WO2007106881A1 - Propylene/alpha-olefins block interpolymers - Google Patents

Propylene/alpha-olefins block interpolymers Download PDF

Info

Publication number
WO2007106881A1
WO2007106881A1 PCT/US2007/064036 US2007064036W WO2007106881A1 WO 2007106881 A1 WO2007106881 A1 WO 2007106881A1 US 2007064036 W US2007064036 W US 2007064036W WO 2007106881 A1 WO2007106881 A1 WO 2007106881A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
olefin
interpolymer
olefin interpolymer
fraction
Prior art date
Application number
PCT/US2007/064036
Other languages
English (en)
French (fr)
Inventor
Colin Li Pi Shan
Lonnie G. Hazlitt
Yunwa Wilson Cheung
Benjamin C. Poon
Phillip D. Hustad
Roger L. Kuhlman
Edmund M. Carnahan
Xiaohua Qiu
Angela N. Taha
Original Assignee
Dow Global Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc. filed Critical Dow Global Technologies Inc.
Priority to MX2008011718A priority Critical patent/MX2008011718A/es
Priority to CN2007800089511A priority patent/CN101405311B/zh
Priority to BRPI0709319-5A priority patent/BRPI0709319B1/pt
Priority to AU2007226554A priority patent/AU2007226554A1/en
Priority to BR122018075054-5A priority patent/BR122018075054B1/pt
Priority to EP07758577A priority patent/EP2001916A1/en
Priority to JP2009500602A priority patent/JP2009530446A/ja
Priority to KR1020087025020A priority patent/KR101386349B1/ko
Priority to CA002644907A priority patent/CA2644907A1/en
Publication of WO2007106881A1 publication Critical patent/WO2007106881A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond

Definitions

  • This invention relates to propylene/ ⁇ -olefin block interpolymers and products made from the block interpolymers.
  • Block copolymers comprise sequences ("blocks") of the same monomer unit, covalently bound to sequences of unlike type.
  • the blocks can be connected in a variety of ways, such as A — B in diblock and A — B — A triblock structures, where A represents one block and B represents a different block.
  • a and B can be connected in a number of different way and be repeated multiply. It may further comprise additional blocks of different type.
  • Multi-block copolymers can be either linear multi-block or multi-block star polymers (in which all blocks bond to the same atom or chemical moiety).
  • a block copolymer is created when two or more polymer molecules of different chemical composition are covalently bonded in an end-to-end fashion. While a wide variety of block copolymer architectures are possible, most block copolymers involve the covalent bonding of hard plastic blocks, which are substantially crystalline or glassy, to elastomeric blocks forming thermoplastic elastomers. Other block copolymers, such as rubber-rubber (elastomer-elastomer), glass-glass, and glass-crystalline block copolymers, are also possible and may have commercial importance.
  • One method to make block copolymers is to produce a "living polymer”.
  • living polymerization processes involve only initiation and propagation steps and essentially lack chain terminating side reactions. This permits the synthesis of predetermined and well-controlled structures desired in a block copolymer.
  • a polymer created in a "living" system can have a narrow or extremely narrow distribution of molecular weight and be essentially monodisperse (i.e., the molecular weight distribution is essentially one).
  • Living catalyst systems are characterized by an initiation rate which is on the order of or exceeds the propagation rate, and the absence of termination or transfer reactions. In addition, these catalyst systems are characterized by the presence of a single type of active site. To produce a high yield of block copolymer in a polymerization process, the catalyst must exhibit living characteristics to a substantial extent.
  • Butadiene-isoprene block copolymers have been synthesized via anionic polymerization using the sequential monomer addition technique.
  • sequential addition a certain amount of one of the monomers is contacted with the catalyst.
  • a certain amount of the second monomer or monomer species is introduced and allowed to react to form the second block.
  • the process may be repeated using the same or other anionically polymerizable monomers.
  • propylene and other ⁇ -olefins, such as ethylene, butene, 1-octene, etc. are not directly block polymerizable by anionic techniques.
  • the invention relates to a propylene/ ⁇ -olefin interpolymer comprising polymerized units of propylene and ⁇ -olefin, wherein the interpolymer is characterized by an average block index greater than zero and up to about 1.0 and a molecular weight distribution, M w /M n , greater than about 1.3.
  • the invention in another aspect, relates to a propylene/ ⁇ - olefin interpolymer comprising polymerized units of propylene and ⁇ -olefin, wherein the average block index is greater than 0 but less than about 0.4 and a molecular weight distribution, M w /M n , greater than about 1.3.
  • the interpolymer is a linear, multi- block copolymer with at least three blocks.
  • the propylene content in the interpolymer is at least 50 mole percent.
  • the average block index of the interpolymer is in the range from about 0.1 to about 0.3, from about 0.4 to about 1.0, from about 0.3 to about 0.7, from about 0.6 to about 0.9, or from about 0.5 to about 0.7.
  • the interpolymer has a density of less than about 0.90 g/cc, such as from about 0.85 g/cc to about 0.88 g/cc.
  • the ⁇ -olefin in the propylene/ ⁇ -olefin interpolymer is styrene, ethylene, 1 -butene, 1-hexene, 1-octene, 4-methyl-l -pent ene, norbornene, 1-decene, 1,5-hexadiene, or a combination thereof.
  • the molecular weight distribution, M w /M n is greater than about 1.5 or greater than about 2.0. It can also range from about 2.0 to about 8 or from about 1.7 to about 3.5.
  • the invention relates to a propylene/ ⁇ -olefin interpolymer comprising polymerized units of propylene and ⁇ -olefin, the interpolymer characterized by having at least one fraction obtained by Temperature Rising Elution
  • TREF Fractionation
  • the invention relates to a propylene/ ⁇ - olefin interpolymer comprising polymerized units of propylene and ⁇ -olefin, the interpolymer characterized by having at least one fraction obtained by TREF, wherein the fraction has a block index greater than about 0 and up to about 0.4 and the propylene/ ⁇ -olefin interpolymer has a molecular weight distribution, M w /M n , greater than about 1.3.
  • the block index of the fraction is greater than about 0.4, greater than about 0.5, greater than about 0.6, greater than about 0.7, greater than about 0.8, or greater than about 0.9.
  • the interpolymer comprises one or more hard segments and one or more soft segments.
  • the hard segments comprise at least 98% of propylene by weight.
  • the soft segments comprise less than 95%, preferably less than 92%, of propylene by weight.
  • the hard segments are present in an amount from about 5% to about 85% by weight of the interpolymer.
  • the interpolymer comprises at least 5 or at least 10 hard and soft segments connected in a linear fashion to form a linear chain.
  • the hard segments and soft segments are randomly distributed along the chain.
  • neither the soft segments nor the hard segments include a tip segment (which is different by chemical composition than the rest of the segments).
  • Polymer means a polymeric compound prepared by polymerizing monomers, whether of the same or a different type.
  • the generic term “polymer” embraces the terms “homopolymer,” “copolymer,” “terpolymer” as well as “interpolymer.”
  • Interpolymer means a polymer prepared by the polymerization of at least two different types of monomers.
  • the generic term “interpolymer” includes the term “copolymer” (which is usually employed to refer to a polymer prepared from two different monomers) as well as the term “terpolymer” (which is usually employed to refer to a polymer prepared from three different types of monomers). It also encompasses polymers made by polymerizing four or more types of monomers.
  • propylene/ ⁇ -olefin interpolymer refers to polymers with propylene being the majority mole fraction of the whole polymer.
  • propylene comprises at least 50 mole percent of the whole polymer, more preferably at least 70 mole percent, at least 80 mole percent, or at least 90 mole percent, with the reminder of the whole polymer comprising at least another comonomer.
  • the preferred composition includes a propylene content greater than about 90 mole percent with a ethylene content of equal to or less than about 10 mole percent.
  • the propylene/ ⁇ -olefin interpolymers do not include those produced in low yields or in a minor amount or as a by-product of a chemical process. While the propylene/ ⁇ -olefin interpolymers can be blended with one or more polymers, the as-produced propylene/ ⁇ -olefin interpolymers are substantially pure and constitute the major component of a polymerization process.
  • crystalline refers to a polymer or a segment that possesses a first order transition or crystalline melting point (Tm) as determined by differential scanning calorimetry (DSC) or equivalent technique.
  • Tm first order transition or crystalline melting point
  • amorphous refers to a polymer lacking a crystalline melting point as determined by differential scanning calorimetry (DSC) or equivalent technique.
  • multi-block copolymer or “segmented copolymer” refers to a polymer comprising two or more chemically distinct regions or segments (also referred to as “blocks”) preferably joined in a linear manner, that is, a polymer comprising chemically differentiated units which are joined end-to-end with respect to polymerized propylenic functionality, rather than in pendent or grafted fashion.
  • the blocks differ in the amount or type of comonomer incorporated therein, the density, the amount of crystallinity, the crystallite size attributable to a polymer of such composition, the type or degree of tacticity (isotactic or syndiotactic), regio-regularity or regio-irregularity, the amount of branching, including long chain branching or hyper-branching, the homogeneity, or any other chemical or physical property.
  • the multi-block copolymers are characterized by unique distributions of both polydispersity index (PDI or M w /M n ), block length distribution, and/or block number distribution due to the unique process making of the copolymers.
  • the polymers when produced in a continuous process, desirably possess PDI from about 1.7 to about 8, preferably from about 1.7 to about 3.5, more preferably from about 1.7 to about 2.5, and most preferably from about 1.8 to about 2.5 or from about 1.8 to about 2.1.
  • the polymers When produced in a batch or semi-batch process, the polymers possess PDI from about 1.0 to about 2.9, preferably from about 1.3 to about 2.5, more preferably from about 1.4 to about 2.0, and most preferably from about 1.4 to about 1.8.
  • block(s)" and “segment(s)" are used herein interchangeably.
  • R R L +k*(R u -R L ), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent,..., 50 percent, 51 percent, 52 percent,..., 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent.
  • k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent,..., 50 percent, 51 percent, 52 percent,..., 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent.
  • any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
  • Embodiments of the invention provide a new class of propylene/ ⁇ -olefin block interpolymers (hereinafter "inventive polymer”, “propylene/ ⁇ -olefin interpolymers”, or variations thereof).
  • the propylene/ ⁇ -olefin interpolymers comprise propylene and one or more copolymerizable ⁇ -olefin comonomers in polymerized form, characterized by multiple (i.e., two or more) blocks or segments of two or more polymerized monomer units differing in chemical or physical properties (block interpolymer), preferably a multi-block copolymer.
  • the multi-block copolymer can be represented by the following formula:
  • n is at least 1, preferably an integer greater than 1, such as 2, 3, 4, 5, 10,
  • Hard segments refer to blocks of polymerized units in which propylene is present in an amount greater than 95 weight percent, and preferably greater than 98 weight percent. In other words, the comonomer content in the hard segments is less than 5 weight percent, and preferably less than 2 weight percent. In some embodiments, the hard segments comprises all or substantially all propylene.
  • Soft segments refer to blocks of polymerized units in which the comonomer content is greater than 5 weight percent, preferably greater than 8 weight percent, greater than 10 weight percent, or greater than 15 weight percent, hi some embodiments, the comonomer content in the soft segments can be greater than 20 weight percent, greater than 25 eight percent, greater than 30 weight percent, greater than 35 weight percent, greater than 40 weight percent, greater than 45 weight percent, greater than 50 weight percent, or greater than 60 weight percent.
  • a blocks and B blocks are randomly distributed along the polymer chain.
  • the block copolymers do not have a structure like:
  • the block copolymers do not have a third type of block.
  • each of block A and block B has monomers or comonomers randomly distributed within the block.
  • neither block A nor block B comprises two or more segments (or sub-blocks) of distinct composition, such as a tip segment, which has a different composition than the rest of the block.
  • the propylene/ ⁇ -olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, M w /M n , greater than about 1.3.
  • the average block index, ABI is the weight average of the block index ("BI") for each of the polymer fractions obtained in preparative TREF (i.e., fractionation of a polymer by Temperature Rising Elution Fractionation) from 20 0 C and 110 0 C, with an increment of 5°C (although other temperature increments, such as I 0 C, 2°C, 10 0 C, also can be used):
  • BIj is the block index for the ith fraction of the inventive propylene/ ⁇ -olefin interpolymer obtained in preparative TREF
  • Wj is the weight percentage of the ith fraction.
  • the square root of the second moment about the mean hereinafter referred to as the second moment weight average block index, can be defined as follows.
  • N is defined as the number of fractions with BIi greater than zero.
  • BI is defined by one of the two following equations (both of which give the same BI value):
  • Tx is the ATREF (i.e., analytical TREF) elution temperature for the ith fraction (preferably expressed in Kelvin)
  • Px is the propylene mole fraction for the ith fraction, which can be measured by NMR or IR as described below.
  • P AB is the propylene mole fraction of the whole propylene/ ⁇ -olefin interpolymer (before fractionation), which also can be measured by NMR or IR.
  • T A and P A are the ATREF elution temperature and the propylene mole fraction for pure "hard segments" (which refer to the crystalline segments of the interpolymer).
  • the T A and P A values are set to those for isotactic polypropylene homopolymer catalyzed by a Ziegler-Natta catalyst.
  • T AB is the ATREF elution temperature for a random copolymer of the same composition and preferably with the same tacticity and regio defects that produces the hard segments within the block copolymer (having a propylene mole fraction of P AB ) and molecular weight as the inventive copolymer.
  • T AB can be calculated from the mole fraction of propylene (measured by NMR) using the following equation:
  • ⁇ and ⁇ are two constants which can be determined by a calibration using a number of well characterized preparative TREF fractions of a broad composition random copolymer and/or well characterized random propylene copolymers with narrow composition.
  • the TREF fractions have been prepared from random propylene copolymers produced with substantially the same or similar catalyst as the hard segments expected within the block copolymer. This is important to account for slight temperature differences that result in the propylene crystallinity due to defects from tacticity and regio insertion errors. If such random copolymers are not available, TREF fractions from random copolymers produced by a Ziegler-Natta catalyst known to produce highly isotactic polypropylene can be used.
  • ⁇ and ⁇ may vary from instrument to instrument. Moreover, one would need to create an appropriate calibration curve with the polymer composition of interest, using appropriate molecular weight ranges and comonomer type for the preparative TREF fractions and/or random copolymers used to create the calibration. There is a slight molecular weight effect. If the calibration curve is obtained from similar molecular weight ranges, such effect would be essentially negligible.
  • T ⁇ o is the ATREF temperature for a random copolymer of the same composition (i.e., the same comonomer type and content) and the same molecular weight and having a propylene mole fraction of Px.
  • the weight average block index, ABI for the whole polymer can be calculated, hi some embodiments, ABI is greater than zero but less than about 0.4 or from about 0.1 to about 0.3. In other embodiments, ABI is greater than about 0.4 and up to about 1.0. Preferably, ABI should be in the range of from about 0.4 to about 0.7, from about 0.5 to about 0.7, or from about 0.6 to about 0.9.
  • ABI is in the ranee of from about 0.3 to about 0.9, from about 0.3 to about 0.8, or from about 0.3 to about 0.7, from about 0.3 to about 0.6, from about 0.3 to about 0.5, or from about 0.3 to about 0.4. In other embodiments, ABI is in the range of from about 0.4 to about 1.0, from about 0.5 to about 1.0, or from about 0.6 to about 1.0, from about 0.7 to about 1.0, from about 0.8 to about 1.0, or from about 0.9 to about 1.0.
  • the inventive propylene/ ⁇ -olefin interpolymer comprises at least one polymer fraction which can be obtained by preparative TREF, wherein the fraction has a block index greater than about 0.1 and up to about 1.0 and the polymer having a molecular weight distribution, M w /M n , greater than about 1.3.
  • the polymer fraction has a block index greater than about 0.6 and up to about 1.0, greater than about 0.7 and up to about 1.0, greater than about 0.8 and up to about 1.0, or greater than about 0.9 and up to about 1.0.
  • the polymer fraction has a block index greater than about 0.1 and up to about 1.0, greater than about 0.2 and up to about 1.0, greater than about 0.3 and up to about 1.0, greater than about 0.4 and up to about 1.0, or greater than about 0.4 and up to about 1.0. In still other embodiments, the polymer fraction has a block index greater than about 0.1 and up to about 0.5, greater than about 0.2 and up to about 0.5, greater than about 0.3 and up to about 0.5, or greater than about 0.4 and up to about 0.5.
  • the polymer fraction has a block index greater than about 0.2 and up to about 0.9, greater than about 0.3 and up to about 0.8, greater than about 0.4 and up to about 0.7, or greater than about 0.5 and up to about 0.6.
  • the propylene/ ⁇ -olefin interpolymers are characterized by one or more of the properties described as follows.
  • the propylene/ ⁇ -olefin interpolymers used in embodiments of the invention have a M w /M n from about 1.7 to about 3.5 and at least one melting point, T m , in degrees Celsius and ⁇ -olefin content, in weight %, wherein the numerical values of the variables correspond to the relationship:
  • the inventive interpolymers exhibit melting points substantially independent of the ⁇ -olefin content, particularly when ⁇ -olefin content is between about 2 to about 15 weight %.
  • the propylene/ ⁇ -olefin interpolymers have a molecular fraction which elutes between 40 0 C and 130 0 C when fractionated using Temperature Rising Elution Fractionation ("TREF"), characterized in that said fraction has a molar comonomer content higher, preferably at least 5 percent higher, more preferably at least 10 percent higher, than that of a comparable random propylene interpolymer fraction eluting between the same temperatures, wherein the comparable random propylene interpolymer contains the same comonomer(s), and has a melt index, density, and molar comonomer content (based on the whole polymer) within 10 percent of that of the block interpolymer.
  • TEZ Temperature Rising Elution Fractionation
  • the Mw/Mn of the comparable interpolymer is also within 10 percent of that of the block interpolymer and/or the comparable interpolymer has a total comonomer content within 10 weight percent of that of the block interpolymer.
  • the propylene/ ⁇ -olefin interpolymers are characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle measured on a compression-molded film of a propylene/ ⁇ -olefin interpolymer, and has a density, d, in grams/cubic centimeter, wherein the numerical values of Re and d satisfy the following relationship when propylene/ ⁇ -olefin interpolymer is substantially free of a cross-linked phase:
  • the propylene/ ⁇ -olefin interpolymers have a tensile strength above 10 MPa, preferably a tensile strength > 11 MPa, more preferably a tensile strength > 13 MPa and/or an elongation at break of at least 600 percent, more preferably at least 700 percent, highly preferably at least 800 percent, and most highly preferably at least 900 percent at a crosshead separation rate of 11 cm/minute.
  • the propylene/ ⁇ -olefin interpolymers have (1) a storage modulus ratio, G'(25°C)/G'(100°C), of from 1 to 50, preferably from 1 to 20, more preferably from 1 to 10; and/or (2) a 70 0 C compression set of less than 80 percent, preferably less than 70 percent, especially less than 60 percent, less than 50 percent, or less than 40 percent, down to a compression set of 0 percent.
  • the propylene/ ⁇ -olefin interpolymers have a 70 0 C compression set of less than 80 percent, less than 70 percent, less than 60 percent, or less than 50 percent.
  • the 70 0 C compression set of the interpolymers is less than 40 percent, less than 30 percent, less than 20 percent, and may go down to about 0 percent.
  • the propylene/ ⁇ -olefin interpolymers have a heat of fusion of less than 85 J/g and/or a pellet blocking strength of equal to or less than 100 pounds/foor (4800 Pa), preferably equal to or less than 50 lbs/ft (2400 Pa), especially equal to or less than 5 lbs/ft 2 (240 Pa), and as low as 0 lbs/ft 2 (0 Pa).
  • the propylene/ ⁇ -olefin interpolymers comprise, in polymerized form, at least 50 mole percent propylene and have a 70 0 C compression set of less than 80 percent, preferably less than 70 percent or less than 60 percent, most preferably less than 40 to 50 percent and down to close to zero percent.
  • the multi-block copolymers possess a PDI fitting a
  • the copolymers are further characterized as having both a polydisperse block distribution and a polydisperse distribution of block sizes and possessing a most probable distribution of block lengths.
  • Preferred multi- block copolymers are those containing 4 or more blocks or segments including terminal blocks. More preferably, the copolymers include at least 5, 10 or 20 blocks or segments including terminal blocks .
  • the inventive block interpolymers have additional characteristics or properties.
  • the interpolymers preferably comprising propylene and one or more copolymerizable comonomers in polymerized form, are characterized by multiple blocks or segments of two or more polymerized monomer units differing in chemical or physical properties (blocked interpolymer), most preferably a multi-block copolymer, said block interpolymer having a molecular fraction which elutes between 40 0 C and 130 0 C when fractionated using TREF, characterized in that said fraction has a molar comonomer content higher, preferably at least 5 percent higher, more preferably at least 10 percent higher, than that of a comparable random propylene interpolymer fraction eluting between the same temperatures, wherein said comparable random propylene interpolymer comprises the same comonomer(s), and has a melt index, density, and molar comonomer content (based on the whole polymer) within 10 percent of that of the blocked interpolymer.
  • Comonomer content may be measured using any suitable technique, with techniques based on nuclear magnetic resonance ("NMR") spectroscopy preferred. Moreover, for polymers or blends of polymers having relatively broad TREF curves, the polymer is first fractionated using TREF into fractions each having an eluted temperature range of 10 0 C or less. That is, each eluted fraction has a collection temperature window of 10 0 C or less. Using this technique, said block interpolymers have at least one such fraction having a higher molar comonomer content than a corresponding fraction of the comparable interpolymer.
  • the inventive polymer is an olefin interpolymer, preferably comprising propylene and one or more copolymerizable comonomers in polymerized form, characterized by multiple blocks (i.e., at least two blocks) or segments of two or more polymerized monomer units differing in chemical or physical properties (blocked interpolymer), most preferably a multi-block copolymer, said block interpolymer having a peak (but not just a molecular fraction) which elutes between 40 0 C and 130 0 C (but without collecting and/or isolating individual fractions), characterized in that said peak, has a comonomer content estimated by infra-red spectroscopy when expanded using a full width/half maximum (FWHM) area calculation, has an average molar comonomer content higher, preferably at least 5 percent higher, more preferably at least 10 percent higher, than that of a comparable random propylene interpolymer peak at the same el
  • FWHM full
  • the Mw/Mn of the comparable interpolymer is also within 10 percent of that of the blocked interpolymer and/or the comparable interpolymer has a total comonomer content within 10 weight percent of that of the blocked interpolymer.
  • the full width/half maximum (FWHM) calculation is based on the ratio of methyl to methylene response area [CH 3 /CH 2 ] from the ATREF infra-red detector, wherein the tallest (highest) peak is identified from the base line, and then the FWHM area is determined.
  • the FWHM area is defined as the area under the curve between Ti and T 2 , where Ti and T 2 are points determined, to the left and right of the ATREF peak, by dividing the peak height by two, and then drawing a line horizontal to the base line, that intersects the left and right portions of the ATREF curve.
  • a calibration curve for comonomer content is made using random propylene/ ⁇ -olefin copolymers, plotting comonomer content from NMR versus FWHM area ratio of the TREF peak. For this infra-red method, the calibration curve is generated for the same comonomer type of interest.
  • the comonomer content of TREF peak of the inventive polymer can be determined by referencing this calibration curve using its FWHM methyl : methylene area ratio [CH 3 /CH 2 ] of the TREF peak.
  • Comonomer content may be measured using any suitable technique, with techniques based on nuclear magnetic resonance (NMR) spectroscopy preferred. Using this technique, said blocked interpolymer has higher molar comonomer content than a corresponding comparable interpolymer.
  • NMR nuclear magnetic resonance
  • the block interpolymer has a comonomer content of the TREF fraction eluting between 40 and 130 0 C greater than or equal to the quantity (- 0.1236) T + 13.337, more preferably greater than or equal to the quantity (-0.1236) T+ 14.837, where T is the numerical value of the peak elution temperature of the TREF fraction being compared, measured in 0 C.
  • the inventive polymers can be characterized by one or more additional characteristics.
  • the inventive polymer is an olefin interpolymer, preferably comprising propylene and one or more copolymerizable comonomers in polymerized form, characterized by multiple blocks or segments of two or more polymerized monomer units differing in chemical or physical properties (blocked interpolymer), most preferably a multi-block copolymer, said block interpolymer having a molecular fraction which elutes between 40 0 C and 130 0 C, when fractionated using TREF increments, characterized in that said fraction has a molar comonomer content higher, preferably at least 5 percent higher, more preferably at least 10, 15, 20 or 25 percent higher, than that of a comparable random propylene interpolymer fraction eluting between the same temperatures, wherein said comparable random propylene interpolymer comprises the same comonomer(s), preferably it is the same comonomer(s), and a melt index, density, and molar comonomer content (based on
  • the Mw/Mn of the comparable interpolymer is also within 10 percent of that of the blocked interpolymer and/or the comparable interpolymer has a total comonomer content within 10 weight percent of that of the blocked interpolymer.
  • the above interpolymers are interpolymers of propylene and at least one ⁇ -olefin, especially those interpolymers having a whole polymer density from about 0.855 to about 0.935 g/cm 3 , and more especially for polymers having more than about 1 mole percent comonomer, the blocked interpolymer has a comonomer content of the TREF fraction eluting between 40 and 130 0 C greater than or equal to the quantity (- 0.1236) T + 13.337, more preferably greater than or equal to the quantity (-0.1236) T+ 14.337, and most preferably greater than or equal to the quantity (-0.1236)T + 13.837, where T is the numerical value of the peak ATREF elution temperature of the TREF fraction being compared, measured in 0 C.
  • the inventive polymer is an olefin interpolymer, preferably comprising propylene and one or more copolymerizable comonomers in polymerized form, characterized by multiple blocks or segments of two or more polymerized monomer units differing in chemical or physical properties (blocked interpolymer), most preferably a multi-block copolymer, said block interpolymer having a molecular fraction which elutes between 40 0 C and 130°C, when fractionated using TREF increments, characterized in that every fraction having a comonomer content of at least about 6 mole percent, has a melting point greater than about 100 0 C.
  • every fraction has a DSC melting point of about 110 0 C or higher. More preferably, said polymer fractions, having at least 1 mol percent comonomer, has a DSC melting point that corresponds to the equation:
  • Tm > (-5.5926)(mol percent comonomer in the fraction) + 135.90.
  • the inventive polymer is an olefin interpolymer, preferably comprising propylene and one or more copolymerizable comonomers in polymerized form, characterized by multiple blocks or segments of two or more polymerized monomer units differing in chemical or physical properties (blocked interpolymer), most preferably a multi-block copolymer, said block interpolymer having a molecular fraction which elutes between 40 0 C and 130 0 C, when fractionated using TREF increments, characterized in that every fraction that has an ATREF elution temperature greater than or equal to about 76°C, has a melt enthalpy (heat of fusion) as measured by DSC, corresponding to the equation:
  • the inventive block interpolymers have a molecular fraction which elutes between 40 0 C and 130 0 C, when fractionated using TREF increments, characterized in that every fraction that has an ATREF elution temperature between 40 0 C and less than about 76°C, has a melt enthalpy (heat of fusion) as measured by DSC, corresponding to the equation:
  • the comonomer composition of the TREF peak can be measured using an IR4 infra-red detector available from Polymer Char, Valencia, Spain (http://wwvy.polymerchar.com/).
  • the "composition mode" of the detector is equipped with a measurement sensor (CH 2 ) and composition sensor (CH 3 ) that are fixed narrow band infra-red filters in the region of 2800-3000 cm "1 .
  • the measurement sensor detects the methylene (CH 2 ) carbons on the polymer (which directly relates to the polymer concentration in solution) while the composition sensor detects the methyl (CH 3 ) groups of the polymer.
  • the mathematical ratio of the composition signal (CH 3 ) divided by the measurement signal (CH?) is sensitive to the comonomer content of the measured polymer in solution and its response is calibrated with known propylene alpha-olefin copolymer standards.
  • the detector when used with an ATREF instrument provides both a concentration (CH 2 ) and composition (CH 3 ) signal response of the eluted polymer during the TREF process.
  • a polymer specific calibration can be created by measuring the area ratio of the CH 3 to CH 2 for polymers with known comonomer content (preferably measured by NMR).
  • the comonomer content of an ATREF peak of a polymer can be estimated by applying the reference calibration of the ratio of the areas for the individual CH 3 and CH 2 response (i.e. area ratio CH 3 /CH 2 versus comonomer content).
  • the area of the peaks can be calculated using a full width/half maximum
  • FWHM FWHM calculation after applying the appropriate baselines to integrate the individual signal responses from the TREF chromatogram.
  • the full width/half maximum calculation is based on the ratio of methyl to methylene response area [CH 3 ZCH 2 ] from the ATREF infra- red detector, wherein the tallest (highest) peak is identified from the base line, and then the FWHM area is determined.
  • the FWHM area is defined as the area under the curve between Tl and T2, where Tl and T2 are points determined, to the left and right of the ATREF peak, by dividing the peak height by two, and then drawing a line horizontal to the base line, that intersects the left and right portions of the ATREF curve.
  • TREF fractions in the above description are obtained in a 5 0 C increment, other temperature increments are possible.
  • a TREF fraction could be in a 4 0 C increment, a 3 0 C increment, a 2 0 C increment, or 1 0 C increment.
  • the inventive polymers preferably possess (1) a PDI of at least 1.3, more preferably at least 1.5, at least 1.7, or at least 2.0, and most preferably at least 2.6, up to a maximum value of 5.0, more preferably up to a maximum of 3.5, and especially up to a maximum of 2.7; (2) a heat of fusion of 80 J/g or less; (3) a propylene content of at least 50 weight percent; (4) a glass transition temperature, T g , of less than -5°C, more preferably less than -15°C, and/or (5) one and only one T ra .
  • the inventive polymers can have, alone or in combination with any other properties disclosed herein, a storage modulus, G', such that log (G') is greater than or equal to 400 kPa, preferably greater than or equal to 1.0 MPa, at a temperature of 100 0 C.
  • G' storage modulus
  • the inventive polymers possess a relatively flat storage modulus as a function of temperature in the range from 0 to 100 0 C that is characteristic of block copolymers, and heretofore unknown for an olefin copolymer, especially a copolymer of propylene and one or more ethylene or C 4-8 aliphatic ⁇ -olefins.
  • a storage modulus such that log (G') is greater than or equal to 400 kPa, preferably greater than or equal to 1.0 MPa, at a temperature of 100 0 C.
  • the inventive polymers possess a relatively flat storage modulus as a function of temperature in the range from 0 to 100 0 C that is characteristic of block cop
  • the inventive interpolymers may be further characterized by a thermomechanical analysis penetration depth of 1 mm at a temperature of at least 90 0 C as well as a flexural modulus of from 3 kpsi (20 MPa) to 13 kpsi (90 MPa).
  • the inventive interpolymers can have a thermomechanical analysis penetration depth of 1 mm at a temperature of at least 104 0 C as well as a flexural modulus of at least 3 kpsi (20 MPa). They may be characterized as having an abrasion resistance (or volume loss) of less than 90 mm 3 .
  • the propylene/ ⁇ -olefin interpolymers can have a melt index, I 2 , from 0.01 to 2000 g/10 minutes, preferably from 0.01 to 1000 g/10 minutes, more preferably from 0.01 to 500 g/10 minutes, and especially from 0.01 to 100 g/10 minutes.
  • the propylene/ ⁇ -olefin interpolymers have a melt index, I 2 , from 0.01 to 10 g/10 minutes, from 0.5 to 50 g/10 minutes, from 1 to 30 g/10 minutes, from 1 to 6 g/10 minutes or from 0.3 to lO g/10 minutes.
  • the melt index for the propylene/ ⁇ -olefin polymers is lg/10 minutes, 3 g/10 minutes or 5 g/10 minutes.
  • the polymers can have molecular weights, M w , from 1,000 g/mole to 5,000,000 g/mole, preferably from 1000 g/mole to 1,000,000, more preferably from 10,000 g/mole to 500,000 g/mole, and especially from 10,000 g/mole to 300,000 g/mole.
  • the density of the inventive polymers can be from 0.80 to 0.99 g/cm 3 and preferably for propylene containing polymers from 0.85 g/cm 3 to 0.90 g/cm 3 .
  • the density of the propylene/ ⁇ -olefin polymers ranges from 0.860 to 0.89 g/cm 3 or 0.865 to 0.885 g/cm 3 .
  • one such method comprises contacting propylene and optionally one or more addition polymerizable monomers other than propylene under addition polymerization conditions with a catalyst composition comprising:
  • Catalyst (Al) is [N-(2,6-di(l -methylethyl)phenyl)amido)(2- isopropylphenyl)( ⁇ -naphthalen-2-diyl(6-pyridin-2-diyl)methane) ]hafnium dimethyl, prepared according to the teachings of WO 03/40195.
  • Catalyst (A2) is [N-(2,6-di(l -methylethyl)phenyl)amido)(2- methylphenylX 1 ,2-phenylene-(6-pyridin-2-diyl)methane)]hafnium dimethyl, prepared according to the teachings of WO 03/40195, U.S. Patents No. 6,953,764 and No. 6,960,635, and WO 04/24740.
  • Catalyst (A3) is bis[N,N'" -(2,4,6- tri(methylphenyl)amido)eth>lenediamine]hafnium dibenzyl.
  • Catalyst (A4) is bis((2-oxoyl-3-(dibenzo-lH-pyrrole-l-yl)-5-(methyl)phenyl)-
  • Catalyst (Bl) is l,2-bis-(3,5-di-t ⁇ butylphenylene)(l-(N-(l- methylethyl)immino)methyl)(2-oxoyl) zirconium dibenzyl
  • Catalyst (B2) is l,2-bis-(3,5-di-t-butylphenylene)(l-(N-(2-methylcyclohexyl)- immino)methyl)(2-oxoyl) zirconium dibenzyl
  • Catalyst (Cl) is (t-butylamido)dimethyl(3-N-pyrrolyl-l,2,3,3a,7a- ⁇ -inden-l- yl)silanetitanium dimethyl prepared substantially according to the techniques of U.S. Patent No. 6,268,444:
  • Catalyst (C2) is (t-butylamido)di(4-methylphenyl)(2-methyl- 1,2,3, 3a,7a- ⁇ - inden-l-yl)silanetitanium dimethyl prepared substantially according to the teachings of U.S. Patent No. 6,825,295:
  • Catalyst (C3) is (t-butylamido)di(4-methylphenyl)(2-methyl-l,2,3,3a,8a- ⁇ -s- indacen-l-yl)silanetitanium dimethyl prepared substantially according to the teachings of U.S. Patent No. 6,825,295:
  • Catalyst (Dl) is bis(dimethyldisiloxane)(indene-l-yl)zirconium dichloride available from Sigma-Aldrich:
  • shuttling agents include diethylzinc, di(i- butyl)zinc, di(n-hexyl)zinc, triethylaluminum, trioctylaluminum, triethylgallium, i- butylaluminum bis(dimethyl(t-butyl)siloxane), i-butylaluminum bis(di(trimethylsilyl)amide), n-octylaluminum di(pyridine-2-methoxide), bis(n-octadecyl)i-butylaluminum, i- butylaluminum bis(di(n-pentyl)amide), n-octylaluminum bis(2,6-di-t-butylphenoxide, n- octylaluminum di(ethyl(l-naphthyl)amide), ethylalumin
  • the foregoing process takes the form of a continuous solution process for forming block copolymers, especially multi-block copolymers, preferably linear multi-block copolymers of two or more monomers, more especially ethylene and a C 4 - 20 olefin or cycloolefin, and most especially a C 4-2O ⁇ -olefin, using multiple catalysts that are incapable of interconversion. That is, the catalysts are chemically distinct.
  • the process is ideally suited for polymerization of mixtures of monomers at high monomer conversions. Under these polymerization conditions, shuttling from the chain shuttling agent to the catalyst becomes advantaged compared to chain growth, and multi-block copolymers, especially linear multi-block copolymers are formed in high efficiency.
  • inventive interpolymers may be differentiated from conventional, random copolymers, physical blends of polymers, and block copolymers prepared via sequential monomer addition, fluxional catalysts, anionic or cationic living polymerization techniques.
  • inventive interpolymers compared to a random copolymer of the same monomers and monomer content at equivalent crystallinity or modulus, the inventive interpolymers have better (higher) heat resistance as measured by melting point, higher TMA penetration temperature, higher high- temperature tensile strength, and/or higher high-temperature torsion storage modulus as determined by dynamic mechanical analysis.
  • the inventive interpolymers Compared to a random copolymer containing the same monomers and monomer content, the inventive interpolymers have lower compression set, particularly at elevated temperatures, lower stress relaxation, higher creep resistance, higher tear strength, higher blocking resistance, faster setup due to higher crystallization (solidification) temperature, higher recovery (particularly at elevated temperatures), better abrasion resistance, higher retractive force, and better oil and filler acceptance.
  • inventive interpolymers also exhibit a unique crystallization and branching distribution relationship. That is, the inventive interpolymers have a relatively large difference between the tallest peak temperature measured using CRYSTAF and DSC as a function of heat of fusion, especially as compared to random copolymers containing the same monomers and monomer level or physical blends of polymers, such as a blend of a high density polymer and a lower density copolymer, at equivalent overall density. It is believed that this unique feature of the inventive interpolymers is due to the unique distribution of the comonomer in blocks within the polymer backbone.
  • the inventive interpolymers may comprise alternating blocks of differing comonomer content (including homopolymer blocks).
  • inventive interpolymers may also comprise a distribution in number and/or block size of polymer blocks of differing density or comonomer content, which is a Schultz-Flory type of distribution.
  • inventive interpolymers also have a unique peak melting point and crystallization temperature profile that is substantially independent of polymer density, modulus, and morphology.
  • the microcrystalline order of the polymers demonstrates characteristic spherulites and lamellae that are distinguishable from random or block copolymers, even at PDI values that are less than 1.7, or even less than 1.5, down to less than 1.3.
  • inventive interpolymers may be prepared using techniques to influence the degree or level of blockiness. That is, the amount of comonomer and length of each polymer block or segment can be altered by controlling the ratio and type of catalysts and shuttling agent as well as the temperature of the polymerization, and other polymerization variables.
  • a surprising benefit of this phenomenon is the discovery that as the degree of blockiness is increased, the optical properties, tear strength, and high temperature recovery properties of the resulting polymer are improved. In particular, haze decreases while clarity, tear strength, and high temperature recovery properties increase as the average number of blocks in the polymer increases.
  • shuttling agents and catalyst combinations having the desired chain transferring ability high rates of shuttling with low levels of chain termination
  • other forms of polymer termination are effectively suppressed. Accordingly, little if any ⁇ -hydride elimination is observed in the polymerization of propylene/ ⁇ -olefin comonomer mixtures according to embodiments of the invention, and the resulting crystalline blocks are highly, or substantially completely, linear, possessing little or no long chain branching.
  • Polymers with highly crystalline chain ends can be selectively prepared in accordance with embodiments of the invention.
  • reducing the relative quantity of polymer that terminates with an amorphous block reduces the intermolecular dilutive effect on crystalline regions.
  • This result can be obtained by choosing chain shuttling agents and catalysts having an appropriate response to hydrogen or other chain terminating agents. Specifically, if the catalyst which produces highly crystalline polymer is more susceptible to chain termination (such as by use of hydrogen) than the catalyst responsible for producing the less crystalline polymer segment (such as through higher comonomer incorporation, regio-error, or atactic polymer formation), then the highly crystalline polymer segments will preferentially populate the terminal portions of the polymer.
  • both ends of the resulting multi-block copolymer are preferentially highly crystalline.
  • the propylene ⁇ -olefin interpolymers used in the embodiments of the invention are preferably interpolymers of propylene with at least one ethylene or C4-C2O ⁇ ⁇ olefin. Copolymers of propylene and an ethylene or C4-C20 ⁇ -olefin are especially preferred.
  • the interpolymers may further comprise C4-C18 diolefin and/or alkenylbenzene.
  • Suitable unsaturated comonomers useful for polymerizing with propylene include, for example, ethylenically unsaturated monomers, conjugated or nonconjugated dienes, polyenes, alkenylbenzenes, etc.
  • Examples of such comonomers include ethylene or C4-C20 ⁇ -olefins such as, isobutylene, 1-butene, 1-hexene, 1-pentene, 4-methyl-l-pentene, 1-heptene, 1- octene, 1-nonene, 1-decene, and the like. 1-Butene and 1-octene are especially preferred.
  • Suitable monomers include styrene, halo- or alkyl-substituted styrenes, vinylbenzocyclobutane, 1,4-hexadiene, 1 ,7-octadiene, and naphthenics (e.g., cyclopentene, cyclohexene and cyclooctene).
  • propylene/ ⁇ -olefin interpolymers are preferred polymers, other propylene/olefin polymers may also be used.
  • Olefins as used herein refer to a family of unsaturated hydrocarbon-based compounds with at least one carbon-carbon double bond. Depending on the selection of catalysts, any olefin may be used in embodiments of the invention.
  • suitable olefins are ethylene or C4-C20 aliphatic and aromatic compounds containing vinylic unsaturation, as well as cyclic compounds, such as cyclobutene, cyclopentene, dicyclopentadiene, and norbornene, including but not limited to, norbornene substituted in the 5 and 6 position with C1-C20 hydrocarbyl or cyclohydrocarbyl groups. Also included are mixtures of such olefins as well as mixtures of such olefins with C4-C40 diolefin compounds.
  • olefin monomers include, but are not limited to propylene, isobutylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and 1- dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-l-butene, 3- methyl-1-pentene, 4-methyl-l-pentene, 4,6-dimethyl-l-heptene, 4-vinylcyclohexene, vinylcyclohexane, norbornadiene, ethylidene norbomene, cyclopentene, cyclohexene, dicyclopentadiene, cyclooctene, C4-C40 dienes, including but not limited to 1,3-butadiene, 1,3-pentadiene, 1,4-hex
  • the ⁇ -olefin is propylene, 1-butene, 1-pentene, 1-hexene, 1-octene or a combination thereof.
  • any hydrocarbon containing a vinyl group potentially may be used in embodiments of the invention, practical issues such as monomer availability, cost, and the ability to conveniently remove unreacted monomer from the resulting polymer may become more problematic as the molecular weight of the monomer becomes too high.
  • polystyrene, o-methyl styrene, p-methyl styrene, t-butylstyrene, and the like are well suited for the production of olefin polymers comprising monovinylidene aromatic monomers including styrene, o-methyl styrene, p-methyl styrene, t-butylstyrene, and the like.
  • interpolymers comprising propylene and styrene can be prepared by following the teachings herein.
  • copolymers comprising propylene, styrene and a C4-C20 alpha olefin, optionally comprising a C4-C20 diene, having improved properties can be prepared.
  • Suitable non-conjugated diene monomers can be a straight chain, branched chain or cyclic hydrocarbon diene having from 6 to 15 carbon atoms.
  • suitable non-conjugated dienes include, but are not limited to, straight chain acyclic dienes, such as 1,4-hexadiene, 1,6-octadiene, 1,7-octadiene, 1,9-decadiene, branched chain acyclic dienes, such as 5-methyl- 1,4-hexadiene; 3,7-dimethyl- 1,6-octadiene; 3, 7-dimethyl- 1,7-octadiene and mixed isomers of dihydromyricene and dihydroocinene, single ring alicyclic dienes, such as 1,3-cyclopentadiene; 1,4-cyclohexadiene; 1,5-cyclooctadiene and 1,5-cyclododecadiene, and multi-ring alicycl
  • the particularly preferred dienes are 1,4-hexadiene (HD), 5-ethylidene-2-norbornene (ENB), 5-vinylidene-2-norbornene (VNB), 5-methylene-2- norbomene (MNB), and dicyclopentadiene (DCPD).
  • the especially preferred dienes are 5- ethylidene-2-norbornene (ENB) and 1 ,4-hexadiene (HD).
  • One class of desirable polymers that can be made in accordance with embodiments of the invention are elastomeric interpolymers of ethylene, a C4-C20 ⁇ -olefin, especially propylene, and optionally one or more diene monomers.
  • suitable ⁇ -olefins include, but are not limited to, propylene, isobutylene, 1-butene, 1-pentene, 1-hexene, 4-methyl- 1-pentene, and 1-octene.
  • a particularly preferred ⁇ -olefin is propylene.
  • the propylene based polymers are generally referred to in the art as EP or EPDM polymers.
  • Suitable dienes for use in preparing such polymers, especially multi-block EPDM type polymers include conjugated or non-conjugated, straight or branched chain-, cyclic- or polycyclic- dienes comprising from 4 to 20 carbons.
  • Preferred dienes include 1,4-pentadiene, 1 ,4-hexadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, cyclohexadiene, and 5- butylidene-2-norbornene.
  • a particularly preferred diene is 5-ethylidene-2-norbornene.
  • the diene containing polymers comprise alternating segments or blocks containing greater or lesser quantities of the diene (including none) and ⁇ -olefin (including none), the total quantity of diene and ⁇ -olefin may be reduced without loss of subsequent polymer properties. That is, because the diene and ⁇ -olefin monomers are preferentially incorporated into one type of block of the polymer rather than uniformly or randomly throughout the polymer, they are more efficiently utilized and subsequently the crosslink density of the polymer can be better controlled. Such crosslinkable elastomers and the cured products have advantaged properties, including higher tensile strength and better elastic recovery.
  • the inventive interpolymers made with two catalysts incorporating differing quantities of comonomer have a weight ratio of blocks formed thereby from 95:5 to 5:95.
  • the elastomeric polymers desirably have a propylene content of from 50 to 97 percent, a diene content of from 0.1 to 10 percent, and an ⁇ -olefin content of from 3 to 50 percent, based on the total weight of the polymer.
  • the multi-block elastomeric polymers have a propylene content of from 60 to 97 percent, a diene content of from 0.1 to 10 percent, and an ⁇ -olefin content of from 3 to 40 percent, based on the total weight of the polymer.
  • Preferred polymers are high molecular weight polymers, having a weight average molecular weight (Mw) from 10,000 to about 2,500,000, preferably from 20,000 to 500,000, more preferably from 20,000 to 350,000, and a polydispersity less than 3.5, more preferably less than 3.0, and a Mooney viscosity (ML (1+4) 125°C.) from 1 to 250. More preferably, such polymers have a propylene content from 65 to 75 percent, a diene content from 0 to 6 percent, and an ⁇ -olefin content from 20 to 35 percent.
  • Mw weight average molecular weight
  • the propylene/ ⁇ -olefin interpolymers can be functionalized by incorporating at least one functional group in its polymer structure.
  • exemplary functional groups may include, for example, ethylenically unsaturated mono- and di-functional carboxylic acids, ethylenically unsaturated mono- and di-functional carboxylic acid anhydrides, salts thereof and esters thereof.
  • Such functional groups may be grafted to a propylene/ ⁇ -olefin interpolymer, or may be copolymerized with propylene and an optional additional comonomer to form an interpolymer of propylene, the functional comonomer and optionally other comonomer(s).
  • the amount of the functional group present in the functional interpolymer can vary.
  • the functional group can typically be present in a copolymer-type functionalized interpolymer in an amount of at least about 1.0 weight percent, preferably at least about 5 weight percent, and more preferably at least about 7 weight percent.
  • the functional group will typically be present in a copolymer-type functionalized interpolymer in an amount less than about 40 weight percent, preferably less than about 30 weight percent, and more preferably less than about 25 weight percent.
  • Random copolymers satisfy the following relationship. See P. J. Flory, Trans.
  • Equation 1 the mole fraction of crystallizable monomers, P, is related to the melting temperature, T 1n , of the copolymer and the melting temperature of the pure crystallizable homopolymer, T m °.
  • the equation is similar to the relationship for the natural logarithm of the mole fraction of propylene as a function of the reciprocal of the ATREF elution temperature ( 0 K).
  • the mole fraction of isotactic propylene in random copolymers primarily determines a specific distribution of propylene segments whose crystallization behavior in turn is governed by the minimum equilibrium crystal thickness at a given temperature. Therefore, the copolymer melting and TREF crystallization temperatures of the inventive block copolymers are related to the magnitude of the deviation from the random relationship, and such deviation is a useful way to quantify how "blocky" a given TREF fraction is relative to its random equivalent copolymer (or random equivalent TREF fraction).
  • blocky refers to the extent a particular polymer fraction or polymer comprises blocks of polymerized monomers or comonomers. There are two random equivalents, one corresponding to constant temperature and one corresponding to constant mole fraction of propylene. These form the sides of a right triangle.
  • the point (Tx, Px) represents a preparative TREF fraction, where the ATREF elution temperature, Tx, and the NMR propylene mole fraction, Px, are measured values.
  • the propylene mole fraction of the whole polymer, P AB is also measured by NMR.
  • the "hard segment" elution temperature and mole fraction, (T A , P A ) can be estimated or else set to that of an isotactic propylene homopolymer (prepared by a stereospecific Ziegler-Natta catalyst) for propylene copolymers.
  • the T AB value corresponds to the calculated random copolymer equivalent ATREF elution temperature based on the measured P AB - From the measured ATREF elution temperature, T ⁇ , the corresponding random propylene mole fraction, P ⁇ o, can also be calculated.
  • the square of the block index is defined to be the ratio of the area of the (Px, Tx) triangle and the (T A , P AB ) triangle. Since the right triangles are similar, the ratio of areas is also the squared ratio of the distances from (T A , P AB ) and (Tx, Px) to the random line.
  • the similarity of the right triangles means the ratio of the lengths of either of the corresponding sides can be used instead of the areas.
  • the inventive propylene/ ⁇ -olefin block interpolymers can be used in a variety of conventional thermoplastic fabrication processes to produce useful articles, including objects comprising at least one film layer, such as a monolayer film, or at least one layer in a multilayer film prepared by cast, blown, calendered, or extrusion coating processes; molded articles, such as blow molded, injection molded, or rotomolded articles; extrusions; fibers; and woven or non-woven fabrics.
  • Thermoplastic compositions comprising the inventive polymers include blends with other natural or synthetic polymers, additives, reinforcing agents, ignition resistant additives, antioxidants, stabilizers, colorants, extenders, crosslinkers, blowing agents, and plasticizers.
  • multi-component fibers such as core/sheath fibers, having an outer surface layer, comprising at least in part, one or more polymers according to embodiments of the invention.
  • Fibers that may be prepared from the inventive polymers or blends include staple fibers, tow, multicomponent, sheath/core, twisted, and monofilament. Suitable fiber forming processes include spinbonded, melt blown techniques, as disclosed in U.S. Patents. No. 4,430,563, 4, 663,220, 4,668,566, and 4,322,027, gel spun fibers as disclosed in U.S. Patent No. 4,413,110, woven and nonwoven fabrics, as disclosed in U.S. Patent No.
  • 3,485,706, or structures made from such fibers including blends with other fibers, such as polyester, nylon or cotton, thermoformed articles, extruded shapes, including profile extrusions and co-extrusions, calendared articles, and drawn, twisted, or crimped yams or fibers.
  • the new polymers described herein are also useful for wire and cable coating operations, as well as in sheet extrusion for vacuum forming operations, and forming molded articles, including the use of injection molding, blow molding process, or rotomolding processes.
  • Compositions comprising the olefin polymers can also be formed into fabricated articles such as those previously mentioned using conventional polyolefin processing techniques which are well known to those skilled in the art of polyolefin processing.
  • Dispersions both aqueous and non-aqueous, can also be formed using the inventive polymers or formulations comprising the same.
  • Frothed foams comprising the invented polymers can also be formed, as disclosed in PCT application No. PCT/US2004/027593, filed August 25, 2004, and published as WO2005/021622.
  • the polymers may also be crosslinked by any known means, such as the use of peroxide, electron beam, silane, azide, or other cross-linking technique.
  • the polymers can also be chemically modified, such as by grafting (for example by use of maleic anhydride (MAH), silanes, or other grafting agent), halogenation, amination, sulfonation, or other chemical modification.
  • Additives and adjuvants may be included in any formulation comprising the inventive polymers.
  • Suitable additives include fillers, such as organic or inorganic particles, including clays, talc, titanium dioxide, zeolites, powdered metals, organic or inorganic fibers, including carbon fibers, silicon nitride fibers, steel wire or mesh, and nylon or polyester cording, nano-sized particles, clays, and so forth; tackifiers, oil extenders, including paraffinic or napthelenic oils; and other natural and synthetic polymers, including other polymers according to embodiments of the invention.
  • Suitable polymers for blending with the polymers according to embodiments of the invention include thermoplastic and non-thermoplastic polymers including natural and synthetic polymers.
  • Exemplary polymers for blending include polypropylene, (both impact modifying polypropylene, isotactic polypropylene, atactic polypropylene, and random ethylene/propylene copolymers), various types of polypropylene, including high pressure, free-radical LDPE, Ziegler Natta LLDPE, metallocene PE, including multiple reactor PE ("in reactor” blends of Ziegler-Natta PE and metallocene PE, such as products disclosed in U.S. Patents No.
  • Homogeneous polymers such as olefin plastomers and elastomers, ethylene and propylene-based copolymers (for example polymers available under the trade designation VERSIFYTM available from The Dow Chemical Company and VISTAMAXXTM available from ExxonMobil Chemical Company can also be useful as components in blends comprising the inventive polymers.
  • Suitable end uses for the foregoing products include elastic films and fibers; soft touch goods, such as tooth brush handles and appliance handles; gaskets and profiles; adhesives (including hot melt adhesives and pressure sensitive adhesives); footwear (including shoe soles and shoe liners); auto interior parts and profiles; foam goods (both open and closed cell); impact modifiers for other thermoplastic polymers such as high density polypropylene, isotactic polypropylene, or other olefin polymers; coated fabrics; hoses; tubing; weather stripping; cap liners; flooring; and viscosity index modifiers, also known as pour point modifiers, for lubricants.
  • thermoplastic compositions comprising a thermoplastic matrix polymer, especially isotactic polypropylene, and an elastomeric multi-block copolymer of propylene and a copolymerizable comonomer according to embodiments of the invention, are uniquely capable of forming core-shell type particles having hard crystalline or semi-crystalline blocks in the form of a core surrounded by soft or elastomeric blocks forming a "shell" around the occluded domains of hard polymer. These particles are formed and dispersed within the matrix polymer by the forces incurred during melt compounding or blending.
  • This highly desirable morphology is believed to result due to the unique physical properties of the multi-block copolymers which enable compatible polymer regions such as the matrix and higher comonomer content elastomeric regions of the multi-block copolymer to self-assemble in the melt due to thermodynamic forces. Shearing forces during compounding are believed to produce separated regions of matrix polymer encircled by elastomer. Upon solidifying, these regions become occluded elastomer particles encased in the polymer matrix.
  • thermoplastic polyolefin blends TPO
  • thermoplastic elastomer blends TPE
  • thermoplastic vulcanizates TPV
  • styrenic polymer blends TPE and TPV blends may be prepared by combining the invented multi- block polymers, including functionalized or unsaturated derivatives thereof with an optional rubber, including conventional block copolymers, especially an SBS block copolymer, and optionally a crosslinking or vulcanizing agent.
  • TPO blends are generally prepared by blending the invented multi-block copolymers with a polyolefin, and optionally a crosslinking or vulcanizing agent. The foregoing blends may be used in forming a molded object, and optionally crosslinking the resulting molded article.
  • a similar procedure using different components has been previously disclosed in U.S. Patent No. 6,797,779.
  • Suitable conventional block copolymers for this application desirably possess a Mooney viscosity (ML 1+4 @ 100 0 C.) in the range from 10 to 135, more preferably from 25 to 100, and most preferably from 30 to 80.
  • Suitable polyolefins especially include linear or low density polyethylene, polypropylene (including atactic, isotactic, syndiotactic and impact modified versions thereof) and poly(4-methyl-l-pentene).
  • Suitable styrenic polymers include polystyrene, rubber modified polystyrene (HIPS), styrene/acrylonitrile copolymers (SAN), rubber modified SAN (ABS or AES) and styrene maleic anhydride copolymers.
  • the blends may be prepared by mixing or kneading the respective components at a temperature around or above the melt point temperature of one or both of the components.
  • this temperature may be above 130° C, most generally above 145° C, and most preferably above 150° C.
  • Typical polymer mixing or kneading equipment that is capable of reaching the desired temperatures and melt plastifying the mixture may be employed. These include mills, kneaders, extruders (both single screw and twin-screw), Banbury mixers, calenders, and the like. The sequence of mixing and method may depend on the final composition.
  • a combination of Banbury batch mixers and continuous mixers may also be employed, such as a Banbury mixer followed by a mill mixer followed by an extruder.
  • a TPE or TPV composition will have a higher loading of cross-linkable polymer (typically the conventional block copolymer containing unsaturation) compared to TPO compositions.
  • the weight ratio of block copolymer to multi-block copolymer may be from about 90:10 to 10:90, more preferably from 80:20 to 20:80, and most preferably from 75:25 to 25:75.
  • the weight ratio of multi-block copolymer to polyolefin may be from about 49:51 to about 5:95, more preferably from 35:65 to about 10:90.
  • the weight ratio of multi-block copolymer to polyolefin may also be from about 49:51 to about 5:95, more preferably from 35:65 to about 10:90.
  • the ratios may be changed by changing the viscosity ratios of the various components. There is considerable literature illustrating techniques for changing the phase continuity by changing the viscosity ratios of the constituents of a blend that a person skilled in this art may consult if necessary.
  • the blend compositions may contain processing oils, plasticizers, and processing aids.
  • Rubber processing oils having a certain ASTM designation and paraffinic, napthenic or aromatic process oils are all suitable for use. Generally from 0 to 150 parts, more preferably 0 to 100 parts, and most preferably from 0 to 50 parts of oil per 100 parts of total polymer are employed. Higher amounts of oil may tend to improve the processing of the resulting product at the expense of some physical properties.
  • Additional processing aids include conventional waxes, fatty acid salts, such as calcium stearate or zinc stearate, (poly)alcohols including glycols, (poly)alcohol ethers, including glycol ethers, (poly)esters, including (poly)glycol esters, and metal salt-, especially Group 1 or 2 metal or zinc-, salt derivatives thereof.
  • non-hydrogenated rubbers such as those comprising polymerized forms of butadiene or isoprene, including block copolymers (here- in- after diene rubbers), have lower resistance to UV, ozone, and oxidation, compared to mostly or highly saturated rubbers.
  • block copolymers here- in- after diene rubbers
  • carbon black it is known to incorporate carbon black to improve rubber stability, along with anti-ozone additives and anti-oxidants.
  • Multi-block copolymers according to the present invention possessing extremely low levels of unsaturation find particular application as a protective surface layer (coated, coextruded or laminated) or weather resistant film adhered to articles formed from conventional diene elastomer modified polymeric compositions.
  • carbon black is the additive of choice for UV absorption and stabilizing properties.
  • Representative examples of carbon blacks include ASTM NI lO, N121, N220, N231, N234, N242, N293, N299, S315, N326, N330, M332, N339, N343, N347, N351, N358, N375, N539, N550, N582, N630, N642, N650, N683, N754, N762, N765, N774, N787, N907, N908, N990 and N991.
  • These carbon blacks have iodine absorptions ranging from 9 to 145 g/kg and average pore volumes ranging from 10 to 150 cm 3 /100 g.
  • smaller particle sized carbon blacks are employed, to the extent cost considerations permit.
  • the present multi-block copolymers and blends thereof require little or no carbon black, thereby allowing considerable design freedom to include alternative pigments or no pigments at all.
  • Multi- hued tires or tires matching the color of the vehicle are one possibility.
  • compositions including thermoplastic blends according to embodiments of the invention may also contain anti-ozonants or anti-oxidants that are known to a rubber chemist of ordinary skill.
  • the anti-ozonants may be physical protectants such as waxy materials that come to the surface and protect the part from oxygen or ozone or they may be chemical protectors that react with oxygen or ozone.
  • Suitable chemical protectors include styrenated phenols, butylated octylated phenol, butylated di(dimethylbenzyl) phenol, p- phenylenediamines, butylated reaction products of p-cresol and dicyclopentadiene (DCPD), polyphenols anitioxidants, hydroquinone derivatives, quinoline, diphenylene antioxidants, thioester antioxidants, and blends thereof.
  • DCPD dicyclopentadiene
  • WingstayTM S antioxidant Some representative trade names of such products are WingstayTM S antioxidant, PolystayTM 100 antioxidant, PolystayTM 100 AZ antioxidant, PolystayTM 200 antioxidant, WingstayTM L antioxidant, WingstayTM LHLS antioxidant, WingstayTM K antioxidant, WingstayTM 29 antioxidant, WingstayTM SN-I antioxidant, and IrganoxTM antioxidants.
  • the anti-oxidants and anti-ozonants used will preferably be non-staining and non-migratory.
  • HALS hindered amine light stabilizers
  • UV absorbers may be also used. Suitable examples include TinuvinTM 123, TinuvinTM 144, TinuvinTM 622, TinuvinTM 765, TinuvinTM 770, and TinuvinTM 780, available from Ciba Specialty Chemicals, and ChemisorbTM T944, available from Cytex Plasties, Houston TX, USA.
  • a Lewis acid may be additionally included with a HALS compound in order to achieve superior surface quality, as disclosed in U.S. Patent No. 6,051,681.
  • additional mixing process may be employed to pre- disperse the anti-oxidants, anti-ozonants, carbon black, UV absorbers, and/or light stabilizers to form a masterbatch, and subsequently to form polymer blends there from.
  • Suitable crosslinking agents for use herein include sulfur based, peroxide based, or phenolic based compounds. Examples of the foregoing materials are found in the art, including in U.S. Patents No.: 3,758,643, 3,806,558, 5,051,478, 4,104,210, 4,130,535, 4,202,801, 4,271,049, 4,340,684, 4,250,273, 4,927,882, 4,311,628 and 5,248,729.
  • accelerators and cure activators may be used as well. Accelerators are used to control the time and/or temperature required for dynamic vulcanization and to improve the properties of the resulting cross-linked article.
  • a single accelerator or primary accelerator is used.
  • the primary accelerator(s) may be used in total amounts ranging from about 0.5 to about 4, preferably about 0.8 to about 1.5, phr, based on total composition weight.
  • combinations of a primary and a secondary accelerator might be used with the secondary accelerator being used in smaller amounts, such as from about 0.05 to about 3 phr, in order to activate and to improve the properties of the cured article.
  • Combinations of accelerators generally produce articles having properties that are somewhat better than those produced by use of a single accelerator.
  • delayed action accelerators may be used which are not affected by normal processing temperatures yet produce a satisfactory cure at ordinary vulcanization temperatures.
  • Vulcanization retarders might also be used.
  • Suitable types of accelerators that may be used in the present invention are amines, disulfides, guanidines, thioureas, thiazoles, thiurams, sulfenamides, dithiocarbamates and xanthates.
  • the primary accelerator is a sulfenamide.
  • the secondary accelerator is preferably a guanidine, dithiocarbarnate or thiuram compound.
  • processing aids and cure activators such as stearic acid and ZnO may also be used.
  • co-activators or coagents may be used in combination therewith. Suitable coagents include trimethylolpropane triacrylate (TMPTA), trimethylolpropane trimethacrylate (TMPTMA), triallyl cyanurate (TAC), triallyl isocyanurate (TAIC), among others.
  • TMPTA trimethylolpropane triacrylate
  • TMPTMA trimethylolpropane trimethacrylate
  • TAC triallyl cyanurate
  • TAIC triallyl isocyanurate
  • Use of peroxide crossliakers and optional eoagents used for partial or complete dynamic vulcanization are known in the art and disclosed for example in the publication, "Peroxide Vulcanization of Elastomer", Vol. 74, No 3, July- August 2001.
  • the degree of crosslinking may be measured by dissolving the composition in a solvent for specified duration, and calculating the percent gel or unextractable component.
  • the percent gel normally increases with increasing crosslinking levels.
  • the percent gel content is desirably in the range from 5 to 100 percent.
  • the multi-block copolymers according to embodiments of the invention as well as blends thereof possess improved processability compared to prior art compositions, due, it is believed, to lower melt viscosity.
  • the composition or blend demonstrates an improved surface appearance, especially when formed into a molded or extruded article.
  • the present compositions and blends thereof uniquely possess improved melt strength properties, thereby allowing the present multi-block copolymers and blends thereof, especially TPO blends, to be usefully employed in foam and thermoforming applications where melt strength is currently inadequate.
  • Thermoplastic compositions according to embodiments of the invention may also contain organic or inorganic fillers or other additives such as starch, talc, calcium carbonate, glass fibers, polymeric fibers (including nylon, rayon, cotton, polyester, and polyaramide), metal fibers, flakes or particles, expandable layered silicates, phosphates or carbonates, such as clays, mica, silica, alumina, aluminosilicates or aluminophosphates, carbon whiskers, carbon fibers, nanoparticles including nanotubes, wollastonite, graphite, zeolites, and ceramics, such as silicon carbide, silicon nitride or titania. Silane based or other coupling agents may also be employed for better filler bonding.
  • organic or inorganic fillers or other additives such as starch, talc, calcium carbonate, glass fibers, polymeric fibers (including nylon, rayon, cotton, polyester, and polyaramide), metal fibers, flakes or particles, expand
  • thermoplastic compositions according to embodiments of the invention may be processed by conventional molding techniques such as injection molding, extrusion molding, thermoforming, slush molding, over molding, insert molding, blow molding, and other techniques.
  • Films, including multi-layer films may be produced by cast or tentering processes, including blown film processes.
  • block propylene/ ⁇ -olefin interpolymers also can be used in a manner that is described in the following U.S. provisional application, the disclosures of which and their continuations, divisional applications and continuation-in-part applications are incorporated by reference herein in their entirety: "Fibers Made from Copolymers of Propylene/ ⁇ -Olefins", U.S. Serial No. 60/717,863, filed on September 16, 2005;
  • Analytical temperature rising elution fractionation (ATREF) analysis is conducted according to the method described in U.S. Patent No. 4,798,081 and Wilde, L.; RyIe, T.R.; Knobeloch, D. C; Peat, LR.; Determination of Branching Distributions in Polyethylene and Ethylene Copolymers, J. Polym. ScL, 20, 441-455 (1982), which are incorporated by reference herein in their entirety.
  • the composition to be analyzed is dissolved in trichlorobenzene and allowed to crystallize in a column containing an inert support (stainless steel shot) by slowly reducing the temperature to 20 0 C at a cooling rate of 0. l°C/min.
  • the column is equipped with an infrared detector.
  • An ATREF chromatogram curve is then generated by eluting the crystallized polymer sample from the column by slowly increasing the temperature of the eluting solvent (trichlorobenzene) from 20 to 120 0 C at a rate of 1.5°C/min.
  • TREF fractionation is carried by dissolving 15-20 g of polymer in 2 liters of 1,2,4-trichlorobenzene (TCB)by stirring for 4 hours at 160 0 C.
  • the polymer solution is forced by 15 psig (100 kPa) nitrogen onto a 3 inch by 4 foot (7.6 cm x 12 cm) steel column packed with a 60:40 (v:v) mix of 30-40 mesh (600-425 ⁇ m) spherical, technical quality glass beads (available from Potters Industries, HC 30 Box 20, Brownwood, TX, 76801) and stainless steel, 0.028" (0.7mm) diameter cut wire shot (available from Pellets. Inc. 63 Industrial Drive, North Tonawanda, NY, 14120).
  • the column is immersed in a thermally controlled oil jacket, set initially to 160 0 C.
  • the column is first cooled ballistically to 125 0 C, then slow cooled to 20 0 C at 0.04 0 C per minute and held for one hour.
  • Fresh TCB is introduced at about 65 ml/min while the temperature is increased at 0.167 0 C per minute.
  • the sample is then cooled to - 90 0 C at 10°C/min cooling rate and held at -90 0 C for 3 minutes.
  • the sample is then heated to 230 0 C at 10°C/min. heating rate. The cooling and second heating curves are recorded.
  • the DSC melting peak is measured as the maximum in heat flow rate (W/g) with respect to the linear baseline drawn between the beginning and end of melting.
  • the heat of fusion is measured as the area under the melting curve between the beginning and the end of melting using a linear baseline.
  • the beginning of melting is typically observed between 0 and -40 0 C.
  • the resulting enthalpy curves are analyzed for peak melting temperature, onset, and peak crystallization temperatures, heat of fusion and heat of crystallization, and any other DSC analyses of interest.
  • Calibration of the DSC is done as follows. First, a baseline is obtained by running a DSC from -90 0 C without any sample in the aluminum DSC pan. Then 7 milligrams of a fresh indium sample is analyzed by heating the sample to 180 0 C, cooling the sample to 140 0 C at a cooling rate of 10 0 C /min followed by keeping the sample isothermally at 14O 0 C for 1 minute, followed by heating the sample from 14O 0 C to 180 0 C at a heating rate of 10 0 C per minute.
  • the heat of fusion and the onset of melting of the indium sample are determined and checked to be within 0.5 0 C from 156.6°C for the onset of melting and within 0.5 J/g from 28.71 J/g for the of fusion. Then deionized water is analyzed by cooling a small drop of fresh sample in the DSC pan from 25°C to -3O 0 C at a cooling rate of 10 0 C per minute. The sample is kept isothermally at -30 0 C for 2 minutes and heat to 3O 0 C at a heating rate of 10 0 C per minute. The onset of melting is determined and checked to be within 0.5 0 C from 0 0 C,
  • the gel permeation chromatographic system consists of either a Polymer Laboratories Model PL-210 or a Polymer Laboratories Model PL-220 instrument.
  • the column and carousel compartments are operated at 140 0 C.
  • Three Polymer Laboratories 10- micron Mixed-B columns are used.
  • the solvent is 1 ,2,4 trichlorobenzene.
  • the samples are prepared at a concentration of 0.1 grams of polymer in 50 milliliters of solvent containing 200 ppm of butylated hydroxytoluene (BHT). Samples are prepared by agitating lightly for 2 hours at 160 0 C.
  • the injection volume used is 100 microliters and the flow rate is 1.0 ml/minute.
  • the molecular weight determination is deduced by using ten narrow molecular weight distribution polystyrene standards (from Polymer Laboratories, EasiCal PS 1 ranging from 580 - 7.500,000 g/mole) in conjunction with their elution volumes.
  • the equivalent polypropylene molecular weights are determined by using appropriate Mark-Houwink coefficients for polypropylene (as described by Th.G. Scholte, N.L.J. Meijerink. H.M. Schoffeleers, and A.M.G. Brands, J. Appl. Polym. ScL, 29, 3763 - 3782 (1984), incorporated herein by reference) and polystyrene (as described by E. P. Otocka, R. J. Roe, N. Y. Hellman, P. M. Muglia, Macromolecules, 4, 507 (1971) incorporated herein by reference) in the Mark- Houwink equation:
  • the copolymers of this invention typically have substantially isotactic propylene sequences.
  • “Substantially isotactic propylene sequences” and similar terms mean that the sequences have an isotactic triad (mm) measured by C NMR of greater than about 0.85, preferably greater than about 0.90, more preferably greater than about 0.92 and most preferably greater than about 0.93.
  • Isotactic triads are well known in the art, and are described in, for example, USP 5,504,172 and WO 00/01745 that refer to the isotactic
  • NMR spectra 1 ⁇ sequence in terms of a triad unit in the copolymer molecular chain determined by ⁇ C NMR spectra. NMR spectra are determined as follows.
  • 13 C NMR spectroscopy is one of a number of techniques known in the art for measuring comonomer incorporation into a polymer.
  • An example of this technique is described for the determination of comonomer content for ethylene/ ⁇ -olefin copolymers in Randall (Journal of Macromolecular Science, Reviews in Macromolecular Chemistry and Physics, C29 (2 & 3), 201 - 317 (1989)).
  • the basic procedure for determining the comonomer content of an olefin interpolymer involves obtaining the 13 C NMR spectrum under conditions where the intensity of the peaks corresponding to the different carbons in the sample is directly proportional to the total number of contributing nuclei in the sample.
  • the mole % comonomer can be determined by the ratio of the integrals corresponding to the number of moles of comonomer to the integrals corresponding to the number of moles of all of the monomers in the interpolymer, as described in Randall, for example.
  • the data is collected using a Varian UNITY Plus 400MHz NMR spectrometer or a JEOL Eclipse 400 NMR Spectrometer , corresponding to a 13 C resonance frequency of 100.4 or 100.5 MHz, respectively. Acquisition parameters are selected to ensure quantitative 13 C data acquisition in the presence of the relaxation agent.
  • the data is acquired using gated IH decoupling, 4000 transients per data file, a 6 sec pulse repetition delay, spectral width of 24,200Hz and a file size of 32K data points, with the probe head heated to 130° C.
  • the sample is prepared by adding approximately 3mL of a 50/50 mixture of tetrachloroethane- d2/orthodichlorobenzene that is 0.025M in chromium acetylacetonate (relaxation agent) to 0.4g sample in a 10mm NMR tube.
  • the headspace of the tube is purged of oxygen by displacement with pure nitrogen.
  • the sample is dissolved and homogenized by heating the tube and its contents to 150 0 C with periodic refluxing initiated by heat gun and periodic vortexing of the tube and contents.
  • the chemical shifts are internally referenced to the mmmm pentad at 21.90 ppm.
  • Isotacticity at the triad level (mm) is determined from the methyl integrals representing the mm triad (22.5 to 21.28 ppm), the mr triad (21.28-20.40 ppm), and the rr triad (20.67-19.4 ppm).
  • the percentage of mm tacticity is determined by dividing the intensity of the mm triad by the sum of the mm, mr, and rr triads.
  • the mr region is corrected for ethylene and regio-error by subtracting the contribution from PPQ and PPE.
  • the rr region is corrected for ethylene and regio-error by subtracting the contribution from PQE and EPE.
  • the integrals for these regions are similarly corrected by subtracting the interfering peaks using standard NMR techniques, once the peaks have been identified. This can be accomplished, for example, by analyzing a series of copolymers of various levels of monomer incorporation, by literature assignments, by isotopic labeling, or other means which are known in the art.
  • M is an assignment matrix
  • s is a spectrum row vector
  • mole fraction composition vector Successful implementation of the Matrix Method requires that M,f, and s be defined such that the resulting equation is determined or over determined (equal or more independent equations than variables) and the solution to the equation contains the molecular information necessary to calculate the desired structural information.
  • the first step in the Matrix Method is to determine the elements in the composition vector/
  • the elements of this vector should be molecular parameters selected to provide structural information about the system being studied. For copolymers, a reasonable set of parameters would be any odd n-ad distribution.
  • the composition vector/ is still represented by all eight triads.
  • the equality restrictions are implemented as internal restrictions when solving the matrix.
  • the second step in the Matrix Method is to define the spectrum vector s. Usually the elements of this vector will be the well-defined integral regions in the spectrum. To insure a determined system the number of integrals needs to be as large as the number of independent variables.
  • the third step is to determine the assignment matrix M. The matrix is constructed by finding the contribution of the carbons of the center monomer unit in each triad (column) towards each integral region (row). One needs to be consistent about the polymer propagation direction when deciding which carbons belong to the central unit.
  • a useful property of this assignment matrix is that the sum of each row should equal to the number of carbons in the center unit of the triad which is the contributor of the row. This equality can be checked easily and thus prevents some common data entry errors.
  • 1,2 inserted propylene composition is calculated by summing all of the stereoregular propylene centered triad sequence mole fractions.
  • 2,1 inserted propylene composition (Q) is calculated by summing all of the Q centered triad sequence mole fractions. The mole percent is calculated by multiplying the mole fraction by 100.
  • C2 composition is determined by subtracting the P and Q mole percentage values from 100.
  • This example demonstrates calculation of compostion values for propylene- ethylene copolymer made using a metallocene catalyst synthesized according to Example 15 of USP 5,616,664.
  • the propylene-ethylene copolymer is manufactured according to Example 1 of US Patent Application 2003/0204017.
  • the propylene-ethylene copolymer is analyzed as follows. The data is collected using a Varian UNITY Plus 400MHz NMR spectrometer corresponding to a 13 C resonance frequency of 100.4 MHz. Acquisition parameters are selected to ensure quantitative 13 C data acquisition in the presence of the relaxation agent.
  • the data is acquired using gated IH decoupling, 4000 transients per data file, a 7sec pulse repetition delay, spectral width of 24,200Hz and a file size of 32K data points, with the probe head heated to 130° C.
  • the sample is prepared by adding approximately 3mL of a 50/50 mixture of tetrachloroethane-d2/orthodichlorobenzene that is 0.025M in chromium acetylacetonate (relaxation agent) to 0.4g sample in a 10mm NMR tube.
  • the headspace of the tube is purged of oxygen by displacement with pure nitrogen.
  • the sample is dissolved and homogenized by heating the tube and its contents to 150C with periodic refluxing initiated by heat gun.
  • the chemical shifts are internally referenced to the mmmm pentad at 21,90 ppm.
  • the triads are calculated as follows:
  • embodiments of the invention provide a new class of propylene and ⁇ -olefin block interpolymers.
  • the block interpolymers are characterized by an average block index of greater than zero, preferably greater than 0.2. Due to the block structures, the block interpolymers have a unique combination of properties or characteristics not seen for other propylene/ ⁇ -olefin copolymers. Moreover, the block interpolymers comprise various fractions with different block indices. The distribution of such block indices has an impact on the overall physical properties of the block interpolymers.
  • block interpolymers have many end-use applications.
  • the block interpolymers can be used to make polymer blends, fibers, films, molded articles, lubricants, base oils, etc.
  • Other advantages and characteristics are apparent to those skilled in the art.
  • compositions or methods may include numerous compounds or steps not mentioned herein. In other embodiments, the compositions or methods do not include, or are substantially free of, any compounds or steps not enumerated herein. Variations and modifications from the described embodiments exist.
  • the method of making the resins is described as comprising a number of acts or steps. These steps or acts may be practiced in any sequence or order unless otherwise indicated.
  • any number disclosed herein should be construed to mean approximate, regardless of whether the word "about” or “approximately” is used in describing the number. The appended claims intend to cover all those modifications and variations as falling within the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
PCT/US2007/064036 2006-03-15 2007-03-15 Propylene/alpha-olefins block interpolymers WO2007106881A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2008011718A MX2008011718A (es) 2006-03-15 2007-03-15 Interpolimeros de bloques de propileno/alfa-olefina.
CN2007800089511A CN101405311B (zh) 2006-03-15 2007-03-15 丙烯/α-烯烃嵌段共聚体
BRPI0709319-5A BRPI0709319B1 (pt) 2006-03-15 2007-03-15 INTERPOLÍMERO DE PROPILENO/a-OLEFINA
AU2007226554A AU2007226554A1 (en) 2006-03-15 2007-03-15 Propylene/alpha-olefins block interpolymers
BR122018075054-5A BR122018075054B1 (pt) 2006-03-15 2007-03-15 Interpolímero de propileno/alfa-olefina
EP07758577A EP2001916A1 (en) 2006-03-15 2007-03-15 Propylene/alpha-olefins block interpolymers
JP2009500602A JP2009530446A (ja) 2006-03-15 2007-03-15 プロピレン/α−オレフィンブロックインターポリマー
KR1020087025020A KR101386349B1 (ko) 2006-03-15 2007-03-15 프로필렌/알파-올레핀 블록 혼성중합체
CA002644907A CA2644907A1 (en) 2006-03-15 2007-03-15 Propylene/alpha-olefins block interpolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78274606P 2006-03-15 2006-03-15
US60/782,746 2006-03-15

Publications (1)

Publication Number Publication Date
WO2007106881A1 true WO2007106881A1 (en) 2007-09-20

Family

ID=38325347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/064036 WO2007106881A1 (en) 2006-03-15 2007-03-15 Propylene/alpha-olefins block interpolymers

Country Status (14)

Country Link
EP (1) EP2001916A1 (es)
JP (1) JP2009530446A (es)
KR (1) KR101386349B1 (es)
CN (1) CN101405311B (es)
AR (1) AR060034A1 (es)
AU (1) AU2007226554A1 (es)
BR (2) BR122018075054B1 (es)
CA (1) CA2644907A1 (es)
MX (1) MX2008011718A (es)
RU (1) RU2008140737A (es)
SG (1) SG170126A1 (es)
TW (1) TW200738759A (es)
WO (1) WO2007106881A1 (es)
ZA (1) ZA200807716B (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097535A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. BUTENE/α-OLEFIN BLOCK INTERPOL YMERS
WO2009097565A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. ETHYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097529A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. PROPYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097532A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. BUTENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097560A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. ETHYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097525A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. PROPYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2011041699A1 (en) * 2009-10-02 2011-04-07 Dow Global Technologies Inc. Block composites in thermoplastic vulcanizate applications
KR20180000740A (ko) * 2010-06-18 2018-01-03 다우 글로벌 테크놀로지스 엘엘씨 전기전도성의 중간상 분리된 올레핀 다중블록 공중합체 조성물

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317055B2 (ja) * 2008-10-03 2018-05-09 ダウ グローバル テクノロジーズ エルエルシー エチレン/α−オレフィンインターポリマーを含むポリマーブレンド
EP2666799B1 (en) * 2011-01-20 2018-01-10 LG Chem, Ltd. Olefin block copolymer
KR101262308B1 (ko) * 2011-01-21 2013-05-08 주식회사 엘지화학 올레핀 블록 공중합체 및 이의 제조 방법
WO2016029006A1 (en) * 2014-08-21 2016-02-25 Dow Global Technologies Llc Hot melt adhesive composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090426A1 (en) * 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
US20060199006A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Fibers made from copolymers of propylene/alpha-olefins
WO2006101966A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies, Inc. ETHYLENE/α-OLEFINS BLOCK INTERPOLYMERS
WO2006101595A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2012729C (en) * 1989-04-07 1997-05-20 Takashi Kuroda Dulled stretched molding and process for producing the same
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090426A1 (en) * 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
US20060199006A1 (en) * 2004-03-17 2006-09-07 Dow Global Technologies Inc. Fibers made from copolymers of propylene/alpha-olefins
WO2006101966A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies, Inc. ETHYLENE/α-OLEFINS BLOCK INTERPOLYMERS
WO2006101595A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100134571A (ko) * 2008-01-30 2010-12-23 다우 글로벌 테크놀로지스 인크. 에틸렌/α-올레핀 블록 혼성중합체
US8124709B2 (en) 2008-01-30 2012-02-28 Dow Global Technologies Llc Ethylene/α-olefin block interpolymers
WO2009097529A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. PROPYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097532A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. BUTENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097560A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. ETHYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097525A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. PROPYLENE/α-OLEFIN BLOCK INTERPOLYMERS
WO2009097565A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. ETHYLENE/α-OLEFIN BLOCK INTERPOLYMERS
KR101668120B1 (ko) 2008-01-30 2016-10-20 다우 글로벌 테크놀로지스 엘엘씨 에틸렌/α-올레핀 블록 혼성중합체
WO2009097535A1 (en) * 2008-01-30 2009-08-06 Dow Global Technologies Inc. BUTENE/α-OLEFIN BLOCK INTERPOL YMERS
US8106139B2 (en) 2008-01-30 2012-01-31 Dow Global Technologies Llc Propylene/alpha-olefin block interpolymers
CN101983213A (zh) * 2008-01-30 2011-03-02 陶氏环球技术公司 乙烯/α-烯烃嵌段互聚物
KR101613165B1 (ko) * 2008-01-30 2016-04-18 다우 글로벌 테크놀로지스 엘엘씨 에틸렌/α-올레핀 블록 혼성중합체
WO2011041699A1 (en) * 2009-10-02 2011-04-07 Dow Global Technologies Inc. Block composites in thermoplastic vulcanizate applications
KR20180000740A (ko) * 2010-06-18 2018-01-03 다우 글로벌 테크놀로지스 엘엘씨 전기전도성의 중간상 분리된 올레핀 다중블록 공중합체 조성물
KR102143065B1 (ko) 2010-06-18 2020-08-11 다우 글로벌 테크놀로지스 엘엘씨 전기전도성의 중간상 분리된 올레핀 다중블록 공중합체 조성물

Also Published As

Publication number Publication date
ZA200807716B (en) 2010-01-27
TW200738759A (en) 2007-10-16
KR101386349B1 (ko) 2014-04-16
BR122018075054B1 (pt) 2019-08-20
BRPI0709319B1 (pt) 2019-03-19
SG170126A1 (en) 2011-04-29
EP2001916A1 (en) 2008-12-17
MX2008011718A (es) 2008-11-25
CN101405311A (zh) 2009-04-08
RU2008140737A (ru) 2010-04-20
CA2644907A1 (en) 2007-09-20
JP2009530446A (ja) 2009-08-27
AU2007226554A1 (en) 2007-09-20
BRPI0709319A2 (pt) 2011-07-12
KR20080111472A (ko) 2008-12-23
AR060034A1 (es) 2008-05-21
CN101405311B (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
US8273838B2 (en) Propylene/α-olefins block interpolymers
EP1716190B1 (en) Ethylene/ alpha-olefins block interpolymers
US7608668B2 (en) Ethylene/α-olefins block interpolymers
WO2007106881A1 (en) Propylene/alpha-olefins block interpolymers
EP2147047B1 (en) Thermoforming, scratch-resistant, low gloss compositions comprising interpolymers of ethylene/ -olefins
US7795321B2 (en) Rheology modification of interpolymers of ethylene/α-olefins and articles made therefrom
EP1858971A2 (en) Rheology modification of interpolymers of ethylene/alpha-olefins and articles made therefrom
AU2006225106A1 (en) Foams made from interpolymers of ethylene/alpha-olefins
WO2010039628A2 (en) POLYMER BLENDS WITH ETHYLENE/α-OLEFIN INTERPOLYMERS
WO2010098932A1 (en) PHYLON PROCESSES OF MAKING FOAM ARTICLES COMPRISING ETHYLENE/α-OLEFINS BLOCK INTERPOLYMERS
KR20070117595A (ko) 에틸렌/α-올레핀 블록 혼성중합체
WO2009155155A1 (en) Processes to control fouling and improve compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07758577

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007758577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2644907

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007226554

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/011718

Country of ref document: MX

Ref document number: 200780008951.1

Country of ref document: CN

Ref document number: 2009500602

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4895/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007226554

Country of ref document: AU

Date of ref document: 20070315

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087025020

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008140737

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0709319

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080912