図 48Bはフラッシュランプへの入力電流の時間変化を示す 図、図 48Cはレーザ出力の時間変化を示す図
園 49]本発明の血液検査装置におけるレーザ出力制御のさらに他の例を示す図で あり、図 49Aは回路図、図 49Bはフラッシュランプへの入力電流の時間変化を示す 図、図 49Cはレーザ出力の時間変化を示す図 [図 50]本発明の血液検査装置の電源制御部の第一の例を示すブロック図
[図 51]図 50の電源制御部の制御手順の第一の例を示すフローチャート
[図 52]図 50の電源制御部の制御手順の第二の例を示すフローチャート
[図 53]図 50の電源制御部の制御手順の第三の例を示すフローチャート
[図 54]図 50の電源制御部の制御手順の第四の例を示すフローチャート
[図 55]本発明の血液検査装置の電源制御部の第二の例を示すブロック図
[図 56]図 55の電源制御部の制御手順の第一の例を示すフローチャート
[図 57]図 55の電源制御部の制御手順の第二の例を示すフローチャート
[図 58]本発明の血液検査装置の電源制御部の第三の例を示すブロック図
[図 59]図 58の電源制御部の制御手順の第一の例を示すフローチャート
[図 60]図 58の電源制御部の制御手順の第二の例を示すフローチャート
[図 61A]電池の残量に基づいて、レーザ発射装置への充電のための充電量を、段階 的に設定する方法を説明するグラフ
[図 61B]電池の残量に基づいて、レーザ発射装置への充電のための充電量を、連続 的に設定する方法を説明するグラフ
[図 61C]電池の残量に基づいて、レーザ発射装置への充電のための充電量を、可変 曲線にあわせて設定する方法を説明するグラフ
[図 62]充電量を変化させたときの、電池の電圧 (Y軸)と電池残量 (X軸)との関係を示 すグラフ
[図 63]本発明のレーザ穿孔装置を含む血液検査装置におけるレーザ分岐制御の他 の例を示す図であり、図 63Aは 2分岐の場合を示す図、図 63Bは 4分岐の場合を示 す図
[図 64]図 63のレーザ分岐制御に用いられる光ファイバ方向性結合器の構成を示す 概略図
[図 65]本発明のレーザ穿孔装置を含む血液検査装置におけるレーザ分岐制御のさ らに他の例を示す図
発明を実施するための最良の形態
本発明は、皮膚を穿刺する手段としてレーザを用いた血液検査装置であり、吸引力 によって皮膚を所定の位置に規定することができる。所定の位置に規定された皮膚 に対してレーザの焦点位置を正確に設定する。し力も、吸引力によって皮膚は血液 センサに密着されるので、レーザによって穿刺された皮膚から流出した血液を、確実 に血液センサの内部(検出部)に導くことができる。
以下、図面に基づいて、本発明の血液検査装置を説明する。なお、各図面におい て共通する部材には同一の符号を付し、適宜その説明を省略する。
[0017] 装置全体図 1
図 2は、本発明の血液検査装置の全体構成の第一の例を示す分解組立斜視図で ある。
図 2に示される血液検査装置 31の下ケース 32の内部には、レーザ発射装置 33と、 吸引ポンプ(負圧ポンプ) 34a、ポンプ弁ユニット 34bおよび大気開放スィッチ 34cで 構成された負圧手段 34と、電気部品に電力を供給する電池 35と、これらの部品上に 装着された電気回路部 36と、電気回路部 36の上に装着されるとともに、例えば液晶 で構成された表示部 37などの部材が格納される。
各部材が格納された下ケース 32に上ケース 38が被せられて装置本体 39が構成さ れる。上ケース 38には、透明の表示窓 38aが、表示部 37に対応した位置に設けられ る。
[0018] 装置本体 39は、血液センサユニット 44と、アダプタ 40を介して接続される。ァダプ タ 40の一方は円筒状の筒体であり、血液センサユニット 44が挿抜自在に装着される 。血液センサユニット 44は、ホノレダ 41と、ホルダ 41の内部に装着された血液センサ 4 2とから構成される。血液センサユニット 44の中央に設けられた窓 43は、レーザ発射 装置 33のレーザ発射孔からのレーザを通過させる部分である。窓 43は、貫通孔であ つてもよく、レーザを透過する材料で形成された部材でもよレ、。
[0019] 装置全体図 2
図 3は、本発明の血液検査装置の全体構成の第二の例を示す分解組立斜視図で ある。図 4はその側面図である。図 3および図 4に示される血液検査装置 31aは、負 圧手段 140を構成する負圧ポンプとして手動吸引できる手動ポンプを有する点で、 図 2に示される血液検査装置 31と相違する。この相違点について説明する。 [0020] 血液検査装置 31aは、手動ポンプ(負圧ポンプ) 141と、手動ポンプ 141を手動で 駆動する手動ポンプノブ 142とを含む負圧手段 140を有する。大気開放スィッチ 144 は、ポンプ弁ユニット 143で発生する負圧を大気に開放する。
[0021] 手動ポンプノブ 142は弓形状をしており、一方は支軸 142aとされ、他方は作用部 1 42bとされている(図 4参照)。手動ポンプノブ 142は、支軸 142aを中心に回動するこ とができる。作用部 142bが手動ポンプ 141に動力を伝達する。患者は、手動ポンプ ノブ 142を、装置本体 39とともに握り、作用部 142bを上下運動させることができる。こ の上下運動により手動ポンプ 141が動作して負圧が発生する。
[0022] 作用部 142bの上下運動により、皮膚の盛り上がりを確認しながら、適正な負圧を加 えるようにするため、負圧室 60 (図 16など参照)の内部を目視できるように、血液セン サユニット 44の外装を透明部材で形成することが好ましレ、。血液センサユニット 44の 外装を全て透明部材で形成してもよいし、血液センサユニット 44の先端 41h側 (負圧 室 60側)のみを透明部材で形成してもよい。手動ポンプノブ 142の被把持部 142cに は、指の形の凹凸を設けて、滑りを防止してもよい。
[0023] 負圧手段 140を手動駆動とすることにより、負圧手段 140を駆動する電源が不要と なる。よって、電池 35を長寿命化することができ、携帯用の血液検査装置に適する。
[0024] レーザ発射装置(レンズ含む)の態様 1につレ、て
本発明の血液検査装置は、皮膚を穿刺する手段としてレーザを用いる。レーザを 皮膚に照射すると、皮膚の水の OH基にレーザが吸収されて瞬間的に熱が上昇して 気化する。このときに周りの細胞も一緒に気化して、皮膚に穴が開く。
[0025] 血液検査装置にはレーザ発射装置が収納される。図 5は、血液検査装置に収納さ れるレーザ発射装置 33の外観斜視図である。また、図 6Aおよび図 6Bは、それぞれ 、レーザ発射装置 33の断面図である。図 6Aでは、レーザ結晶 33dは、部分透過鏡 3 3fと全反射鏡 33gが設置された壁に囲まれた内部に配置されている力 図 6Bでは、 レーザ結晶 33dは、両側面に部分透過鏡 33fと全反射鏡 33gを備え、レーザ結晶 33 dは、筒体 33bの外壁と内部壁 (仕切り板)に取り付けられている。つまり、図 6Bでは、 レーザ結晶(レーザロッド) 33dが長くなつて内部壁 (仕切り板)よりも前に伸長してい る。 レーザ発射装置 33は、発振チューブ 33aと、発振チューブ 33aの前方に連結され た円筒状の筒体 33bとから構成される。筒体 33bの前方中央にはレーザ発射孔 33c が設けられる。
[0026] 発振チューブ 33aの内部には、エルビウムをドーピングした Er: YAG (イットリウム. アルミニウム 'ガーネット)またはホロ二ゥムをドーピングした Ho : YAGレーザ結晶 33d と、キセノンフラッシュランプを用いた励起光源 33eとが格納される。発振チューブ 33 aの一方の端には、部分透過鏡 33fが装着される(特に図 6A)。部分透過鏡 33fの透 過率は、約 1%〜10%にすればよレ、。発振チューブ 33aの他方の端には、 99。/。〜1 00%の全反射鏡 33gが装着される(図 6A、図 6B)。また、部分透過鏡 33fや全反射 鏡 33gを用いずに、レーザ結晶の端面にスパッタなどで同じ特性を有する膜を形成 してもよい。
筒体 33bの内部には凸レンズ(焦点レンズ) 33hが装着される。凸レンズ 33hは、レ 一ザを血液センサ 42の面の近傍に集光させる(詳細は後述)。全反射鏡 33gと YAG レーザ結晶 33dと部分透過鏡 33fとレンズ 33hとレーザ発射孔 33cとは、この順に配 置される。
[0027] レーザ発射装置 33からレーザが発射されるプロセスを説明する。励起光源 33eか ら発射された励起光は、例えば、 Er:YAGレーザ結晶 33dの内部に入り、 Er (ェルビ ゥム)イオンを励起してエネルギーの高い状態を作り出して反転分布状態になって、 全反射鏡 33gと YAGレーザ結晶 33dと部分透過鏡 33fの間を反射して共振するとと もに増幅される。 Ho (ホロ二ゥム)の場合も同様である。増幅されたレーザの一部は、 誘導放出により部分透過鏡 33fを通過する。部分透過鏡 33fを通過したレーザは、レ ンズ 33hを通過してレーザ発射孔 33cから放射される。後述のように、レーザ発射孔 33cから放射されたレーザが皮膚を穿刺(照射)する。
[0028] レーザ発射装置の態様 2について
図 7にレーザ発射装置の別の例が示される。図 7に示されるレーザ発射装置 189は 、一個のフラッシュランプ 185を励起光源として、励起光を 2種のレーザ結晶に照射 する。このとき、それぞれの結晶からレーザが出力される。 2種の結晶を用いることに より、レーザの強度や、波長の異なるレーザを出力することができる。 [0029] レーザ発射装置 189は、図 7に示すように、断面が楕円形をした筒体を 2つ重ねた 形状の筐体 188と、筐体 188の中央部に配置されたレーザを励起するためのフラッ シュランプ 185と、フラッシュランプ 185の両側に配置されたレーザ発振のための第 1 の結晶 186および第 2の結晶 187とを含む。楕円形状の筐体 188には 3つの焦点が 存在する。筐体 188は 2つの楕円が重なった形状であるため、各々の楕円に 2つの 焦点を有するが、そのうち 1つの焦点を共通な焦点となるように配置しているため、 3 つの焦点が存在する。 3つの焦点のうち、一方の焦点に第 1の結晶 186を配置し、他 方の焦点に第 2の結晶 187を配置する。そして、 2つの焦点を共有する中央部にフラ ッシュランプ 185を配置する。一つのフラッシュランプ 185で、 2つの結晶 186、 187 のそれぞれからレーザを得ることができるので、レーザ発射装置の小型化と低価格化 が図られる。
[0030] レーザの出力強度はフラッシュランプ 185の発光強度にも比例する力 結晶 186お よび結晶 187の体積にも比例する。したがって、同じ径であっても長さの異なる 2つの 結晶を配置すれば、一つのフラッシュランプ 185で、強度の異なる 2つのレーザを得 ること力 Sできる。
[0031] また、同じ体積の結晶を用いれば、同じ強さの 2本のレーザを同時出力することが できる。したがって、レーザを分岐しなくても(図 39、図 40参照)、同じ強度の 2本のレ 一ザで皮膚を穿刺することができる。この場合、分岐によるスプリツターやミラーによる エネルギー損失がなくなる。
[0032] 組成の異なる 2つの結晶(例えば、波長 2.94 μ mの Er: YAGレーザの結晶、およ び波長 1.06 μ mの Nd : YAGの結晶)を配置すれば、波長の異なるレーザを得ること ができる。異なる波長のレーザを、同じ位置に照射すれば、皮膚に深さの異なる傷を つけることができる。例えば、 Er:YAGとNd : YAGとでは、 OH基の吸収効率が異な る。そこで、吸収効率の高レ、 Er:YAGで浅めの傷をつけ、 Er:YAGよりも効率の低 い Nd : YAGで深めの傷をつけることができる。この性質を利用して、同時に 2つのレ 一ザを照射すると、より効率良く皮膚に傷をつけることができる。 2つのレーザを照射 する場合には、若干の時間差をつけて、 Er:YAGと Nd : YAGの順に照射することが 好ましい。 [0033] レーザ発射装置 189を用いれば、レーザの波長を選択して使用することができる。 また、光学系を用いて 2種類のレーザを同じ位置に照射するようにすれば、出力強度 を向上させることができる。
[0034] 本発明の血液検査装置は、患者の皮膚を穿刺する手段として、皮膚に接触するこ となく穿刺できるレーザ発射装置を用いているので、従来の血液検査装置で必要とさ れた穿刺針が不要となる。また、患者の皮膚と非接触の穿刺手段を用いるので、衛 生的である。また、穿刺針は検查毎に交換される必要があつたが、本発明の血液検 查装置による検查では、その交換作業も不要となる。
さらに、針による穿刺では必要とされた針を運動させる可動部品が、本発明の血液 検查装置では必要ないので、故障が少なくなる。また、本発明の血液検査装置は必 要な部品点数が少なくなるので、部品管理が容易である。また、レーザ発射孔 33cの 前面に透明の防水壁を設けておけば、血液検査装置全体を丸洗いすることも可能と なる。
[0035] 血液センサについて
本発明の血液検査装置は、穿刺された皮膚から流出した血液を取り込み、その血 液成分などを検査するための血液センサを有する。
[0036] 血液センサの第一の例
図 8は、血液センサの第一の例の断面図である。図 8に示される血液センサ 42は、 外形形状が円形または多角形である。血液センサ 42を構成する基体 45は、基板 46 と、基板 46の上面に貼り合わされたスぺーサ 47と、スぺーサ 47の上面に貼り合わさ れたカバー 48とで構成される。
[0037] 基体 45の略中央には、血液の貯留部 49が設けられる。貯留部 49は、基板 46に設 けられた孔 46aと、スぺーサ 47に設けられた孔 47aとに連通して形成される。貯留部 49は、皮膚からの血液を採取するため、下方に向かって開口している。貯留部 49の 容積は特に限定されないが、例えば、 0.904 x Lとすればよレ、。貯留部 49には、供 給路 50の一方の端が連結される。供給路 50の容積は特に限定されないが、例えば 、 0.144 x Lとすればよレ、。供給路 50の内部には検出部 51が配置される。
貯留部 49に溜められた血液は毛細管現象で供給路 50に導入され、検出部 51に 導かれる。供給路 50の他端は空気孔 52に連結されている。空気孔 52の直径は、 50 /i m〜250 /i m程度とすればよレ、。空気孔 52の直径を小さくすれば、空気孔 52から の血液の過剰な流出が抑えられる。また、空気孔 52は、貯留部 49に皮膚が密着した 状態において、貯留部 49内に負圧をカ卩える負圧路としても作用する。
[0038] 検出部 51上に載置された試薬 53は、検查対象に応じて適宜調製すればよい。例 えば、 0.0 l〜2.0wt%CMC (カルボキシルメチルセルロース)水溶液に、酵素(PQ Q— GDH)を 0.:!〜 5.0U/センサ、フェリシアンィ匕カリウムを 10〜200mM、マルチ トールを:!〜 50mM、タウリンを 20〜200mMとなるようにそれぞれ添加して溶解させ て調製した試薬溶液を、基板 46に配置された検出部 51上に滴下して、乾燥させて 試薬 53とする。
[0039] 血液センサ 42の貯留部 49は、面 49a (以下「天面」ともいう)で封鎖されている。
照射されたレーザが天面 49aを透過するようにすれば、レーザによって穿刺された 皮膚から流出した血液力 天面 49aから流出することはなぐ好ましい。天面 49aをレ 一ザが透過するには、カバー 48をレーザが透過できる材質 (例えば、ガラスゃポリイ ミドなどのプラスチックが含まれる)で形成すればよい。
[0040] また、照射されたレーザが天面 49aを透過できない場合は、そのレーザが天面 49a を穿孔できればよい。レーザが天面 49aを穿孔する場合は、基板 46、スぺーサ 47お よびカバー 48は、同じ材質で形成されうる。
[0041] 天面 49aに形成された孔は、空気孔 52とともに、負圧手段が貯留部 49を負圧にす るための負圧経路となることができる。
[0042] 血液センサの第二の例
図 9は、血液センサの第二の例の断面図である。図 8に示される血液センサ 42の貯 留部 49の天面 49aは封鎖されている力 一方、図 9に示される血液センサ 103の貯 留部 49の天面は開放されている。
[0043] 血液センサ 103のカバー 48には孔 103bが形成されている。孔 103bの直径(例え ば、 1.0mm)は、貯留部 49の直径(例えば、 2.0mm)よりも小さい直径であって、空 気孔 52の直径(50 μ m〜250 μ m)よりも大きいことが好ましレ、。孔 103bは、貯留部
49の天面中央に位置することが好ましい。レーザは、孔 103bを通過して皮膚を穿刺 する。孔 103bを設けることにより、レーザの減衰を抑制することができる。よって、照 射するレーザのエネルギーを小さくすることができる。
[0044] 孔 103bは、空気孔 52とともに、負圧手段 34、 140が貯留部 49を負圧にするため の負圧経路となることができる。
[0045] 図 10に示すように、孔 103bの内側に生じる血液 16の表面張力力 皮膚穿刺により 採取した血液 16のカバー上面への流出を抑制する。血液 16が貯留部 49の内部に 行き渡る。したがって、適正量の血液 16を採取することができる。貯留部 49を満たし た血液 16は、毛細管現象により供給路 50に流入させられる。
[0046] 孔 103bを撥水性にしておけば、血液 16は孔 103bからさらに溢れにくくなる。よつ て、血液検査装置の内部が血液で汚染されることはない。
[0047] 血液センサ 103のカバー 48の材質には、ポリエチレンテレフタート(PET)などを使 用することもでき、基板 46ゃスぺーサ 47と同様の材質を使用することができる。よつ て、材料管理が容易である。
[0048] レーザは貯留部 49の孔 103bを通過するが、孔 103bの中心を通過してもよぐ孔 1
03bの中心力 ずれた位置を通過させてもよい。例えば、レーザを、孔 103bの中心 から、供給路 50から遠い位置を通過させれば、皮膚 13から流出した血液 16が確実 に貯留部 49の内部を満たした後に、供給路 50へ流入する。したがって、精度の高い 測定ができる。
[0049] 血液センサ 103は、あらかじめ、貯留部 49の天面に孔 103bが形成されている。こ のようにあら力じめ孔 103bが形成されているので、穿孔すべき箇所にレーザの軸を 合わせる必要がない。よって、血液センサユニット 44への血液センサ 103の装着が 容易となる。孔 103bは 0.05〜0.25mm程度と小さくすればよく、穿刺孔からの血液 16の流出を抑制することが好ましい。
[0050] 本発明の血液検査装置における血液センサは、図 8および図 9に示されたように、 貯留部 49と供給路 50を有することが好ましい。供給路 50の内壁面は親水性を有す ることが好ましい。検出部 51が配置された供給路 50に、血液をスムーズに送り込む ためである。また、供給路 50の内壁面の親水性は、貯留部 49の内壁面の親水性より も強いことが好ましい。貯留部 49に貯留された血液を、スムーズに供給路 50に供給 するためである。
[0051] さらに、本発明の血液検査装置における血液センサは、図 8および図 9に示された ようにカバー 48を有し、カバー 48は貯留部 49の天面を形成している。カバー 48の 上面 48a、 103a (レーザが照射される面)は、撥水性を有することが好ましい。また、 カバー 48の上面 48a、 103aの撥水性は、貯留部 49の内壁面の撥水性よりも強いこ とが好ましい。貯留部 49に貯留された血液が、カバー 48に形成された孔(レーザ穿 孔による孔または孔 103b)から流出するのを防止するためである。
[0052] 血液センサの第三の例
患者の皮膚 13の湿り具合は、環境によって異なる。
一方、レーザによる穿刺される皮膚 13は、適度な水分を有していることが好ましい。 そこで、レーザ穿刺する前の皮膚 13の近傍をあらかじめ湿らすことにより、皮膚 13に 適度の水分を与えて湿り具合を一定にすることが好ましい。安定した条件で測定を行 うためである。
[0053] 図 11には、血液センサ 42 (詳細は図 8を参照)の皮膚 13に当接する下面側に、水 を貯留する水貯留部 195を設けた血液センサ 42aが示される。図 11に示された血液 センサ 42aは、レーザが照射された時、またはレーザが照射される前に負圧手段 34 、 140により皮膚が盛り上げられた時に、水貯留部 195が破れて皮膚 13に定量の水 をかけて、皮膚を湿らせる。水貯留部 195は、例えば水が収容された PETなどのブラ スチック材の容器であるカ もっと柔らカ 、バッグでも可能であり、水を浸み込ませた スポンジまたは綿状の部材であってもよい。ただし、レーザが通過する透過部分 196 には、水貯留部 195を配置しないことが好ましい。水によってレーザの強度が減少す るためである。
[0054] 血液センサの透視平面図 1
図 12は、血液センサ 42の透視平面図である。血液センサ 42には、検出電極 54〜 57が配置され、貯留部 49から空気孔 52に向かって順に、検出電極 57 (Hct (へマト クリット)極)、検出電極 56 (対極)、検出電極 54 (作用極)、検出電極 56 (対極)、検 出電極 55 (検知極)とされている。検出部 51に検出電極 54〜56が配置される。
[0055] 検出電極 54〜57のそれぞれは、接続電極 54a〜57aに接続される。接続電極 54 a〜57aは、基板 46の外周にまで延びる。接続電極 54a〜57aのそれぞれには、接 触部位 54b〜57bが設けられている。さらに、接続電極 56aには、接触部位 56bに加 えて接触部位 56cも設けられ、 2つの接触部位が形成されている。基準電極 56dは、 接続電極 56a以外の接続電極(54a、 55a、 57a)に設けても構わない。
接触部位 54b〜57b、および接触部位 56cは、センサ 42の外周近傍に略等間隔 に配置される。
[0056] 各接触部位 54b〜57b、 56cのうち、接触部位 56bと接触部位 56cとは導通してお り、その他の接触部位同士は絶縁されている。
接触部位 56cを基準接触部位、つまり基準電極 56dとして用いて、各接続電極を 特定すること力 Sできる。つまり、隣り合う接触部位の絶縁抵抗を電気回路部 36 (図 2参 照)で測定し、絶縁抵抗が零となる接触部位を基準電極 56dと特定する。基準電極 5 6dを基準に、時計周りに接続電極 56a、接続電極 57a、接続電極 54a、接続電極 55 aを特定する。
[0057] このように血液センサ 42は基準電極 56dを有するので、各接続電極を特定すること ができる。よって、装置本体 39に配置された 5つのコネクタそれぞれに、接触部位(5 4b〜57b、 56c)が任意に接続されても、各接続電極が特定されて測定が可能となる 。よって、血液センサ 42 (または血液センサ 42を含む血液センサユニット 44)を対称 形として、無造作に装置本体 39に装着することができ、装着作業が非常に容易とな る。
[0058] 基板 46の外周上には、位置合わせ凹部 46cを設けてもよい。位置合わせ凹部 46c に対応して、スぺーサ 47とカバー 48のそれぞれ外周上には、位置合わせ凹部 47c、 48cが設けられる。位置合わせ凹部 46c〜48cにより、血液センサ 42を血液センサュ ニット 44の所定位置に合わせて装着することができる。
[0059] 血液センサの透視平面図 2
図 13は、円形形状の血液センサの透視平面図である。図 13に示された血液セン サ 101は、接続電極 56aから所定のパターンを介して基準電極 56dを形成した点で 血液センサ 42 (図 12参照)と相違している。以下において、この相違点を中心に説 明する。 [0060] 基準電極 56dには、基準接触部位 56cが設けられる。基準接触部位 56cおよび接 触部位 54b〜57bはそれぞれ、外周近傍に等間隔で配置される。つまり、接触部位 5 4b、 55b、 56b、 56c、 57bで正五角形を形成してレヽる。
[0061] 接続電極 56aと基準電極 56dの間はレーザで加工されたパターン 56eで接続され る。パターン 56eの幅を変えることにより、接触部位 56bと基準接触部位 56cとの間の 抵抗値を変化させることができる。基準電極 56dは、接続電極 54a〜57aの位置を特 定する基準となる。
[0062] 基準電極 56dは、血液センサ 101の製品仕様の識別に利用されうる。例えば、パタ ーン 56eの抵抗値が 200オーム〜 1000オームであれば検量線 1を、抵抗値が 1000 オーム〜 2000オームであれば検量線 2を、抵抗値が 2000オーム〜 3000オームで あれば検量線 3をそれぞれ用いると設定し、 自動でそのセンサの検量線を認識し、最 適な検量線を用いて血糖値を測定する。
基準電極は、検量線の自動認識のほかにも、種々の製品仕様の識別について利 用されうる。例えば、 A社仕様、 B社仕様のように、出荷先のユーザの識別に用いるこ とちできる。
[0063] パターン 56eで種々の値を有するインダクタを形成し、このインダクタを発振器を構 成する共振器に接続して、インダクタの値の相違により発振周波数を変化させて、種 々の情報を持たせることができる。
[0064] 基準電極 56dを設けることにより、血液センサユニット 44を血液検査装置 31、 31a に装着するとき、装着方向を軸とする軸周りの角度を任意にして装着しても、各接続 電極 54a〜57aを特定することができる。したがって、血液センサユニット 44の装着に おいて、装着方向を目視などで合わせる必要がなぐ装着が容易になる。
[0065] 血液センサの透視平面図 3
図 14は、四角形状をした血液センサの透視平面図である。図 14に示された血液セ ンサ 102の外形形状は四角形であるが、六角形や八角形などの多角形であってもよ レ、。四角形や六角形にすると、材料取りの歩留まりが向上する。また、図 14に示した ように、四辺のうちの一辺に血液センサユニット 44との位置合わせ凹部 102aを設け て非対称形にしてもよレ、。凹部 102aは、血液センサ 102を血液センサユニット 44に 取り付けるときの基準となる。また、凹部 102aに係合する血液センサユニット 44側の 凸部 130f (図 25参照)を基準にして、アダプタ 40との位置合わせをすれば、基準電 極 56dを設けなくても検出電極 54〜57の位置を特定することができる。
[0066] 接触部位 54b〜57bは、四角形の基板 102bの各角に設けられている。基板 102b にはスぺーサ 102cおよびカバー 102dが貼り合わされている。基板 102bは基板 46 に対応し、スぺーサ 102cはスぺーサ 47に対応し、カバー 102dはカバー 48に対応 する(図 8参照)。
[0067] 血液センサの分解平面図
本発明の血液検査装置に具備される血液センサ 42 (図 8参照)の組み立ておよび 材料について説明する。
[0068] 図 15は、血液センサ 42の分解平面図である。図 15Aはカバー 48の平面図、図 15 Bはスぺーサ 47の平面図、図 15Cは基板 46の平面図である。
[0069] 図 15Cは、血液センサ 42を構成する円形をした基板 46の平面図である。基板 46 の直径は、約 8.0mmとすればよい。基板 46の材質は、ポリエチレンテレフタレート(P ET)などの樹脂であり、厚さは約 0.075〜0.250mm (例えば、 0.188mm)である。
[0070] 基板 46の上面には、検出電極 54〜57、および検出電極 54〜57のそれぞれから 導出された接続電極 54a〜57aがー体的に形成されている。検出電極および接続電 極は、金や白金、パラジウムなどを材料として、スパッタリング法または蒸着法により 導電層を形成し、レーザカ卩ェして形成すればよい。
[0071] 基板 46の略中央に設けられた孔 46aの直径は、約 2. Ommとすればよい。孔 46aの 壁面は、供給路 50よりも弱い親水性を有するか、またはカバー 48の上面 48aよりも 弱レ、撥水性を有することが好ましレ、。
[0072] 孔 46aは、検出電極 54〜57側から、凸金型を用いて打ち抜いて形成することが好 ましい。検出電極 54〜57側から打ち抜けば、検出電極 54〜57に傷を付けにくいか らである。また、打ち抜きにより孔 46aにバリが生じたとしても、そのバリは下方 (皮膚 側)に向かう。したがって、貯留部 49からの血液 16の流出が防止される。基板 46の 外周上に設けられた位置合わせ用の凹部 46cは、血液センサユニット 44の筒体 41e (図 16参照)に形成された位置合わせ用凸部とかみ合う。よって、血液センサ 42の血 液センサユニット 44への装着位置が決定される。
[0073] 図 15Bは、スぺーサ 47の平面図である。スぺーサ 47の直径は、約 5.2mmとすれ ばよレ、。スぺーサ 47の材質はポリエチレンテレフタレートなどの樹脂であればよぐそ の厚さは、 0.025〜0.25mm (例えば、 0.1mm)であればよレヽ。
[0074] スぺーサ 47の略中央に設けられた孔 47aは、直径 2. Ommであり、かつ基板 46に 設けられた孔 46aに対応する位置に設けられる。孔 47aの壁面は、供給路 50よりも弱 い親水性を有する力、、またはカバー 48の上面 48aよりも弱い撥水性を有することが好 ましい。貯留部 49は、孔 46aと孔 47aとで形成される。
[0075] ? L47aから外周方向へ向かってスリット 47bが形成される。スリット 47bは、血液の供 給路 50となる。スリット 47bの壁面と、それに対応する基板 46の上面も親水化処理さ れている。また、スリット 47bの幅は約 0.6mmとすればよぐ長さは約 2.4mmとすれば よレ、。その結果、供給路 50の容量は約 0.144 z Lとなる。
したがって、供給路 50の容量を小さくすれば、小容量の血液で血液検査ができる ので、患者への負担も少なぐまた患者へ与える恐怖心もない。
[0076] スぺーサ 47の外周上に設けられた位置合わせ用の凹部 47cは、基板 46に形成さ れた位置合わせ用の凹部 46cに対応した位置に形成される。
[0077] 図 15Aは、カバー 48の平面図である。カバー 48の直径は、約 5.2mmとすればよ レヽ。カバー 48の厚さは、約 0.050〜0.125mm (例えば、 0.075mm)とすればよい。
[0078] カバー 48の材質は、レーザを吸収しない材質とすることができる。カバー 48の材質 の例には、ガラス、およびポリイミドなどのプラスチックが含まれる。レーザがカバー 48 で吸収されなければ、貯留部 49の天面 49aを通過して、皮膚を穿刺することができる
。レーザにより天面 49aが穿孔されないので、血液が孔から流出せず、装置本体 39 の内部に血液 16が流入しない。
[0079] カバー 48の材質は、レーザを吸収する材質であってもよレ、。その場合には、照射さ れたレーザによってカバー 48が穿孔される力、、または、レーザを照射する前に、カバ 一 48にレーザが貫通するための孔を形成しておけばよい。
[0080] 空気孔 52は、供給路 50の先端部に対応して設けられる。空気孔 52の直径は、 50 μ mであ 。 [0081] 基体 45の上面を形成するカバー 48の上面 48a (図 8参照)は撥水化処理されてい ることが好ましい。供給路 50の天面は親水化処理されていることが好ましい。また、 貯留部 49の天面 49aは、供給路 50よりも弱い親水化処理をされている力 \または力 バー 48の上面 48aよりも弱レ、撥水化処理をされてレ、ることが好ましレ、。
[0082] 親水性を弱めるには、例えば、疎水性材料に施された親水性化材を除去して、疎 水性を強めればよい。親水化材の除去は、例えば、 UV (紫外線)照射により親水化 材を分解して行う。貯留部 49の天面 49aは、疎水性の素材をそのまま用いることがで きる。
[0083] 材料の撥水化は、その材料に撥水化材を混入すればょレ、。また、親水性材料の表 面に適量の撥水化材を塗布してもよい。なお、撥水性の程度を調整するには、混入 する撥水化材の量を調整すればよい。
[0084] 血液センサ 42の各部材の親水性または疎水性は、以下のようにして調整すること ができる。
あらかじめカバー 48の上面 48aに撥水化処理を行う。一方、カバー 48の下面には 親水化処理を全面に施す。カバー 48の下面には、供給路 50の天面が含まれる。次 に、基板 46とスぺーサ 47とカバー 48を貼り合わせる。これらを貼り合わせた後に、貯 留部 49の開口から短波長の UVを照射して、天面 49aの親水性材料を分解除去す る。
以上のように製造された血液センサ 42は、カバー 48の上面 48aを撥水性にし、力 つ供給路 50の内面を親水性にすることができる。また、貯留部 49の内面は、供給路 50よりも弱い親水性を、または上面 48aよりも弱い撥水性を有しうる。
[0085] 基板 46の厚み(0.188mm)と、スぺーサ 47の厚み(0.100mm)と、カバー 48の厚 み(0.075mm)との比は、略 2.5: 1.3: 1とされている。これにより、血液センサ 42を薄 型化しながら、し力 十分な血液を溜める貯留部 49を形成することができる。また、ス ぺーサ 47の厚み(0.100mm)によって、供給路 50の毛細管現象の効果も十分に得 ること力 Sできる。
[0086] 血液センサ 42の貯留部 49の容積(0.904 μ L)と供給路 50の容積(0.144 μ L)の 比は特に限定されなレ、、略 6 : 1とすればよい。それにより、血液 16の不足により検查 が不正確になることはなレ、。また、貯留部 49の容積は、必要とする供給路 50の容積 に対して大き過ぎることはなぐ血液 16が大量に供給路 50を流れて、試薬 53 (図 8参 照)を押し流すこともなレ、。したがって、血液 16の流れが律速状態となり、試薬 53の 溶融性にばらつきが生じることはなぐ正確な血液 16の検査ができる。
[0087] また、採取する血液 16の量は、血液 16の検査に必要十分な微小容量に設定され たものであり、供給路 50の容積の約 6倍の血液 16を採取するのみである。したがって 、患者にかける負担を極めて少なくすることができる。正確な測定のための血液 16の 採取量と、患者への負担を少なくするための血液 16の採取量とを勘案して、貯留部 49の容積は、供給路 50の容積の 5倍以上、かつ 7倍以下であることが好ましい。
[0088] 血液センサユニットについて
本発明の血液検査装置における血液センサは、血液センサユニットに含まれてい てもよレ、。血液センサユニットは、装置本体に着脱可能であり、交換可能な部材であ る。
[0089] 図 16は、血液センサユニット 44とその近傍の断面図である。血液センサユニット 44 は、上下方向が共に開口した円筒形状のホルダ 41と、ホルダ 41内を塞ぐように設け られた装着部 41bとによって、断面を「H」形状に構成されている。
[0090] ホルダ 41の材質は、射出成形されうる樹脂が好ましぐ ABS樹脂、 AS樹脂、ポリエ チレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタートなどの熱可塑性樹 脂;またはフエノール樹脂、エポキシ樹脂、シリコン樹脂などの熱硬化性樹脂などが 例示される。
[0091] 装着部 41bには血液センサ 42が装着されている。血液センサ 42は着脱可能であ つてもよレ、。図 16では、血液センサ 42が、装着部 41bの上側(レーザ発射装置 33側 )に装着されているが、装着部 41bの下側(穿刺される皮膚 13側)に装着されていて あよい。
[0092] 装着部 41bの中央には、貯留部 49に対応して窓 43を設けることが好ましい。窓 43 の開口部面積は、貯留部 49の開口部面積よりも大きいことが好ましい。さらに、装着 部 41bの上側と下側を貫通する負圧路 41cが設けられる。負圧路 41cは、例えば、血 液センサ 42の外周とホルダ 41の内周側との間に設けられていればよい。 [0093] 装着部 41bよりも下側の筒体 41dは、皮膚 13との間に負圧室 60を形成する。また、 血液センサユニット 44の装着部 41bよりも上側の筒体 41eの内壁は、アダプタ 40の 外側に係止する。
[0094] アダプタ 40の内側にはコネクタ 61が設けられる。コネクタ 61は、それぞれ独立した 複数本(例えば、 5本)のコネクタ 61a〜61eからなる。血液センサユニット 44をァダプ タ 40に装着すると、コネクタ 61a〜61eが、血液センサ 42の接触部位 54b〜57b、 5 6cのそれぞれに接触する。コネクタ 61a〜61eの信号は電気回路部 36に導かれる。
[0095] 筒体 41dの先端 41hに設けられた第 1の皮膚接触センサ 62は、血液センサユニット 44が皮膚 13に当接したことを検知する。第 1の皮膚接触センサ 62も、ホルダ 41内に 配置された導体 62aを介して、アダプタ 40に設けられた接続部 62cに接続し、さらに アダプタ 40側の導体 62bに接続される。導体 62bは電気回路部 36に導かれている。
[0096] 筒体 41dの先端 41hの互いに異なった部位に、複数個(例えば、 2個)の導体から なる第 1の皮膚接触センサ 62を設けることが好ましい(図 16では、筒体 41dの中心を 対称点として 2個の第 1の皮膚接触センサ 62が設けられる)。第 1の皮膚接触センサ 62の 2個の導体間の抵抗値を測定することにより、皮膚 13への当接を検知する。こ のため、皮膚 13が隙間なく確実に血液センサユニット 44の先端に当接したことを検 知すること力 Sできる。第 1の皮膚接触センサ 62が皮膚の接触を検知しない限り、レー ザを発射できなくすることが好ましい。第 1の皮膚接触センサ 62は、機構式のマイクロ スィッチや、反射型の光学スィッチなどであってもよレ、。
[0097] レーザ発射装置 33からレーザが発射されると、レーザにより皮膚 13内の毛細血管 が傷付けられ、血液 16が流出する。流出した血液 16は貯留部 49に溜められる。
[0098] 血液センサユニット 44の筒体 41dとアダプタ 40とには、血液センサユニット 44の装 着を容易にするためのガイド部が設けられていてもよレ、。図 17は、血液センサュニッ ト 44のアダプタ 40への揷入をガイドするガイド部 63の要部展開正面図である。筒体 41dの内側に凸部 41fが形成され、アダプタ 40の外側に凸部 40fが形成される。凸 部 41fおよび凸部 40fの端の先端部 41gおよび先端部 40gは、それぞれ鋭角とされ ている。先端部 41gおよび先端部 40gは互いに向かい合う。凸部 40fとその先端部 4 0g、および凸部 41fとその先端部 41gとで、ガイド部 63を形成する。 [0099] 血液センサユニット 44をアダプタ 40に挿入するときに、互いの位置が多少ずれて いたとしても、血液センサユニット 44はガイド部 63に沿って進路を修正しながら挿入 される(矢印 64参照)。その結果、アダプタ 40に設けられたコネクタ 61a〜61eと、セ ンサ 42に設けられた接触部位 54b〜57b、 56cのいずれかと力 確実に接触する。 したがって、血液センサユニット 44を、揷入方向を軸とする回転角度を考慮すること なく揷入することができるので、血液センサユニット 44の装着が容易になる。
[0100] 図 18は、血液センサユニットの斜視図である。図 18に示された血液センサユニット 110は、特に説明のない限り、血液センサユニット 44と同様の構造とすればよい。血 液センサユニット 110は、その断面が「H」形状である円筒状である。血液センサュニ ット 110のホノレタ、、 1 10aの内佃 J (こ fま、血夜センサ(血夜センサ42、 101、 102、 103の いずれでもよい)の接触部位の信号を、電気回路部 36へ伝達する 5本のコネクタ 11 1が設けられてレ、てもよレヽ(ただし、血液センサ 102の場合には 4本のコネクタでよレ、) 。コネクタ 111は、ホルダ 110aの上端でアダプタ 40に接続され、このアダプタ 40を介 して電気回路部 36に導かれる。
コネクタ 111をアダプタに設けて、コネクタ 111を血液センサユニット 110の血液セ ンサの接触部位に接触させてもょレ、。
[0101] ホルダ 110aの開口を塞ぐように設けられた装着部 110bの裏側(下端 110h側、つ まり穿刺される皮膚が配置される側)に、血液センサ 42が装着される。装着部 11 Ob の略中央に設けられた窓 1 10cは、血液センサ 42の貯留部 49の位置に対応して設 けられる。レーザは、窓 110cと貯留部 49を通過して、皮膚 13を穿刺する。
[0102] 装着部 110bに設けられた空気孔 110dは、血液センサ 42の空気孔 52と対応した 位置に設けられる。空気孔 110dは、血液センサ 42の供給路 50に血液 16を流入さ せたり、貯留部 49に負圧をカ卩えたりするために設けられる。
[0103] アダプタ 40と係合する係合部 110eの弾性で、アダプタ 40に血液センサユニット 11 0が係合する。ホルダ 110aには、互いに対向する 2つの係合部 110eが設けられる。 係合部 110eは、その両隣にスリットを形成されて弾性を付与され、ホルダ 110aと一 体的に形成されている。したがって、係合部 110eを低価格で製造することができる。
[0104] 装着部 110bの上面には、消臭部材置場 110fが同心円状に設けられる。消臭部材 置場 l lOfには消臭部材が載置される。レーザ穿刺をした場合、皮膚 13が炭化して 臭いを生じることがあるので、この臭いを消臭部材 (脱臭剤など)で消臭することがで きる。また、装着部 110bの上面には、血液溜り 110gが同心円状に設けられる。した がって、血液センサ 103 (図 10参照)の孔 103bから血液 16が溢れ出たとしても、血 液 16は血液溜り 110gに滞留するので、血液 16が血液検査装置 31、 31aの本体部 を?亏すことを防止することができる。
[0105] 図 19は、ホルダ 110aの下端 110h近傍の一構成例を示す要部断面図である。下 端 110hの端部は患者の皮膚 13に当接して、負圧室 60を形成する。下端 1 10hは、 皮膚 13との密着性が要求される。そこで、下端 110hは鋭角に尖った 2本の同心円 上の線 110jで形成されていてもよい。線 110jは皮膚 13と線接触により確実に当接 するので、負圧室 60の密室性は保たれる。線 110jは 2本である必要はなぐ 1本でも 2本以上の複数本でもよレ、。
[0106] また、 2本の同心円上の線 110jの間に形成される溝に毛細管機能を付与すれば、 測定後の余分な血液 16は、前記溝に吸引される。よって、拭き取り用の紙などを準 備する必要がない。
[0107] 図 20は、ホルダ 110aの下端 110h近傍の他の構成例を示す要部断面図である。
下端 110hには、ゴムやシリコン、ウレタン、スポンジなどの弾性体で形成された同心 円状の当接部 110kが形成されている。したがって、当接部 110kは、その弾性によつ て皮膚 13と密着し、負圧室 60の密室性が保たれる。当接部 110kの接触面は、皮膚 13との当接面積を大きくするため、平面であることが好ましレ、。
[0108] 当接部 110kをスポンジなどの吸水性を有する吸収部材で形成すれば、穿刺により 流出した余分な血液 16を測定後に拭き取ることができる。そのため、拭き取り用の紙 などを準備する必要がなくなる。また、吸収部材に消毒薬を加えれば衛生的である。
[0109] 皮膚 13の湿り具合は、季節などの外部環境によって変化する。したがって、穿刺す る皮膚 13の近傍の湿り具合は一定にすることが好ましい。したがって、穿刺の前に、 あらかじめ皮膚 13に適度の水分を与えて皮膚を湿らすことにより、安定した条件で測 定を行うようにしてもよい。
そこで、図 21に示されたように、血液センサユニット 110のホルダ 110aの下端 110 hの全周に渡って、水を含ませた水貯留部 197を設けて、あらかじめ穿刺部付近の 皮膚 13を水に浸してからレーザで穿刺するようにしてもよい。水貯留部 197は、スポ ンジなどの弾性を有する多孔質材料であればよい。
[0110] 図 22は、血液センサユニット 110の断面図である。図 22に示すように、血液センサ ユニット 110の装着部 110bの下面に血液センサ 42が配置され、装着部 110bに保 持される。皮膚 13は、負圧手段 34、 140 (図 2、図 3など参照)によって盛り上げられ て、血液センサ 42に密着する。血液センサ 42は、装着部 110bにより保持されている ので、密着する皮膚 13によって歪みにくい。コネクタ 111は、血液センサ 42の接触 M立 54b〜57b、 56c (こ接角虫する。ホノレタ、 'l lOa こ fま、ァタ"プタ 40 (こ対応するガイド 部 63 (図 17参照)が設けられていることが好ましい。
[0111] 本発明の血液検査装置は負圧手段を有し、負圧手段は血液センサユニット 110の 内部を負圧にする。その負圧経路として、血液センサユニット 110の装着部 110bに、 溝 110fを形成してもよレ、。溝 110fは、ホルダ 110aの装着部 110bの外周側から、装 着部 110bの略中央に形成された窓 110eに延びる。負圧を加えると、溝 110fも負圧 にされて、血液センサ 42は装着部 1 10bに密着し、負圧を大気開放すると、血液セン サ 42は装着部 110bから外れる。
コネクタ 111は、血液センサ 42と接触面 11 laにおいて接触する。コネクタ 111は、 ホルダ 110aに内蔵され、装着部 110bの一部に割り込むように形成されている。これ により、血液センサ 42の上面に形成された接続電極の接触部位とコネクタ 111に設 けられたコンタクト部(ともに図示せず)とが接続する。
[0112] 血液センサ 42の下面に第 2の皮膚接触センサ 110mを設けてもよい。これにより、 負圧室 60の負圧により皮膚 13が第 2の皮膚接触センサ 110mに当接したことを検知 する。第 2の皮膚接触センサ 110mは、例えば、対電極で構成すればよい。第 2の皮 膚接触センサ 110m力 皮膚との接触を検知しない限り、レーザが発射できないよう にすることが好ましい。
前記当接を検知した時点で、負圧手段 34による負圧室 60への負圧を停止してもよ レ、。このように負圧手段 34を制御することにより、負圧電力を無駄にせずに最適に制 御できる。 [0113] さらに、ホルダ 1 10aの下端 l lOhに第 1の皮膚接触センサ 62を設けてもよい。
[0114] 図 23は、他の血液センサユニットの断面図である。図 23に示された血液センサュ ニット 120は、特に説明のない限り、血液センサユニット 110と同様の構造とすればよ レ、。血液センサユニット 120は、ホルダ 120aの開口を塞ぐように形成された装着部 1 20bの上側に、血液センサ 42が載置される点で、血液センサユニット 110と相違する 。電気回路部 36に接続されているコネクタ 61は、血液センサ 42の接触部位(54b〜 57b、 56c)と導通する。
[0115] 断面「H」形状に形成された血液センサユニット 120の装着部 120bの上方空間と下 方空間は、負圧路 120cで連通される。下方空間は負圧室 60を形成している。第 1の 皮膚接触センサ 62が、ホルダ 120aの下端 120hに設けられる。また図示されないが 、装着部 120bの下面に第 2の皮膚接触センサ 120mが設けられていてもよい。
[0116] 血液センサ 42を装着部 120bの上面に装着すれば、コネクタ 61と、血液センサ 42 の接触部位(54b〜57b、 56c)との接触圧を大きくすることができる。また、血液セン サ 42の装着部 120bへの装着が容易となる。
[0117] 血液センサ 42および装着部 120bで区切られた、装置本体 39側の空間(同図中の 上部空間)と、皮膚 13側の空間(同図中の下方空間)とは、負圧路 120cを介して連 通される。皮膚 13に負圧を加えるときには、この負圧路 120cを介して皮膚 13側の空 間を負圧にすることができる。また、負圧を大気開放すると、負圧路 120cを介して装 置本体 39側の空間に空気がすばやく流入する。よって、血液センサ 42に取り込まれ た血液が、装置本体 39側に飛散することを防止することもできる。
[0118] 負圧路として、装着部 120bの上側に溝 120fを形成してもよい。溝 120fは、ホルダ 120aの装着部 120bの外周側から、装着部 120bの略中央に形成された窓 120eに 延びる。溝 120fがあれば、装着部 120bを貫通する孔 (負圧路 120c)を設ける必要 がなくなる。
[0119] 図 24は、さらに他の血液センサユニットの断面図である。図 24に示された血液セン サユニット 130は、特に説明のない限り、血液センサユニット 44と同様の構造とすれ ばよレ、。ここでは、血液センサユニット 130の装着部 130bの上面に、センサ 42が装 着される。ホノレダ 130aの下端 130dの内径は、上端 130cの内径よりも小さい。 [0120] 装着部 130bの下方に形成される負圧室 60の開口部 130eの直径は、 2〜20mm が好ましぐ 3〜: 10mmがより好ましぐ 5〜7mmがさらに好ましレ、。穿刺する皮膚へ の負圧効率を高めるためである。また、上端 130cの外形よりも下端 130dの外形を小 さくすれば、複数の血液センサユニット 130を縦に積層して、効率良く収納することが できる。一般的に、血液センサ 42はある程度の大きさを必要とするので、上端 130c の外形は小さくしにくいことがある。
[0121] また、ホルダ 130aの内側に血液センサ 42方向に突出して設けられた係止凸部 13 Ogは、血液センサ 42を係止して、ホルダ 130aからの外れを防止する。
[0122] 図 25は、血液センサユニット 130の平面図である。血液センサユニット 130のホノレ ダ 130aには、血液センサ 42の位置合わせ用の凹部 46c、 47c (図 15参照)に嵌合 する凸部 130fが 2つ形成されている(略 120度の角度)。ホルダ 130aの凸部 130fと 、血液センサ 42の位置合わせ用凹部 46cとで、血液センサユニット 130内における 血液センサ 42の配置位置が決定される。血液センサ 42が適切に配置された血液セ ンサユニット 130は、アダプタ 40に対して、ガイド部 63 (図 17参照)により所定位置に 装着される。このようにして、血液センサ 42の検出電極 54〜57の信号は、電気回路 部 36に伝えられる。
凸部 130fは 1つでもよレ、が、その場合には、装着部 130bを、血液センサ 42を嵌入 できるような構造にしておくことが好ましい。
[0123] レーザの焦点について
本発明の血液検査装置は、穿刺手段としてレーザを用いており、装置本体にはレ 一ザ発射装置が収納される(図 2など参照)。発射されたレーザは、焦点レンズで集 光されて皮膚に照射される。本発明の血液検査装において、レーザは、血液センサ の面の近傍に集光されることが好ましい。前述の通り、穿刺される皮膚は負圧手段に よって吸引されて、血液センサに密着するので、血液センサの面の近傍に集光され たレーザは、皮膚を効果的に穿刺することができる。
[0124] レーザの焦点は、血液センサの面上にあってもよぐ血液センサの面よりも皮膚側 にあってもよぐまたは血液センサの面よりもレーザ発射装置側にあってもよレ、。図 26 には、レーザァライメントぺーパ(ZAP-IT社: Z-48)を用いて、「バーンパターン径(m m)」(Y軸)と「レーザ焦点からの、穿刺しょうとする対象(穿刺対象:ここではレーザァ ライメントぺーノ の距離 (mm)」(X軸)との関係を調べた結果が示される。 「バーンパ ターン径」とは、レーザを照射したときに開けられる穴の径である。
[0125] 図 26は、本発明の血液検査装置におけるレーザ焦点からの、穿刺しょうとする対象 の距離 (X軸)とバーンパターン径 (Y軸)の関係を示すグラフである。
図 26に示されたグラフの X軸において、「0」がレーザ光の焦点位置である。マイナ ス(「一」)領域は、レーザ光の焦点位置よりもレーザ発射装置 33側に穿刺対象位置 を設定している場合で、プラス(「十」)領域は、レーザ光の焦点位置よりもレーザ発射 装置 33から遠い側に穿刺対象位置を設定している場合を示している。
[0126] レーザの出力強度は、 60mJ、 80mJ、 100mJ、 120mJの 4種類とした。出力強度が 大きいほどバーンパターン径が大きくなる力 S、いずれの出力強度においても、焦点か らの穿刺対象の距離 (X)とバーンパターン径 (Y)との関係は相似している。
[0127] Aゾーン (穿刺対象の近傍に焦点を合わせたとき)では、穿刺対象位置の多少のず れがあっても、バーンパターン径はあまり変化しない。したがって、確実に穿刺するこ とができる。一方、 Bゾーンまたは Cゾーンは、穿刺対象位置のずれによって、バーン パターン径が大きく変化する。このことは穿刺対象位置と相対関係にあるレーザ光の 焦点位置にぉレ、ても言える。
つまり、穿刺対象位置が固定されている場合などは、 Aゾーン (穿刺対象の近傍に 焦点を合わせたとき)では、レーザ光の焦点位置の多少のずれがあっても、バーンパ ターン径はあまり変化しなレ、。したがって、確実に穿刺することができる。一方、 Bゾー ンまたは Cゾーンは、レーザ光の焦点位置のずれによって、バーンパターン径が大き ぐ変化する。
[0128] バーンパターン径が大きくなるようにレーザ光の焦点位置がずれれば、穿刺がされ ないので、安全性が高まる。例えば、 Bゾーンにレーザ光の焦点位置を合わせておけ ば、穿刺対象位置が所定の位置にまでレーザ発射位置に近づかない限り穿刺がさ れない。つまり、負圧によって皮膚が十分に吸引されて盛り上げられない限り、穿刺 がされない。
また、 Cゾーンにレーザ光の焦点位置を合わせておけば、穿刺対象位置が所定の 位置よりもレーザ発射位置に近づくと穿刺がされない。つまり、負圧によって皮膚が 必要以上に吸引されて盛り上げられても穿刺がされない。
[0129] また、血液センサ 42に溶融しやすいフィルムなどを配置した場合は、血液センサ 4 2に焦点を合わせない方がよい場合がある。フィルムが溶解してレーザのエネルギー が消費されるためである。よって、 Bゾーンまたは Cゾーンに焦点を合わせることが好 ましいこともある。
[0130] 負圧室について
本発明の血液検査装置は負圧手段を有し、装置本体には負圧手段の一構成要素 として機械式吸弓 Iポンプ(図 2の 34a参照)または手動式吸引ポンプ(図 3の 141参照 )などが収容される。負圧手段は、負圧室を負圧して、被穿刺部位である皮膚を吸引 して盛り上げることによって、血液センサに密着させる。
[0131] 上述のように、負圧手段 34は、吸引ポンプ 34a、ポンプ弁ユニット 34bおよび大気 開放スィッチ 34cで構成される(図 2参照)。負圧手段 140は、ポンプ弁ユニット 143 および大気開放スィッチ 144に加えて、手動ポンプ 141および手動ポンプノブ 142で 構成される(図 3参照)。「負圧手段」という用語は、広義では、ポンプ(吸引ポンプま たは負圧ポンプ)や弁 (負圧弁または開放弁)などに加えて負圧経路なども含んでレ、 る。また、ここで、「負圧手段を駆動する」とは、ポンプおよび弁を駆動することをいレ、 、「負圧を開放する」とは、弁を開いて外気圧 (例えば、大気圧)を導入することをいう
[0132] 図 27および図 28には、負圧室(吸引室)と負圧経路が示される。図 27は、負圧室 が最大の場合の負圧経路を示し、図 28は、負圧室が最小の場合の負圧経路を示す 。図 2の血液検査装置 31を例にとって説明すると、図 27に示される吸引室 60aおよ び図 28に示される吸引室 60bは、いずれも、装置本体 39の内部空間であって、レー ザ発射装置 33のレーザ発射孔 33cよりも血液センサ 42側の空間に設けられる。負圧 室 60は、測定時に皮膚 13が血液センサユニット 44に当接して負圧状態となる空間 を広く意味し、装置本体 39内の吸引室 60a、 60bにカロえて、血液センサユニット 44の 内部空間も含まれる。負圧室 60 (特に吸引室 60a、 60b)は、図 27および図 28に示 されるように、例えば、ポンプ 34aにより吸引され (つまり、負圧にされ)、弁 34bにより 負圧が解除される。
[0133] 負圧室 60を小さくすれば、負圧の発生に必要なエネルギーが少なくなり、かつ検 查に必要とされる時間も短くなる。よって、本発明の血液検査装置 31、 31aの内部の 負圧室 60 (特に吸引室 60a、 60b)は、レーザ発射装置 33のレーザ発射孔 33cよりも 血液センサ 42側に設けられた壁によって、仕切られていることが好ましい。
[0134] 具体的には、吸引室 60a、 60bを仕切る壁(負圧用仕切りまたは隔壁) 70は、レー ザ発射孔 33cと同じ位置に配置されていてもよぐまたは、焦点レンズ 33hと同じ位置 に配置されている(つまり、壁と焦点レンズ 33hがー体となっている)力 \もしくは焦点 レンズ 33h自体が壁となってもよレ、。図 27および図 28にそれぞれ示される例は、後 者の場合である。また、負圧室 60の容量を小さくするため、吸引室の形状を錘状にし てもよレ、(図 28の吸引室 60b参照)。装置本体 39には、吸引室 60a、 60bに連通する 負圧路 71が設けられ、この負圧路 71はポンプ 34aの吸引口に連結されている。血液 センサ 42内には、上述のように、負圧経路 72としても機能する貯留部 49、供給路 50 および空気孔 52が設けられている。吸引室 60a、 60bは、血液センサ 42内のこの負 圧経路 72とも連通している。特に図 28の構成例では、吸引室 60bと空気孔 52とをつ なぐ微細な負圧経路 73が、装置本体 39にさらに設けられている。負圧経路 72、 73 ( ただし、貯留部 49の部分は除く)は、容積がほとんど零に等しい微細流路である。
[0135] 血液検査装置 31、 31aにおいて、レーザ光 80の経路上に位置する内部空間として 、図 29および図 30に示されるように、大別して 3つの内部空間 V、 V、 Vを考えるこ
1 2 3 とができる。内部空間 Vは、レーザ結晶(レーザロッド) 33dの前面と焦点レンズ 33h
1
の間の空間である。内部空間 Vは、焦点レンズ 33hと血液センサユニット 44内の血
2
液センサ 42ほたはホルダ 41)の間の空間であって、図 27および図 28の構成例で は、装置本体 39内の吸引室 60a、 60bに対応している。内部空間 Vは、血液センサ
3
ユニット 44内の血液センサ 42 (またはホルダ 41)と皮膚当接面 74の間の空間であつ て、主として、血液センサユニット 44の内部空間に対応している。図 27に示される負 圧室 60は、 Vと Vで構成され、吸引室 60aの容積を最大にして、約 9ccの容量とす
2 3
ることができる(図 29の破線で囲んだ領域を参照)。また、図 28に示される負圧室 60 も、 Vと Vで構成される力 吸引室 60bの容積を最小にして、約 0.45ccの容量とす ること力 Sできる(図 30の破線で囲んだ領域を参照)。
[0136] 電気回路について
図 31は、電気回路部 36のブロック図である。図 31において、 54b〜57bおよび 56 cは、血液センサ 42に形成された接触部位である。接触部位 54b〜57b、 56cは、コ ネクタ 61a〜61eを介して、切換回路 71に接続される。切換回路 71の出力は電流 Z 電圧変換器 72の入力に接続されている。電流/電圧変換器 72の出力は、アナログ /デジタル変換器 (以下「AZD変換器」とレ、う) 73を介して、演算部 74の入力に接 続されている。演算部 74の出力は、液晶で形成された表示部 37に接続されている。 また、切換回路 71には基準電圧源 78が接続されている。基準電圧源 78はグランド 電位であってもよい。
[0137] 制御部 76の入出力は、切換回路 71の制御端子、演算部 74、穿刺ボタン 75、送信 部 77、タイマ 79、レーザ発射装置 33、負圧手段 34 (特に吸引ポンプ 34a)および第 1の皮膚接触センサ 62に接続され、図示されない警報手段や第 2の皮膚接触センサ 110m (図 22参照)にも接続されている。演算部 74の出力は、送信部 77の入力にも 接続されている。負圧手段 34 (特にポンプ弁ユニット 34b)の吸引口は、負圧路 71を 介して負圧室 60と血液センサユニット 44の内部に導かれている。
[0138] ここで、電気回路部 36の動作を説明する。
血液検査の前に、血液センサ 42の接触部位 54b〜57b、 56cのそれぞれが、コネ クタ 61a〜61eのいずれに接続されているかを特定する。まず、制御部 76の指令に より、コネクタ 61a〜61 eのうち、隣り合う端子間の電気抵抗が零である接触部位 56c を特定する。特定された接触部位 56cに接続されてレ、る接続電極を基準電極 56dで あると決定する。接触部位 56cに接続されたコネクタ 61を基準として、順に接続電極 56a、 57a、 54a、 55aに接続するコネクタ 61であると特定する。このようにして、接続 電極 54a〜57aのそれぞれに接続されたコネクタ 61を特定する。
[0139] その後に血液検査を行う。まず、切換回路 71を切り換えて、血液成分量を測定する ための作用極となる検出電極 54を、上記決定されたコネクタ 61を介して電流/電圧 変換器 72に接続する。また、血液 16の流入を検知するための検知極となる検出電 極 54を、上記決定されたコネクタ 61を介して基準電圧源 78に接続する。 そして、検出電極 54と検出電極 55との間に、一定の電圧を印加する。この状態で、 血液 16が検出部 51に流入すると、検出電極 54と 55との間に電流が流れる。この電 流は、電流/電圧変換器 72によって電圧に変換され、その電圧値は A/D変換器 7 3によってデジタル値に変換される。このデジタル値は、演算部 74に向かって出力さ れる。演算部 74は、そのデジタル値に基づいて、血液 16が十分に流入したことを検 出する。
[0140] あらカ^め定められた時間が経過しても、検出部 51で血液 16が検出されない場合 や、血液 16の量が適正でない場合は、警報手段を働かせて警報するとともに処置の 内容を表示部 37に表示してもよい。
[0141] 次に、血液成分であるグルコースの測定が行われる。グルコース成分量の測定は、 まず制御部 76の指令により切換回路 71を切り換えて、グルコース成分量の測定のた めの作用極となる検出電極 54を、コネクタ 61を介して電流/電圧変換器 72に接続 する。また、グルコース成分量の測定のための対極となる検出電極 56を、コネクタ 61 を介して基準電圧源 78に接続する。
[0142] 例えば、血液中のグルコースとその酸化還元酵素とを一定時間反応させる間は、電 流/電圧変換器 72および基準電圧源 78をオフにしておく。そして、一定時間(1〜1 0秒)の経過後に、制御部 76の指令により、検出電極 54と検出電極 56との間に、一 定の電圧(0.2〜0.5V)を印加する。そして、検出電極 54と検出電極 56との間に流 れた電流を、電流/電圧変換器 72によって電圧に変換する。この電圧値は、 A/D 変換器 73によってデジタル値に変換される。このデジタル値は、演算部 74に出力さ れる。演算部 74は、そのデジタル値に基づいて、グノレコース成分量を求める。
[0143] グノレコース成分量の測定後に、 Hct (へマトクリット)値の測定が行われる。
まず、制御部 76からの指令により切換回路 71を切り換える。 Hct値の測定のため の作用極となる検出電極 57を、コネクタ 61を介して電流/電圧変換器 72に接続す る。また、 Hct値の測定のための対極となる検出電極 54を、コネクタ 61を介して基準 電圧源 78に接続する。
[0144] 次に、制御部 76の指令により、検出電極 57と検出電極 54との間に一定の電圧(2 V〜3V)を印加する。検出電極 57と検出電極 54との間に流れる電流は、電流/電 圧変換器 72によって電圧に変換される。この電圧値は、 A/D変換器 73によってデ ジタル値に変換される。このデジタル値は、演算部 74に出力される。演算部 74は、 そのデジタル値に基づいて、 Hct値を求める。
[0145] 得られた Hct値とグルコース成分量を用いて、あら力、じめ求めておいた検量線また は検量線テーブルを参照して、グルコース成分量を Hct値で補正する。補正された 結果は表示部 37に表示される。
[0146] また、補正された結果は、送信部 77からインスリン (治療薬の一例として用いた)を 注射する注射装置に向けて送信されてもよい。電波を用いて送信してもよいが、医療 器具への妨害のない光通信で送信することが好ましい。注射装置に送信された測定 データに基づいて、インスリンの投与量を注射装置が自動的に設定できるようにすれ ば、投与するインスリン量を患者自身が注射装置に設定する必要がなくなり、煩わし さが軽減される。また、人為手段を介さずにインスリン量を注射装置に設定することが できるので、設定ミスが防止される。
[0147] 以上、本発明の血液検査装置を用いてグルコースを測定する例を説明した力 グ ルコース以外の血液成分(乳酸値やコレステロールなど)の測定にも、本発明の血液 検査装置は有用である。
[0148] 測定ステップのフロー 1
図 2に示された血液検査装置 31を用いた血液検査のフローを、図 32を参照して説 明する。
まず、血液センサユニット 44を、血液検査装置 31に装着する(ステップ 81)。このス テツプ 81では、血液センサユニット 44をアダプタ 40に挿入する。挿入により、ァダプ タ 40の先端が血液センサユニット 44の装着部 4 lbに当接する。血液センサユニット 4 4は、そのホルダ 41の弾性で、アダプタ 40に係止される。
[0149] 次に、血液センサ 42の接続電極 54a〜57aの特定を行う(ステップ 82)。ここでは、 電気回路部 36で、隣り合うコネクタ 61a〜61e間の抵抗値から基準電極 56dを特定 する。そして、特定された基準電極 56dから時計回りに接続電極 56a、 57a, 54a、 5 5aと決定する。このように、任意の角度で揷入された血液センサユニット 44の血液セ ンサ 42の接続電極 54a〜57aが、ステップ 82で特定され、その結果、検出電極 54〜 57が特定される。
[0150] 次に、血液センサユニット 44の先端 41hを患者の皮膚 13に押し当てて密着させる( ステップ 83)。皮膚 13の先端 41hへの接触を、第 1の皮膚接触センサ 62が検知する と、負圧手段 34の吸引ポンプ 34aが動作して負圧の発生を開始する。このとき、吸引 ポンプ 34aに加わる負荷電流を制御部 76で検出して、穿刺可能な負圧か否かを表 示部 37に表示してもよい。負荷電流を検出する代わりに、負圧が発生してからあらか じめ定められた時間をタイマ 79で計測して、表示部 37に穿刺が可能であるか否かを 表示してもよい。
また、第 2の皮膚接触センサ [図 22 : 110mなど)が設けられていれば、負圧の吸引 による皮膚 13の盛り上がりを検知できる。該検知を、表示部 37に表示してもよい。
[0151] このように、レーザ穿刺するときに皮膚 13に負圧をカ卩えると、弛緩していた皮膚 13 が緊張状態になるので、穿刺による傷が小さくても、血液 16を効率良く採取すること ができる。よって、患者に与える苦痛が軽減される。また、負圧により皮膚 13を所定 位置にまで盛り上げて位置を規定 (規制)すれば、照射するレーザを正確に集光する こと力 Sできる。
[0152] 次に、穿刺ボタン 75を押下する(ステップ 84)。穿刺ボタン 75の信号は電気回路部 36で認識される。電気回路部 36がレーザ発射装置 33を駆動すると、レーザが皮膚 13に向けて発射される。レーザでの穿刺電圧を、約 300Vとすれば、患者に与える 苦痛は少なくなる。
[0153] 次に、採血を行う(ステップ 85)。レーザでの穿刺により患者の皮膚 13から流出した 血液 16を、血液センサ 42の貯留部 49に貯留する(図 8など参照)。貯留部 49に貯留 された血液 16は、毛細管現象によって供給路 50に浸入し、検出部 51に導かれる。 検出部 51に導かれた血液 16が、検知極としての検出電極 55に達すると、測定に必 要な量の血液 16が得られたと判断される。このときに負圧手段 34を停止してもよぐ あるいは、皮膚接触センサ 62が皮膚の非接触を検知してから負圧手段 34を停止し てもよい。
[0154] 一方、あらかじめ定められた時間が経過しても、検出部 51で血液 16が検出されな レ、場合や、血液 16の量が適正でなレ、場合(検出電極 54と検出電極 55間の抵抗で 検出する)には、警報手段を作動させて警告するとともに、適切な処置内容を表示部 37に表示してもよい。
[0155] 次に、グルコースの測定を行う(ステップ 86)。血液中のグルコースとグルコース酸 化還元酵素とを一定時間反応させた後、検出電極 54を作用極とし、検出電極 56を 対極として、両検出電極 54と 56の間に電圧を印加して、グルコース測定を行えばよ レ、。
[0156] さらに、 Hct値の測定を行う(ステップ 87)。検出電極 57を作用極とし、検出電極 54 を対極として、両検出電極 54と 57の間に電圧を印加すれば、 Hct値に依存する電 流が検出される。この電流に基づいて Hct値を測定できる。
[0157] 最後に、血液成分の補正を行う(ステップ 88)。つまり、ステップ 87で検出した Hct 値を用いて、ステップ 86で得られたグルコース量を補正する。補正後、その結果を表 示部 37に表示する。以上のステップにより、血糖値測定が終了したら使用済み血液 センサユニット 44は廃棄する。
[0158] 測定ステップのフロー 2
図 33は、測定ステップのフローチャートを、より詳細に模式的に説明する図である。 図 33において、ステップ 151は、血液検査装置 31のアダプタ 40に血液センサュニ ット 44を装着する前の状態を示す。ステップ 152は、ガイド部 63 (図 7参照)に沿って 血液センサユニット 44をアダプタ 40へ挿入した状態を示す。ステップ 153は、コネク タ 61を押し下げて、コネクタ 61がセンサ 42の接触部位 54b〜57b、 56cに当接した 状態を示す。
[0159] 次に、ステップ 154に移行して、血液検査装置 31のメインスィッチを起動する。する と、 自動的に電気回路部 36が基準電極 56dを検出し、検出電極 54〜57を特定する 。その後、表示部 37が、測定準備が完了したことを表示する。
[0160] ステップ 155では、血液検査装置 31を穿刺する皮膚 13に、血液センサユニット 44 の端部を当接させる。図 33において、ステップ 155以降については、血液検査装置 31の装置本体 39を省略して、血液センサユニット 44のみを示す。ステップ 156では 、血液検査装置 31を患者の皮膚 13に当接させる。この皮膚 13への当接を第 1の皮 膚接触センサ 62が検出する。 [0161] 第 1の皮膚接触センサ 62が皮膚 13を検知すると、ステップ 157に移る。そして、負 圧手段 34が動作を開始し、矢印 157aに示すように負圧室 60を吸引する。吸引の結 果、皮膚 13が盛り上る。手動式の負圧手段 140の場合は(図 3参照)、表示部 37に 手動開始の旨の表示がなされ、患者が手動ポンプノブ 142の操作を開始する。
[0162] 負圧が加えられると、ステップ 158に示すように皮膚 13はさらに盛り上がり、第 2の 皮膚接触センサ (皮膚接触電極) 11 Omに当接する。
第 2の皮膚接触センサ 110mは、血液センサユニット 44の下面に装着された血液 センサ 42の裏面に形成される力 ^図 22参照)、または、血液センサユニット 44の上面 に血液センサ 42が装着される場合(図 23参照)は、装着部 120bの下面に形成され てもよい。
第 2の皮膚接触センサ 110mは、血液センサ 42への皮膚 13の接触を検知できれ ばよいので、電極の代わりに、光センサ、機構スィッチまたは電気抵抗検出素子など を用いてもよい。
[0163] ステップ 159では、負圧室 60における皮膚 13の吸引を停止する。なお、第 2の皮 膚接触センサ 110mがない場合は、負圧手段 34の動作開始からあら力じめ定められ た時間の経過後に、吸引を停止すればよい。経過時間は電気回路部 36のタイマ 79 で計測すればよい。
[0164] 次に、ステップ 160に移り、皮膚 13にレーザを照射して穿刺する。穿刺により、皮膚 13からは血液 16が流出する。第 2の皮膚接触センサ 110mが皮膚 13を検知すると、 自動的に穿刺が行われてもよい。また、皮膚 13の当接を表示部 37に表示することに より、患者が穿刺ボタン 75 (図 29参照)を押下するようにしてもよい。患者自身が穿刺 ボタン 75を押下する場合には、患者は気構えをすることができる。
[0165] 流出した血液 16は、ステップ 161に示すように、貯留部 49を満たし、供給路 50へ 流入する。血液 16の流入は、供給路 50による毛細管現象と、負圧手段 34による空 気孔 52からの吸引とにより行われる。
ステップ 162に示すように、血液 16は血液センサ 42の検出部 51に導かれる。血液 16の検出部 51への流入が検知されると、負圧手段 34の動作を停止する(ステップ 1 63)。血液 16がセンサ 42の検出電極 55 (図 6参照)に達すると、血液 16の流入が検 知される。そして、大気開放スィッチ 34cを操作して負圧室 60内を外気圧にする。
[0166] 次に、ステップ 164に示すように、血液検査装置 31を皮膚 13から離す。測定が終 了したら、その旨を表示部 37に表示する。そして、ステップ 165に移り、採取した血液
16の測定結果を表示部 37に表示する。
[0167] 測定ステップのフロー 3 (認証ステップあり)
本発明の血液検査装置を用いて血液検査をするフローには、患者である使用者を 認証するステップが含まれていてもよレ、。レーザ機器であるため、安全性を考慮して 許可された者以外の使用を禁止するためである。
[0168] 図 34には、認証ステップ 261を含む検查フローが示される。認証は、指紋や声紋、 虹彩、静脈パターンなどを用いて、患者が所定の許可された者であるか否力、を識別 して行えばよレ、。
[0169] 使用が許可された者の場合は、ステップ 262に進む。患者はダイアルを操作して、 穿刺深さ(レーザパワー)を設定する。そして、ステップ 263に移り、血液検査装置 31 のアダプタ 40に、血液センサ 42を有する血液センサユニット 44を装着する。血液セ ンサユニット 44の装着で装置本体 39の電源が自動的に起動して、測定待機状態に なる。血液センサユニット 44を装着するステップ 263は、ステップ 261の前に行っても よレ、。血液センサユニット 44が装着されていないと測定動作は行えないが、測定結 果の表示などは可能である。
[0170] 次に、ステップ 264に進む。ステップ 264では、血液センサユニット 44が皮膚 13に 当接しているか否力を第 1の皮膚接触センサ 62 (図 16など参照)で検知する。第 1の 皮膚接触センサ 62の代わりに、血管の有無の検知、体温の検知、皮膚の電気抵抗 の検知、脈動の検知であってもよレ、。いずれにしても、安全のために、皮膚 13への当 接を検知している状態でステップ 265以降の動作を行う。皮膚 13への当接の検知が できるまで、ステップ 264で待機する。
[0171] 第 1の皮膚接触センサ 62が皮膚を検知したら、ステップ 265で負圧手段 34の動作 を開始する。また、同時にレーザ発射装置 33の駆動電圧チャージを開始する。そし て、ステップ 266に進み、負圧手段 34へ流れる電流値を 1〜5秒間モニタする。電流 値が異常の場合は、その旨を表示部 37に表示して、ステップ 264の前に戻る。 [0172] 電流値が正常な場合は、ステップ 267に進み、負圧が適正か否かを判定する。負 圧の適否の判定は、負圧手段 34へ流れる電流を、あらかじめ定められた閾値と比較 することにより行う。一定の負圧力になると、ステップ 268に進み、レーザの発射を許 可する。負圧が閾値を超えない場合は、空気漏れ (血液センサユニット 44の皮膚 13 への当接不良)として、負圧手段 34による吸引を停止し、リトライを指示するとともに、 ステップ 264の前に戻る。
[0173] また、第 2の皮膚接触センサ 110m (図 22参照)を配置すれば、負圧により吸引さ れた皮膚 13の盛り上がりを検知することができる。適切に皮膚 13が盛り上がり、血液 センサ 42に密着したら、レーザの発射を許可する。
[0174] ステップ 268では、レーザを発射して皮膚 13を穿刺する。そして、ステップ 269に進 み、穿刺により皮膚 13から流出した血液 16を血液センサ 42へ取り込む。このとき、負 圧手段 34は駆動を続行する。
[0175] 次に、ステップ 270に進み、血液 16が血液センサ 42の検出部 51 (図 8参照)に取り 込まれたか否かをチェックする。穿刺後の一定の経過時間内(2〜: 10秒の場合もある )に、検出電極 55に血液 16が達したか否かを検知する。一定の経過時間内に血液 1 6が検知されないときは、ステップ 264の前に戻り再穿刺する。したがって、一旦装着 された血液センサ 42を、未使用のまま無駄にすることがない。し力も、迅速に再穿刺 すること力 Sできる。
[0176] 血液 16が検知された場合は、ステップ 271に進み、血糖値の測定を開始する。ま た、ステップ 271で、ポンプ弁ユニット 34b (図 2参照)を制御して負圧の外気開放を 開始する。この時点ではまだ負圧手段 34は動作している。負圧手段 34が駆動して レ、るときの音や振動により、患者に対して測定中である旨を認識させ、患者が血液検 查装置 31を皮膚 13から取り外さないようにするためである。このような配慮により、血 液成分の測定途中で、血液検査装置 31に振動や衝撃が加わることを防止し安定し た測定ができる。また、負圧を開放した直後に、患者が、皮膚 13から装置を取り外し て、血液 16を飛散させて汚染することを防止する。
[0177] ステップ 271で測定が完了すると、ステップ 272に移り、測定した結果を表示部 37 に表示する。そして、ステップ 273に移り、負圧手段 34 (特に吸引ポンプ 34aおよび ポンプ弁ユニット 34b) (図 2参照)の駆動を停止する。以後、患者は血液検査装置 3 1を皮膚 13から離す。
[0178] 次に、ステップ 274に移り、患者が、血液センサユニット 44を血液検査装置 31の装 置本体 39から外して廃棄する。そして、ステップ 275に移り、血液センサユニット 44 の取り外しを検知して、装置本体 39の電源を自動停止する。
[0179] 以上説明したように、血液検査装置 31を用いた血糖値の測定において、血液検査 装置 31が皮膚 13へ当接していることを条件 (論理積条件)に、レーザ発射装置 33を 駆動しているので、皮膚 13への穿刺以外でレーザが放射されることはなく安全であ る。
また、血液検査装置 31の使用に先立って、ステップ 261で使用者認証を行ってい るので、許可された者のみが操作することができ、無許可の者は操作できないので、 安全である。
[0180] 血液検査装置 31の電源は、自動的に起動および停止されるので操作が容易となり 、電池 35の消費が抑制される。
[0181] レーザ照射における負圧の制御
本発明の血液検査装置 31は、穿刺後に、負圧を複数回断続してカ卩えてもよい。図 35および図 36を参照して、負圧を加えるタイミングと、その作用を説明する。
第 1の皮膚接触センサ 62が皮膚 13を検知すると、時間 166aで負圧手段 34が駆動 を開始する(図 33のステップ 156に対応)。負圧室 60内に負圧が加えられ、皮膚 13 は状態 167aのように緊張して盛り上がる(図 33のステップ 157に対応)。皮膚 13が 盛り上がり、時間 166bで、第 2の皮膚接触センサ 110mに当接する(図 33のステップ 158に対応)。時間 166bで、皮膚 13は、図 36に示す状態 167bとなる。ここで、負圧 室 60に供給する負圧を停止する(図 33のステップ 159に対応)。そして、時間 166c で、皮膚 13を穿刺する(図 33のステップ 160に対応)。ここで、皮膚 13は状態 167c となり、血液 16が滲み出る。
[0182] そして、ー且負圧の供給を停止した後、時間 166dの時点で、再び負圧を加える。
負圧により、状態 167dのように皮膚 13の開口部が広がり、血液 16が流出し易くなる (図 33のステップ 161に対応)。 このように、負圧を断続的に加える理由の一つは、皮膚 13の穿刺孔を広げて血液 16の採取を容易にするためである。別の理由は、強い負圧で一気に吸引すると血液 16が勢い良く流出し、過剰に採血してしまうことがあるので、これを防止するためでも ある。そのため、余分に血液 16が溢れ出ない程度に負圧手段 34を断続的に動作さ せている。このようにして、吸引力を弱めて省電力化を図るとともに、適量の血液 16を 採取する。適量の血液 16を得て、精密な測定が終了した段階で、血液検査装置 31 を皮膚 13から外す(図 33のステップ 164に対応)。測定が終了した時間 166eにおい て、皮膚 13は、状態 169eに示すように、負圧で広げられた傷口 168を元の通りに塞 ぐ。したがって、傷口の回復が早くなる。
[0183] 患者によっては、レーザ穿刺しても皮膚 13から血液 16が流出しにくい場合もある。
そのような場合は、穿刺前の負圧力に比べて、穿刺後の負圧力を大きくして血液 16 が流出しやすいようにしてもよい。負圧力の制御は、最高到達圧 (負圧)が一定であ るので、弁 34bの閉鎖時間を制御することによって行う。また、断続的な負圧の駆動 を行わなくとも、継続して負圧をカ卩えるように構成してもよい。
[0184] また、本発明の血液検査装置 31は、穿刺の前後に、いわゆる「揉み動作」を行って もよレ、。図 37を参照して、揉み動作を説明する。
揉み動作は、例えば、ポンプ (例えば、電動式吸引ポンプ) 34aを定電圧駆動しつ つ、弁(例えば、電磁弁) 34bを所定のタイミングで開閉することによって行う。図 37に 示される動作例では、第 1の皮膚接触センサ 62が皮膚 13を検知して負圧手段 34が 駆動を開始してから(吸引開始)、レーザによる穿刺が行われるまでの間は、穿刺前 の準備として揉みほぐしを行い、レーザによる穿刺が行われた後は、血液 16が血液 センサ 42の検出部 51に取り込まれたことを検知して(点着検知)、電磁弁 34bを閉鎖 するまでの間に、少なくとも 1回の揉みを入れる。図 37において、空気圧のレベル 90 は、体感で吸引をほとんど感じない負圧レベルであり(例えば、 _ 10kPa)、レベル 9 1は、ポンプ 34aを定電圧駆動した場合の最高到達圧(負圧)(例えば、 _ 70kPa)で ある。揉み動作をもたらす弁(電磁弁) 34bの開閉動作は、負圧室 60内の空気圧が レべノレ 90とレべノレ 91の間で変ィ匕し、かつ、その変化の周期が、皮膚 13が負圧の変 化に反応する最小時間よりも長い時間(例えば、 0.1秒以上)になるようなタイミングで 行う。このような弁 (電磁弁) 34bの開閉動作は、吸引開始から点着検知 '電磁弁閉鎖 までの期間の間行われる。点着検知後に電磁弁を閉鎖するのは、上述のように、皮 膚 13の穿刺孔を広げて血液 16の採取を容易にするためである。血液 16の採取がな され、測定が終了すると、負圧手段 34の駆動を停止する(ポンプ吸引停止および弁 開放)。
[0185] このような揉み動作を行うことで、血管の血行が良くなり、血液 16が流出しやすくな る。つまり、皮膚 13を揉むことで、被穿刺部が加熱され (血行が良くなり)、揉まない場 合に比べて採血量を多くすることができる。また、揉み動作は、穿刺時の痛みの軽減 にもつながる。
[0186] レーザ穿孔装置について
本発明の血液検査装置 31、 3 laは、図 38に示されるレーザ穿孔装置を含んでいる 。このレーザ穿孔装置は、血液検査装置 31、 3 laから血液センサユニット 44およびこ の血液センサユニット 44に関係する部材(例えば、血液センサ 42と接続するコネクタ など)を取り除いた構造を有する。このレーザ穿孔装置は、 1回の穿刺動作において 同一の穿刺位置を「分割穿刺」するように、レーザ発射装置 33のレーザ出力を制御 する機能を有する。ここで「分割穿刺」とは、 1回の穿刺動作を空間的または時間的に 分割して行うことをいう。具体的には、前者は、レーザ光を複数の光路に分割して穿 刺動作を行う場合 (レーザ出力の分岐制御)であり、後者は、レーザ光を複数回に分 割して穿刺動作を行う場合(レーザ出力のノ ルス制御)である。
[0187] レーザ照射におけるレーザ光の分岐
本発明の血液検査装置 31、 31aは、レーザ発射装置 33から発射された一本のレ 一ザ光を複数本に分岐させて皮膚 13を穿刺してもよい。図 39において、符号「33」 はレーザ発射装置、「13」は患者の皮膚である。また、符号「170a」、「170b」、「170 c」は、それぞれ、入射光に対して半分の光を通過させるとともに残りの半分の光を反 射させて入射光を均等に分配するスプリツターである。このスプリツター 170a、 170b 、 170cは、ハーフミラーで形成されている。
[0188] 符号「171a」、「171b」、「171c」は、それぞれ、入射した光を全反射させる全反射 ミラーである。この全反射ミラー(以下単に「ミラー」という) 171a、 171b, 171cは、ス プリツター 170a、 170b, 170cとそれぞれ糸且になってレヽる。図 39におレヽて、これらの スプジッター 170a、 170b, 170cおよびミラー 171a、 171b, 171cは、同一の照射位 置 177を穿刺するよう、入射光に対して所定の角度に設定されている。
[0189] レーザ発射装置 33から出射されたレーザ光 172は、スプリツター 170aでレーザ光 173aとレーザ光 173bに分岐される。分岐されたレーザ光 173bはミラー 171aに入 射し、このミラー 171aで全反射してレーザ光 174となる。このレーザ光 174は、スプリ ッター 170bでレーザ光 175aとレーザ光 175bに分岐される。分岐されたレーザ光 17 5aは直接皮膚 13の照射位置 177を穿刺する。また、スプリツター 170bで分岐された レーザ光 175bは、ミラー 171bで全反射してレーザ光 175cとなり、皮膚 13の照射位 置 177を穿刺する。
[0190] 一方、スプリツター 170aを通過したレーザ光 173aは、スプリツター 170cでレーザ 光 176aとレーザ光 176bに分岐される。分岐されたレーザ光 176aは直接皮膚 13の 照射位置 177を穿刺する。また、スプリツター 170cで分岐されたレーザ光 176bは、ミ ラー 171 cで全反射してレーザ光 176cとなり、皮膚 13の照射位置 177を穿刺する。
[0191] このように一つのレーザ光 172を複数の光路に分岐して皮膚 13の照射位置 177を 穿刺するので、出力が小さいレーザ光で穿刺することになり、痛みを軽減することが できる。したがって、皮膚 13の内部の毛細血管にレーザ光を集約して穿刺することが 可能となる。
[0192] また、図 40に示されるように、ミラー 171cを図 39に示される位置よりも遠くに配置し た場合には、スプリツター 170cで分岐されたレーザ光 176bがミラー 171cで全反射 してレーザ光 176cとなり皮膚 13の照射位置 177へ到達するまでの時間が長くなる。 このようにミラーを適正な位置に配置することで、分岐された複数のレーザ光を同一 の照射位置に順番に照射できるようにレーザ出力を制御することができる。
[0193] スプリツター 170a、 170b, 170cやミラー 171a、 171b, 171cは、図 41に示すよう に直方体を対角線 178aで 2分割したキューブ状の光学素子 178を用いることが好ま しレヽ。キューブ状のスフ。リツター 170a、 170b, 170cfま、合わせ面 (こ屈折率の異なる ミラーを貼り合わせたものであり、キューブ状のミラー 171a、 171b, 171cは、全反射 する面と全透過する面を貼り合わせたものである。このように、キューブ状に形成され た光学素子 178は、透過光路のずれやゴーストの発生が無いため、光路の分割や屈 折などの変更に対して精度を高く保つことができる。なお、スプリツター 170a、 170b 、 170cやミラー 171a、 171b, 171cをすベて、または一部ずつ、 1つのキューブ状 光学素子にて構成することも可能である。
[0194] 例えば、図 39や図 40に示されるレーザ分岐をキューブ状の光学素子で構成する 場合を説明する。図 39および図 40では、レーザ光 172の分岐を二次元のイメージで 表現したが、これを三次元のイメージで表現すると、図 42Aに示される通りである。図 42Aに示されるように、レーザ発射装置 33から出射されたレーザ光 172は、ー且複 数の光路に分岐されて、最後は一箇所の照射位置 177に集光される。図 42Bは、こ の分岐を実現するキューブの一例を示している。図 42Bに示されるキューブ 179内 には、スフ。ジッター 170a、 170b, 170cおよびミラー 171 a、 171b, 171c力 S所定の位 置にそれぞれ固定配置されている。このように、レーザ分岐に使用するスプリツター 1 70a, 170b, 170cおよびミラー 171a、 171b, 171cをキューブ 179内に収納するこ とにより、細かい位置決めが不要になり、レーザの光軸上にキューブ 179を配置する だけで、分岐制御されたレーザ光を所望の位置に照射することが可能になる。
[0195] レーザ光の分岐方法としては、光ファイバを用いてレーザ光を分岐してもよレ、。図 6 3Aおよび図 63Bは、光ファイバによるレーザ光の分岐方法を示している。図 63Aは 、レーザ発射装置 33からレーザ光を分岐ファイバケーブル 421によって 2分岐した場 合である。この場合、この 2分岐ファイバケーブル 421から皮膚 13の同一の照射位置 177に向けて 2分岐されたレーザ光 422が照射される。 2分岐ファイバケーブル 421 は、 1つの光ファイバ方向性結合器 423を含んでいる。また、図 63Bは、レーザ発射 装置 33からレーザ光を分岐ファイバケーブル 424によって 4分岐した場合である。こ の場合、この 4分岐ファイバケーブル 424力も皮膚 13の同一の照射位置 177に向け て 4分岐されたレーザ光 425が照射される。 4分岐ファイバケーブル 424は、 3つの光 ファイバ方向性結合器 423を含んでいる。このように、光ファイバを用いても、図 39に 示される場合と同様に、レーザ発射装置 33から発射された 1本のレーザ光を複数本 に分岐させて皮膚 13を穿刺することができる。特にファイバケーブルを使用する場合 は、外部にレーザ光が漏れることがないので、スプリッタを使用する場合よりも取り扱 いが非常に容易である。
[0196] 図 64は、光ファイバ方向性結合器 423の構成を示す概略図である。一般に方向性 結合器は光を分岐する光学素子である。光ファイバ方向性結合器 423は、 2本の光 ファイバ 426の結合部 427のクラッド 428を除去してコア 429同士を近づけることによ つて構成されている。光ファイバ方向性結合器 423では、一方の光ファイバ 426から 光を入射すると、 2本のコア 429の近接部分において光の干渉効果により他方のコア 429にも光が伝播し、光を分岐することができる。
[0197] 図 65は、光ファイバによるレーザ光の分岐方法として、分岐ジョイント部 430および ファイバケーブル 431を使用する場合である。ここでは、レーザ発射装置 33から出射 されたレーザ光 432は、分岐ジョイント部 (T型分岐) 430を経由して 2分岐される。分 岐ジョイント部 430は、例えば、三角形の全反射ミラー 433を内蔵しており、逆丁字に レーザ光 432を分岐する。分岐されたレーザ光は、それぞれファイバケーブル 431を 経由して、皮膚 13の同一の照射位置 177を穿刺する。
[0198] 一般に、レーザ光が皮膚 13に照射されると、照射部は光吸収により急激な温度上 昇を起こす。この温度上昇により、血液 16が蒸発して皮膚 13を押し上げバルーン状 になる。そして、さらなる皮膚 13の押し上げにより、皮膚 13が破壊して血液 16が流出 する。血液 16が流出した後、レーザで穿刺された底面は炭化して、炭化臭を発する 。炭化臭は脱臭剤で脱臭するとよい。
[0199] このレーザ発射装置 33において、レーザは患者の皮膚 13を約 0.5mm穿刺するよ うに設計されている。
[0200] この場合、レーザ発射装置 33のレーザの種類は Er:YAGまたは COガスとすれば
2
よぐ波長領域は 2·7〜3.5 μ mまたは 6.5〜: 10.5 μ mとすればよぐパルス幅は 50 〜400 μ 3、好ましくは 200 x sとすれは'よく、出力は 300mJ〜3000mJとすれは'ょレヽ 。また、ショット径は 0.1mm〜0.5mmとし、ショット深さは 0.3〜0.7mmとすればょレヽ 。また、チャージ電圧は 200〜700Vの範囲、好ましくは 500Vとする。この高電圧は 、電池を用いて電荷をコンデンサにチャージ (充電)した後、このチャージされた電荷 を一気に放電することによって得られる。
[0201] レーザ照射における照射角度 一本のレーザ光を、皮膚 13に対して斜めの方向から照射して、皮膚 13を穿刺して もよレ、。図 43において、血液センサユニット 44の負圧室 60の内部は負圧手段 34に より負圧され、皮膚 13が盛り上がつている。皮膚 13の盛り上がりの頂点 180の接線方 向に対して、 90度未満の角度でレーザ光 181を照射する。このように接線方向に対 して 90度未満の角度でレーザ光を照射すると、垂直方向からレーザ光を照射する場 合と比べて、毛細血管が網羅されている面に対して斜め方向からレーザ光 181が照 射される。そのため、レーザ光 181の単位面積当たりの照射強度は弱くなるが、毛細 血管を傷つける確率は増加する。したがって、血液採取効率が高くなる。よって、穿 刺深さが浅くても十分な血液 16が採取できることになり、患者に与える痛みが軽減さ れる。
[0202] また、レーザ光 181の照射形は、真円でなく、図 44に示されるように楕円形 183ま たは長四角形 184にしてもよい。照射形を楕円形 183または長四角形 184にすると、 レーザ光 181が網羅している毛細血管を傷つける確率が増加して、血液採取効率が 高くなる。よって、穿刺深さが浅くても十分な血液 16を採取することができるので、患 者に苦痛を与えることは少ない。
[0203] 本発明の血液検査装置 31、 31aにおいて、一つのレーザ発射装置 33であっても、 レーザの出力強度を可変することができる。
図 45に示されるように、レーザ発射装置 33と皮膚 13との間に、レーザの透過光量 が異なる複数種のフィルター、例えば、減光(ND: Neutral Density)フィルター 19 la 〜191d力 S貝占り付けられたプレート 193を設けてもよレヽ。プレート 193をレーザ光 194 の照射路に設置する。プレート 193を回転させることで、皮膚 13に照射するレーザ光 194の光量を制御する。レーザの光量を制御することにより、穿刺深さを制御すること ができる。
[0204] これにより、従来レーザ強度を制御するために行っていた、フラッシュランプの場合 は印加電圧を制御し、半導体レーザの場合は電流を制御するといつた方法に加えて 、 NDフィルターによるレーザ穿刺の出力調整も可能となる。したがって、レーザ出力 のよりきめ細かい制御が可能となる。
さらに異なる用途としては、レーザの出力強度をフラッシュランプへの印加電圧で決 定する場合、電圧を可変にすると、電圧値の安定性が劣化し、レーザ出力が変動す る要因となる。これを解決するために電圧を固定にして、レーザ光 194の出力が低下 (変化)した場合にぉレ、ても、透過光量の異なるこの NDフィルター 191 a〜 191 dを用 レ、ることで、レーザの出力を一定に保つことができる。したがって、安定したレーザ出 力を得ることが可能となる。
[0205] レーザ照射におけるパルス制御(時分割)
穿刺時の痛みを軽減するために、一定の深さまでの穿刺を複数回に分けて行って もよレ、。チャージ電圧として 320V程度の大きなノ^レスを用いて一回で穿刺する方法 に 匕ベて、図 46に示されるように、レーザ光を 3回のノヽ。ノレス 198a、 198b, 198cに分 割して、それぞれ 210V程度の小さなパルスを用レ、、 200 z s〜lmsecの間隔(休止 区間)で複数回穿刺する。これにより、図 47に示されるように、各パルス 198a、 198b 、 198cに対応して、皮膚 13をレべノレ 199a、 199b, 199cと 3段 P皆に分けて穿朿 IJする こと力 Sできる。この場合、 200 /i s〜lmsecの休止区間でコンデンサをチャージして高 電圧を得ている。
[0206] この穿刺方法の制御によれば、 1パルスで皮膚 13を穿刺する深さが浅いので、痛 みを軽減しつつ、所定の深さまで穿刺することができる。なお、この場合は、パルス 1 98a、 198b, 198cの間鬲を 200 /i s〜: 1msecと短くすること力 S重要であり、血†夜 16 が滲み出る前に次の穿刺を行うことが好ましい。
[0207] また、穿刺時の痛みを軽減するために、一定の深さまでの穿刺を複数回に分けて 行う別の方法として、レーザ光を連続可変/分割照射する場合について説明する。 本発明で穿刺する対象物とは、例えば、指の腹の皮膚である。皮膚は、表面から順 に、角質層を外部に持つ表皮と、痛点や毛細管が存在する真皮とで形成されている 。したがって、最初または数回の照射で表皮だけを除去するエネルギーを与えた後、 小さいエネルギーで真皮を穿刺すると、痛みが軽減される。
[0208] 例えば、エルビウムをドーピングした Er : YAGを材料とし、 φ 2.5mm,長さ 52mm のレーザロッド(レーザ結晶) 33dを用いる場合、一回で穿刺する時のフラッシュラン プ (励起光源) 33eへのチャージ電圧は、 450V程度の大きなパルスを用いる。この 時の動作を起こすための回路が図 48Aに示され、フラッシュランプ 33eへの入力電 流が図 48Bに示され、レーザの出力が図 48Cに示されている。
図 48Aの回路図において、サイリスタ(SCR1) 401がオンされると、トリガーコイル 4 02から数 kVの昇圧された電圧が出力され、フラッシュランプ 33eに充填されたキセノ ンガスがイオン化され、電解コンデンサ 403の主放電が始まり、フラッシュランプ 33e が発光する。このフラッシュランプ 33eの発光によってレーザロッド 33dは励起され、 レーザ光が出射される。なお、符号「404」は抵抗 (R1)である。
上記の場合は一回で穿刺する場合である。
[0209] 次に、電解コンデンサー回分の充電で数回に分けてレーザ光を出射する場合につ いて説明する。このときの回路図、フラッシュランプ 33eへの入力電流、およびレーザ 出力は、図 49A、図 49B、および図 49Cにそれぞれ示されている。
[0210] 数回に分けてフラッシュランプ 33eを発光させる場合には、図 49Aの回路図におい て、大電流でスイッチング速度が速レ、トランジスター(IGBT) 411にハイの信号が入 力されると、トランジスター(IGBT) 411がオンと同時にフラッシュランプ 33eの負極が グランドに接続され、フラッシュランプ 33eに電解コンデンサ 412からの電圧が印加さ れ、さらに同時にトリガーコイル 413から数 kVの昇圧された電圧が出力される。これ により、フラッシュランプ 33eに充填されたキセノンガスがイオンィ匕し、電解コンデンサ 412の主放電が始まり、フラッシュランプ 33eが発光する。次に、トランジスター(IGB T) 411にローの信号が入力されると、トランジスター(IGBT) 411がオフして、フラッ シュランプ 33eへの電圧印加は停止する。これにより、フラッシュランプ 33eの発光も 停止し、レーザの出力も停止する。この動作を繰り返すことで、レーザの出力を数回 に分けて行うことができる。ここでは、 2回に分けた場合を示している。なお、符号「41 4」は抵抗(R1)である。
[0211] 図 49Cからも明らかなように、最初は大きい出力で照射し、次に小さい出力で照射 すること力 Sできる。本例で示した Er: YAGのレーザロッド 33dを使用する場合は、レー ザ光を出射するためのフラッシュランプ 33eの最低電圧は 370Vであるので、 2回目 の電圧は 370Vよりも大きく設定し、フラッシュランプ 33eの発光時間を短くして全体 のエネヽノレギーを/ J、さくする必要力 Sある。これにより、皮膚 13をレべノレ 199a、 199bと 2 段階に分けて穿刺することができる(図 47参照)。 この穿刺方法の制御によれば、まず皮膚 13の表皮を除去してから、真皮を小さい エネルギーで穿刺するため、真皮の深いところまでレーザ光が到達しなレ、。よって、 痛みを軽減しつつ、所定の深さまで穿刺することができる。なお、血液 16が滲まない ように表皮を穿刺するようにしてレ、る。
[0212] 電源制御について
本発明の血液検査装置は、電気消耗の大きいレーザ発射装置を搭載しているので
、電源の管理が重要である。電源として電池を用いる携帯機器である場合には、容 量に制限があるので、電源の管理が特に重要である。
また、血糖値の測定という生命の安全に係わる装置である場合には、電源切れによ る測定不能を避けることが求められ、最悪でも血液検査 (例えば血糖値の測定)だけ は実施できることが重要である。
[0213] 本発明の血液検査装置は、装置に含まれるレーザ発射装置を駆動する電源と、電 気回路部を駆動する電源との電源供給を制御する電源制御回路を有することが好ま しい。さらに電源制御回路は、レーザ発射装置を駆動する電源と、電気回路部を駆 動する電源とを独立に制御することが好ましい。
「独立に制御する」とは、電源 (特に電池)の残量や電圧に応じて、レーザ発射装置 を駆動する電力と、電気回路部を駆動する電力とを、供給するかしないかを決定する こと、およびいずれの電源から供給するかを決定することなどを意味する。
[0214] 本発明の血液検査装置の電源は、電池電源を含むことが好ましい。携帯機器とし て用いることができるからである。電池電源は、 1つであってもよぐ 2つ以上あっても よい。
電池は、二次電池もしくは一次電池、またはその両者の組み合わせでもよい。二次 電池の例には、リチウムイオン電池、リチウムポリマー電池、ニッケル水素電池、ニッ ケルカドミウム電池などが含まれる。一次電池の例には、リチウム電池、マンガン電池 、アルカリ電池、ォキシライド電池などが含まれる。
[0215] 本発明の血液検査装置の電源は、電池電源に加えて、緊急用電源の接続端子を 有していてもよレ、。電池電源の電池が消費された場合に、他の電源に接続して血液 検查装置を用いるためである。緊急時の電源の例には、入手が容易な乾電池、パソ コン等で用いる USB端子、燃料電池、手動発電機 (ダイナモ)等が含まれる。これら の電源を容易に接続できる。
[0216] さらに本発明の血液検査装置の電源は、電池電源に加えて、外部電源を有してい てもよレ、。外部電源と接続している場合には、外部電源が優先して使用されて、電池 からの電気出力が停止されるか、または電池への充電が行われることが好ましい。
[0217] 血液検査装置は、電池電源の電池の残量を測定する電池残量測定回路を有して レ、てもよい。さらに血液検査装置は、電池残量測定回路が測定した電池残量と、予 め定められた値 (電力量)とを比較する比較部を有することが好ましい。電池の残量 を把握して、レーザ穿刺または検査が可能かどうかを判断するためである。
[0218] 前述の通り、比較部には予め定められた電力量が記憶されている。予め定められた 電力量の第一は、所定の回数分の検查(レーザ穿刺と測定を含む)に必要な電力量 である。この値を第 1残量閾値という。電池残量が第 1残量閾値を下回る場合は、使 用者に電池の交換を促す警告 (電池残量警告)をすることが好ましい。第 1残量閾値 は、設計された回路によって適宜設定されればよぐ基本的には固定値とすればよい
[0219] 予め定められた電力量の第二は、一回の検査(穿刺および測定などを含む)に必 要な電力量である。この値を第 2残量閾値という。電池残量が第 2残量閾値以上であ れば、少なくとも一回の検査ができると判断され、検査が実施される。ただし前述の通 り、電池残量が第 1残量閾値を下回っている場合には、電池残量警告を行うことが好 ましい。
一方、測定した電池残量が第 2残量閾値未満であれば、通常の検査を行なうことは できないので、レーザによる穿刺を禁止して、検查不可能であることを使用者に示す ことが好ましい (使用不可表示)。し力 ながらレーザによる穿刺は不可能であっても 、電力消費の少ない測定プロセスを実施することができる場合がある。よってレーザ 以外の手段で穿刺した上で、測定を行なうことができる。
[0220] 第 2残量閾値は、前回の検查において消費された電池の消費量を基準に設定され ることが好ましい。具体的に第 2残量閾値は、当該消費量と、測定のための電気回路 を駆動するための電力量との和であることが好ましい。レーザ発射装置のレーザ出力 設定変更などにより電池の消費量が変わるため、検査において消費される電池の消 費量は最新のデータを記憶しておくようにしている。このように、第 2残量閾値は可変 である。
[0221] 予め定められた電力量の第三は、レーザ発射装置への 1回の充電に必要な電力 量と、測定のための電気回路を駆動するための電力量との和である。この値を第 3残 量閾値という。レーザ発射装置に充電するための電源と、電気回路を駆動するため の電源とが別である場合に、緊急時に電気回路を駆動するための電源を用いてレー ザ発射装置に充電をするかどうかを判断する基準として、第 3残量閾値を用いる。レ 一ザ発射装置への 1回の充電に必要な電力量は、レーザの励起用にチャージするコ ンデンサの容量やチャージ電圧やチャージ電流及び電池の内部抵抗により決定さ れる。
[0222] 電池残量に応じた充電電流値の設定
また、電池残量測定回路で測定された電池残量に基づいて、レーザ発射装置への 充電をするための充電量を設定してもよい。図 61A〜図 61Cに、電池残量に応じて 充電量を設定する例を示す。
図 61Aは、電池残量 (Y軸)の割合に応じて、段階的に充電電流を変更する方法で ある。例えば、電池残量が 75〜: 100% (第 1ゾーン)であれば、充電電流値を最大値 (100%)として;電池残量が 50〜75% (第 2ゾーン)であれば、充電電流値を最大値 の 50%として;電池残量が 25〜50% (第 3ゾーン)であれば、充電電流を 25%とする 図 61Bは、電池残量 (Y軸)の割合に比例して、連続的に充電電流 (X軸)を変更す る方法である。
図 61Cは、電池残量 (Y軸)の割合の変化曲線を基準として、その曲線と逆になるよ うな可変カーブになるように、連続的に充電電流 (X軸)を変更する方法である。図 61 Cでは、「Y=X + a (a :オフセット分)」の比例直線と対照になるカーブにあわせて制 御を行っている。
[0223] 本発明の血液検査装置は、電池電源の電池の電圧を測定する電池電圧測定回路 を有することが好ましい。さらに血液検査装置は、電池電圧測定回路が測定した電 池電圧と、予め定められた電圧値とを比較する比較部を有することが好ましい。
[0224] 検査(穿刺と測定)のために必要な電力量が電池に残っている場合であっても、レ 一ザ穿刺のためにレーザ発射装置に充電を行うと、測定のための電気回路部を駆動 するための電圧よりも、電池電圧が低下してしまうことがある。したがって、測定に必 要な電池残量があるにもかかわらず、測定が実施できない場合が発生しうる。そこで 、電池電圧測定回路で、電池が充分な電圧を出力しているかどうかを確認する。
[0225] 前述の通り、比較部には予め定められた電圧値が記憶されている。予め定められた 電圧値の第 1は、測定のための電気回路部を駆動するための必要最低電圧よりもあ る程度高い電圧値であることが好ましい。この電圧値を、第 1電圧閾値という。レーザ 発射装置への充電により電池の電圧が下がっても、電池の電圧が必要最低電圧を 下回らないように、第 1電圧閾値を設定する。充電により電池の電圧がどの程度下が るかは、電池の性質によって異なるので、電池の性質に応じて適宜第 1電圧閾値を
HX/L る。
[0226] レーザ発射装置に充電を行う前に電池電圧測定回路が測定した電池電圧が、第 1 電圧閾値よりも低いと、比較部で判断された場合には、通常の電流よりも低い電流で 、レーザ発射装置に充電を行うことが好ましい。低電流で充電を行うと、電池電圧が 低下しにくくなるためである。
[0227] 図 62に、充電量を変化させたときの、電池の電圧 (Y軸)と電池残量 (X軸)との関係 が示される。曲線 410は充電電流が 0 (負荷無)のとき;曲線 420は充電電流力 のと き;曲線 430は充電電流が Γ ( >1)のときの、電池の電圧(Y軸)と電池残量 (X軸)と の関係を示す。曲線 410に対して、曲線 420および曲線 430とも電池電圧が下がつ ていることがわかる。これは、電池内部の抵抗(421および 431)による。
測定のための電気回路を駆動するために必要な電圧レベルを 440とすると、充電 電流力 の場合(曲線 420)は、電池の残量力 2になるまで、電池は電気回路を駆動 できる。一方、充電電流が Γ ( >1)の場合(曲線 430)は、電池の残量が XIになるま でしか、電池は電気回路を駆動できなレ、。このように、充電電流を下げると、電池電 圧の低下が抑制される。電池電圧の低下が大きいと、 450で示されるように、使用で きなレ、電池エネルギーが増えるため好ましくなレ、。 [0228] 比較部に予め定められた電圧値の第 2は、第 1電圧閾値以上で、本来は十分に余 裕のある電圧値である。この電圧値を、第 2電圧閾値という。例えば、第 1電圧閾値 + 0. 5〜: IV程度である。
[0229] 比較部が、レーザ発射装置に充電を行う前に電池電圧測定回路が測定した電池 電圧が、第 2電圧閾値を上回ると判断した場合には、レーザ発射装置により高い充 電電流で充電を行うことが好ましい。
[0230] 本発明の血液検査装置は、血液検査の検查結果を表示される表示部(図 1参照) を有する。前述の電池残量警告の表示や使用不可表示は、表示部に表示されること が好ましい。
[0231] 電源制御部の第 1の例
図 50には、血液検査装置の第一の例の電源制御部 200— 1が示される。 図 50において、家庭用 AC電源 (外部電源の例として用いた)に接続されるコンセ ント 201は、 ACアダプタ 202に接続されている。 ACアダプタ 202の出力は、電源制 御回路 203の一方の入力にコネクタを用いて挿抜自在に接続できる。
電池 210は、電池残量および電池電圧測定回路 212に接続される。回路 212の第 一の出力は電源制御回路 203に接続され、回路 212の第二の出力は比較部 211に 接続されている。
緊急用電源の接続端子 204は、電源制御回路 203に接続されている。
[0232] 電源制御回路 203は、 ACアダプタ 202と接続されているときには、 ACアダプタ 20
2電源を優先して使用し、電池 210を使用しないように制御する。 ACアダプタ 202か ら出力される電圧を検知して、この電圧が出力されているときは、電池 35からの供給 を強制的に停止、または電池 210に充電する。
[0233] 電源制御回路 203の第一の出力は電気回路部 36aに接続される。電源制御回路 2
03の第二の出力は昇圧回路 205の入力に接続され、昇圧回路 205の出力はレーザ 発射装置 33に接続されている。
[0234] 比較部 211の第一の出力は電源制御回路 203に接続されている。比較部 211の 第二の出力は昇圧制御部 208に接続されて、昇圧制御部 208の出力は、昇圧回路
205に接続されてレ、る。比較部 211の第三の出力は表示制御部 209に接続されて、 表示制御部 209の出力は表示部 37に接続されている。
[0235] 電気回路部 36aの入力には穿刺ボタン 75が接続されており、穿刺ボタン 75の押下 信号は電気回路部 36aを介して昇圧制御部 208の入力に接続されている。昇圧制 御部 208の他方の入力には緊急ボタン 207が接続されている。電気回路部 36aの出 力は、表示部 37に接続されている。
[0236] 図 50に示された電源制御部 200— 1の動作の第 1の例を、図 51を参照して説明す る。ステップ 311で電源を起動する。ステップ 312に移行して、電池残量を測定する。 ステップ 313で、測定された電池残量を第 1残量閾値と比較し、ステップ 314で第 2残 量閾値と比較する。第 1残量閾値とは、所定の回数分の検查(レーザ穿刺と測定を含 む)に必要な電力量であり;第 2残量閾値とは、一回の検查(穿刺および測定などを 含む)に必要な電力量である。
[0237] ステップ 313で電池残量が第 1残量閾値以上であると判断された場合には、ステツ プ 318へ移行して、レーザ発射装置に充電を行う。
ステップ 313で電池残量が第 1残量閾値未満であると判断された場合であって、ス テツプ 314で第 2残量閾値以上であると判断された場合には、ステップ 315で使用者 に電池の交換を促すための電池残量警告表示を表示し、かつステップ 318へ移行し て、レーザ発射装置に充電を行う。
ステップ 313で電池残量が第 1残量閾値未満であると判断された場合であって、ス テツプ 314で第 2残量閾値未満であると判断された場合には、ステップ 316で使用者 に通常の検査ができないことを知らせるための使用不可表示を表示部に表示して、 かつステップ 317でレーザ発射装置への電力の供給を禁止する。
[0238] ステップ 318でレーザ発射装置に所定量の充電がされたら、ステップ 319でレーザ を発射して皮膚を穿刺する。ステップ 321で穿刺された皮膚から流出した血液の成 分を測定し、得られた測定結果を表示して、血液検査を完了させる。
[0239] 検查後、ステップ 322で電池の残量を測定する。ステップ 323で、ステップ 312で測 定した電池残量と、ステップ 322で測定した電池残量との差を求めて、今回電池消 費量を求める。さらにステップ 323で、今回電池消費量と測定のための電気回路部を 駆動するための最低必要電力量との和を求めて、第 2残量閾値を再設定する。ステ ップ 324で電源を停止する。
[0240] 図 50に示された電源制御部 200— 1の動作の第 2の例を、図 52を参照して説明す る。ステップ 311で電源を起動する。ステップ 331で電池の電圧を測定し、ステップ 3 32で電池の残量を測定する。
[0241] ステップ 333で、ステップ 331で測定された電圧と、前回の検査のステップ 347 (後 述)で算出された電圧降下値との差を求める。さらにステップ 333で、当該差と測定 のための電気回路部を駆動するための必要最低電圧とを比較する。
ステップ 313で、ステップ 332で測定された電池残量と第 1残量閾値とを比較し;ス テツプ 314で、ステップ 332で測定された電池残量と第 2残量閾値とを比較する。前 記の通り、第 1残量閾値とは、所定の回数分の検查(レーザ穿刺と測定を含む)に必 要な電力量であり;第 2残量閾値とは、一回の検查(穿刺および測定などを含む)に 必要な電力量である。
[0242] ステップ 333で前記差が必要最低電圧以上であると判断された場合であって、ステ ップ 313で電池残量が第 1残量閾値以上であると判断された場合には、ステップ 341 に移行して、通常電流によりレーザ発射装置に充電する。
ステップ 333で前記差が必要最低電圧以上であると判断された場合であって、ステ ップ 313で電池残量が第 1残量閾値未満であると判断され、ステップ 314で電池残 量が第 2残量閾値以上であると判断された場合には、ステップ 315で使用者に電池 の交換を促すための電池残量警告表示を表示し、かつステップ 341へ移行して、通 常電流によりレーザ発射装置に充電する。
ステップ 333で前記差が必要最低電圧以上であると判断された場合であって、ステ ップ 313で電池残量が第 1残量閾値未満であると判断され、かつステップ 314で電池 残量が第 2残量閾値未満であると判断された場合には、ステップ 316で使用者に通 常の検査ができないことを知らせるための使用不能表示を表示して、かつステップ 31 7でレーザ発射装置への電力の供給を禁止する。
[0243] 一方、ステップ 333で前記差が必要最低電圧未満であると判断された場合には、ス テツプ 335に移行して、レーザ発射装置に通常の充電ができないこと(例えば、充電 時間が長くなること)を使用者に知らせるための通常充電不能表示を表示し、ステツ プ 336で使用者に検査を実施する場合には緊急ボタンを押すように求める。
[0244] ステップ 336で緊急ボタンが押されなかった場合には、ステップ 317に移行してレ 一ザ発射装置への電力の供給を禁止する。
ステップ 336で緊急ボタンが押下された場合には、ステップ 337で通常よりも低電 流によりレーザ発射装置に充電する。充電のための電流値の制御は、昇圧制御部 2 08が行なう。ステップ 338でレーザ発射装置がレーザを発射して皮膚を穿刺し、ステ ップ 339で穿刺された皮膚から流出した血液の成分測定を行い、測定結果を表示す る。検查後にステップ 348で電源を停止する。
[0245] 一方、ステップ 341で通常電流によりレーザ発射装置に充電した場合は、ステップ 342で充電中の電池の電圧を測定する。ステップ 343で、充電されたレーザ発射装 置からレーザを発射して皮膚を穿刺する。ステップ 344で、穿刺された皮膚から流出 した血液の成分を測定して、測定結果を表示する。ステップ 345で、測定後の電池残 量を測定する。
[0246] ステップ 346で、ステップ 332で測定した電池残量と、ステップ 345で測定した電池 残量との差を求めて、今回電池消費量とする。さらにステップ 346で、今回電池消費 量と測定のための電気回路部を駆動するための必要最低電力量との和を求めて、第 2残量閾値を再設定する。
またステップ 347で、ステップ 331で測定した電圧と、ステップ 342で測定した電圧 との差を算出して、電圧降下値とする。電圧降下値は、次の検査におけるステップ 33 3 (前述)において用いられる。その後、ステップ 348で電源が停止する。
[0247] 図 50に示された電源制御部 200— 1の動作の第 3の例を、図 53を参照して説明す る。ステップ 311で電源を起動する。ステップ 312に移行して、電池残量を測定する。 ステップ 313で、測定された電池残量と第 1残量閾値とを比較し;ステップ 314で、測 定された電池残量と第 2残量閾値とを比較する。
前記の通り、第 1残量閾値とは、所定の回数分の検查(レーザ穿刺と測定を含む) に必要な電力量であり;第 2残量閾値とは、一回の検查(穿刺および測定などを含む )に必要な電力量である。
[0248] ステップ 313で電池残量が第 1残量閾値以上であると判断された場合には、ステツ プ 351へ移行して、前回の検査においてレーザ発射装置に充電をするための充電 電流値 (後述のステップ 358を参照)を、今回の検査における充電電流値として設定 する。
ステップ 313で電池残量が第 1残量閾値未満であると判断された場合であって、ス テツプ 314で電池残量が第 2残量閾値以上であると判断された場合には、ステップ 3 15で使用者に電池の交換を促すための電池残量警告表示を表示し、かつステップ 351へ移行して、前回の検查においてレーザ発射装置に充電をするための充電電 流値 (後述のステップ 358を参照)を、今回の検查における充電電流値として設定す る。
ステップ 313で電池残量が第 1残量閾値未満であると判断された場合であって、ス テツプ 314で第 2残量閾値未満であると判断された場合には、ステップ 316で使用者 に検査ができないことを知らせるための使用不可表示を表示して、かつステップ 317 でレーザ発射装置への電力の供給を禁止する。
[0249] ステップ 352では、ステップ 351で設定した充電電流値によって、レーザ発射装置 への充電を行う。電池の交換や電源種類が変わった場合には、所定の充電電流値 によって充電を行う。ステップ 353で、充電中の電池の電圧を測定する。ステップ 35 4で、充電中の電池の電圧と第 1電圧閾値とを比較する。ステップ 356で充電中の電 池の電圧と第 2電圧閾値とを比較する。
前述の通り、第 1電圧閾値は、測定のための電気回路部を駆動するための必要最 低電圧よりもある程度高い電圧値であり;第 2電圧閾値は、第 1電圧閾値以上で、本 来は十分に余裕のある電圧値である。この電圧値を、第 2電圧閾値という。例えば、 第 1電圧閾値 + 0. 5〜: IV程度である。
[0250] ステップ 354で、充電中の電池の電圧が第 1電圧閾値以上であると判断され、かつ ステップ 356で第 2電圧閾値以下であると判断された場合には、ステップ 358でその ときの充電電流値を次回の検査のための充電電流値として記憶する(次回の検査に おけるステップ 351で用いる)。
ステップ 354で、充電中の電池の電圧が第 1電圧閾値未満であると判断された場 合には、ステップ 355で、充電電流値を低下させる。一方ステップ 356で、充電中の 電池の電圧が第 2電圧閾値を超えていると判断された場合には、ステップ 357で、充 電電流を高める。
[0251] ステップ 359で、レーザ発射装置からレーザを発射して皮膚を穿刺する。ステップ 3 61で、穿刺された皮膚から流出した血液の成分を測定し、測定結果を表示する。ス テツプ 362で、検查終了後の電池残量を測定する。ステップ 363で、ステップ 312で 測定した残量と、ステップ 362で測定した残量との差を求めて、今回電池消費量とす る。さらにステップ 363で、今回電池消費量と測定のための電気回路部を駆動するた めの必要最低電力量との和を、第 2残量閾値として再設定する。ステップ 364で電源 を停止する。
[0252] 図 50に示された電源制御部 200— 1の動作の第 4の例を、図 54を参照して説明す る。図 54に示されたフローは、図 53に示されたフローと類似する力 レーザ発射装置 への充電のための充電電流値の設定方法が異なる。つまり図 54に示されたフローで は、ステップ 350で、電池の残量に基づいて充電電流値を設定する。具体的な設定 方法は前述のとおりであるが、基本的には、電池残量の割合が高いほど、高い電流 値で充電する。
その他のステップは、図 53に示されたフローと同様である。
[0253] 電源制御部の第 2の例を説明する。
図 55には、血液検査装置の第二の例の電源制御部 200— 2が示される。 図 55において、家庭用 AC電源 (外部電源の例として用いた)に接続されるコンセ ント 201は、 ACアダプタ 202に接続されている。 ACアダプタ 202の出力は、電源制 御回路 203の一方の入力にコネクタを用いて挿抜自在に接続できる。
電池 210aは、電池残量および電池電圧測定回路 212に接続される。回路 212の 第一の出力は電源制御回路 203に接続され、回路 212の第二の出力は比較部 211 に接続されている。電池 210bは、電気回路部 36aに接続されている。緊急用電源の 接続端子 204は、電源制御回路 203に接続されている。
[0254] 電源制御回路 203は、 ACアダプタ 202と接続されているときには、 ACアダプタ 20 2電源を優先して使用し、電池 210aを使用しないように制御する。 ACアダプタ 202 力、ら出力される電圧を検知して、この電圧が出力されているときは、電池 35からの供 給を強制的に停止、または電池 210aに充電する。
[0255] 電源制御回路 203の出力は昇圧回路 205に接続され、昇圧回路 205の出力はレ 一ザ発射装置 33に接続されている。
[0256] 比較部 211の第一の出力は電源制御回路 203に接続されている。比較部 211の 第二の出力は昇圧制御部 208に接続されて、昇圧制御部 208の出力は、昇圧回路 205に接続されてレ、る。比較部 211の第三の出力は表示制御部 209に接続されて、 表示制御部 209の出力は表示部 37に接続されている。
[0257] 電気回路部 36aの入力には穿刺ボタン 75が接続されており、穿刺ボタン 75の押下 信号は電気回路部 36aを介して昇圧制御部 208の入力に接続されている。昇圧制 御部 208の他方の入力には緊急ボタン 207が接続されている。電気回路部 36aの他 方の出力は、表示部 37に接続されている。
[0258] 図 55に示される電源制御部 200— 2の動作の第 1の例を、図 56を参照して説明す る。図 56に示されたフローは、図 51に示されたフローと類似する。ただし電源制御部 200— 2は、 2つの電池(210aおよび 210b)を有し、電池 210a (レーザ用電池)だけ 力 Sレーザ発射装置の充電に用いられる。よって、ステップ 312 'で、レーザ用電池の 電池残量を測定し;ステップ 313 'で、ステップ 312 'で測定された残量と第 1残量閾 値とを比較し;ステップ 314'で、ステップ 312 'で測定された残量と第 2残量閾値とを 比較する。
その他のステップは、図 51に示されたフローのステップと同様である。
[0259] 図 55に示される電源制御部 200— 2の動作の第 2の例を、図 57を参照して説明す る。図 57に示されるフローは、図 56に示されたフローと類似する力 レーザ発射装置 への充電のための充電電流値の設定方法が異なる。つまり図 57に示されたフローで は、ステップ 350で、充電電流値の設定を電池の残量に基づいて行う。具体的な設 定方法は前述のとおりであるが、基本的には、電池残量の割合が高いほど、高い電 流値で充電する。
その他のステップは、図 56に示されたフローと同様である。
[0260] 電源制御部の第 3の例を説明する。
図 58には、血液検査装置の第三の例の電源制御部 200— 3が示される。 図 58において、家庭用 AC電源 (外部電源の例として用いた)に接続されるコンセ ント 201は、 ACアダプタ 202に接続されている。 ACアダプタ 202の出力は、電源制 御回路 203の一方の入力にコネクタを用いて挿抜自在に接続できる。
電池 210aは、電池残量および電池電圧測定回路 212aに接続される。回路 212a の第一の出力は電源制御回路 203に接続され、回路 212aの第二の出力は比較部 2 11に接続されている。電池 210bは、電池残量および電池電圧測定回路 212bに接 続される。回路 212bの第一の出力は電源制御回路 203に接続され、回路 212bの 第二の出力は比較部 211に接続されている。緊急用電源の接続端子 204は、電源 制御回路 203に接続されている。
[0261] 電池 212aと電池 212bはレ、ずれも、電源制御部 203に接続されているので、レー ザ発射装置 33の充電および電気回路部 36aの駆動に用いられる。通常は、電池 21 2aがレーザ発射装置を充電して、電池 212bが電気回路部 36aを駆動する。ただし、 電池 212aの残量が不足してレーザ発射装置を充電できない場合であって、電池 21 2bに充分な残量がある場合には、緊急手段として電池 212bがレーザ発射装置を充 電する。
[0262] 電源制御回路 203は、 ACアダプタ 202と接続されているときには、 ACアダプタ 20 2電源を優先して使用し、電池 210aおよび電池 210bを使用しないように制御する。 ACアダプタ 202から出力される電圧を検知して、この電圧が出力されているときは、 電池 210aおよび電池 210bからの供給を強制的に停止、または電池 210aおよび電 池 210bに充電する。
[0263] 電源制御回路 203の第一の出力は電気回路部 36aに接続される。電源制御回路 2 03の第二の出力は昇圧回路 205の入力に接続され、昇圧回路 205の出力はレーザ 発射装置 33に接続されている。
[0264] 比較部 211の第一の出力は電源制御回路 203に接続されている。比較部 211の 第二の出力は昇圧制御部 208に接続されて、昇圧制御部 208の出力は、昇圧回路 205に接続されてレ、る。比較部 211の第三の出力は表示制御部 209に接続されて、 表示制御部 209の出力は表示部 37に接続されている。
[0265] 電気回路部 36aの入力には穿刺ボタン 75が接続されており、穿刺ボタン 75の押下 信号は電気回路部 36aを介して昇圧制御部 208の入力に接続されている。昇圧制 御部 208の他方の入力には緊急ボタン 207が接続されている。電気回路部 36aの出 力は、表示部 37に接続されている。
[0266] 図 58に示された源制御部 200— 3の動作の第 1の例を、図 59を参照して説明する 図 59に示されたフローは、図 56に示されたフローと類似する。ただし、電源制御部 200— 3は、 2つの電池(210aおよび 210b)を有し、いずれの電池も電源制御回路 2 03に接続されている。基本的には、電池 210a (レーザ用電池)がレーザ発射装置の 充電に用いられ、電池 210b (システム用電池)が電気回路部 36aを駆動するために 用いられる。し力 ながら、電池 210aの残量が不足した場合などの緊急時には、電 池 210bをレーザ発射装置の充電に用いる場合がある。
[0267] 図 56に示されたフローと同様に、ステップ 314'でレーザ用電池の残量と第 2残量 閾値とが比較される力 レーザ用電池の残量が第 2残量閾値未満であると判断され た場合には、ステップ 371で、使用者にレーザ用電池が使用できないことを知らせる ための表示をする。
[0268] ステップ 372でシステム用電池の残量を測定する。ステップ 373で、ステップ 372で 測定された残量と第 3残量閾値とを比較する。第 3残量閾値とは、レーザを発射する ために必要とされるレーザ発射装置へ充電するべき電力量と、システム最低電力量 との和とすればよい。
[0269] ステップ 373で、システム用電池の残量が、第 3残量閾値未満であると判断された 場合には、ステップ 316で、使用者に検査が行なえないことを伝えるための使用不能 表示を表示する。さらに、ステップ 317でレーザ発射装置への電力の供給を禁止す る。
一方、ステップ 373で、システム用電池の残量力 第 3残量閾値以上であると判断さ れた場合には、ステップ 374で、使用者にレーザ発射装置に通常の充電ができない (例えば、通常よりも長い充電時間を要する)ことを知らせるための通常充電不能表 示を表示し、それでも検查を実施したい場合には、緊急ボタンを押下するように求め る。 [0270] ステップ 375で、緊急ボタンが押下されなかった場合には、ステップ 317に移行して レーザ発射装置への電力の供給を禁止する。
一方、ステップ 375で、緊急ボタンが押下された場合には、ステップ 376でシステム 用電池によるレーザ発射装置への充電を許可し、ステップ 377でレーザ発射装置の 充電を行なう。ステップ 377での充電は、システム用電池の電圧降下を避けるため、 通常より低電流で行なうことが好ましい。充電のための電流値の制御は、昇圧制御部 208力行なう。
[0271] ステップ 378で、レーザ発射装置からレーザを発射して皮膚を穿刺する。ステップ 3 79で、穿刺された皮膚から流出した血液の成分を測定し、測定結果を表示する。ス テツプ 381では、使用者にシステム用電池を交換することを促すためのシステム用電 池交換警告表示を表示する。ステップ 382で電源を停止する。
[0272] 図 58に示された電源制御部 200— 3の動作の第 2の例を、図 60を参照して説明す る。図 60に示されたフローは、図 59に示されたフローと類似する力 レーザ発射装置 への充電のための充電電流値の設定方法が異なる。つまり図 60に示されたフローで は、ステップ 350で、電池の残量に基づいて充電電流値を設定する。具体的な設定 方法は前述のとおりであるが、基本的には、電池残量の割合が高いほど、高い電流 値で充電する。
その他のステップは、図 59に示されたフローと同様である。
産業上の利用可能性
[0273] 本発明の血液検査装置は、皮膚を穿刺する手段としてレーザを用いているので、 穿刺針の交換が不要であり、血液センサの交換も容易である。さらに、レーザ発射装 置という電力消費の多い装置を用いているにもかかわらず、電源の管理が適切にな されているので、電力不足により検査が不可能になりにくい。よって、医療分野にお ける血液検査装置に適用することはもちろん、特に糖尿病患者などが使用する携帯 用または家庭用の医療器具などに適用することができる。
[0274] 本出願は、 2006年 3月 22日出願の出願番号 JP2006— 078416,および JP2006 — 078424に基づく優先権を主張する。当該出願明細書および図面に記載された 内容は、すべて本願に援用される。

Claims

請求の範囲
[1] 本体と、前記本体に装着されて血液の分析を行なう血液センサと、前記本体内に 設けられるとともに前記血液センサを介して患者の皮膚を穿刺する穿刺手段と、前記 血液センサに接続された電気回路部とを備え、
前記穿刺手段はレーザ発射装置を含み、
前記電気回路部を駆動する電源と、前記レーザ発射装置を駆動する電源とを含む 電源部の電源供給を制御する電源制御回路を有する血液検査装置。
[2] 前記電源部は、 1又は 2以上の電池電源を含む、請求項 1に記載の血液検査装置
[3] 前記電池は、一次電池または二次電池である、請求項 2に記載の血液検査装置。
[4] 前記電源部は、電池電源および緊急用電源の接続端子を有する、請求項 1に記載 の血液検査装置。
[5] 前記電源制御回路は、前記レーザ発射装置を駆動する電源と、前記測定回路を含 む前記電気回路部の電源とを、独立に制御することができる、請求項 1に記載の血 液検査装置。
[6] 前記 1または 2以上の電池の少なくとも一つの電池残量を測定する電池残量測定 回路と、
前記測定された電池残量の値と、予め定められた電池残量の値とを比較する比較 部とをさらに具備し、
前記比較部の出力結果を基に、前記電源制御回路が電源供給を制御する、 請求項 2に記載の血液検査装置。
[7] 前記 1または 2以上の電池の少なくとも一つの電池電圧を測定する電池電圧測定 回路と、
前記測定された電池電圧の値と、予め定められた電池電圧の値とを比較する比較 部とをさらに具備し、
前記比較部の出力結果を基に、前記電源制御回路が電源供給を制御する、 請求項 2に記載の血液検査装置。
[8] 前記電源部は 2以上の電池電源を含み、 前記 2以上の電池のそれぞれの電池残量または電池電圧を測定する、電池残量 測定回路または電池電圧測定回路をさらに具備する、
請求項 2に記載の血液検査装置。
前記電池残量測定回路または電池電圧測定回路のそれぞれで測定された電池残 量または電池電圧の各測定値と、予め定められた電池残量または電池電圧の値とを 比較する比較部をさらに具備し、
前記比較部の出力結果を基に、前記電源制御回路が電源供給を制御する、 請求項 8に記載の血液検査装置。
血液検査の検查結果を表示する表示部をさらに具備し、
前記比較部において、前記測定された電池残量の値が、予め定められた電池残量 の値以下であると判断された場合には、その内容を前記表示部に表示するとともに、 前記電源制御回路が、前記レーザ発射装置への電源の供給を停止する、 請求項 6に記載の血液検査装置。
血液検査の検査結果を表示する表示部をさらに具備し、
前記比較部において、前記測定された電池電圧の値が、予め定められた電池電圧 の値以下であると判断された場合には、その内容を前記表示部に表示するとともに、 前記電源制御回路が、前記レーザ発射装置への電源の供給を停止する、 請求項 7に記載の血液検査装置。
前記比較部において、前記測定された電池電圧の値が、予め定められた電池電圧 の値以下であると判断された場合であっても、レーザ発射装置への電源の供給を行 なうための入力手段をさらに具備する、請求項 11に記載の血液検査装置。
前記血液センサを保持するホルダをさらに具備し、
前記血液センサは前記ホルダと一体化して血液センサユニットを形成し、前記血液 センサユニットは前記本体に着脱可能である、
請求項 1に記載の血液検査装置。
前記血液センサユニットは皮膚検知センサをさらに有し、
前記皮膚検知センサが皮膚を検知しない限り、前記レーザ発射装置からレーザが 発射されなレ、、請求項 13に記載の血液検査装置。 [15] 前記本体の内部に負圧手段を具備し、
前記負圧手段は、前記血液センサの近傍に負圧を加える、請求項 1に記載の血液 検査装置。
[16] 前記負圧手段を制御する負圧制御回路をさらに具備し、
前記電源制御回路は、前記負圧制御回路へ供給する電源を制御する、 請求項 15に記載の血液検査装置。
[17] 前記電源部は本体に内蔵された電池電源と、外部電源とを含み、
前記電源制御回路は、前記電池電源と前記外部電源とを切替制御して併用使用 を可能とし、かつ前記外部電源が接続されている場合には前記外部電源を優先して 使用する、
請求項 1に記載の血液検査装置。
[18] 前記電源制御回路は、前記外部電源が接続されている場合には、前記電池からの 出力を禁止する、請求項 17に記載の血液検査装置。
[19] 前記電源制御回路は、前記外部電源が接続されている場合には、前記電池からの 出力を禁止し、かつ前記電池への充電を行なう、請求項 17に記載の血液検査装置
[20] 請求項 6に記載の血液検査装置を制御する方法であって、
前記本体の電源を起動した後の前記電池の残量を測定する動作前電池残量測定 ステップと、
前記動作前電池残量測定ステップの後であって、前記レーザ発射装置からレーザ が発射された後の前記電池の残量を測定する動作後電池残量測定ステップと、 前記動作前電池残量測定ステップで測定された電池残量と、前記動作後電池残 量測定ステップで測定された電池残量の差から、前記電池消費量を測定するステツ プと、
を含む制御方法。
[21] 請求項 10に記載の血液検査装置を制御する方法であって、
前記電池の残量を測定する電池残量測定ステップと、
前記測定された電池残量と、予め定められた電池残量である残量閾値とを比較す るステップと、
前記測定された電池残量が、前記残量閾値以下の場合には、前記表示部に前記 電池の交換を促す表示を行なう表示ステップとを含む制御方法。
[22] 請求項 12に記載の血液検査装置を制御する方法であって、
前記電池の電圧を測定する電池電圧測定ステップ、
前記測定された電池電圧と、予め定められた電池電圧である電圧閾値とを比較す るステップ、および
前記測定された電池電圧が、前記電圧閾値以下の場合には、前記表示部に正常 の充電が不能であることを表示し、穿刺が必要な場合には前記入力手段に入力する ことを求める表示をする表示ステップ、ならびに
前記表示ステップの後の所定時間内に、前記入力手段に入力がされた場合には、 レーザ発射装置に、前記電池の電圧が前記電圧閾値を超えている場合の充電に比 ベて、低電流で充電する充電ステップ、または
前記第 2表示ステップの後の所定時間内に、前記入力手段に入力がされない場合 は、前記レーザ発射装置への電源供給を停止する停止ステップを含む、制御方法。
[23] 請求項 6に記載の血液検査装置を制御する方法であって、
前記本体の電源を起動した後の前記電池の残量を測定する動作前電池残量測定 ステップと、
前記動作前電池残量測定ステップで測定された電池残量に応じて、レーザ発射装 置への充電電流値を設定する充電電流設定ステップを含む、制御方法。
PCT/JP2007/055918 2006-03-22 2007-03-22 血液検査装置 WO2007108517A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800100027A CN101404933B (zh) 2006-03-22 2007-03-22 血液检查装置
US12/293,624 US8204568B2 (en) 2006-03-22 2007-03-22 Blood inspection device
CA002646721A CA2646721A1 (en) 2006-03-22 2007-03-22 Blood inspection device
JP2008506340A JP5017256B2 (ja) 2006-03-22 2007-03-22 血液検査装置
EP07739361.9A EP1997434B1 (en) 2006-03-22 2007-03-22 Blood inspection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-078424 2006-03-22
JP2006-078416 2006-03-22
JP2006078424 2006-03-22
JP2006078416 2006-03-22

Publications (1)

Publication Number Publication Date
WO2007108517A1 true WO2007108517A1 (ja) 2007-09-27

Family

ID=38522543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055918 WO2007108517A1 (ja) 2006-03-22 2007-03-22 血液検査装置

Country Status (7)

Country Link
US (1) US8204568B2 (ja)
EP (1) EP1997434B1 (ja)
JP (1) JP5017256B2 (ja)
KR (1) KR101012232B1 (ja)
CN (1) CN101404933B (ja)
CA (1) CA2646721A1 (ja)
WO (1) WO2007108517A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096552A1 (ja) * 2007-02-09 2008-08-14 Panasonic Corporation 血液検査装置
WO2009047918A1 (ja) * 2007-10-11 2009-04-16 Panasonic Corporation 高電圧発生回路、穿刺装置及び血液検査装置
JP2010104490A (ja) * 2008-10-29 2010-05-13 Panasonic Corp 穿刺装置およびその制御方法
US20110098600A1 (en) * 2007-08-07 2011-04-28 Panasonic Corporation Piercing device, blood testing device, and piercing method
JP4820906B2 (ja) * 2007-12-10 2011-11-24 アークレイ株式会社 医療機器
JP2013192846A (ja) * 2012-03-22 2013-09-30 Terumo Corp 成分測定装置及び医療機器
US9181195B2 (en) 2010-05-27 2015-11-10 Laboratorios Del Dr. Esteve, S.A. Sigma receptor inhibitors
JP2016530050A (ja) * 2013-09-11 2016-09-29 デバイオテック・ソシエテ・アノニム 針挿入デバイス
US9757358B2 (en) 2010-02-04 2017-09-12 Laboratorios Del Dr. Esteve, S.A. Sigma ligands for potentiating the analgesic effect of opioids and opiates in post-operative pain and attenuating the dependency thereof
US9782483B2 (en) 2010-05-21 2017-10-10 Laboratories Del Dr. Esteve, S.A. Sigma ligands for the prevention and/or treatment of emesis induced by chemotherapy or radiotherapy
US9789115B2 (en) 2010-08-03 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in opioid-induced hyperalgesia
US9789117B2 (en) 2011-05-18 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in diabetes type-2 associated pain
US9844516B2 (en) 2010-02-04 2017-12-19 Laboratorios De Dr. Esteve Sigma ligands for use in the prevention and/or treatment of post-operative pain
US9914705B2 (en) 2008-04-25 2018-03-13 Laboratorios Del Dr. Esteve, S.A. 1-aryl-3-aminoalkoxy pyrazoles as sigma ligands enhancing analgesic effect of opioids and attenuating the dependency thereof
US9931346B2 (en) 2013-12-17 2018-04-03 Laboratorios Del Dr. Esteve S.A. Serotonin-norepinephrine reuptake inhibitors (SNRIs) and Sigma receptor ligands combinations
US10231653B2 (en) 2010-09-29 2019-03-19 Dexcom, Inc. Advanced continuous analyte monitoring system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981222B1 (ko) * 2006-01-31 2010-09-10 파나소닉 주식회사 혈액 센서와 그것을 구비하는 혈액 검사 장치
KR101058728B1 (ko) * 2006-03-22 2011-08-22 파나소닉 주식회사 혈액 검사 장치 및 그 제어 방법
WO2009031312A1 (ja) * 2007-09-04 2009-03-12 Panasonic Corporation 血液検査装置
WO2010090015A1 (ja) * 2009-02-04 2010-08-12 パナソニック株式会社 測定装置及び穿刺装置
JP5577506B2 (ja) 2010-09-14 2014-08-27 ソーラテック コーポレイション 遠心式ポンプ装置
WO2012132850A1 (ja) 2011-03-28 2012-10-04 Ntn株式会社 回転駆動装置およびそれを用いた遠心式ポンプ装置
FR2979763B1 (fr) * 2011-09-07 2015-04-10 Electricite De France Procede et dispositif de recharge optimisee de batterie electrique
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
USD743024S1 (en) * 2013-09-08 2015-11-10 Theranos, Inc. Venous blood collection device
USD745662S1 (en) * 2013-09-08 2015-12-15 Theranos, Inc. Blood collection device
USD746976S1 (en) * 2013-09-08 2016-01-05 Theranos, Inc. Blood collection device
USD744089S1 (en) 2013-09-08 2015-11-24 Theranos, Inc. Venous blood collection device
USD745663S1 (en) * 2013-09-08 2015-12-15 Theranos, Inc. Blood collection device
US20160058930A1 (en) * 2014-08-26 2016-03-03 Thoratec Corporation Blood pump and method of suction detection
EP3256183A4 (en) 2015-02-11 2018-09-19 Tc1 Llc Heart beat identification and pump speed synchronization
EP3256185B1 (en) 2015-02-12 2019-10-30 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
EP3256184B1 (en) 2015-02-13 2020-04-08 Tc1 Llc Impeller suspension mechanism for heart pump
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
KR20170082269A (ko) * 2016-01-06 2017-07-14 삼성전자주식회사 검사장치 및 그 제어방법
CN109998565B (zh) * 2017-12-30 2021-08-17 巨爱宁 高效节能血样采集存储试管
CN114583802B (zh) * 2022-04-11 2022-11-15 成都沃达惠康科技股份有限公司 一种智能采血仪的控制方法、控制单元及采血仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501992A (ja) * 1992-10-28 1998-02-24 ベニセクト・インコーポレイテッド レーザ穿孔装置
US5947957A (en) * 1994-12-23 1999-09-07 Jmar Technology Co. Portable laser for blood sampling
JPH11347018A (ja) * 1998-04-09 1999-12-21 Matsushita Electric Ind Co Ltd 体液検査装置
US20020173732A1 (en) 2001-05-18 2002-11-21 Hakky Said I. Non-invasive focused energy blood withdrawal and analysis system
JP2004533866A (ja) * 2000-11-16 2004-11-11 イノテック ユーエスエイ インコーポレイテッド レーザ皮膚穿孔装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251100B1 (en) 1993-09-24 2001-06-26 Transmedica International, Inc. Laser assisted topical anesthetic permeation
US20020169394A1 (en) * 1993-11-15 2002-11-14 Eppstein Jonathan A. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
US5869970A (en) * 1995-10-31 1999-02-09 Cardiac Pacemakers, Inc. Power management system for an implantable device
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
JP4090373B2 (ja) * 2003-03-19 2008-05-28 日立マクセル株式会社 小型電気機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501992A (ja) * 1992-10-28 1998-02-24 ベニセクト・インコーポレイテッド レーザ穿孔装置
US5947957A (en) * 1994-12-23 1999-09-07 Jmar Technology Co. Portable laser for blood sampling
JPH11347018A (ja) * 1998-04-09 1999-12-21 Matsushita Electric Ind Co Ltd 体液検査装置
JP2004533866A (ja) * 2000-11-16 2004-11-11 イノテック ユーエスエイ インコーポレイテッド レーザ皮膚穿孔装置
US20020173732A1 (en) 2001-05-18 2002-11-21 Hakky Said I. Non-invasive focused energy blood withdrawal and analysis system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1997434A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096552A1 (ja) * 2007-02-09 2008-08-14 Panasonic Corporation 血液検査装置
US20110098600A1 (en) * 2007-08-07 2011-04-28 Panasonic Corporation Piercing device, blood testing device, and piercing method
WO2009047918A1 (ja) * 2007-10-11 2009-04-16 Panasonic Corporation 高電圧発生回路、穿刺装置及び血液検査装置
EP2213232A3 (en) * 2007-10-11 2010-09-29 Panasonic Corporation High voltage generation circuit, puncture device, and blood test device
US8395363B2 (en) 2007-10-11 2013-03-12 Panasonic Corporation High voltage generation circuit, puncture device, and blood test device
JP5205389B2 (ja) * 2007-10-11 2013-06-05 パナソニック株式会社 高電圧発生回路、穿刺装置及び血液検査装置
JP4820906B2 (ja) * 2007-12-10 2011-11-24 アークレイ株式会社 医療機器
US9914705B2 (en) 2008-04-25 2018-03-13 Laboratorios Del Dr. Esteve, S.A. 1-aryl-3-aminoalkoxy pyrazoles as sigma ligands enhancing analgesic effect of opioids and attenuating the dependency thereof
JP2010104490A (ja) * 2008-10-29 2010-05-13 Panasonic Corp 穿刺装置およびその制御方法
US9844516B2 (en) 2010-02-04 2017-12-19 Laboratorios De Dr. Esteve Sigma ligands for use in the prevention and/or treatment of post-operative pain
US9757358B2 (en) 2010-02-04 2017-09-12 Laboratorios Del Dr. Esteve, S.A. Sigma ligands for potentiating the analgesic effect of opioids and opiates in post-operative pain and attenuating the dependency thereof
US9782483B2 (en) 2010-05-21 2017-10-10 Laboratories Del Dr. Esteve, S.A. Sigma ligands for the prevention and/or treatment of emesis induced by chemotherapy or radiotherapy
US9181195B2 (en) 2010-05-27 2015-11-10 Laboratorios Del Dr. Esteve, S.A. Sigma receptor inhibitors
US9789115B2 (en) 2010-08-03 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in opioid-induced hyperalgesia
US10231653B2 (en) 2010-09-29 2019-03-19 Dexcom, Inc. Advanced continuous analyte monitoring system
US10687740B2 (en) 2010-09-29 2020-06-23 Dexcom, Inc. Advanced continuous analyte monitoring system
US11179069B2 (en) 2010-09-29 2021-11-23 Dexcom, Inc. Advanced continuous analyte monitoring system
US9789117B2 (en) 2011-05-18 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in diabetes type-2 associated pain
JP2013192846A (ja) * 2012-03-22 2013-09-30 Terumo Corp 成分測定装置及び医療機器
JP2016530050A (ja) * 2013-09-11 2016-09-29 デバイオテック・ソシエテ・アノニム 針挿入デバイス
US9931346B2 (en) 2013-12-17 2018-04-03 Laboratorios Del Dr. Esteve S.A. Serotonin-norepinephrine reuptake inhibitors (SNRIs) and Sigma receptor ligands combinations

Also Published As

Publication number Publication date
KR101012232B1 (ko) 2011-02-08
JP5017256B2 (ja) 2012-09-05
CN101404933A (zh) 2009-04-08
JPWO2007108517A1 (ja) 2009-08-06
EP1997434A4 (en) 2012-03-14
EP1997434B1 (en) 2013-05-15
US20100168534A1 (en) 2010-07-01
KR20080095266A (ko) 2008-10-28
CA2646721A1 (en) 2007-09-27
EP1997434A1 (en) 2008-12-03
CN101404933B (zh) 2010-12-15
US8204568B2 (en) 2012-06-19

Similar Documents

Publication Publication Date Title
JP5017256B2 (ja) 血液検査装置
JP4996596B2 (ja) 血液検査装置
JP5027110B2 (ja) レーザ穿孔装置
KR101058728B1 (ko) 혈액 검사 장치 및 그 제어 방법
JP5504248B2 (ja) 血液検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008506340

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087021075

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2646721

Country of ref document: CA

Ref document number: 12293624

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780010002.7

Country of ref document: CN

Ref document number: 2007739361

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE