WO2007108473A1 - 無線通信システム、無線送信装置、および再送方法 - Google Patents

無線通信システム、無線送信装置、および再送方法 Download PDF

Info

Publication number
WO2007108473A1
WO2007108473A1 PCT/JP2007/055685 JP2007055685W WO2007108473A1 WO 2007108473 A1 WO2007108473 A1 WO 2007108473A1 JP 2007055685 W JP2007055685 W JP 2007055685W WO 2007108473 A1 WO2007108473 A1 WO 2007108473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource allocation
lrb
drb
transmission
scheme
Prior art date
Application number
PCT/JP2007/055685
Other languages
English (en)
French (fr)
Inventor
Masaru Fukuoka
Akihiko Nishio
Kenichi Miyoshi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2008506310A priority Critical patent/JP5061095B2/ja
Priority to EP07739128A priority patent/EP1990942A1/en
Priority to US12/293,516 priority patent/US8774107B2/en
Publication of WO2007108473A1 publication Critical patent/WO2007108473A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • Wireless communication system Wireless communication system, wireless transmission device, and retransmission method
  • the present invention relates to a radio communication system, a radio transmission apparatus, and a retransmission method.
  • OFDM Orthogonal Frequency Division Multiplex
  • LRB Localized Resource Block
  • DRB Distributed Resource Block
  • the base station performs frequency scheduling that adaptively assigns subcarriers based on the reception quality of each frequency band at each mobile station, so the maximum multi-diversity effect is achieved. And can communicate efficiently. Frequency scheduling is usually performed for each resource block (RB) in which several subcarriers adjacent to the coherent bandwidth are grouped together. Therefore, almost no frequency diversity effect can be obtained.
  • RB resource block
  • Synchronous HARQ has been studied! /, (For example, see Non-Patent Document 2).
  • Synchronous HARQ notifies control information (transmission parameter) only at the first transmission.
  • This is a hybrid type packet retransmission control method (HARQ).
  • Synchronous HARQ notifies the control information only at the first transmission, so the control information overhead at the time of retransmission can be reduced.
  • Non-Patent Document 3 discusses a retransmission control method for switching a modulation scheme for each number of retransmissions in Synchronous HARQ.
  • Non-Patent Literature 1 Physical channel Structure and Procedure for EUTRA Downlink, ⁇ GPP RAN WGl # 42 meeting (2005.8) Rl- 050884
  • Non-Patent Document 2 "Downlink Synchronous Hybrid ARQ Scheme", 3GPP RAN WGl LTE Adhoc meeting (2006.01) Rl— 060103
  • Non-Patent Document 3 "Redundancy Version and Modulation Order for Synchronous HARQ", 3GPP RAN WGl LTE Adhoc meeting (2006.01) Rl— 060175
  • FIG. 1 is a diagram for explaining a problem that occurs when earning money.
  • the base station Based on the reception quality of each RB fed back from the mobile station, the base station performs frequency scheduling at the time of initial transmission, and allocates transmission data to frequency resources by the LRB method. At that time, the control information necessary for packet decoding is notified by SCCH (shared control channel).
  • SCCH shared control channel
  • the mobile station transmits a Nack signal to the base station.
  • the base station Upon receiving a Nack signal from the mobile station, the base station transmits a retransmission packet (second transmission). At this time, the control information is not retransmitted. Also, transmission is performed using the same RB as at the first transmission.
  • the mobile station combines and retransmits the retransmitted packet and the packet at the first reception. If there is a reception error even if this decoding is performed, the Nack signal is transmitted to the base station again.
  • the base station Upon receiving the Nack signal from the mobile station, the base station transmits a retransmission packet again (third transmission). Again, control information is not retransmitted, and transmission is performed using the same RB as used for the initial transmission.
  • the channel environment may fluctuate due to the movement of the mobile station or the change of the surrounding environment while repeating the retransmission. At this time, there is a difference between the reception quality of each RB fed back in advance and the reception quality of the second and third transmissions. Therefore, especially if the frequency allocation based on the previously reported reception quality is performed for the third packet transmitted, even if all packets are combined, a sufficient combining gain cannot be obtained.
  • An object of the present invention is to provide a wireless communication system, a wireless transmission device, and a retransmission method that can improve reception quality in retransmission control.
  • the wireless communication system of the present invention includes a selection unit that selects an LRB (Localized Resource Block) method or a DRB (Distributed Resource Block) method as a resource allocation method, and transmission data according to the selected resource allocation method.
  • the selection means may be mounted on a deviation of a radio transmission apparatus or a radio reception apparatus in the radio communication system.
  • reception quality can be improved in retransmission control.
  • FIG. 2 is a block diagram showing the main configuration of a radio transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of a data table inside an allocation resource table determination unit according to Embodiment 1.
  • FIG. 4 is a diagram for explaining the basic operation of the allocated resource table determination unit according to Embodiment 1.
  • FIG. 5 is a diagram for explaining a signal transmitted by the radio transmission apparatus according to the first embodiment.
  • FIG. 6 is a diagram for explaining LRB numbers and DRB numbers.
  • FIG. 7 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 1
  • FIG. 8 is a diagram for explaining reception processing and reception performance of the radio receiving apparatus according to Embodiment 1
  • FIG. 11 A diagram showing an example of correspondence between LRB numbers and DRB numbers
  • FIG. 12 is a diagram showing an example of a DRB method resource allocation method
  • FIG. 16 is a diagram for explaining a signal transmitted by the wireless transmission device according to the second embodiment.
  • FIG. 17 is a diagram showing another variation of the present invention.
  • FIG. 2 is a block diagram showing the main configuration of the radio transmitting apparatus according to Embodiment 1 of the present invention.
  • the radio transmission apparatus is used as a base station in a mobile communication system.
  • Radio transmission apparatus includes allocation resource table determination section 101, coding section sections 102-1, 102-2, retransmission control section 103, modulation sections 104-1, 104-2, and multiplexing section. 105, control information multiplexing section 106, IFFT section 107, CP insertion section 108, radio transmission section 109, and antenna 110, and each section performs the following operations.
  • the code unit 102-1 performs error correction coding such as turbo coding on transmission data. Output to the retransmission control section 103.
  • the code key unit 102-2 also performs error code key such as turbo code key on the control data and outputs the result to the modulation unit 104-2.
  • Retransmission control section 103 buffers the bit after being subjected to turbo coding, etc., in an internal memory, and based on the AckZNack signal to which the mobile station power is also fed back, modulates a new bucket 104-1. Or whether the retransmission packet stored in the internal memory is output to the modulation section 104-1. Also, the number of retransmissions is counted, and this is notified to the multiplexing unit 105.
  • Modulation section 104-1 performs predetermined modulation processing such as QPSK or 16QAM on the symbols output from retransmission control section 103 and multiplexed in the transmission subframe, and outputs the result to multiplexing section 105.
  • Modulation section 104-2 performs modulation such as QPSK or 16QAM on the code key data output from code key section 102-2, and outputs the result to control information multiplexing section 106.
  • Allocation resource table determination section 101 generates a retransmission allocation resource control signal indicating a resource allocation method by referring to an internal data table using the moving speed information fed back with the mobile station power. Is output to multiplexing section 105 and sign key section 102-2.
  • FIG. 3 shows an example of the data table. In this table, the correspondence between resource allocation schemes (LRB scheme and DRB scheme) and retransmission allocation resource control signals for each number of retransmissions is determined in advance. And, for example, when the resource allocation method power LRB, LRB, DRB, DRB is determined as the first, second, third, and fourth transmission times based on the moving speed (hatched part), the allocated resource table determination unit 101 outputs retransmission allocation resource control signal # 2.
  • Multiplexing section 105 assigns the modulated data output from modulating section 104-1 to a plurality of frequency resources, performs frequency multiplexing of transmission data, and outputs a multiplexed signal to control information multiplexing section 106.
  • multiplexing section 105 uses the CQI information fed back with the mobile station power, and allocates frequency resources according to the resource allocation scheme for each number of retransmissions indicated by the retransmission allocation resource control signal.
  • Control information multiplexing section 106 checks the subframe number, and in the case of the first subframe, multiplexes predetermined control information and outputs the multiplexed signal to IFFT section 107.
  • IFFT section 107 performs inverse fast Fourier transform (IFFT) processing on the multiplexed signal to obtain time.
  • IFFT inverse fast Fourier transform
  • CP insertion section 108 duplicates the rear part of the OFDM symbol output from IFFT section 107 as a CP, inserts it at the beginning, and outputs the obtained signal to radio transmission section 109.
  • Radio transmission section 109 performs predetermined radio transmission processing such as DZA conversion and power amplification on the signal after CP insertion, generates a radio signal, and transmits it via antenna 110.
  • FIG. 4 is a diagram for explaining the basic operation of the allocation resource table determination unit 101.
  • the allocation resource table determination unit 101 Based on the moving speed at which the mobile station force is also fed back, the speed of channel fluctuation can be predicted.
  • the graph in the figure shows the average channel quality calculated for each band when the LRB or DRB method is used. From this graph, the allocation resource table determination unit 101 identifies the number of transmissions in which the average channel quality of the DRB band is greater than the average channel quality of the LRB band. That is, the position of the boundary line when the frequency diversity effect exceeds the frequency scheduling effect is obtained.
  • Figure 4 shows the boundary line during medium speed movement. The number of transmissions later in time than this boundary line is the number of transmissions for which the resource allocation method should be switched. Therefore, allocation resource table determination section 101 notifies retransmission allocation resource control signal determined based on the table shown in FIG. 3 to multiplexing section 105 and code base section 102-2 as control information. .
  • FIG. 5 is a diagram for explaining a signal transmitted from the radio transmission apparatus according to the present embodiment by the above operation. Here, it is assumed that “2” is selected as the retransmission allocation resource control signal.
  • LRB is selected as the resource allocation format based on the CQI fed back from the mobile station, and the RB with the best reception quality is allocated to the transmission data according to the LRB format.
  • control information the retransmission allocation resource control signal, the LRB number, and the DRB number are multiplexed and transmitted on the control channel SCCH, along with MCS (Modulation and Coding Scheme), coding rate, and the like.
  • the LRB number and DRB number are numbers that identify four resource allocation methods (LRB # 1 to # 4) according to this resource allocation method, for example, in the case of the LRB method, as shown in FIG. More specifically, it is actually sent This indicates the position of the RB to which the communication data is allocated.
  • the multiplexing unit 105 uses the same resource allocation method (LRB) as the first transmission, and transmits the transmission data to the same RB. Assign.
  • the multiplexing unit 105 switches the resource allocation scheme between the first transmission and the second transmission, and uses the DRB scheme. To assign the transmission data to the RB.
  • the radio transmission apparatus uses the LRB scheme as a resource allocation scheme at the time of initial transmission in response to transmission data retransmission control, and in the middle of retransmission in a plurality of retransmissions. Switch the resource allocation method to DRB method and perform transmission. The switching timing is adaptively changed based on the moving speed of the mobile station.
  • FIG. 7 is a block diagram showing the main configuration of the radio reception apparatus according to the present embodiment.
  • the radio reception apparatus includes an antenna 151, a radio reception unit 152, a CP removal unit 153, an FFT unit 154, a channel compensation unit 155, a control information separation unit 156, a demodulation unit 157, and a decoding key.
  • a unit 158, a data extraction unit 159, a demodulation unit 160, a synthesis unit 161, a decoding unit 162, and a retransmission control unit 163 are provided, and each unit performs the following operations.
  • Radio reception section 152 performs predetermined radio reception processing such as down-conversion and AZD conversion on the signal received via antenna 151, and outputs the obtained baseband signal to CP removal section 153 .
  • CP removing section 153 removes the CP added to the received signal and outputs the signal after CP removal to FFT section 154.
  • FFT section 154 performs fast Fourier transform (FFT) processing on an OFDM symbol basis, converts the received signal into the frequency domain, and outputs this frequency domain signal to channel compensation section 155.
  • FFT fast Fourier transform
  • Channel compensation section 155 performs channel estimation based on the received pilot symbol of the frequency domain signal, compensates the received signal using the obtained channel estimation value, and controls the compensated signal.
  • the information is output to the information separator 156.
  • the channel estimation force is also measured separately by measuring the moving speed and CQI.
  • Control information demultiplexing section 156 demultiplexes the symbols on which the control information is multiplexed from the compensated signal, outputs the symbols on which the control information is mapped to demodulation section 157, and extracts the other symbols as data Output to part 159.
  • Demodulation section 157 performs QPSK and 16QA on the symbols to which control information is mapped.
  • Predetermined demodulation processing such as M is performed, and the demodulated signal is output to decoding section 158.
  • Decoding unit 158 performs decoding processing such as turbo decoding on the demodulated signal to obtain control data, and outputs the retransmission allocation resource control signal, the LRB number, and the DRB number to data extraction unit 159.
  • Data extraction section 159 also extracts data symbols from the output signal power of control information separation section 156 using retransmission allocation resource control signal, LRB number, DRB number, and number of retransmissions, and outputs the data symbols to demodulation section 160.
  • Demodulation section 160 performs predetermined demodulation processing such as QPSK and 16QAM on the extracted data symbols, and outputs the demodulated signal to combining section 161 and retransmission control section 163.
  • combining section 161 When notified from retransmission control section 163 that the input signal is a retransmission packet, combining section 161 combines the received data that has been buffered with the currently received data, The signal is output to the decoding unit 162.
  • Decoding unit 162 performs a decoding process such as turbo decoding on the signal output from combining unit 161 to obtain received data.
  • the decoded data is also output to retransmission control section 163.
  • the retransmission control unit 163 performs CRC check or the like on the decoded data, and determines whether this bucket is a reception error or normal reception. In the case of normal reception, the Ack signal is fed back to the base station. In the case of reception error, the Nack signal is fed back to the base station as a retransmission request. In addition, retransmission control section 163 delivers already received data to combining section 161. Further, the retransmission control unit 163 counts the number of retransmissions and transfers this to the data extraction unit 159.
  • FIG. 8 is a diagram for explaining reception processing and reception performance of the radio reception apparatus according to the present embodiment having the above-described configuration. Note that “2” is set as the retransmission allocation resource control signal. Assume that it is selected.
  • the control channel SCCH arranged at the head of the subframe is demodulated to obtain control data.
  • the retransmission allocation resource control signal, the LRB number, and the DRB number included in the control data are acquired and stored in the internal memory.
  • the data extraction unit 159 determines that the resource allocation method is LRB based on the internal table (see FIG. 3).
  • the RB to which the data is actually assigned is identified from the LRB number input separately, and the data symbol is extracted from this RB.
  • the demodulator 160 demodulates data such as QPSK and 16QAM, and calculates the likelihood for each bit.
  • the combining unit 161 does not perform combining because it is the first transmission.
  • the decoding unit 162 performs error correction decoding on the likelihood for each bit using turbo decoding or the like.
  • the retransmission control unit 163 performs a CRC check on the decoded data. Here, it is assumed that the packet is a reception error. Therefore, retransmission control section 163 feeds back the Nack signal to the base station as a retransmission request, and buffers the likelihood for each bit.
  • the data extraction unit 159 determines that the current resource allocation method is also LRB because the retransmission allocation resource control signal is "2", and uses the LRB number input separately. Based on this, the RB where the data symbol is multiplexed is identified, and the data symbol is extracted. Then, decoding and packet synthesis are performed in the same manner as the first transmission. Again, assume that the packet was a reception error. Therefore, retransmission control section 163 feeds back a Nack signal to the base station as a retransmission request, and buffers the likelihood for each bit.
  • the data extraction unit 159 determines that the current resource allocation method is DRB because the retransmission allocation resource control signal is “2”, and data is transmitted from the DRB number input separately. The RB where symbols are multiplexed is identified and data symbols are extracted. Then, decoding and packet synthesis are performed in the same manner as in the second transmission. Here, it is assumed that the packet is normally received. Therefore, retransmission control section 163 feeds back the Ack signal to the base station.
  • the difference between the reception quality reported by CQI and the actual reception quality in real time is increasing.
  • the LRB scheme is used as the resource allocation scheme
  • the third transmission DRB scheme in the middle of retransmission is used. Therefore, in the third transmission, the frequency Several diversity gains can be obtained, and reception quality does not deteriorate greatly.
  • the radio reception apparatus improves the reception performance by receiving the signal transmitted from the radio transmission apparatus according to the present embodiment and performing the above operation. It is out.
  • the radio transmission apparatus switches the LRB power to the DRB in the middle of retransmission according to a predetermined rule. Therefore, even when the propagation path environment fluctuates and the frequency allocation performed based on the first transmission becomes inappropriate at the time of retransmission, the diversity effect can be obtained by using the DRB method. Degradation of reception quality can be prevented.
  • this embodiment can be characterized by switching the resource allocation method to the LRB force DRB at the timing when the effect of frequency scheduling has declined.
  • the timing (specifically, the number of transmissions or the number of retransmissions) for switching the resource allocation method is adjusted according to the moving speed of the mobile station. Therefore, even when the channel state fluctuates variously, it is possible to follow this and prevent deterioration in reception performance.
  • the configuration using the table as shown in Fig. 3 when determining the switching timing of the resource allocation method has been described as an example, but the table as shown in Fig. 9 is used. It is good also as a structure which uses.
  • a modulation scheme for each transmission count and a resource allocation scheme for each transmission count are associated with each other.
  • a modulation scheme is added as a parameter to the table shown in FIG.
  • the modulation method can be changed synchronously simultaneously with the switching of the resource allocation method, the combined gain of the retransmission packet can be obtained more, and the frequency diversity effect is improved.
  • a table for determining the switching timing of the resource allocation method a table as shown in Fig. 10 may be used.
  • the code rate is further associated.
  • the “packet form notification signal” corresponding to each parameter is selected. The If control is performed based on this table, for example, in the same modulation scheme, the lower the code rate, the smaller the number of retransmissions, and the more the transition to the DRB scheme. Therefore, a more frequency diversity effect can be obtained. In other words, the lower the code rate, the more frequency diversity effects can be obtained, and the lower the code rate, the faster the switching to the DRB scheme and the better the reception characteristics.
  • the LRB number and the DRB number are both set to the SC CH and transmitted as control information as an example.
  • a configuration in which the wireless transmission device notifies only the LRB number to the wireless reception device may be configured by setting a one-to-one correspondence.
  • FIG. 11 is a diagram showing an example of correspondence between LRB numbers and DRB numbers. As a result, the wireless transmission device only needs to notify the LRB number and control information can be reduced, and the wireless reception device can recognize the notified LRB number power DRB number.
  • FIG. 12 is a diagram illustrating an example of a DRB resource allocation method.
  • the frequency resource allocation position in the DRB scheme is changed for each transmission count. For example, transmission data is assigned to different DRB numbers for the second transmission and the third transmission. As a result, more frequency diversity effects can be obtained.
  • FIG. 13 is a diagram showing another variation of the DRB-type resource allocation method.
  • resources in the frequency position in the range close to the LRB system are allocated.
  • the frequency resource distribution in the DRB scheme is increased. This allows a gradual transition from the LRB method to the DRB method.
  • a configuration using a common table between transmission and reception for switching resource allocation schemes has been described as an example.
  • a configuration may be adopted in which only the number of transmissions (or the number of retransmissions) is notified to the wireless reception device as control information.
  • the switching timing of the resource allocation method is set to the moving speed of the mobile station.
  • the configuration determined according to the degree has been described as an example, the switching timing of the resource allocation method may be a configuration in which the design stage power is fixed.
  • This switching timing is fed back from the mobile station CQI
  • the time interval is determined based on the availability of the time interval, that is, the delay time from the CQI reception timing.
  • the switching timing determined based on the moving speed of the mobile station may be corrected based on the delay time of CQI reception timing. If the delay time from the CQI reception timing is large, it can be said that there is a high possibility that the average reception quality fluctuates.
  • Figures 14 and 15 show that the average propagation path quality fluctuates due to the difference in CQI reception timing.
  • the switching timing is the time when the characteristic curve of the LRB method and the characteristic curve of the DRB method intersect (the crossing position of the average channel quality), that is, when the characteristics of the LRB method and DRB method are switched. And set. As a result, the optimum switching timing is obtained, so that it is possible to prevent deterioration in reception performance.
  • This control may be performed based on BLER (outer loop control) in the mobile station, that is, based on ACKZNACK information transmitted from the mobile station to the base station.
  • Embodiment 2 of the present invention a case will be described as an example where the radio transmitting apparatus according to the present embodiment is used as a base station in a mobile communication system.
  • the base station switches the resource allocation method to the DRB in the middle of the retransmission according to a predetermined table.
  • a configuration is also shown in which the timing for switching the resource allocation method is notified in real time and the packet synthesis gain is obtained even when the channel environment changes.
  • Embodiment 1 The basic configuration of the radio transmitting apparatus according to the present embodiment is shown in Embodiment 1. This is the same as the wireless transmission device (see FIG. 2), and the block diagram etc. are omitted. The difference is that the allocation resource table determination unit 101 outputs “number of retransmissions for retransmission” instead of “retransmission allocation resource control signal”. This reassignment retransmission number instructs switching of the resource assignment method when the number of transmissions corresponds to the reassignment retransmission number.
  • FIG. 16 is a diagram for explaining a signal transmitted from the radio transmission apparatus according to the present embodiment. Here, it is assumed that the number of reassignment retransmissions is set to “2”.
  • LRB is selected as the resource allocation format based on the CQI fed back from the mobile station, and the RB with the best reception quality is allocated to the transmission data according to the LRB format.
  • control information the MCS, coding rate, LRB number, and DRB number, as well as the number of reassignment retransmissions are multiplexed on the control channel SCCH and transmitted.
  • the reassignment retransmission count is “2”, so the multiplexing unit 105 uses the same resource allocation method (LRB) as the first transmission and uses the same bandwidth as the first transmission. Assign transmission data to (RB).
  • LLB resource allocation method
  • the multiplexing unit 105 switches the resource allocation method between the first transmission and the second transmission, and the frequency resource.
  • the transmission data is allocated to a different RB from the second transmission.
  • the used DRB number is notified to the base station via SCCH.
  • the radio transmission apparatus switches the resource allocation method to the LRB method power DRB method during retransmission. Therefore, when the frequency scheduling effect at the first transmission is reduced while reducing the control information, the reallocation of the retransmission packet can be increased and the reception performance can be improved by performing the reallocation.
  • an LRB may be selected again. Further, it is possible to select a color to be used for either LRB or DRB each time reassignment is performed. In such a case, as shown in FIG. 11, by associating the LRB number with the DRB number, the mobile station can recognize the DRB number to be used based on the past LRB number without reporting the DRB number. Can do.
  • radio communication system radio transmission apparatus, and retransmission method according to the present invention are the above
  • the present invention is not limited to each embodiment, and various modifications can be made.
  • the uplink communication method is applicable to any communication method other than OFDM, such as DFT-OFDM, SC-FDMA, etc., which uses the LRB and DRB resource allocation methods. It is.
  • the wireless transmission device determines the switching timing or rescheduling timing of the resource allocation method and notifies at the time of initial transmission.
  • the wireless transmission device may be configured to switch the resource allocation method or perform rescheduling after receiving the resource allocation method switching request or rescheduling request from the wireless receiving device (mobile station).
  • the mobile station may be configured to request the base station to perform switching or the like on the uplink only when the reception quality of the allocated band deteriorates and the LRB power needs to be switched to the DRB. .
  • the mobile station can take the initiative in switching the resource allocation method, etc., it is possible to easily follow this even under severe channel fluctuation conditions.
  • a CQI feedback signal from the mobile station may be used instead of adding a bit to the uplink control channel.
  • the CQI is sufficient if it contains at least the average received quality information of all DRB bands. For example, as shown in FIG. 17, the rule is that only the Nack signal is normally fed back, and when the reception quality of the mobile station deteriorates, the mobile station can feed back the Nack signal and CQI so that the mobile station Request rescheduling. Nack and CQI can be transmitted in the same coding block, so that the situation can be avoided if only CQI is wrong.
  • the present invention is not limited to this, and can also be applied to Asynchronous HARQ, that is, HARQ that transmits control information other than allocated resource information for each retransmission.
  • control channel with another name such as a power individual control channel for which control information is notified by SCCH may be used.
  • the amount of deviation from R, the amount of degradation of reception characteristics, and the amount of margin for the required reception quality may be used.
  • the LRB is a channel for performing frequency scheduling transmission, and may be referred to as a Localized Channel.
  • DRB is a channel for performing frequency diversity transmission, and is sometimes called a Distributed Channel.
  • the LRB is usually assigned in units of subbands or in units of a plurality of consecutive subcarriers.
  • the DRB is usually composed of a plurality of distributed subcarriers over a wide band of OFDM symbols or is defined by an FH (Frequency Hopping) pattern.
  • DRB is also sometimes called Intra-TTI frequency hopping.
  • the DRB may be distributed by frequency interleaving.
  • the radio transmission apparatus can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thereby a communication terminal apparatus and a base having the same effects as described above.
  • a station apparatus and a mobile communication system can be provided.
  • the power described with reference to an example in which the present invention is configured by nodeware can also be realized by software.
  • a function similar to that of the wireless transmission device according to the present invention is realized by describing the algorithm of the retransmission method according to the present invention in a programming language, storing the program in a memory, and causing the information processing means to execute the program. can do.
  • Each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all of them.
  • LSI LSI
  • IC system LSI
  • super L usually called SI
  • Unorare LSI etc.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. It is also possible to use a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI.
  • FPGA field programmable gate array
  • the radio transmission apparatus and retransmission method according to the present invention can be applied to applications such as a communication terminal apparatus and a base station apparatus in a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 再送制御において、受信品質を向上させることができる再送方法。この方法では、送信1回目は、移動局からフィードバックされたCQIを基に、リソース割当形式としてLRB(Localized Resource Block)方式が選択され、このLRB形式に則って受信品質の最も良い周波数リソースが送信データに割り当てられる。送信2回目は、送信1回目と同じリソース割当方式(LRB)を用い、送信データを同じ周波数リソースに割り当てる。送信3回目は、送信1回目、2回目とはリソース割当方式を切り替え、DRB(Distributed Resource Block)形式を用いて送信データの周波数リソースへの割り当てを行う。

Description

明 細 書
無線通信システム、無線送信装置、および再送方法
技術分野
[0001] 本発明は、無線通信システム、無線送信装置、および再送方法に関する。
背景技術
[0002] 近年のインターネットトラフィックの増大とともに、移動体通信における高速パケット 伝送技術への要求が高まっており、それを実現する伝送方式の 1つとして、 OFDM ( Orthogonal Frequency Division Multiplex)方式の検討が行われている。 OFDM方 式は、データ列を複数のサブキャリアを用いて並列に伝送し、 CP (Cyclic Prefix)を備 えることでマルチパス干渉による特性劣化を低減することができ、誤り訂正符号を適 用することによって周波数選択性フェージングへの耐性を備えている。
[0003] この OFDMを下り回線に用い、複数の移動局へのデータを複数のサブキャリアに 周波数多重する場合に、 LRB (Localized Resource Block)および DRB (Distributed Resource Block)のリソース割当方式を用いることが検討されている(例えば、非特許 文献 1参照)。
[0004] LRB方式は、基地局が各移動局での周波数帯域毎の受信品質に基づ!/、て適応 的にサブキャリアを割り当てる周波数スケジューリングを行うため、最大限のマルチュ 一ザダイバーシチ効果を得ることができ、効率良く通信を行うことができる。周波数ス ケジユーリングは、通常、コヒーレント帯域幅程度に隣接するサブキャリアをいくつか まとめてブロック化したリソースブロック(Resource Block :RB)毎に行われる。よって、 周波数ダイバーシチ効果はほとんど得られな 、。
[0005] これに対し、 DRB方式は、各移動局への送信データを全帯域のサブキャリアに分 散させて配置するため、高い周波数ダイバーシチ効果を得ることができる。また、 DR B方式は、移動局毎の受信品質とは無関係に割り当てられるため、 LRB方式のような 周波数スケジユーリグ効果やマルチユーザダイバーシチ効果が得られない。
[0006] 一方、最近、 Synchronous HARQの検討が行われて!/、る(例えば、非特許文献 2参 照)。 Synchronous HARQは、初回送信時にのみ制御情報(送信パラメータ)を通知 するハイブリッド型のパケット再送制御方法(HARQ)である。 Synchronous HARQは 、初回送信時にのみ制御情報を通知するので、再送時の制御情報オーバヘッドを削 減することができる。
[0007] また、非特許文献 3には、 Synchronous HARQにおいて、再送回数毎に変調方式を 切り替える再送制御方法が検討されて ヽる。
非特干文献 1: Physical channel Structure and Procedure for EUTRA Downlink , ό GPP RAN WGl #42 meeting (2005.8) Rl- 050884
非特許文献 2: "Downlink Synchronous Hybrid ARQ Scheme", 3GPP RAN WGl LTE Adhoc meeting (2006.01) Rl— 060103
非特許文献 3: "Redundancy Version and Modulation Order for Synchronous HARQ" , 3GPP RAN WGl LTE Adhoc meeting (2006.01) Rl— 060175
発明の開示
発明が解決しょうとする課題
[0008] リソース割当方式として LRBを用いる場合に、 Synchronous HARQを適用することを 検討する。図 1は、カゝかる場合に発生する課題を説明するための図である。
[0009] 基地局は、移動局からフィードバックされた RB毎の受信品質に基づいて、初回送 信時に周波数スケジューリングを行 、、送信データを LRB方式で周波数リソースに 割り当てる。その際、パケット復号に必要な制御情報は SCCH (shared control chann el:共有制御チャネル)にて通知する。
[0010] 移動局は、受信されたパケットが誤りだった場合、 Nack信号を基地局へ送信する。
[0011] 基地局は、移動局から Nack信号を受信すると、再送パケットを送信する(2回目の 送信)。このとき、制御情報は再送されない。また、初回送信時と同じ RBを使って送 信は行われる。
[0012] 移動局は、再送されたパケットと、初回受信時のパケットとを合成し復号する。この 復号にお 1ヽても受信誤りだった場合には、再度 Nack信号を基地局へ送信する。
[0013] 基地局は、移動局からの Nack信号を受信すると、再度、再送パケットを送信する( 3回目の送信)。ここでも、制御情報は再送されず、初回送信時と同じ RBを使って送 信は行われる。 [0014] し力しながら、再送を繰り返す間に、移動局の移動や周辺環境の変化によって、チ ャネル環境が変動する場合がある。このとき、移動局力も先にフィードバックされた R B毎の受信品質と、送信 2、 3回目の受信品質とでは差が生じる。よって、特に送信 3 回目のパケットに対し、先に報告された受信品質に基づく周波数割当を行ってしまう と、全てのパケットを合成したとしても、十分な合成ゲインが得られないこととなる。
[0015] 本発明の目的は、再送制御において、受信品質を向上させることができる無線通 信システム、無線送信装置、および再送方法を提供することである。
課題を解決するための手段
[0016] 本発明の無線通信システムは、リソース割当方式として LRB (Localized Resource B lock)方式または DRB (Distributed Resource Block)方式を選択する選択手段と、選 択されたリソース割当方式に従って、送信データを各周波数リソースに割り当てる割 当手段と、を具備し、前記選択手段は、同一の送信データが複数回送信される場合 、初回を除くいずれかの送信時において、リソース割当方式を LRB方式から DRB方 式へ切り替える構成を採る。
[0017] ここで、前記選択手段は、前記無線通信システムにおける無線送信装置または無 線受信装置の 、ずれに搭載されて 、ても良 、。
発明の効果
[0018] 本発明によれば、再送制御において、受信品質を向上させることができる。
図面の簡単な説明
[0019] [図 1]課題を説明するための図
[図 2]本発明の実施の形態 1に係る無線送信装置の主要な構成を示すブロック図 [図 3]実施の形態 1に係る割当リソーステーブル決定部内部のデータテーブルの一 例を示す図
[図 4]実施の形態 1に係る割当リソーステーブル決定部の基本的な動作を説明するた めの図
[図 5]実施の形態 1に係る無線送信装置力 送信される信号を説明するための図 [図 6]LRB番号、 DRB番号を説明する図
[図 7]実施の形態 1に係る無線受信装置の主要な構成を示すブロック図 [図 8]実施の形態 1に係る無線受信装置の受信処理および受信性能について説明 する図
[図 9]リソース割当方式の切替タイミングを決定するテーブルのバリエーションを示す 図
[図 10]リソース割当方式の切替タイミングを決定するテーブルのバリエーションを示す 図
[図 11]LRB番号と DRB番号との対応付けの例を示す図
[図 12]DRB方式のリソース割当方法の一例を示す図
[図 13]DRB方式のリソース割当方法の他のバリエーションを示す図
[図 14]CQIの受信タイミングの違いによって平均伝搬路品質が変動することを示した 図
[図 15]CQIの受信タイミングの違いによって平均伝搬路品質が変動することを示した 図
[図 16]実施の形態 2に係る無線送信装置力 送信される信号を説明するための図 [図 17]本発明の他のバリエーションを示す図
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお
、本明細書では、同様の機能を有する複数の構成に対し同一の符号を付すこととし、 さらに各符号に続けて異なる枝番を付して互いを区別することとする。
[0021] (実施の形態 1)
図 2は、本発明の実施の形態 1に係る無線送信装置の主要な構成を示すブロック 図である。ここでは、当該無線送信装置が、移動体通信システムにおける基地局とし て使用される場合を例にとって説明する。
[0022] 本実施の形態に係る無線送信装置は、割当リソーステーブル決定部 101、符号ィ匕 部 102— 1、 102— 2、再送制御部 103、変調部 104— 1、 104— 2、多重部 105、制 御情報多重部 106、 IFFT部 107、 CP挿入部 108、無線送信部 109、およびアンテ ナ 110を備え、各部は以下の動作を行う。
[0023] 符号ィ匕部 102— 1は、送信データに対してターボ符号化等の誤り訂正符号化を行 い、再送制御部 103へ出力する。符号ィ匕部 102— 2も、制御データに対してターボ符 号ィ匕等の誤り符号ィ匕を行い、変調部 104— 2へ出力する。
[0024] 再送制御部 103は、ターボ符号ィ匕等が施された後のビットを内部メモリにバッファリ ングし、移動局力もフィードバックされた AckZNack信号に基づいて、新しいバケツ トを変調部 104—1へ出力するか、それとも内部メモリに保存している再送パケットを 変調部 104— 1へ出力するか制御する。また、再送回数もカウントし、これを多重部 1 05へ通知する。
[0025] 変調部 104— 1は、再送制御部 103から出力される、送信サブフレームに多重する シンボルに対して QPSKや 16QAM等の所定の変調処理を施し、多重部 105へ出 力する。変調部 104— 2は、符号ィ匕部 102— 2から出力される符号ィ匕データに対して QPSKや 16QAM等の変調を行い、制御情報多重部 106へ出力する。
[0026] 割当リソーステーブル決定部 101は、移動局力もフィードバックされた移動速度情 報を用いて、内部のデータテーブルを参照してリソース割当方法を示す再送割当リソ ース制御信号を生成し、これを多重部 105および符号ィ匕部 102— 2へ出力する。図 3 は、データテーブルの一例を示す図である。このテーブルにおいて、各再送回数毎 のリソース割当方式 (LRB方式、 DRB方式)と再送割当リソース制御信号との対応関 係が予め決められている。そして、例えば、移動速度に基づいて、送信回数 1回目、 2回目、 3回目、 4回目のリソース割当方式力LRB、 LRB、 DRB、 DRBと決定された 場合 (ハッチング部分)、割当リソーステーブル決定部 101は、再送割当リソース制御 信号 # 2を出力する。
[0027] 多重部 105は、変調部 104— 1から出力される変調データを、複数の周波数リソー スに割り当て、送信データの周波数多重を行い、多重信号を制御情報多重部 106へ 出力する。ここで、多重部 105は、移動局力もフィードバックされた CQI情報を用い、 再送割当リソース制御信号によって指示された再送回数毎のリソース割当方式に従 い、周波数リソースを割り当てる。
[0028] 制御情報多重部 106は、サブフレーム番号をチェックし、先頭サブフレームの場合 には、所定の制御情報を多重し、多重信号を IFFT部 107へ出力する。
[0029] IFFT部 107は、多重信号に対して逆高速フーリエ変換 (IFFT)処理を行い、時間 領域に変換した OFDMシンボルを生成し、 CP挿入部 108へ出力する。
[0030] CP揷入部 108は、 IFFT部 107から出力された OFDMシンボルの後部を CPとして 複製し、先頭部分に挿入し、得られる信号を無線送信部 109へ出力する。
[0031] 無線送信部 109は、 CP挿入後の信号に対し DZA変換や電力増幅等の所定の無 線送信処理を行い、無線信号を生成し、アンテナ 110を介して送信する。
[0032] 次いで、割当リソーステーブル決定部 101の動作について、より詳細に説明する。
図 4は、割当リソーステーブル決定部 101の基本的な動作を説明するための図であ る。
[0033] 移動局力もフィードバックされる移動速度に基づいて、チャネル変動の早さを予想 することができる。 LRB方式または DRB方式を用いた場合の各帯域の平均伝搬路 品質を算出したものが図のグラフである。割当リソーステーブル決定部 101は、この グラフから、 LRB方式の帯域の平均伝搬路品質よりも、 DRB方式の帯域の平均伝搬 路品質の方が大きくなる送信回数を特定する。すなわち、周波数スケジューリング効 果よりも周波数ダイバーシチ効果が上回る場合の境界線の位置を求める。図 4では、 中速移動時の境界線が示されている。この境界線より時間的に後ろの送信回数が、 リソース割当方式を切り替えるべき送信回数となる。よって、割当リソーステーブル決 定部 101は、図 3に示したテーブルに基づ ヽて決定された再送割当リソース制御信 号を制御情報として、多重部 105および符号ィ匕部 102— 2へ通知する。
[0034] 図 5は、上記の動作によって、本実施の形態に係る無線送信装置から送信される信 号を説明するための図である。ここでは、再送割当リソース制御信号として「2」が選択 されたものとする。
[0035] 送信 1回目は、移動局からフィードバックされた CQIを基に、リソース割当形式として LRBが選択され、 LRB形式に則って受信品質の最も良 、RBが送信データに割り当 てられる。ここで制御情報としては、 MCS (Modulation and Coding Scheme)、符号化 率等と共に、再送割当リソース制御信号、 LRB番号、および DRB番号が制御チヤネ ル SCCHに多重され送信される。ここで、 LRB番号、 DRB番号とは、図 6に示すよう に、例えば、 LRB方式であれば、このリソース割当方式に従う 4つのリソース割当方 法 (LRB # 1〜# 4)を互いに識別する番号のことであり、より具体的には、実際に送 信データを割り当てる RBの位置を示すものである。
[0036] 送信 2回目(再送 1回目)は、再送割当リソース制御信号が「2」であるので、多重部 105は送信 1回目と同じリソース割当方式 (LRB)を用い、送信データを同じ RBに割 り当てる。
[0037] 送信 3回目(再送 2回目)は、再送割当リソース制御信号が「2」であるので、多重部 105は、送信 1回目および送信 2回目とはリソース割当方式を切り替え、 DRB方式を 用いて送信データの RBへの割り当てを行う。
[0038] このように、本実施の形態に係る無線送信装置は、送信データの再送制御にぉ ヽ て、初回送信時はリソース割当方式として LRB方式を用い、複数の再送において、 再送の途中からリソース割当方式を DRB方式に切り替えて送信を行う。また、その切 替タイミングは、移動局の移動速度に基づいて適応的に変化させる。
[0039] 次 ヽで、上記の本実施の形態に係る無線送信装置 (基地局)に対応する、本実施 の形態に係る無線受信装置 (移動局)について詳細に説明する。
[0040] 図 7は、本実施の形態に係る無線受信装置の主要な構成を示すブロック図である。
[0041] 本実施の形態に係る無線受信装置は、アンテナ 151、無線受信部 152、 CP除去 部 153、 FFT部 154、チャネル補償部 155、制御情報分離部 156、復調部 157、復 号ィ匕部 158、データ抽出部 159、復調部 160、合成部 161、復号化部 162、および 再送制御部 163を備え、各部は以下の動作を行う。
[0042] 無線受信部 152は、アンテナ 151を介して受信した信号に対し、ダウンコンバート や AZD変換等の所定の無線受信処理を行 、、得られるベースバンド信号を CP除 去部 153へ出力する。
[0043] CP除去部 153は、受信信号に付加されている CPを除去し、 CP除去後の信号を F FT部 154へ出力する。
[0044] FFT部 154は、 OFDMシンボル単位で高速フーリエ変換 (FFT)処理を行い、受 信信号を周波数領域に変換し、この周波数領域信号をチャネル補償部 155へ出力 する。
[0045] チャネル補償部 155は、周波数領域信号の受信パイロットシンボルカゝらチャネル推 定を行い、得られるチャネル推定値を用いて受信信号を補償し、補償後の信号を制 御情報分離部 156へ出力する。また、チャネル推定値力も移動速度および CQIを測 定し、別途出力する。
[0046] 制御情報分離部 156は、補償後の信号から、制御情報が多重されたシンボルを分 離して、制御情報がマッピングされているシンボルは復調部 157へ出力し、その他の シンボルはデータ抽出部 159へ出力する。
[0047] 復調部 157は、制御情報がマッピングされているシンボルに対し、 QPSKや 16QA
M等の所定復調処理を施し、復調信号を復号化部 158へ出力する。
[0048] 復号ィ匕部 158は、復調信号に対しターボ復号等の復号処理を施して制御データを 得、再送割当リソース制御信号、 LRB番号、および DRB番号をデータ抽出部 159へ 出力する。
[0049] データ抽出部 159は、再送割当リソース制御信号、 LRB番号、 DRB番号、および 再送回数を用いて、制御情報分離部 156の出力信号力もデータシンボルを抽出し、 復調部 160へ出力する。
[0050] 復調部 160は、抽出されたデータシンボルに対し、 QPSKや 16QAM等の所定の 復調処理を施し、復調信号を合成部 161および再送制御部 163へ出力する。
[0051] 合成部 161は、再送制御部 163から入力信号が再送パケットであることを通知され た場合、バッファリングしていた既受信データと現在受信されたデータとを合成し、合 成後の信号を復号ィ匕部 162へ出力する。
[0052] 復号ィ匕部 162は、合成部 161から出力される信号に対しターボ復号等の復号処理 を施し、受信データを得る。復号後のデータは再送制御部 163へも出力される。
[0053] 再送制御部 163は、復号後のデータに対して CRCチェック等を施して、このバケツ トが受信誤りか正常受信かを判断する。正常受信の場合には、 Ack信号を基地局へ フィードバックし、受信誤りの場合には、再送要求として、 Nack信号を基地局へフィ ードバックする。また、再送制御部 163は、合成部 161へ既受信データを受け渡す。 さらに、再送制御部 163は、再送回数をカウントし、これをデータ抽出部 159へ受け 渡す。
[0054] 図 8は、上記構成を有する本実施の形態に係る無線受信装置の受信処理および 受信性能について説明する図である。なお、再送割当リソース制御信号として「2」が 選択されているものとする。
[0055] 送信 1回目は、まず、サブフレームの先頭に配置されている制御チャネル SCCHを 復調し、制御データを得る。そして、制御データに含まれる再送割当リソース制御信 号、 LRB番号、および DRB番号を取得し、内部メモリに保持する。ここで、データ抽 出部 159は、再送割当リソース制御信号が「2」であるので、内部テーブル(図 3参照) に基づいて、リソース割当方式が LRBであると判断する。そして、別途入力された LR B番号から実際にデータが割り当てられている RBを特定し、この RBから、データシン ボルを抽出する。復調部 160は、 QPSK、 16QAM等のデータを復調し、ビット毎の 尤度を算出する。合成部 161は、送信 1回目なので、合成を行わない。復号化部 16 2は、ビット毎の尤度をターボ復号等を用いて誤り訂正復号する。再送制御部 163は 、復号後のデータに対して CRCチェックを実施する。ここでは、パケットが受信誤りで あつたとする。よって、再送制御部 163は、再送要求として、 Nack信号を基地局へフ イードバックし、ビット毎の尤度をバッファリングする。
[0056] 送信 2回目は、データ抽出部 159は、再送割当リソース制御信号が「2」であること から、やはり今回のリソース割当方式も LRBであると判断し、別途入力された LRB番 号に基づいて、データシンボルが多重されている RBを判別し、データシンボルを抽 出する。そして、送信 1回目と同様に復号し、パケット合成する。ここでも、パケットが 受信誤りであったとする。よって、再送制御部 163は、再送要求として、 Nack信号を 基地局へフィードバックし、ビット毎の尤度をバッファリングする。
[0057] 送信 3回目は、データ抽出部 159は、再送割当リソース制御信号が「2」であること から、今回のリソース割当方式が DRBであると判断し、別途入力された DRB番号か らデータシンボルが多重されている RBを判別し、データシンボルを抽出する。そして 、送信 2回目と同様に復号し、パケット合成する。ここでは、パケットが正常受信さ れたとする。よって、再送制御部 163は、 Ack信号を基地局へフィードバックする。
[0058] ここで、図 8に示すように、送信 3回目においては、 CQIによって報告された受信品 質とリアルタイムの実際の受信品質との差が大きくなつている。しかし、本実施の形態 では、送信 1回目、 2回目では、リソース割当方式として LRB方式が用いられ、再送 途中の送信 3回目力 DRB方式が用いられる。よって、送信 3回目においては周波 数ダイバーシチゲインを得ることができ、受信品質が大きく劣化することはない。
[0059] このように、本実施の形態に係る無線受信装置は、本実施の形態に係る無線送信 装置から送信された信号を受信し、上記動作を行うことにより、受信性能を向上させ ることがでさる。
[0060] 以上説明したように、本実施の形態によれば、無線送信装置は、予め決められたル ールに従い、再送途中においてリソース割当方式を LRB力も DRBへ切り替える。よ つて、伝搬路環境が変動し、送信 1回目を基準に行われた周波数割当が再送時に おいて不適当となった場合にも、 DRB方式を用いることによりダイバーシチ効果を得 ることができ、受信品質の劣化を防止することができる。換言すると、本実施の形態は 、周波数スケジューリングの効果が低下してきたタイミングにおいて、リソース割当方 式を LRB力 DRBに切り替えることを特徴とするということができる。
[0061] また、本実施の形態によれば、移動局の移動速度に応じて、リソース割当方式を切 り替えるタイミング (具体的には送信回数または再送回数)を調整する。よって、チヤ ネル状態が様々に変動する場合でも、これに追従することができ、受信性能の劣化 を防ぐことができる。
[0062] なお、本実施の形態では、リソース割当方式の切替タイミングを決定する際に、図 3 に示すようなテーブルを使用する構成を例にとって説明したが、図 9に示すようなテ 一ブルを使用するような構成としても良い。このテーブルは、送信回数毎の変調方式 と送信回数毎のリソース割当方式とが対応付けられている。すなわち、図 3に示すテ 一ブルに、さらにパラメータとして変調方式が加えられている。これにより、移動局の 移動速度が決まれば、送信回数毎のリソース割当方式および変調方式が決まり、こ れに対応する「再送時のパラメータ制御信号」が選択される。これにより、リソース割 当方式の切替と同時に、変調方法も同期して変更することができ、再送パケットの合 成ゲインをより得ることができ、周波数ダイバーシチ効果が向上する。
[0063] また、リソース割当方式の切替タイミングを決定するテーブルとしては、図 10に示す ようなテーブルを使用するような構成としても良い。このテーブルでは、リソース割当 方式、変調方式に加え、さらに符号ィ匕率が対応付けられている。そして、移動局の移 動速度が決まれば、各パラメータに対応する「パケットフォーム通知信号」が選択され る。このテーブルに基づいて制御が行われれば、例えば、同じ変調方式においては 、符号ィ匕率が低いほど少ない再送回数で DRB方式へ移行することとなる。よって、よ り周波数ダイバーシチ効果を得ることができる。すなわち、符号ィ匕率が低い場合ほど 周波数ダイバーシチ効果をより多く得ることができることを踏まえ、符号化率が低いほ ど DRB方式への切替を早くし、受信特性を向上させる。
[0064] また、本実施の形態では、送信 1回目に、 LRB番号および DRB番号の双方を SC CHに多重し制御情報として送信する構成を例にとって説明した力 予め LRB番号と DRB番号とを 1対 1対応で設定しておくことにより、無線送信装置が LRB番号のみを 無線受信装置に通知するような構成としても良い。図 11は、 LRB番号と DRB番号と の対応付けの例を示す図である。これにより、無線送信装置は LRB番号のみを通知 するだけで済み、制御情報を削減することができ、無線受信装置は通知された LRB 番号力 DRB番号を認識することができる。
[0065] また、本実施の形態にお!、て、 DRB方式に切替後の再送が複数回ある場合は、次 に示すリソース割当方法を適用することができる。
[0066] 図 12は、 DRB方式のリソース割当方法の一例を示す図である。このように、 DRB 方式における周波数リソースの割当位置を送信回数毎に変化させる。例えば、送信 2回目と送信 3回目とでは、異なる DRB番号に送信データが割り当てられる。これに より、より多くの周波数ダイバーシチ効果を得ることができる。
[0067] 図 13は、 DRB方式のリソース割当方法の他のバリエーションを示す図である。ここ では、 DRB方式へ切替後の送信 2回目においては、 LRB方式と近い範囲の周波数 位置のリソースが割り当てられている。そして、送信回数が多くなればなるほど (経過 時間に応じて)、 DRB方式における周波数リソースの分散具合を大きくしている。これ により、 LRB方式から DRB方式への移行を緩やかに行うことができる。
[0068] また、本実施の形態では、リソース割当方式の切替のために、送受信間で共通のテ 一ブルを用いる構成を例にとって説明したが、無線送信装置が、リソース割当方式の 切替タイミングとなる送信回数 (または再送回数)のみを制御情報として無線受信装 置に通知するような構成としても良い。
[0069] また、本実施の形態では、リソース割当方式の切替タイミングを、移動局の移動速 度に応じて決定する構成を例にとって説明したが、リソース割当方式の切替タイミン グは、設計段階力 固定とするような構成としても良い。
[0070] また、本実施の形態では、リソース割当方式の切替タイミングを移動局の移動速度 のみに基づいて決定する構成を例にとって説明を行った力 この切替タイミングを、 移動局からフィードバックされる CQIとの時間間隔の空き具合、すなわち、 CQI受信 タイミングからの遅延時間に基づいて決定するような構成としても良い。また、移動局 の移動速度に基づ 、て決定された切替タイミングを、 CQI受信タイミング力もの遅延 時間に基づいて補正するような構成としても良い。 CQI受信タイミングからの遅延時 間が大き 、と 、うことは、平均受信品質に変動が生じて 、る可能性が高 、と言えるか らである。図 14および図 15は、 CQIの受信タイミングの違いによって平均伝搬路品 質が変動することを示した図である。なお、ここでは、移動局が中速で移動している 場合を例にとっている。これらの図に示すように、 CQIの受信タイミングから時間間隔 が空けば空くほど、平均伝搬路品質は低下する。特に、 DRB方式よりも LRB方式に おいてその特性劣化は顕著である。そこで、本実施の形態のノリエーシヨンとして、 L RB方式の特性曲線と DRB方式の特性曲線が交わる時間(平均伝搬路品質の交差 位置)、すなわち LRB方式と DRB方式の特性が入れ替わる時点を、切替タイミングと 設定する。これにより、最適な切替タイミングとなるので、受信性能の劣化を防ぐこと ができる。なお、この制御は、移動局における BLER (アウターループ制御)、すなわ ち移動局カゝら基地局へ送信される ACKZNACK情報を基に行うような構成としても 良い。
[0071] (実施の形態 2)
本発明の実施の形態 2でも、本実施の形態に係る無線送信装置が、移動体通信シ ステムにおける基地局として使用される場合を例にとって説明する。
[0072] 実施の形態 1では、基地局は、予め決められたテーブルに従い、再送途中におい て、リソース割当方式を LRB力も DRBへ切り替えていた。実施の形態 2では、さらに、 リソース割当方式の切替を行うタイミングをリアルタイムに通知し、チャネル環境が変 動する場合でもパケット合成ゲインを得る構成を示す。
[0073] なお、本実施の形態に係る無線送信装置の基本的構成は、実施の形態 1に示した 無線送信装置(図 2参照)と同様であり、ブロック図等は省略する。差異点は、割当リ ソーステーブル決定部 101が、「再送割当リソース制御信号」の代わりに「再割当再 送回数」を出力することである。この再割当再送回数は、送信回数が再割当再送回 数に該当した場合にリソース割当方式の切替を指示する。
[0074] 図 16は、本実施の形態に係る無線送信装置から送信される信号を説明するための 図である。ここでは、再割当再送回数が「2」に設定されているものとする。
[0075] 送信 1回目は、移動局からフィードバックされた CQIを基に、リソース割当形式として LRBが選択され、 LRB形式に則って受信品質の最も良 、RBが送信データに割り当 てられる。ここで制御情報としては、 MCS、符号化率、 LRB番号、 DRB番号と共に、 再割当再送回数が制御チャネル SCCHに多重され送信される。
[0076] 送信 2回目(再送 1回目)は、再割当再送回数が「2」であるので、多重部 105は送 信 1回目と同じリソース割当方式 (LRB)を用い、送信 1回目と同じ帯域 (RB)に送信 データを割り当てる。
[0077] 送信 3回目(再送 2回目)は、再割当再送回数が「2」であるので、多重部 105は、送 信 1回目および送信 2回目とはリソース割当方式を切り替え、かつ、周波数リソースの 再割当を行い、送信 2回目とは異なる RBに送信データを割り当てる。使用された DRB番号は、 SCCHを介して基地局に通知される。
[0078] このように、本実施の形態に係る無線送信装置は、再送途中において、リソース割 当方式を LRB方式力 DRB方式へ切り替える。よって、制御情報を削減しつつ、初 回送信時の周波数スケジューリング効果が低下してきた場合には、再割当を行うこと により、再送パケットの合成ゲインを大きくし、受信性能を向上させることができる。
[0079] なお、本実施の形態にぉ 、て、再割当が行われる際には、再度 LRBを選択するよ うな構成としても良い。また、再割当が行われる度に、 LRBまたは DRBのいずれに使 用するカゝ選択するような構成としても良い。かかる場合、図 11に示すように、 LRB番 号と DRB番号とを対応付けることによって、 DRB番号を通知しなくても、移動局は、 過去の LRB番号によって、使用される DRB番号を認識することができる。
[0080] 以上、本発明の各実施の形態について説明した。
[0081] なお、本発明に係る無線通信システム、無線送信装置、および再送方法は、上記 各実施の形態に限定されず、種々変更して実施することが可能である。
[0082] 例えば、本明細書では、 OFDM方式の通信システムにおいて、基地局から移動局 への下り回線が行われる場合を想定して種々の説明を行ったが、本発明は、移動局 力も基地局への上り回線においても同様に適用可能である。かかる場合、上り通信 方式としては、 OFDM以外にも、 DFT— OFDM、 SC— FDMA等の通信方式であ つて、 LRB方式と DRB方式のリソース割当方式が用いられている通信方式であれば 適用可能である。
[0083] また、本明細書では、無線送信装置 (基地局)がリソース割当方式の切替タイミング または再スケジューリングのタイミングを決定し、初回送信時に通知する構成を例にと つたが、本発明は、無線送信装置が、無線受信装置 (移動局)からリソース割当方式 の切替要求または再スケジューリング要求を受け取つてから、リソース割当方式の切 替または再スケジューリングを行うような構成としても良い。すなわち、移動局におい て、割当帯域の受信品質が劣化して、 LRB力も DRBヘリソース割当方式を切替える 必要が生じた場合にのみ、上り回線で基地局に切替等を要求するような構成としても 良い。これにより、移動局が主導でリソース割当方式の切替等を行うことができるため 、チャネル変動が激しい状況下でも、容易にこれに追従することができる。なお、その 要求信号 (フラグ)としては、上り回線の制御チャネルにさらにビットを附加するのでは なぐ移動局からの CQIフィードバック信号を代用するようにしても良い。すなわち、 移動局から CQIフィードバックがあった場合、これによりリソース割当方式切替等の要 求があつたと判断し、切替等を行うような構成としても良い。これにより、別途新しい制 御情報を送信することなぐ切替等を要求することができる。また、その CQIは、少なく とも DRB用の全帯域の平均的な受信品質情報が含まれていれば良い。例えば、図 1 7に示すように、通常は Nack信号のみをフィードバックするルールとしておき、移動 局の受信品質が劣化した場合には、 Nack信号と CQIとをフィードバックすることで、 移動局は基地局に対し再スケジューリングを要求する。なお、 Nackと CQIとは、同じ 符号化ブロックにて送信することで、 CQIのみ誤ると 、う状況を回避することができる
[0084] また、本明細書では、 Synchronous HARQに着目して説明を行った力 本発明はこ れに限定されず、 Asynchronous HARQ、すなわち割当リソース情報以外の制御情報 を再送毎に送信する HARQに対しても適用可能である。
[0085] また、本明細書では、 SCCHにて制御情報を通知するとした力 個別制御チャネル 等の他の名称の制御チャネルであっても良い。
[0086] また、平均伝搬路品質として、伝搬路変動に伴う、フィードバック CQIと実際の SIN
Rとのずれ量や、受信特性の劣化量や、所要受信品質に対するマージン量を用いて も良い。
[0087] また、 LRBは、周波数スケジューリング送信を行うためのチャネルであり、 Localized Channelと呼ばれることもある。一方、 DRBは、周波数ダイバーシチ送信を行うための チヤネノレであり、 Distributed Channelと呼ばれることもある。
[0088] また、 LRBは、通常、サブバンド単位や連続した複数のサブキャリア単位で割り当 てられる。一方、 DRBは、通常、 OFDMシンボルの広帯域に渡る複数の分散された サブキャリアによって構成されたり、 FH (Frequency Hopping)パターンにより定義され る。また、 DRBは、 Intra-TTI frequency hoppingと呼ばれることもある。さらに、 DRBは 、周波数インタリーブによって分散が実現されることもある。
[0089] また、本発明に係る無線送信装置は、移動体通信システムにおける通信端末装置 および基地局装置に搭載することが可能であり、これにより上記と同様の作用効果を 有する通信端末装置、基地局装置、および移動体通信システムを提供することがで きる。
[0090] また、ここでは、本発明をノヽードウエアで構成する場合を例にとって説明した力 本 発明をソフトウェアで実現することも可能である。例えば、本発明に係る再送方法のァ ルゴリズムをプログラミング言語によって記述し、このプログラムをメモリに記憶してお いて情報処理手段によって実行させることにより、本発明に係る無線送信装置と同様 の機能を実現することができる。
[0091] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されても良いし、一部または 全てを含むように 1チップィ匕されても良い。
[0092] また、ここでは LSIとした力 集積度の違いによって、 IC、システム LSI、スーパー L SI、ウノレ卜ラ LSI等と呼称されることちある。
[0093] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現しても良い。 LSI製造後に、プログラム化することが可能な FPGA (Field Pro grammable Gate Array)や、 LSI内部の回路セルの接続もしくは設定を再構成可能な リコンフィギユラブル ·プロセッサを利用しても良 、。
[0094] さらに、半導体技術の進歩または派生する別技術により、 LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って も良い。バイオ技術の適用等が可能性としてあり得る。
[0095] 2006年 3月 20曰出願の特願 2006— 076994の曰本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0096] 本発明に係る無線送信装置および再送方法は、移動体通信システムにおける通 信端末装置、基地局装置等の用途に適用することができる。

Claims

請求の範囲
[1] リソース割当方式として LRB方式または DRB方式を選択する選択手段と、
選択されたリソース割当方式に従って、送信データを各周波数リソースに割り当て る割当手段と、を具備し、
前記選択手段は、同一の送信データが複数回送信される場合、初回を除くいずれ かの送信時において、リソース割当方式を LRB方式力 DRB方式へ切り替える、 無線通信システム。
[2] リソース割当方式として LRB方式または DRB方式を選択する選択手段と、
選択されたリソース割当方式に従って、送信データを各周波数リソースに割り当て る割当手段と、を具備し、
前記選択手段は、同一の送信データが複数回送信される場合、初回を除くいずれ かの送信時において、リソース割当方式を LRB方式力 DRB方式へ切り替える、 無線送信装置。
[3] 前記選択手段がリソース割当方式を LRB方式から DRB方式へ切り替える際に、同 期して前記送信データの変調方式を変更する変調手段、
をさらに具備する請求項 2記載の無線送信装置。
[4] 前記割当手段は、 DRB方式の送信時に、送信回数が大きくなるほど周波数リソー スの分散具合を大きくする、
請求項 2記載の無線送信装置。
[5] 前記割当手段は、 DRB方式の送信時に、各送信時によって、送信データを割り当 てる周波数リソースを異ならせる、
請求項 2記載の無線送信装置。
[6] 前記選択手段は、リソース割当方式の LRB方式力 DRB方式への切替タイミング を、前記送信データの変調方式および符号化率に基づ!ヽて決定する、
請求項 2記載の無線送信装置。
[7] 前記選択手段は、変調方式が同一の送信データに対し、符号ィヒ率が低いほど早 V、切替タイミングを設定する、
請求項 6記載の無線送信装置。
[8] 前記選択手段は、リソース割当方式の LRB方式力 DRB方式への切替タイミング を、無線受信装置からの CQIの受信タイミングからの遅延時間に基づ 、て決定する、 請求項 2記載の無線送信装置。
[9] 前記選択手段は、リソース割当方式の LRB方式力 DRB方式への切替タイミング を、無線受信装置の移動速度に基づいて決定する、
請求項 2記載の無線送信装置。
[10] リソース割当方式の LRB方式力 DRB方式への切替タイミングを、前記送信デー タの初回送信時に無線受信装置に通知する通知手段、
をさらに具備する請求項 2記載の無線送信装置。
[11] LRB方式の複数のリソース割当方法と、 DRB方式の複数のリソース割当方法と、が 互いに 1対 1に対応付けて記憶された送受信間で共通のテーブルと、
LRB方式の複数の前記リソース割当方法のうち、実際に使用されるリソース割当方 法を無線受信装置に通知する通知手段と、
をさらに具備する請求項 2記載の無線送信装置。
[12] 前記選択手段は、無線受信装置から切替要求があった場合に、リソース割当方式 を LRB方式から DRB方式へ切り替える、
請求項 2記載の無線送信装置。
[13] 前記選択手段は、所定タイミングに無線受信装置力も CQIのフィードバックがあつ た場合に、前記切替要求があつたと判断する、
請求項 12記載の無線送信装置。
[14] 請求項 2記載の無線送信装置を具備する通信端末装置。
[15] 請求項 2記載の無線送信装置を具備する基地局装置。
[16] 同一の送信データが複数回送信される場合、初回を除くいずれかの送信時におい て、当該送信データのリソース割当方式を LRB方式力 DRB方式へ切り替える、 再送方法。
PCT/JP2007/055685 2006-03-20 2007-03-20 無線通信システム、無線送信装置、および再送方法 WO2007108473A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008506310A JP5061095B2 (ja) 2006-03-20 2007-03-20 無線通信システム、無線送信装置、および再送方法
EP07739128A EP1990942A1 (en) 2006-03-20 2007-03-20 Radio communication system, radio transmission device, and retransmission method
US12/293,516 US8774107B2 (en) 2006-03-20 2007-03-20 Radio communication system, radio transmission apparatus, and retransmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006076994 2006-03-20
JP2006-076994 2006-03-20

Publications (1)

Publication Number Publication Date
WO2007108473A1 true WO2007108473A1 (ja) 2007-09-27

Family

ID=38522500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055685 WO2007108473A1 (ja) 2006-03-20 2007-03-20 無線通信システム、無線送信装置、および再送方法

Country Status (4)

Country Link
US (1) US8774107B2 (ja)
EP (1) EP1990942A1 (ja)
JP (1) JP5061095B2 (ja)
WO (1) WO2007108473A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044710A1 (ja) * 2007-10-01 2009-04-09 Ntt Docomo, Inc. ユーザ装置、基地局及び制御情報送信方法
JP2009212940A (ja) * 2008-03-05 2009-09-17 Sharp Corp 通信システム、送信装置、受信装置及び通信方法
WO2009157859A2 (en) * 2008-06-26 2009-12-30 Telefonaktiebolaget L M Ericsson (Publ) Error control in multi-carrier wireless systems
JP2010021726A (ja) * 2008-07-09 2010-01-28 Fujitsu Ltd 基地局装置、移動機、通信システムおよびチャネル割当方法
WO2010109513A1 (ja) * 2009-03-23 2010-09-30 富士通株式会社 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
JPWO2009069630A1 (ja) * 2007-11-26 2011-04-14 シャープ株式会社 無線通信システム、無線送信装置、無線通信方法およびプログラム
US20110317563A1 (en) * 2009-03-03 2011-12-29 Nec Corporation Communication device and resource reallocation method in radio communications system
WO2023139696A1 (ja) * 2022-01-19 2023-07-27 日本電信電話株式会社 無線通信システム、無線通信方法、及び無線装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104370B1 (en) * 2007-01-09 2020-08-12 Sun Patent Trust Radio communication base station device and control signal mapping method
JP4916389B2 (ja) * 2007-06-19 2012-04-11 株式会社エヌ・ティ・ティ・ドコモ 無線通信制御方法、基地局装置、およびユーザ装置
US8428606B1 (en) * 2007-08-31 2013-04-23 Apple Inc. Communicating control information including an index
US8570910B2 (en) * 2008-06-20 2013-10-29 Panasonic Corporation Wireless transmission apparatus and wireless transmission method
US8737319B2 (en) * 2008-12-15 2014-05-27 Samsung Electronics Co., Ltd. Method and apparatus for reducing map overhead in a broadand wireless communication system
JP2010278887A (ja) * 2009-05-29 2010-12-09 Panasonic Corp 基地局装置、端末装置、無線通信システム及び送信方法
JP4917140B2 (ja) * 2009-10-08 2012-04-18 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線送信装置及び無線受信装置
US8621308B2 (en) * 2010-06-30 2013-12-31 Alcatel Lucent HARQ operating point adaptation in communications
US8068011B1 (en) 2010-08-27 2011-11-29 Q Street, LLC System and method for interactive user-directed interfacing between handheld devices and RFID media
AU2011339962B2 (en) 2010-12-10 2016-09-01 Sun Patent Trust Signal generation method and signal generation device
GB2491222B (en) * 2012-02-29 2013-07-10 Renesas Mobile Corp Channel quality
JP6608057B2 (ja) * 2016-07-05 2019-11-20 株式会社日立国際電気 無線通信システム、無線通信装置および無線通信方法
US10362574B2 (en) * 2016-11-18 2019-07-23 Qualcomm Incorporated Uplink resource allocation techniques for shared radio frequency spectrum

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2288949B (en) * 1994-04-22 1998-04-08 Motorola Ltd Communications system
JP2002009734A (ja) * 2000-06-27 2002-01-11 Denso Corp Ofdm方式を用いた通信システム
EP1255368A1 (en) * 2001-04-30 2002-11-06 Siemens Information and Communication Networks S.p.A. Method to perform link adaptation in enhanced cellular communication systems with several modulation and coding schemes
US20030039226A1 (en) * 2001-08-24 2003-02-27 Kwak Joseph A. Physical layer automatic repeat request (ARQ)
US7126996B2 (en) * 2001-12-28 2006-10-24 Motorola, Inc. Adaptive transmission method
WO2004102912A1 (ja) * 2003-05-14 2004-11-25 Matsushita Electric Industrial Co., Ltd. 変調方法、変調装置、復調装置及び無線通信システム
EP1641160A4 (en) * 2003-07-31 2012-07-04 Panasonic Corp RADIO TRANSMITTER APPARATUS AND METHOD OF SELECTING A MODULATION MECHANISM
KR20050083104A (ko) * 2004-02-21 2005-08-25 삼성전자주식회사 이동통신 시스템에서 기지국의 섹터 운용 방법 및 그 장치
KR100929103B1 (ko) * 2004-08-17 2009-11-30 삼성전자주식회사 직교주파수다중분할 이동통신시스템에서 고속 순방향 패킷 데이터 서비스를 지원하기 위한 주파수 할당 장치 및 방법
KR100754617B1 (ko) * 2004-10-11 2007-09-05 삼성전자주식회사 직교 주파수 분할 다중화 통신 시스템에서 피크대 평균전력비를 최소화시키기 위한 장치 및 방법
US20060209970A1 (en) * 2005-01-11 2006-09-21 Emmanuel Kanterakis Adaptive transmission rate communication system
US7423997B2 (en) * 2005-10-04 2008-09-09 Motorola, Inc. Group scheduling in wireless communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Motivation foca localized and distributed subchannels in EUTRA - System Level Simulations", 3GPP TSG RAN WG1 AD HOC, R1-050631, 16 June 2005 (2005-06-16), XP003017997, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/rgs_ran/WG1_RL1/TSGR1_AH/LTE_AH_June-05/Docs/R1-050631.zip> *
NEC GROUP ET AL.: "Performance Comparison of Distributed FDMA and Localised FMDA with Frequency Hopping for EUTRA Uplink", 3GPP TSG RAN WG1 #42 MEETING, R1-050791, 25 August 2005 (2005-08-25), XP003017998, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR_42/Docs/R1-050791.zip> *
NOKIA: "Resource block allocation - mapping rules", 3GPP TSG RAN WG1 #44 MEETING, R1-060286, 9 February 2006 (2006-02-09), XP003017996, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1/RL1/TSGR1_44/Docs/R1-060286.zip> *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089189A (ja) * 2007-10-01 2009-04-23 Ntt Docomo Inc ユーザ装置、基地局及び制御情報送信方法
WO2009044710A1 (ja) * 2007-10-01 2009-04-09 Ntt Docomo, Inc. ユーザ装置、基地局及び制御情報送信方法
US8705462B2 (en) 2007-10-01 2014-04-22 Ntt Docomo, Inc. User equipment terminal, base station and control information transmission method
RU2481729C2 (ru) * 2007-10-01 2013-05-10 Нтт Досомо, Инк. Терминал пользователя, базовая станция и способ передачи управляющей информации
JPWO2009069630A1 (ja) * 2007-11-26 2011-04-14 シャープ株式会社 無線通信システム、無線送信装置、無線通信方法およびプログラム
JP2014140256A (ja) * 2007-11-26 2014-07-31 Sharp Corp 端末装置、基地局装置、無線通信方法およびプログラム
JP2009212940A (ja) * 2008-03-05 2009-09-17 Sharp Corp 通信システム、送信装置、受信装置及び通信方法
WO2009157859A2 (en) * 2008-06-26 2009-12-30 Telefonaktiebolaget L M Ericsson (Publ) Error control in multi-carrier wireless systems
WO2009157859A3 (en) * 2008-06-26 2010-03-11 Telefonaktiebolaget L M Ericsson (Publ) Error control in multi-carrier wireless systems
JP2010021726A (ja) * 2008-07-09 2010-01-28 Fujitsu Ltd 基地局装置、移動機、通信システムおよびチャネル割当方法
US20110317563A1 (en) * 2009-03-03 2011-12-29 Nec Corporation Communication device and resource reallocation method in radio communications system
WO2010109513A1 (ja) * 2009-03-23 2010-09-30 富士通株式会社 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
JP5278536B2 (ja) * 2009-03-23 2013-09-04 富士通株式会社 無線通信システム、基地局装置、端末装置、及び無線通信システムにおける無線通信方法
US8712458B2 (en) 2009-03-23 2014-04-29 Fujitsu Limited Radio communication system, base station apparatus, terminal apparatus, and radio communication method for radio communication system
WO2023139696A1 (ja) * 2022-01-19 2023-07-27 日本電信電話株式会社 無線通信システム、無線通信方法、及び無線装置

Also Published As

Publication number Publication date
EP1990942A1 (en) 2008-11-12
JPWO2007108473A1 (ja) 2009-08-06
US8774107B2 (en) 2014-07-08
US20090168711A1 (en) 2009-07-02
JP5061095B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5061095B2 (ja) 無線通信システム、無線送信装置、および再送方法
US11765726B2 (en) Radio transmission device and radio transmission method
JP4887358B2 (ja) 無線通信システム、無線送信装置、およびリソース割当方法
US9853796B2 (en) Terminal apparatus and method for controlling channel quality indicator transmission
KR101215346B1 (ko) 이동국, 기지국 및 방법
KR100818243B1 (ko) 자동 재송 요구방식을 이용하는 멀티캐리어 통신 시스템을위한 통신 방법
US20170273087A1 (en) Apparatus and method for performing resource allocation and communication in a wireless communication system, and system using same
TWI424765B (zh) 用於在無線通信系統中提供廣播及多播服務(bcmcs)之訊號傳輸方法
EP1492280A1 (en) Quality driven adaptive channel assignment in an OFDMA radio communication system
JP5934700B2 (ja) 中継局、基地局、送信方法、及び受信方法
KR100966586B1 (ko) 통신 시스템에서 데이터 전송 방법 및 시스템
KR100758766B1 (ko) 다양성 이득 향상을 위한 무선 자원 할당 제어 방법
RU2414105C2 (ru) Мобильная станция, базовая станция и способ осуществления связи
Maria et al. Re-transmission diversity with fast channel selectivity for reliable industrial WLAN system
KR20080111918A (ko) 직교주파수분할다중접속 시스템에서 ack/nack 신호전송 장치 및 방법
KR20100018686A (ko) 데이터 전송 방법 및 무선자원 할당 방법
KR20070050118A (ko) Ofdma 이동 통신 시스템의 채널할당방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506310

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007739128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12293516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE