WO2007105550A1 - Process for melting glass and glass - Google Patents

Process for melting glass and glass Download PDF

Info

Publication number
WO2007105550A1
WO2007105550A1 PCT/JP2007/054385 JP2007054385W WO2007105550A1 WO 2007105550 A1 WO2007105550 A1 WO 2007105550A1 JP 2007054385 W JP2007054385 W JP 2007054385W WO 2007105550 A1 WO2007105550 A1 WO 2007105550A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
melting
zirconium
sno
alloy
Prior art date
Application number
PCT/JP2007/054385
Other languages
French (fr)
Japanese (ja)
Inventor
Takemi Kikutani
Yoshinori Nishikawa
Nobutoshi Itou
Original Assignee
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co., Ltd. filed Critical Nippon Electric Glass Co., Ltd.
Priority to CN2007800016328A priority Critical patent/CN101360688B/en
Publication of WO2007105550A1 publication Critical patent/WO2007105550A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • the present invention relates to a glass melting method and glass, and in particular, various ceramic packages.
  • Sealing materials used in electronic components and display devices such as ceramic packages and magnetic heads can be sealed at low temperatures so as not to adversely affect elements such as ICs and crystal units, and thermal expansion It is required that the coefficient matches that of the object to be sealed.
  • Patent Document 1 Various composite materials obtained by adding a refractory filler to these glasses have been proposed (for example, see Patent Document 1).
  • PbO _B 0 glass usually has a platinum melting capacity excellent in heat resistance and corrosion resistance.
  • the melting temperature is low, so there is no problem such as breakage of the melting container with less erosion of the platinum melting container after melting.
  • SnO-PO glass is made of platinum as soon as it erodes the platinum melting vessel during melting.
  • Patent Document 1 JP-A-2-229738
  • Patent Document 2 Japanese Patent Laid-Open No. 11 292564
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-48579
  • Patent Document 4 Japanese Patent No. 2628007
  • Patent Document 5 Japanese Patent Publication No. 7_25567
  • Patent Document 6 JP-A-9-235136
  • the technical problem of the present invention is that SnO_P ⁇ which easily corrodes a platinum melting vessel
  • a method of melting glass that can repeatedly melt glass, etc. over a long period of time, and does not cause the glass to denature even if the components of the melting container are eluted into the molten glass during melting. And to provide glass.
  • the glass melting method of the present invention is a glass material prepared The glass is melted in a melting container, and the melting container is made of dinoleconium or a zirconium alloy.
  • the glass melting method of the present invention is characterized by melting in an inert atmosphere or a reducing atmosphere.
  • inert atmosphere refers to a vacuum environment (below ⁇ )
  • rare gas atmosphere such as N, Ar, and He
  • reducing atmosphere refers to oxygen at normal pressure.
  • the glass melting method of the present invention is characterized in that the glass contains 20 to 70 mol% of SnO as a glass composition.
  • the glass melting method of the present invention is characterized in that the glass contains, as a glass composition, mol%, SnO 20-70%, PO 10-50%, BO 0-30%. Attached.
  • the glass melting method of the present invention has a purity of 97% by mass or more of dinoleconium and contains one or more selected from the group of Hf, Fe and Cr as impurities. It is characterized by this.
  • the glass melting method of the present invention is such that the zirconium alloy contains zirconium, Sn,
  • It is characterized by being a Zircaloy alloy containing one or more selected from the group of Fe, Cr and Ni.
  • the method for melting glass according to the present invention is such that the zirconium alloy is a zirconium iron alloy.
  • It is characterized by being either a zirconium copper alloy or a zirconium aluminum alloy.
  • the glass of the present invention is characterized in that it is produced by the glass melting method described above.
  • the glass of the present invention has a glass composition with a ZrO of 100 to 3000 pp in terms of mass.
  • the glass of the present invention has a glass composition, SnO 20 to 70% by mole 0/0, P_ ⁇
  • the glass of the present invention is used for sealing electronic parts or display devices. Characterized by
  • the glass melting method of the present invention is a SnO—PO system glass that easily corrodes the melting vessel.
  • a melting vessel made of zirconia is a glass melting temperature (eg 70
  • a melting vessel made of dinoleconium or dinoleconium alloy has characteristics that make it difficult to devitrify the glass in addition to difficult to separate the glass even if zirconium or the like elutes into the glass during melting. is doing.
  • the effects described below can be enjoyed by leaching dinoleconium and the like into the glass during melting.
  • the glass melting method of the present invention it is preferable to melt in an inert atmosphere or a reducing atmosphere. If zirconium or a zirconium alloy is left in the atmosphere in the melting temperature range (for example, 700 to 1000 ° C.), the surface of zirconium or zirconium alloy is oxidized and its toughness is easily impaired. This tendency is particularly noticeable when the melting temperature is 900 ° C or higher. As a result, the melting container is subject to stress failure when subjected to thermal shock or when the melting container is cooled. If it is melted in an inert atmosphere or a reducing atmosphere, the zirconium-zinoleconium alloy is difficult to oxidize, so the above-mentioned situation in which the melting vessel is difficult to break can be effectively avoided.
  • zirconium or a zirconium alloy is left in the atmosphere in the melting temperature range (for example, 700 to 1000 ° C.), the surface of zirconium or zirconium alloy is oxidized and its toughness is easily impaired
  • the glass melting method of the present invention does not exclude the aspect of melting in the air, but if it is melted in an inert atmosphere or a reducing atmosphere, in addition to the above-mentioned advantages. In addition, since the life of the melting container can be increased, the melting cost can be reduced.
  • SnO_PO glass SnO in the glass composition is acid.
  • the content of SnO is mol%, preferably 20 to 70 o / ⁇ , more preferably f to 20 to 65 o / o , and further (preferably to 30 to 60 o / ⁇ ).
  • zirconium has a purity of 97% by mass or more, preferably 99% by mass or more, and is selected from the group consisting of Hf, Fe and Cr as impurities 1 Species or two or more can be included.
  • Hf, Fe, and Cr are preferably expressed in terms of mass%, and Hf is 3% or less and Fe + Cr is 0.2% or less. If the purity of zirconium is less than 97% by mass, impurity components may be dissolved during melting and the glass may be altered, which is not preferable.
  • the zirconium alloy is a zircaloy (equivalent to ASTM R6080 2 or equivalent to ASTM R60804) in which one or more selected from the group strength of Sn, Fe, Cr and Ni are added. ), Zirconium iron alloys, zirconium copper alloys, and zirconium aluminum alloys are preferred. These zirconium alloys are excellent in corrosion resistance, heat resistance, workability, etc., and can be suitably used as a melting vessel.
  • the power of being 0.05 to 0.3%, Cr of 0.05 to 0.2%, and Ni of 0.02 to 0.1%. Addition of these components can prevent excessive corrosion resistance.
  • the thickness of the melting container is preferably 1 to 5 mm.
  • 3 mm is more preferable. By doing so, it is possible to prevent cracking of the melting container without impairing the workability of the melting container.
  • the melting temperature is 800 to 140.
  • the melting temperature is preferably 800 to 1100 ° C. . Further, if the melting temperature is set to 800 to 1000 ° C, the glass can be appropriately melted. When the melting temperature is high, the valence of Sn changes to divalent power and tetravalent, that is, SnO is oxidized immediately and when the melting temperature is low, unmelted components of the glass raw material tend to remain after melting.
  • the ZrO content in the glass composition is 100 to 100 in terms of mass.
  • the eluted component acts as a reducing agent, and the situation where SnO in the glass composition is oxidized can be suppressed. If the ZrO content is less than lOOppm, the weather resistance and moisture resistance of the glass will be improved.
  • the softening point of the glass will rise and
  • the glass produced by the glass melting method of the present invention has a low melting point property, it is preferably SnO-P- glass.
  • SnO1 P O-based glass has a glass composition and
  • SnO is a component that lowers the melting point of glass. If the SnO content is less than 30%, the viscosity of the glass becomes high, the firing temperature becomes too high, and sealing becomes impossible at a low temperature. If the SnO content exceeds 70%, vitrification becomes difficult. In particular, if there is a large amount of SnO, the glass tends to be devitrified at the time of firing. Therefore, devitrification of the glass at the time of firing is not allowed. In some cases, the SnO content is preferably 60% or less. ,. In addition, if the SnO content is 40% or more, the fluidity of the glass can be improved, and the airtight reliability of electronic parts, etc. Is more preferable.
  • PO is a glass-forming oxide, a component that stabilizes glass, and its content
  • B 2 O is not an essential component but is a glass-forming component and is contained in the glass composition.
  • the content of B 2 O is 0-30%, preferably
  • the SnO_PO glass based on the present invention has a glass composition in addition to the above components.
  • R ⁇ is the total amount of Li ⁇ , Na ⁇ , K ⁇ and / or Cs ⁇
  • ZnO is not an essential component, it is a network-modifying oxide and has a large effect of stabilizing the glass, so it is desirable to contain 4% or more. However, if the ZnO content exceeds 20%, devitrification tends to occur on the glass surface during firing. In addition, when the sealing process is a long time (for example, 1 hour or more), the glass surface tends to be devitrified, specifically in the PDP sealing process. . In such a case, the content of ZnO may be 5 to 15%.
  • MgO is a network-modifying oxide and has an effect of stabilizing the glass. If MgO exceeds 20%, devitrification tends to occur on the glass surface during firing.
  • the MgO content is preferably 0 to 5%.
  • Al 2 O is an intermediate oxide. Al O is not an essential component, but it stabilizes the glass.
  • SiO is a glass-forming oxide. Si ⁇ is not an essential component, but suppresses devitrification
  • the content of Si 2 O is preferably 0 to 10%.
  • R0 is not an essential component, but at least one of the R0 components is 0.
  • the sealing strength with the object to be sealed can be increased.
  • the content of R0 exceeds 20%, the glass tends to devitrify during firing. In firing
  • the content of R ⁇ should be 10% or less.
  • the SnO_PO glass according to the present invention has a glass composition in addition to the above components.
  • the total amount of BaO) or the like can be contained in a total amount of 0 to 35%, preferably 0 to 25%. If the total amount of these components exceeds 35%, the glass composition will be unbalanced, and the glass will be unstable, and the glass will be easily devitrified during molding. In addition, In 2 O or the like can be added to increase the weather resistance and moisture resistance of the glass.
  • WO and MoO are each preferably 0 to 20%, particularly preferably 0 to 10%.
  • NbO and TiO are each 0 to 15%, particularly preferably 0 to 10%.
  • the CuO and MnO contents are preferably 0 to 10%, particularly 0 to 5%, respectively. If these components exceed 10%, the glass tends to become unstable.
  • the total content of R'O is preferably 0 to 15%, particularly preferably 0 to 5%.
  • R'O is 15
  • the glass tends to be unstable.
  • O can be used for the purpose of obtaining high weather resistance and moisture resistance.
  • O content In O content
  • the content is preferably 0-5%. If the In O content is more than 5%, In ⁇ is expensive Since this is a raw material, the cost of the glass raw material will rise.
  • PbO is not substantially contained in the glass composition.
  • substantially no PbO refers to the case where the content of PbO in the glass composition is 100 Oppm or less.
  • the glass of the present invention as a glass composition, in mol 0/0, Sn_ ⁇ 20 to 70%, PO 10.about.5
  • the glass is glass
  • the power it is more preferable to have the power to contain 300-1000ppm S especially preferred. In this way, the weather resistance and moisture resistance of the glass can be improved. ZrO content is 10
  • It can be introduced into the glass composition by melting using a glass melting container or the like.
  • the glass of the present invention can be suitably produced by the above glass melting method.
  • SnO—PO glass having 270-380. It has a glass transition temperature of C, about 400-60
  • SnO—PO glass having such characteristics matches the thermal expansion coefficient of the object to be sealed.
  • Glass powder it can be used alone as a sealing material.
  • Thermal expansion coefficient of the composite material it is important to lower rather designed about 5 ⁇ 30 X 10- 7 / ° C with respect to the article to be sealed. In this way, the stress applied to the sealing layer can be set to the compression (compression) side to prevent destruction of the sealing layer. In this case, what is necessary is just to prepare so that it may become 45-95 volume% of glass powder, and 5-55 volume% of refractory filler powder.
  • Fluorescent display tube VFD
  • field emission display FED
  • PDP cathode
  • thermal expansion coefficient of the sealing material it is preferable to adjust the thermal expansion coefficient of the sealing material to about 60: 100 X 10 _7 / ° C.
  • refractory filler powders such as willemite ceramic, ⁇ -eucryptite, lead titanate ceramic, cordierite, tin oxide solid solution, zircon ceramic, mullite, quartz glass, alumina, etc. as refractory filler May be added.
  • refractory filler powder can be added to improve mechanical strength. From an environmental point of view, it is preferable that the refractory filler powder does not substantially contain PbO.
  • Tables 1 and 2 show examples (No .:! To 9) of the present invention, and Table 3 shows comparative examples (Nos. 10 to 12).
  • Zircaloy 4 ASTM G ra de e R60804 equivalent
  • Zircaloy 4 ASTM G ra d e R6 O 8 O 4 equivalent
  • the molten glass in the melting vessel was poured out between a pair of rotating rollers, and a film-like glass sample was prepared while rapidly cooling the molten glass with one rotating roller.
  • the formed film-like glass is pulverized with a ball mill and then passed through a sieve with a mesh size of 105 xm. About 10 / m glass powder was obtained.
  • the molten glass in the melting container was poured out into a carbon mold, and a plate-like glass sample was produced.
  • the glass transition point was determined by differential thermal analysis (DTA), and the thermal expansion coefficient was determined by a push rod thermal expansion measurement (TMA) apparatus.
  • DTA differential thermal analysis
  • TMA push rod thermal expansion measurement
  • the flow diameter was evaluated by the following flow button test.
  • the formed glassy glass was pulverized by a ball mill and then passed through a sieve having an aperture of 105 am to obtain a glass powder having an average particle size of about 10 ⁇ m.
  • a powder having a mass corresponding to the true specific gravity of the obtained glass powder was weighed and pressed into a button shape having a diameter of 20 mm using a mold to obtain a button-shaped powder formed body.
  • this powder compact was placed on a window glass and then fired in the atmosphere shown in the table.
  • the temperature was increased to a firing temperature of 450 ° C. at a rate of 10 ° C./minute, held at 450 ° C. for 10 minutes, and then cooled to room temperature at 10 ° C./minute.
  • the diameter of the button after firing was measured with a digital caliper.
  • the diameter of this button should be at least 20 mm when used as a sealing material.
  • the glass melting method and glass of the present invention include various ceramic packages, sealing of electronic components such as a magnetic head, sealing of various display devices, PDP partition walls, and double metal thermos. Suitable for container sealing and various optical glasses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

[PROBLEMS] To provide a process for melting glass which enables long-period and repeated melting of SnO-P2O5 glasses, which glasses are liable to corrode a melting vessel made of platinum, and which little causes the deterioration of glass with constituents of a melting vessel even if the constituents thereof penetrate into molten glass in the melting step; and glass. [MEANS FOR SOLVING PROBLEMS] A process for melting glass by melting a glass raw material batch in a melting vessel, characterized in that the melting vessel is one made of zirconium or a zirconium alloy.

Description

明 細 書  Specification
ガラスの溶融方法およびガラス  Glass melting method and glass
技術分野  Technical field
[0001] 本発明は、ガラスの溶融方法およびガラスに関し、特に、各種セラミックパッケージ The present invention relates to a glass melting method and glass, and in particular, various ceramic packages.
、磁気ヘッド等の電子部品の封着、各種表示デバイスの封着、プラズマディスプレイ パネル (PDP)の隔壁、魔法瓶の金属二重容器の封止および各種光学ガラスに好適 なガラスの溶融方法およびガラスに関するものである。 , Sealing of electronic components such as magnetic heads, sealing of various display devices, plasma display panel (PDP) partition walls, sealing of double metal containers of thermos bottles, and glass melting methods and glasses suitable for various optical glasses Is.
背景技術  Background art
[0002] セラミックパッケージ、磁気ヘッド等の電子部品や表示デバイスに使用される封着 材料には、 ICや水晶振動子等の素子に悪影響を及ぼさないように低温で封着できる ことや、熱膨張係数が被封着物のそれに整合してレ、ることが要求される。  [0002] Sealing materials used in electronic components and display devices such as ceramic packages and magnetic heads can be sealed at low temperatures so as not to adversely affect elements such as ICs and crystal units, and thermal expansion It is required that the coefficient matches that of the object to be sealed.
[0003] これまで、これらの特性を満足する封着材料として、 PbO— B〇系ガラス、或いは  Until now, as a sealing material satisfying these characteristics, PbO-B 0 glass, or
2 3  twenty three
これらのガラスに耐火性フィラーを添加してなる複合材料が各種提案されてレ、る(例 えば、特許文献 1参照)。  Various composite materials obtained by adding a refractory filler to these glasses have been proposed (for example, see Patent Document 1).
[0004] し力、しながら、最近、環境的観点から、環境負荷物質である鉛をガラスから除くこと が求められており、 PbO - B O系ガラスの代替材料として、 SnO -P〇系ガラスが [0004] However, recently, from an environmental point of view, it has been required to remove lead, which is an environmentally hazardous substance, from glass. As an alternative to PbO-BO glass, SnO-P0 glass is
2 3 2 5 提案されている (例えば、特許文献 2、 3参照)。  2 3 2 5 has been proposed (see, for example, Patent Documents 2 and 3).
[0005] ところで、通常、 PbO _B〇系ガラスは、耐熱性と耐食性に優れた白金製溶融容 [0005] By the way, PbO _B 0 glass usually has a platinum melting capacity excellent in heat resistance and corrosion resistance.
2 3  twenty three
器内でガラス原料を溶融することによって作製される。一般に、 PbO -B O系ガラス  It is produced by melting a glass raw material in a vessel. In general, PbO -B O glass
2 3 は、溶融温度が低いため、溶融後の白金製溶融容器の浸食量が少なぐ溶融容器 の破損等の問題は生じない。  In 2 3, the melting temperature is low, so there is no problem such as breakage of the melting container with less erosion of the platinum melting container after melting.
[0006] 一方、 SnO - P O系ガラスは、溶融時に白金製溶融容器を浸食しやすぐ白金製 [0006] On the other hand, SnO-PO glass is made of platinum as soon as it erodes the platinum melting vessel during melting.
2 5  twenty five
溶融容器にクラックが発生することがあるため、長期間にわたって白金製溶融容器を 使用できないという問題がある。また、白金は非常に高価な金属であり、白金製溶融 容器を短期間で取り替えると、溶融コストの高騰を招くことになる。  Since cracks may occur in the melting container, there is a problem that the platinum melting container cannot be used for a long period of time. In addition, platinum is a very expensive metal, and if the platinum melting vessel is replaced in a short period of time, the melting cost will increase.
[0007] このような事情から、特許文献 4〜6に記載されている通り、 SnO -P O系ガラスの [0007] Because of these circumstances, as described in Patent Documents 4 to 6, the SnO 2 -P 2 O-based glass
2 5 溶融には、高価なシリカ(石英)製溶融容器が使用されている。 特許文献 1 :特開平 2— 229738号公報 2 5 An expensive silica (quartz) melting vessel is used for melting. Patent Document 1: JP-A-2-229738
特許文献 2:特開平 11 292564号公報  Patent Document 2: Japanese Patent Laid-Open No. 11 292564
特許文献 3:特開 2001— 48579号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-48579
特許文献 4:特許第 2628007号公報  Patent Document 4: Japanese Patent No. 2628007
特許文献 5:特公平 7 _ 25567号公報  Patent Document 5: Japanese Patent Publication No. 7_25567
特許文献 6 :特開平 9一 235136号公報  Patent Document 6: JP-A-9-235136
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 特許文献 4〜6に記載されているシリカ製溶融容器は、熱膨張係数が小さいため、 溶融されたガラスを流し出した後に、シリカ製溶融容器内に残存するガラスと熱膨張 係数が整合し難い。両者の熱膨張係数が不整合であると、シリカ製溶融容器が熱膨 張係数差によって割れやすくなり、長期間にわたって溶融容器を使用することができ ない。 [0008] Since the silica melting containers described in Patent Documents 4 to 6 have a small coefficient of thermal expansion, after the molten glass is poured out, the glass remaining in the silica melting container has a coefficient of thermal expansion. It is difficult to align. If the coefficients of thermal expansion of the two are inconsistent, the silica melting vessel is likely to crack due to the difference in thermal expansion coefficient, and the melting vessel cannot be used for a long period of time.
[0009] また、溶融容器として、耐熱性を有するインコネル系金属製溶融容器を使用するこ とも考えられる。しかし、インコネル系金属は、金属中に Crを含むため、溶融時にガラ ス中に多量の Crが溶け出してガラスを着色させるとともに、溶け出した Crがガラスを 不安定にするという問題がある。  [0009] It is also conceivable to use an inconel metal melting vessel having heat resistance as the melting vessel. However, since Inconel metal contains Cr in the metal, a large amount of Cr dissolves in the glass when it is melted to color the glass, and the dissolved Cr makes the glass unstable.
[0010] そこで、本発明の技術的課題は、白金製溶融容器を腐食させやすい SnO _P〇  [0010] Therefore, the technical problem of the present invention is that SnO_P〇 which easily corrodes a platinum melting vessel
2 5 系ガラス等を長期間にわたって繰り返し溶融できるとともに、溶融時に溶融容器の構 成成分が溶融ガラス中に溶出した場合であっても、溶出成分がガラスを変質させるこ とがないガラスの溶融方法およびガラスを提供することである。  25 A method of melting glass that can repeatedly melt glass, etc. over a long period of time, and does not cause the glass to denature even if the components of the melting container are eluted into the molten glass during melting. And to provide glass.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者等は、上記技術的課題を解決すベぐ種々の実験を繰り返した結果、溶 融容器として、ジルコニウムまたはジルコニウム合金からなる溶融容器を用いると、腐 食性の強い SnO _P O系ガラス等を溶融しても、溶融容器が侵食されにくいととも [0011] As a result of repeating various experiments to solve the above technical problem, the present inventors have found that when a melting container made of zirconium or a zirconium alloy is used as the melting container, SnO_PO is highly corrosive. The melting vessel is less likely to be eroded even when glass-based glass is melted
2 5  twenty five
に、溶融容器が破損しにくぐしかも溶融時に溶融容器の構成成分がガラス中に溶 出した場合であっても、溶出成分がガラスを変質させないことを見出し、本発明として 提案するものである。すなわち、本発明のガラスの溶融方法は、調合したガラス原料 を溶融容器内で溶融するガラスの溶融方法にぉレ、て、溶融容器がジノレコニゥムまた はジルコニウム合金から作製されていることを特徴とする。 In addition, it is found that the elution component does not denature the glass even if the melting container is difficult to break and the constituent components of the melting container are dissolved in the glass at the time of melting, and is proposed as the present invention. That is, the glass melting method of the present invention is a glass material prepared The glass is melted in a melting container, and the melting container is made of dinoleconium or a zirconium alloy.
[0012] 第二に、本発明のガラスの溶融方法は、不活性雰囲気または還元性雰囲気中で溶 融することに特徴付けられる。ここで、「不活性雰囲気」とは、真空環境(ΙΟΟΤοιτ以 下)、 N、 Arおよび He等の希ガス雰囲気を指し、「還元性雰囲気」とは、常圧で酸素 [0012] Secondly, the glass melting method of the present invention is characterized by melting in an inert atmosphere or a reducing atmosphere. Here, “inert atmosphere” refers to a vacuum environment (below ΙΟΟΤοιτ), a rare gas atmosphere such as N, Ar, and He, and “reducing atmosphere” refers to oxygen at normal pressure.
2 2
濃度が 10体積%以下であって、水素や炭化水素等の還元性ガスを注入した雰囲気 を指す。  This refers to an atmosphere that has a concentration of 10% by volume or less and injects a reducing gas such as hydrogen or hydrocarbon.
[0013] 第三に、本発明のガラスの溶融方法は、ガラスが、ガラス組成として、 Sn〇を 20〜7 0モル%含有することに特徴付けられる。  [0013] Third, the glass melting method of the present invention is characterized in that the glass contains 20 to 70 mol% of SnO as a glass composition.
[0014] 第四に、本発明のガラスの溶融方法は、ガラスが、ガラス組成として、モル%で、 Sn O 20〜70%、 P O 10〜50%、 B O 0〜30%含有することに特徴付けられる。  [0014] Fourthly, the glass melting method of the present invention is characterized in that the glass contains, as a glass composition, mol%, SnO 20-70%, PO 10-50%, BO 0-30%. Attached.
2 5 2 3  2 5 2 3
[0015] 第五に、本発明のガラスの溶融方法は、ジノレコニゥムの純度が 97質量%以上であ り、不純物として Hf、 Feおよび Crの群から選ばれた 1種または 2種以上を含有するこ とに特徴付けられる。  [0015] Fifth, the glass melting method of the present invention has a purity of 97% by mass or more of dinoleconium and contains one or more selected from the group of Hf, Fe and Cr as impurities. It is characterized by this.
[0016] 第六に、本発明のガラスの溶融方法は、ジルコニウム合金が、ジルコニウムと、 Sn、 [0016] Sixth, the glass melting method of the present invention is such that the zirconium alloy contains zirconium, Sn,
Fe、 Crおよび Niの群から選ばれた 1種または 2種以上を含有するジルカロイ合金で あることに特徴付けられる。 It is characterized by being a Zircaloy alloy containing one or more selected from the group of Fe, Cr and Ni.
[0017] 第七に、本発明のガラスの溶融方法は、ジルコニウム合金が、ジルコニウム鉄合金Seventh, the method for melting glass according to the present invention is such that the zirconium alloy is a zirconium iron alloy.
、ジルコニウム銅合金、ジルコニウムアルミ合金のいずれかであることに特徴付けられ る。 It is characterized by being either a zirconium copper alloy or a zirconium aluminum alloy.
[0018] 第八に、本発明のガラスは、上記のガラスの溶融方法によって作製されてなること に特徴付けられる。  [0018] Eighth, the glass of the present invention is characterized in that it is produced by the glass melting method described above.
[0019] 第九に、本発明のガラスは、ガラス組成として、質量換算で Zr〇を 100〜3000pp  Ninth, the glass of the present invention has a glass composition with a ZrO of 100 to 3000 pp in terms of mass.
2  2
m含有することに特徴付けられる。  It is characterized by containing m.
[0020] 第十に、本発明のガラスは、ガラス組成として、モル0 /0で SnO 20〜70%、 P〇 [0020] Tenth, the glass of the present invention has a glass composition, SnO 20 to 70% by mole 0/0, P_〇
2 5 twenty five
10〜50%、 B O 0〜30%含有し、且つ質量換算で Zr〇を 100〜3000ppm含有 Contains 10-50%, B 0-30%, and contains 100-3000 ppm of ZrO in terms of mass
2 3 2  2 3 2
することに特徴付けられる。  Characterized by
[0021] 第十一に、本発明のガラスは、電子部品または表示デバイスの封着に使用すること に特徴付けられる。 [0021] Eleventh, the glass of the present invention is used for sealing electronic parts or display devices. Characterized by
発明の効果  The invention's effect
[0022] 本発明のガラスの溶融方法は、溶融容器を腐食させやすい SnO— P O系ガラス  [0022] The glass melting method of the present invention is a SnO—PO system glass that easily corrodes the melting vessel.
2 5 等を長期間にわたって繰り返し溶融できるとともに、溶融時に溶融容器の構成成分 がガラス中に溶出しても、ガラスを変質させにくい。  2 5 etc. can be melted repeatedly over a long period of time, and even if the components of the melting vessel elute into the glass during melting, it is difficult to alter the glass.
[0023] 本発明のガラスの溶融方法は、溶融容器として、ジルコニウムゃジノレコニゥム合金 を使用しているため、溶融容器の耐熱性および耐腐食性を確保することができる。ジ ルコユウムゃジノレコニゥム合金からなる溶融容器は、ガラスの溶融温度(例えば、 70[0023] In the method for melting glass according to the present invention, since zirconium-zirconium alloy is used as a melting container, the heat resistance and corrosion resistance of the melting container can be ensured. A melting vessel made of zirconia is a glass melting temperature (eg 70
0〜: 1000°C)で変形しないとともに、腐食性の高い Sn〇一 P〇系ガラス等を溶融し 0 ~: 1000 ° C) and does not deform and melts highly corrosive SnO1 PO glass etc.
2 5  twenty five
ても、溶融容器が腐食しにくい利点を有している。  However, it has an advantage that the melting container is not easily corroded.
[0024] また、ジノレコニゥムゃジノレコニゥム合金から作製される溶融容器は、溶融時にジル コニゥム等がガラスに溶出したとしても、ガラスを分相させ難いことに加えて、ガラスを 失透させ難い特質を有している。また、溶融時に、積極的にジノレコニゥム等をガラス に溶出させれば、後述の効果を享受することもできる。  [0024] In addition, a melting vessel made of dinoleconium or dinoleconium alloy has characteristics that make it difficult to devitrify the glass in addition to difficult to separate the glass even if zirconium or the like elutes into the glass during melting. is doing. In addition, the effects described below can be enjoyed by leaching dinoleconium and the like into the glass during melting.
[0025] さらに、ジルコニウムゃジノレコニゥム合金は、優れた展性や力卩ェ性を有するため、 様々な形状の溶融容器を作製することができる。また、ジノレコニゥムゃジルコニウム 合金は、白金に比べ、安価であり、ひいては溶融コストの低廉化を図ることもできる。 発明を実施するための最良の形態  [0025] Further, since zirconium-zinoleconium alloy has excellent malleability and strength, melting containers of various shapes can be produced. In addition, Zinoleconium-zirconium alloy is cheaper than platinum, and thus can lower the melting cost. BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明のガラスの溶融方法において、不活性雰囲気または還元性雰囲気中で溶 融することが好ましい。溶融温度域 (例えば、 700〜1000°C)において、大気中にジ ルコニゥムまたはジルコニウム合金を放置すると、ジルコニウムまたはジルコニウム合 金の表面が酸化され、その靭性が損なわれやすくなる。特に、溶融温度が 900°C以 上の場合、この傾向が顕著になる。その結果、熱衝撃を受けた場合や溶融容器の冷 却時に、溶融容器が応力破壊しやすくなる。不活性雰囲気または還元性雰囲気中 で溶融すれば、ジルコニウムゃジノレコニゥム合金は酸化されにくいため、溶融容器が 破損しにくぐ上記事態を有効に回避することができる。 [0026] In the glass melting method of the present invention, it is preferable to melt in an inert atmosphere or a reducing atmosphere. If zirconium or a zirconium alloy is left in the atmosphere in the melting temperature range (for example, 700 to 1000 ° C.), the surface of zirconium or zirconium alloy is oxidized and its toughness is easily impaired. This tendency is particularly noticeable when the melting temperature is 900 ° C or higher. As a result, the melting container is subject to stress failure when subjected to thermal shock or when the melting container is cooled. If it is melted in an inert atmosphere or a reducing atmosphere, the zirconium-zinoleconium alloy is difficult to oxidize, so the above-mentioned situation in which the melting vessel is difficult to break can be effectively avoided.
[0027] なお、本発明のガラスの溶融方法は、大気中で溶融する態様を排除するものでは ないが、不活性雰囲気または還元性雰囲気中で溶融すれば、上記の利点に加えて 、溶融容器の寿命を高めることができるため、溶融コストの低廉化を図ることもできる。 [0027] The glass melting method of the present invention does not exclude the aspect of melting in the air, but if it is melted in an inert atmosphere or a reducing atmosphere, in addition to the above-mentioned advantages. In addition, since the life of the melting container can be increased, the melting cost can be reduced.
[0028] SnO含有ガラス、特に SnO— P〇系ガラスの場合、不活性雰囲気または還元性  [0028] In the case of SnO-containing glass, especially SnO-P0 glass, inert atmosphere or reducing property
2 5  twenty five
雰囲気中で溶融すれば、 Sn〇の酸化を防ぐことができる利点も享受することができる ため、より好ましい。なお、 Sn〇_P O系ガラスにおいて、ガラス組成中の Sn〇が酸  Melting in an atmosphere is more preferable because it can also enjoy the advantage of preventing oxidation of SnO. In SnO_PO glass, SnO in the glass composition is acid.
2 5  twenty five
化すると、焼成時にガラスの流動性が損なわれる。ここで、 SnOの含有量が 20%より 少ないと、ジノレコニゥムゃジルコニウム合金からなる溶融容器を使用するメリットが乏 しくなり、逆に、 SnOの含有量が 70%より多いと、溶融時にガラスが失透しやすくなり 、ガラスの生産効率が損なわれる。よって、 Sn〇の含有量は、モル%で、好ましくは 2 0〜70ο/ο、より好ましく fま 20〜65ο/ο、更 (こ好ましく ίま 30〜60ο/οである。 If it becomes, the fluidity of the glass is impaired during firing. Here, if the SnO content is less than 20%, the merit of using a melting vessel made of zirconium zirconium alloy becomes poor. Conversely, if the SnO content is more than 70%, the glass loses during melting. It becomes easy to see through, and the glass production efficiency is impaired. Therefore, the content of SnO is mol%, preferably 20 to 70 o / ο, more preferably f to 20 to 65 o / o , and further (preferably to 30 to 60 o / ο).
[0029] 本発明のガラスの溶融方法において、ジルコニウムは、純度が 97質量%以上、好 ましくは 99質量%以上であり、例えば、不純物として Hf、 Feおよび Crからなる群より 選ばれた 1種または 2種以上を含有させることができる。 Hf、 Feおよび Crは、質量% 表示で、 Hfが 3%以下、 Fe + Crが 0. 2%以下であることが好ましレ、。ジルコニウムの 純度が 97質量%未満であると、溶融時に不純物成分が溶け出し、ガラスを変質させ るおそれがあり、好ましくない。  In the glass melting method of the present invention, zirconium has a purity of 97% by mass or more, preferably 99% by mass or more, and is selected from the group consisting of Hf, Fe and Cr as impurities 1 Species or two or more can be included. Hf, Fe, and Cr are preferably expressed in terms of mass%, and Hf is 3% or less and Fe + Cr is 0.2% or less. If the purity of zirconium is less than 97% by mass, impurity components may be dissolved during melting and the glass may be altered, which is not preferable.
[0030] 本発明のガラスの溶融方法において、ジルコニウム合金は、 Sn、 Fe、 Crおよび Ni の群力 選ばれた 1種または 2種以上が添加されてなるジルカロイ(ASTM R6080 2相当または ASTM R60804相当)やジルコニウム鉄合金、ジルコニウム銅合金、 ジルコニウムアルミ合金が好ましい。これらのジルコニウム合金は、耐腐食性、耐熱性 および加工性等が優れており、溶融容器として好適に使用することができる。  [0030] In the glass melting method of the present invention, the zirconium alloy is a zircaloy (equivalent to ASTM R6080 2 or equivalent to ASTM R60804) in which one or more selected from the group strength of Sn, Fe, Cr and Ni are added. ), Zirconium iron alloys, zirconium copper alloys, and zirconium aluminum alloys are preferred. These zirconium alloys are excellent in corrosion resistance, heat resistance, workability, etc., and can be suitably used as a melting vessel.
[0031] ジルカロイは、 Sn、 Fe、 Cr、 Niの添加量が、質量0 /0表示で Sn 1. 0〜2· 0%、 Fe [0031] Zircaloy, Sn, Fe, Cr, the addition amount of Ni is, Sn 1. 0~2 · 0% by weight 0/0 Display, Fe
0. 05〜0. 3%、 Cr 0. 05〜0. 2%、 Ni 0. 02〜0. 1 %であること力 S好ましレヽ。こ れらの成分を添加すれば、過度の耐食を防止できる。  The power of being 0.05 to 0.3%, Cr of 0.05 to 0.2%, and Ni of 0.02 to 0.1%. Addition of these components can prevent excessive corrosion resistance.
[0032] 本発明のガラスの溶融方法において、溶融容器の厚みは l〜5mmが好ましぐ 2〜[0032] In the glass melting method of the present invention, the thickness of the melting container is preferably 1 to 5 mm.
3mmがより好ましい。このようにすれば、溶融容器の加工性を損なうことなぐ溶融容 器のクラックを防止することができる。 3 mm is more preferable. By doing so, it is possible to prevent cracking of the melting container without impairing the workability of the melting container.
[0033] 本発明のガラスの溶融方法において、真空雰囲気の場合、溶融温度は 800〜140[0033] In the glass melting method of the present invention, in a vacuum atmosphere, the melting temperature is 800 to 140.
0°Cが好適である。不活性雰囲気の場合、溶融温度は 800〜: 1100°Cが好適である 。また、溶融温度を 800〜: 1000°Cにすれば、ガラスを適正に溶融することができる。 溶融温度が高いと、 Snの価数が 2価力 4価に変化しやすぐすなわち Sn〇が酸化 しゃすぐまた溶融温度が低いと、溶融後にガラス原料の未溶解成分が残存しやすく なる。 0 ° C is preferred. In the case of an inert atmosphere, the melting temperature is preferably 800 to 1100 ° C. . Further, if the melting temperature is set to 800 to 1000 ° C, the glass can be appropriately melted. When the melting temperature is high, the valence of Sn changes to divalent power and tetravalent, that is, SnO is oxidized immediately and when the melting temperature is low, unmelted components of the glass raw material tend to remain after melting.
[0034] 本発明のガラスの溶融方法において、ジルコニウムまたはジルコニウム合金からジ ルコニゥムを溶出させることにより、ガラス組成中の ZrO含有量を質量換算で 100〜  [0034] In the glass melting method of the present invention, by eluting zirconium from zirconium or a zirconium alloy, the ZrO content in the glass composition is 100 to 100 in terms of mass.
2  2
3000ppm (好ましくは 200〜2000ppm、より好ましくは 300〜1000ppm)とすること が望ましい。このようにすれば、耐失透性等のガラス特性に悪影響を及ぼすことなぐ ガラスの耐候性や耐湿性を向上させることができる。特に、 SnO-P O系ガラスの場  It is desirable to set it at 3000 ppm (preferably 200 to 2000 ppm, more preferably 300 to 1000 ppm). In this way, it is possible to improve the weather resistance and moisture resistance of the glass without adversely affecting the glass properties such as devitrification resistance. Especially for SnO-PO glass
2 5  twenty five
合、ジルコニウムまたはジルコニウム合金からジルコニウムを溶出させれば、この溶出 成分が還元剤として作用し、ガラス組成中の Sn〇が酸化される事態を抑制することが できる。 ZrOの含有量が lOOppmより少ないと、ガラスの耐候性や耐湿性を向上させ  In other words, if zirconium is eluted from zirconium or a zirconium alloy, the eluted component acts as a reducing agent, and the situation where SnO in the glass composition is oxidized can be suppressed. If the ZrO content is less than lOOppm, the weather resistance and moisture resistance of the glass will be improved.
2  2
にくくなる。 ZrOの含有量が 3000ppmより多いと、ガラスの軟化点が上昇し、低温で  It becomes difficult. If the ZrO content is greater than 3000 ppm, the softening point of the glass will rise and
2  2
封着し難くなる。  It becomes difficult to seal.
[0035] なお、攪拌羽やガス管等の溶融ガラスと直接接する設備は、通常、白金を用いて作 製される。よって、これらの設備についてもジルコニウムまたはジルコニウム合金を用 レ、て作製すれば、上述の溶融容器が有する利点を享受することができる。  [0035] It should be noted that equipment that is in direct contact with molten glass, such as stirring blades and gas pipes, is usually made of platinum. Therefore, if these facilities are also made using zirconium or a zirconium alloy, the advantages of the melting vessel described above can be enjoyed.
[0036] 本発明のガラスの溶融方法にて作製するガラスは、低融点特性を有するため、 Sn O-P〇系ガラスであることが好ましレ、。また、 Sn〇一 P O系ガラスは、ガラス組成と [0036] Since the glass produced by the glass melting method of the present invention has a low melting point property, it is preferably SnO-P- glass. SnO1 P O-based glass has a glass composition and
2 5 2 5 2 5 2 5
して、モノレ0 /0で、 SnO 20〜70%、 P〇 10〜50%、 B〇 0〜30%を有すること And, in Monore 0/0, having SnO 20 to 70% P_〇 10-50%, the B_〇 0-30%
2 5 2 3  2 5 2 3
が好ましい。  Is preferred.
[0037] SnO-P O系ガラスのガラス組成を上記のように限定した理由を下記に示す。  [0037] The reason why the glass composition of the SnO-PO glass is limited as described above will be described below.
2 5  twenty five
[0038] SnOは、ガラスを低融点化させる成分である。 Sn〇の含有量が 30%より少ないと、 ガラスの粘性が高くなつて、焼成温度が高くなりすぎ、低温で封着することができなく なる。 SnOの含有量が 70%を超えると、ガラス化し難くなる。特に、 SnOが多いと、焼 成時にガラスが失透しやすくなるので、焼成時にガラスの失透が許容されなレ、場合 には、 SnOの含有量を 60%以下とすることが好ましレ、。また、 Sn〇の含有量を 40% 以上にすれば、ガラスの流動性を向上させることができ、電子部品等の気密信頼性 を確保することができるため、より好ましい。 [0038] SnO is a component that lowers the melting point of glass. If the SnO content is less than 30%, the viscosity of the glass becomes high, the firing temperature becomes too high, and sealing becomes impossible at a low temperature. If the SnO content exceeds 70%, vitrification becomes difficult. In particular, if there is a large amount of SnO, the glass tends to be devitrified at the time of firing. Therefore, devitrification of the glass at the time of firing is not allowed. In some cases, the SnO content is preferably 60% or less. ,. In addition, if the SnO content is 40% or more, the fluidity of the glass can be improved, and the airtight reliability of electronic parts, etc. Is more preferable.
[0039] P Oは、ガラス形成酸化物であり、ガラスを安定化させる成分であり、その含有量  [0039] PO is a glass-forming oxide, a component that stabilizes glass, and its content
2 5  twenty five
は 10〜50%、好ましくは 15〜45%、より好ましくは 20〜35%である。 P Oの含有  Is 10 to 50%, preferably 15 to 45%, more preferably 20 to 35%. P O content
2 5 量が 10%より少ないと、ガラスの安定性が不十分となる。 P Oの含有量が 50%より  If the amount is less than 10%, the stability of the glass will be insufficient. P O content from 50%
2 5  twenty five
多いと、ガラスの耐湿性が悪くなる。  If the amount is too high, the moisture resistance of the glass will deteriorate.
[0040] B Oは、必須成分ではないが、ガラス形成成分であり、ガラス組成中に含有させる [0040] B 2 O is not an essential component but is a glass-forming component and is contained in the glass composition.
2 3  twenty three
ことにより、ガラスを安定化させることができる。 B Oの含有量は、 0〜30%、好ましく  Thus, the glass can be stabilized. The content of B 2 O is 0-30%, preferably
2 3  twenty three
は 2〜: 15%である。 B Oの含有量が 30。/oより多いと、ガラスの粘性が増大して、低  Is 2 to: 15%. B O content is 30. If it is more than / o, the viscosity of the glass will increase and it will be low.
2 3  twenty three
温で封着し難くなる。  It becomes difficult to seal with temperature.
[0041] また、本発明に係る SnO _P O系ガラスは、ガラス組成として、上記成分に加えて  [0041] Further, the SnO_PO glass based on the present invention has a glass composition in addition to the above components.
2 5  twenty five
、Zn〇 0〜20%、Mg〇 0〜20%、A1〇 0〜10%、 Si〇 0〜15%、La〇 0  , Zn ○ 0 to 20%, Mg ○ 0 to 20%, A1 ○ 0 to 10%, Si ○ 0 to 15%, La ○ 0
2 3 2 2 3 2 3 2 2 3
〜10%、 R〇(R〇は Li〇、 Na〇、 K〇および/または Cs〇の合量) 0〜20% ~ 10%, R〇 (R〇 is the total amount of Li〇, Na〇, K〇 and / or Cs〇) 0-20%
2 2 2 2 2 2 含有させることができる。これらの成分を上記範囲に限定した理由を以下に説明する  2 2 2 2 2 2 Can be contained. The reason why these components are limited to the above range will be described below.
[0042] Zn〇は、必須成分ではないが、網目修飾酸化物であり、ガラスを安定化させる効果 が大きいため、 4%以上含有させることが望ましい。しかし、 Zn〇の含有量が 20%を 超えると、焼成時にガラス表面に失透が生じやすくなる。また、封着工程が長時間( 例えば 1時間以上)である場合、具体的には PDPの封着工程等では、ガラス表面に 失透が生じやすくなるため、ガラスをより安定化させる必要がある。このような場合、 Z n〇の含有量を 5〜: 15%とすればよい。 [0042] Although ZnO is not an essential component, it is a network-modifying oxide and has a large effect of stabilizing the glass, so it is desirable to contain 4% or more. However, if the ZnO content exceeds 20%, devitrification tends to occur on the glass surface during firing. In addition, when the sealing process is a long time (for example, 1 hour or more), the glass surface tends to be devitrified, specifically in the PDP sealing process. . In such a case, the content of ZnO may be 5 to 15%.
[0043] MgOは、網目修飾酸化物であり、ガラスを安定化させる効果がある。 MgOが 20% を超えると、焼成時にガラス表面に失透が発生しやすくなる。 MgOの含有量は 0〜5 %であることが望ましい。  [0043] MgO is a network-modifying oxide and has an effect of stabilizing the glass. If MgO exceeds 20%, devitrification tends to occur on the glass surface during firing. The MgO content is preferably 0 to 5%.
[0044] Al Oは、中間酸化物である。 Al Oは必須成分ではなレ、が、ガラスを安定化させ  [0044] Al 2 O is an intermediate oxide. Al O is not an essential component, but it stabilizes the glass.
2 3 2 3  2 3 2 3
る効果があり、また熱膨張係数を低下させる効果もあるので含有させることが望ましい 。但し、 10%を超えると軟ィ匕温度が上昇し、焼成時のガラスの流動性が阻害される。 なお、ガラスの安定性、熱膨張係数および流動性等を考慮した場合、 Al Oの含有  In addition, it is desirable to contain it because it also has the effect of reducing the thermal expansion coefficient. However, if it exceeds 10%, the softening temperature rises and the fluidity of the glass during firing is hindered. When considering the stability of glass, thermal expansion coefficient, fluidity, etc., Al O content
2 3 量は:!〜 5%がより好ましい。 [0045] SiOは、ガラス形成酸化物である。 Si〇は必須成分ではないが、失透を抑制する2 3 The amount is more preferably:! ~ 5%. [0045] SiO is a glass-forming oxide. Si〇 is not an essential component, but suppresses devitrification
2 2 twenty two
効果があるので含有させることが望ましい。なお、 15%を超えると軟ィ匕温度が上昇し 、焼成時の流動性が著しく悪くなる。低融点材料としての流動性等考慮した場合、 Si Oの含有量は 0〜: 10%であることが望ましい。  Since it is effective, it is desirable to contain it. If it exceeds 15%, the softening temperature rises and the fluidity during firing becomes extremely poor. In consideration of fluidity as a low melting point material, the content of Si 2 O is preferably 0 to 10%.
2  2
[0046] R〇は、必須成分ではないが、 R〇成分の内、少なくとも 1種をガラス組成中に 0.  [0046] R0 is not an essential component, but at least one of the R0 components is 0.
2 2  twenty two
1 %以上含有させることにより、被封着物との封着強度を高めることができる。しかし、 R〇の含有量が 20%を超えると、焼成時にガラスが失透しやすくなる。なお、焼成時 By containing 1% or more, the sealing strength with the object to be sealed can be increased. However, if the content of R0 exceeds 20%, the glass tends to devitrify during firing. In firing
2 2
の耐失透性やガラスの流動性が要求される場合、 R〇の含有量を 10%以下にする  When devitrification resistance and glass fluidity are required, the content of R〇 should be 10% or less.
2  2
ことが望ましい。  It is desirable.
[0047] さらに、本発明に係る Sn〇_P〇系ガラスは、ガラス組成として、上記成分に加え  [0047] Furthermore, the SnO_PO glass according to the present invention has a glass composition in addition to the above components.
2 5  twenty five
て種々の成分を添加することができる。例えば、ガラスを安定化させる目的で、 WO  Various components can be added. For example, for the purpose of stabilizing glass, WO
3 Three
、 Mo〇、 Nb〇、 Ti〇、 Cu〇、 Mn〇、 R'〇(R'〇は Mg〇、 Ca〇、 Sr〇および/ま, Mo〇, Nb〇, Ti〇, Cu〇, Mn〇, R'〇 (R'〇 is Mg〇, Ca〇, Sr〇 and / or
3 2 5 2 3 2 5 2
たは BaOの合量)等を合量で 0〜35%、好ましくは 0〜25%含有させることができる。 なお、これらの成分の合量が 35%を超えると、ガラス組成のバランスを欠き、逆にガラ スが不安定になって、ガラスの成形時に失透しやすくなる。また、ガラスの耐候性や 耐湿性を高めるために、 In O等を含有させることもできる。  Or the total amount of BaO) or the like can be contained in a total amount of 0 to 35%, preferably 0 to 25%. If the total amount of these components exceeds 35%, the glass composition will be unbalanced, and the glass will be unstable, and the glass will be easily devitrified during molding. In addition, In 2 O or the like can be added to increase the weather resistance and moisture resistance of the glass.
2 3  twenty three
[0048] 上記安定化成分の含有量およびその限定理由を以下に述べる。  [0048] The content of the stabilizing component and the reason for limitation will be described below.
[0049] WO、 MoOの含有量は、それぞれ 0〜20%、特に 0〜10%であることが好ましい  [0049] The contents of WO and MoO are each preferably 0 to 20%, particularly preferably 0 to 10%.
3 3  3 3
。これらの成分が 20%を超えると、ガラスの粘性が高くなりやすぐ低温で封着するこ とができなくなる。  . When these components exceed 20%, the viscosity of the glass becomes high and it becomes impossible to seal at a low temperature immediately.
[0050] Nb〇、 TiOの含有量は、それぞれ 0〜: 15%、特に 0〜10%であることが好ましい  [0050] The contents of NbO and TiO are each 0 to 15%, particularly preferably 0 to 10%.
2 5 2  2 5 2
。これらの成分が 15%を超えると、ガラスの失透傾向が大きくなりやすい。  . If these components exceed 15%, the tendency to devitrify the glass tends to increase.
[0051] CuO、 MnOの含有量は、それぞれ 0〜10%、特に 0〜5%が好ましレ、。これらの成 分が 10%を超えると、ガラスが不安定になりやすい。 [0051] The CuO and MnO contents are preferably 0 to 10%, particularly 0 to 5%, respectively. If these components exceed 10%, the glass tends to become unstable.
[0052] R'〇の含有量は、合量で 0〜15%、特に 0〜5%であることが好ましレ、。 R' Oが 15[0052] The total content of R'O is preferably 0 to 15%, particularly preferably 0 to 5%. R'O is 15
%を超えると、ガラスが不安定になりやすい。 If it exceeds%, the glass tends to be unstable.
[0053] In Oは、高度な耐候性や耐湿性を得る目的で使用することができる。 In Oの含 [0053] In O can be used for the purpose of obtaining high weather resistance and moisture resistance. In O content
2 3 2 3 有量は 0〜5%であることが好ましレ、。 In Oの含有量が 5%より多いと、 In〇が高価 な原料であることから、ガラスの原料コストの高騰を招く。 2 3 2 3 The content is preferably 0-5%. If the In O content is more than 5%, In〇 is expensive Since this is a raw material, the cost of the glass raw material will rise.
[0054] なお、環境的観点から、ガラス組成中に PbOを実質的に含有させないことが好まし レ、。ここで、「PbOを実質的に含有しない」とは、ガラス組成中の Pb〇の含有量が 100 Oppm以下の場合を指す。  [0054] From an environmental viewpoint, it is preferable that PbO is not substantially contained in the glass composition. Here, “substantially no PbO” refers to the case where the content of PbO in the glass composition is 100 Oppm or less.
[0055] 本発明のガラスは、ガラス組成として、モル0 /0で、 Sn〇 20〜70%、 P O 10〜5 [0055] The glass of the present invention, as a glass composition, in mol 0/0, Sn_〇 20 to 70%, PO 10.about.5
2 5  twenty five
0%、 B O 0〜30%含有する。さらに、本発明のガラスにおいて、質量換算でガラ Contains 0%, B O 0-30%. Furthermore, in the glass of the present invention, the glass is glass
2 3 twenty three
ス組成中に ZrOを 100〜3000ppm含有させることカ好ましく、 200〜2000ppm含  It is preferable to contain 100 to 3000 ppm of ZrO in the composition.
2  2
有させることがより好ましぐ 300〜1000ppm含有させること力 S特に好ましレ、。このよう にすれば、ガラスの耐候性や耐湿性を向上させることができる。 ZrOの含有量が 10  It is more preferable to have the power to contain 300-1000ppm S especially preferred. In this way, the weather resistance and moisture resistance of the glass can be improved. ZrO content is 10
2  2
Oppmより少ないと、ガラスの耐候性や耐湿性を向上させに《なる。 ZrOの含有量  If it is less than Oppm, the weather resistance and moisture resistance of the glass will be improved. ZrO content
2 力 000ppmより多レヽと、低温で封着し難くなる。 ZrOは、上記したように、ジルコユウ  2 Power More than 000ppm, it becomes difficult to seal at low temperature. ZrO, as mentioned above,
2  2
ム溶融容器等を用いて溶融することで、ガラス組成中に導入させることができる。  It can be introduced into the glass composition by melting using a glass melting container or the like.
[0056] 本発明のガラスは、上記ガラスの溶融方法によって、好適に作製することができる。 The glass of the present invention can be suitably produced by the above glass melting method.
上記ガラスの溶融方法により得られる Sn〇一 P O系ガラス、或いは上記ガラス組成  SnO1 PO glass obtained by the glass melting method, or the glass composition
2 5  twenty five
を有する SnO— P O系ガラスは、 270〜380。Cのガラス転移点を有し、約 400〜60  SnO—PO glass having 270-380. It has a glass transition temperature of C, about 400-60
2 5  twenty five
0°Cの温度範囲で良好な流動性を示す低融点のガラスである。また、これらの Sn〇 — P O系ガラスは、 30〜250°Cの温度範囲において 90〜: 150 X 10_ 7/°C程度のIt is a low melting glass showing good fluidity in the temperature range of 0 ° C. These Sn_〇 - PO based glass, 90 in a temperature range of 30~250 ° C: 150 X 10 _ 7 / ° C of about
2 5 twenty five
熱膨張係数を有する。  It has a thermal expansion coefficient.
[0057] このような特性を有する SnO— P O系ガラスは、被封着物と熱膨張係数が適合す  [0057] SnO—PO glass having such characteristics matches the thermal expansion coefficient of the object to be sealed.
2 5  twenty five
る場合、ガラス粉末とし、単独で封着材料として使用できる。  Glass powder, it can be used alone as a sealing material.
[0058] 一方、被封着物と熱膨張係数が整合しない場合、例えばアルミナ(70 X 10— 7/°C )、高歪点ガラス(85 X 10—7,。C)、ソーダ板ガラス(90 X 10—ソ。 C)等を封着する 場合には、 SnO _ P O系ガラス粉末に耐火性フィラー粉末をカ卩えて複合材料とす [0058] On the other hand, if the article to be sealed and the thermal expansion coefficient does not match, such as alumina (70 X 10- 7 / ° C ), high strain point glass (85 X 10- 7, .C) , soda lime glass (90 X 10—So, when sealing C) etc., refractory filler powder is added to SnO_PO glass powder to form a composite material.
2 5  twenty five
ればよい。複合材料の熱膨張係数は、被封着物に対して 5〜30 X 10— 7/°C程度低 く設計することが重要である。このようにすれば、封着層にかかる応力をコンプレツシ ヨン (圧縮)側にして封着層の破壊を防ぐことができる。この場合、ガラス粉末 45〜95 体積%、耐火性フィラー粉末 5〜55体積%となるように調製すればよい。 Just do it. Thermal expansion coefficient of the composite material, it is important to lower rather designed about 5~30 X 10- 7 / ° C with respect to the article to be sealed. In this way, the stress applied to the sealing layer can be set to the compression (compression) side to prevent destruction of the sealing layer. In this case, what is necessary is just to prepare so that it may become 45-95 volume% of glass powder, and 5-55 volume% of refractory filler powder.
[0059] 特に、蛍光表示管 (VFD)、フィールドェミッションディスプレイ(FED)、 PDP、陰極 線管(CRT)を封着する場合、封着材料の熱膨張係数を 60〜: 100 X 10_7/°C程度 となるように調整することが好ましレ、。 [0059] Fluorescent display tube (VFD), field emission display (FED), PDP, cathode When sealing a wire tube (CRT), it is preferable to adjust the thermal expansion coefficient of the sealing material to about 60: 100 X 10 _7 / ° C.
[0060] 耐火性フィラーとして、ウィレマイト系セラミック、 β —ユークリプタイト、チタン酸鉛系 セラミック、コーディエライト、酸化スズ固溶体、ジルコン系セラミック、ムライト、石英ガ ラス、アルミナ等の各種耐火性フィラー粉末を添加してもよい。なお、熱膨張係数の 調整以外にも、例えば機械的強度の向上のために、耐火性フィラー粉末を添加する こともできる。なお、環境的観点から、耐火性フィラー粉末は、実質的に Pb〇を含まな レ、ことが好ましい。 [0060] Various refractory filler powders such as willemite ceramic, β-eucryptite, lead titanate ceramic, cordierite, tin oxide solid solution, zircon ceramic, mullite, quartz glass, alumina, etc. as refractory filler May be added. In addition to adjusting the thermal expansion coefficient, for example, refractory filler powder can be added to improve mechanical strength. From an environmental point of view, it is preferable that the refractory filler powder does not substantially contain PbO.
実施例  Example
[0061] 以下、本発明を実施例に基づいて詳細に説明する。  Hereinafter, the present invention will be described in detail based on examples.
[0062] 表 1、 2は本発明の実施例(No.:!〜 9)を示し、表 3は比較例(No.10〜: 12)を示 すものである。  [0062] Tables 1 and 2 show examples (No .:! To 9) of the present invention, and Table 3 shows comparative examples (Nos. 10 to 12).
[0063] [表 1] [0063] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
(注) ジルカロイ 2 : ASTM G r a d e R60802相 ¾  (Note) Zircaloy 2: ASTM G ra de R60802 phase ¾
ジルカロイ 4 : ASTM G r a d e R60804相当  Zircaloy 4: ASTM G ra de e R60804 equivalent
[0064] [表 2] 実施例 [0064] [Table 2] Example
No.6 No.7 No.8 No.9  No.6 No.7 No.8 No.9
SnO 52.5 61 43 55  SnO 52.5 61 43 55
31 19.5 24 20  31 19.5 24 20
ガラス B203 0 2 22.5 5.5 Glass B 2 0 3 0 2 22.5 5.5
組成 ZnO 12,5 2 5.5 4  Composition ZnO 12,5 2 5.5 4
(mo ) Si02 1.5 1.5 0 0 (mo) Si0 2 1.5 1.5 0 0
Αί203 0.5 2 1.5 1 2 0 3 0.5 2 1.5 1
Li20 0.5 2 2.5 3.5 Li 2 0 0.5 2 2.5 3.5
Na20 1.5 0.5 0 0Na 2 0 1.5 0.5 0 0
20 0 0.5 0.5 1  20 0 0.5 0.5 1
W03 0 9 0 10 W0 3 0 9 0 10
ln203 0 0 0.5 0 ln 2 0 3 0 0 0.5 0
溶融容器 Zr ル加ィ 2 Zr シ レ力ロイ 4  Melting container Zr Le 2 2 Zr Shire force Roy 4
溶融温度 (°C) 800 900 950 950  Melting temperature (° C) 800 900 950 950
溶融雰囲気 N2 Ar He N2 Melting atmosphere N 2 Ar He N 2
ガラス転移点 (°c) 287 320 335 323  Glass transition point (° c) 287 320 335 323
熱膨張係数 (X10_7/°G) 121 110 103 111 Thermal expansion coefficient (X10_ 7 / ° G) 121 110 103 111
焼成雰囲気 大気 N2 N2 Firing atmosphere Air N 2 N 2
流動径 (mm) 23.5 22.1 20.4 21.0  Flow diameter (mm) 23.5 22.1 20.4 21.0
Zr02の含有量(ppm) 1850 1150 700 1200 Zr0 2 content (ppm) 1850 1150 700 1200
溶融容器の割れ O O O O  Cracking of melting container O O O O
(注) ジルカロイ 2 : ASTM G r a d e R60802相当  (Note) Zircaloy 2: ASTM G ra de e R60802 equivalent
ジルカロイ 4 : ASTM G r a d e R6 O 8 O 4相当  Zircaloy 4: ASTM G ra d e R6 O 8 O 4 equivalent
[0065] [表 3] [0065] [Table 3]
Figure imgf000012_0001
Figure imgf000012_0001
[0066] 表中のガラス組成になるように、各種酸化物、炭酸塩原料等を調合し、ガラス原料 を作製した。このガラス原料を表中に示す溶融容器に投入し、表中の溶融雰囲気中 で、表中の溶融温度で 2時間溶融した。 [0066] Various oxides, carbonate raw materials and the like were prepared so as to have the glass compositions in the table, and glass raw materials were produced. This glass raw material was put into a melting container shown in the table, and melted at the melting temperature in the table for 2 hours in the melting atmosphere in the table.
[0067] 次いで、溶融容器中の溶融ガラスを一対の回転ローラー間に流し出し、回転ローラ 一で溶融ガラスを急冷しながら、フィルム状のガラス試料を作製した。成形したフィル ム状のガラスをボールミルで粉砕した後、 目開き 105 xmの篩を通過させ、平均粒径 約 10 / mのガラス粉末を得た。また、溶融容器中の溶融ガラスをカーボン製の型枠 に流し出し、板状のガラス試料を作製した。 [0067] Next, the molten glass in the melting vessel was poured out between a pair of rotating rollers, and a film-like glass sample was prepared while rapidly cooling the molten glass with one rotating roller. The formed film-like glass is pulverized with a ball mill and then passed through a sieve with a mesh size of 105 xm. About 10 / m glass powder was obtained. The molten glass in the melting container was poured out into a carbon mold, and a plate-like glass sample was produced.
[0068] ガラス転移点は、示差熱分析 (DTA)により、熱膨張係数は、押棒式熱膨張測定( TMA)装置により求めた。  [0068] The glass transition point was determined by differential thermal analysis (DTA), and the thermal expansion coefficient was determined by a push rod thermal expansion measurement (TMA) apparatus.
[0069] 流動径は、次のようなフローボタンテストで評価した。まず、成形したフィルム状のガ ラスをボールミルで粉砕した後、 目開き 105 a mの篩を通過させ、平均粒径約 10 μ mのガラス粉末を得た。次に、得られたガラス粉末の真比重に相当する質量の粉末 を秤量し、金型を用いて、これを φ 20mmのボタン状にプレスし、ボタン状の粉末成 形体を得た。続いて、この粉末成形体を窓板ガラスの上に載置した後、表中の雰囲 気中で焼成した。焼成条件として、焼成温度である 450°Cまで 10°C/分の速度で昇 温した上で、 450°Cで 10分間保持した後、 10°C/分で室温まで降温した。最後に、 焼成後のボタンの直径をデジタルノギスで測定した。このボタンの直径は、封着材料 に用いる場合には 20mm以上であることが望ましい。  [0069] The flow diameter was evaluated by the following flow button test. First, the formed glassy glass was pulverized by a ball mill and then passed through a sieve having an aperture of 105 am to obtain a glass powder having an average particle size of about 10 μm. Next, a powder having a mass corresponding to the true specific gravity of the obtained glass powder was weighed and pressed into a button shape having a diameter of 20 mm using a mold to obtain a button-shaped powder formed body. Subsequently, this powder compact was placed on a window glass and then fired in the atmosphere shown in the table. As firing conditions, the temperature was increased to a firing temperature of 450 ° C. at a rate of 10 ° C./minute, held at 450 ° C. for 10 minutes, and then cooled to room temperature at 10 ° C./minute. Finally, the diameter of the button after firing was measured with a digital caliper. The diameter of this button should be at least 20 mm when used as a sealing material.
[0070] 「溶融容器の割れ」は、溶融容器から溶融ガラスを流し出した後、常温で溶融容器 を放置し、溶融容器にクラックが発生しているか否かを目視で判定し、評価した。クラ ックがなレ、場合を「〇」、クラックがある場合を「 X」とした。  [0070] "Cracking of the melting container" was evaluated by visually determining whether or not cracks occurred in the melting container by leaving the melting container at room temperature after pouring the molten glass from the melting container. The case where there was no crack, “◯”, and the case where there was a crack, “X”.
[0071] 「ガラス中の Zr〇の含有量」は、蛍光 X線分析により、測定した。なお、表中の数値  [0071] "ZrO content in glass" was measured by fluorescent X-ray analysis. The numbers in the table
2  2
は、質量換算の数値である。  Is a numerical value in terms of mass.
[0072] 表 1、 2から明らかなように、実施例 No.:!〜 9は溶融容器の割れがなぐフローボタ ンテストでの流動径も 20mm以上あり、得られたガラス特性も良好であった。なお、 Zr Oの含有量も 700〜1900ppmであった。 [0072] As is clear from Tables 1 and 2, Example Nos .:! To 9 had a flow diameter of 20 mm or more in the flow button test in which cracking of the melting vessel was eliminated, and the obtained glass characteristics were also good. The Zr 2 O content was 700 to 1900 ppm.
2  2
[0073] 一方、表 3から明らかなように、比較例 No. 10、 12は、溶融容器にクラック発生し、 比較例 No. 11は、溶融ガラスが緑色に強く着色し、粉末ガラスも失透したため、流動 径が 18mmと流動せず、ガラス特性が損なわれた。  On the other hand, as is apparent from Table 3, in Comparative Examples No. 10 and 12, cracks occurred in the melting container, and in Comparative Example No. 11, the molten glass was strongly colored green, and the powder glass was also devitrified. As a result, the flow diameter did not flow as 18 mm, and the glass properties were impaired.
産業上の利用可能性  Industrial applicability
[0074] 以上説明した通り、本発明のガラスの溶融方法およびガラスは、各種セラミックパッ ケージ、磁気ヘッド等の電子部品の封着、各種表示デバイスの封着、 PDPの隔壁、 魔法瓶の金属二重容器の封止および各種光学ガラスに好適である。 [0074] As described above, the glass melting method and glass of the present invention include various ceramic packages, sealing of electronic components such as a magnetic head, sealing of various display devices, PDP partition walls, and double metal thermos. Suitable for container sealing and various optical glasses.

Claims

請求の範囲  The scope of the claims
[I] 調合したガラス原料を溶融容器内で溶融するガラスの溶融方法にぉレ、て、  [I] The glass melting method in which the prepared glass raw material is melted in a melting container,
溶融容器がジルコニウムまたはジノレコニゥム合金から作製されていることを特徴とす るガラスの溶融方法。  A method for melting glass, characterized in that the melting vessel is made of zirconium or a dinoleconium alloy.
[2] 不活性雰囲気または還元性雰囲気中で溶融することを特徴とする請求項 1に記載 のガラスの溶融方法。  [2] The method for melting glass according to claim 1, wherein the melting is performed in an inert atmosphere or a reducing atmosphere.
[3] ガラスが、ガラス組成として、モル0 /0で、 Sn〇を 20〜70%含有することを特徴とする 請求項 1または 2に記載のガラスの溶融方法。 [3] glass, as a glass composition, in mol 0/0, the melting method of a glass according to claim 1 or 2, characterized in that it contains 20% to 70% of Sn_〇.
[4] ガラスが、ガラス組成として、モル0 /0で、 SnO 20〜70%、 P〇 10〜50%、 B〇 [4] glass, as a glass composition, in mol 0/0, SnO 20 to 70% P_〇 10-50%, B_〇
2 5 2 2 5 2
0〜30%含有することを特徴とする請求項 1〜3のいずれかに記載のガラスの溶融Melting of the glass according to any one of claims 1 to 3, characterized by comprising 0-30%
3 Three
方法。  Method.
[5] ジルコニウムの純度が 97質量%以上であり、不純物として Hf、 Feおよび Crの群か ら選ばれた 1種または 2種以上を含有することを特徴とする請求項 1〜4のいずれか に記載のガラスの溶融方法。  [5] The purity of zirconium is 97% by mass or more, and contains one or more selected from the group of Hf, Fe, and Cr as impurities. The method for melting glass as described in 1.
[6] ジルコニウム合金力 ジルコニウムと、 Sn、 Fe、 Crおよび Niの群力 選ばれた 1種 または 2種以上を含有するジルカロイ合金であることを特徴とする請求項 1〜4のいず れかに記載のガラスの溶融方法。 [6] Zirconium alloy strength Zirconium, Sn, Fe, Cr, and Ni group power One of the selected Zircaloy alloys containing at least one selected from any one of claims 1-4 The method for melting glass as described in 1.
[7] ジルコニウム合金力 S、ジルコニウム鉄合金、ジルコニウム銅合金、ジルコニウムアル ミ合金のいずれかであることを特徴とする請求項 1〜4のいずれかに記載のガラスの 溶融方法。 [7] The glass melting method according to any one of [1] to [4], which is any one of zirconium alloy strength S, zirconium iron alloy, zirconium copper alloy, and zirconium aluminum alloy.
[8] 請求項 1〜7のいずれかに記載のガラスの溶融方法によって作製されてなることを 特徴とするガラス。  [8] A glass produced by the method for melting glass according to any one of claims 1 to 7.
[9] ガラスが、ガラス組成として、質量換算で Zr〇を 100〜3000ppm含有することを特  [9] The glass contains 100 to 3000 ppm of ZrO as a glass composition in terms of mass.
2  2
徴とする請求項 8に記載のガラス。  The glass according to claim 8.
[10] ガラス組成として、モル0 /0で、 SnO 20〜70%、 P〇 10〜50%、 B〇 0〜30 As [10] glass composition in mole 0/0, SnO 20 to 70% P_〇 10-50%, B_〇 0-30
2 5 2 3 2 5 2 3
%含有し、且つ質量換算で Zr〇を 100〜3000ppm含有することを特徴とするガラ The glass is characterized by containing 100% to 3000ppm of ZrO in terms of mass.
2  2
ス。  Su.
[II] 電子部品または表示デバイスの封着に使用することを特徴とする請求項 8〜: 10の いずれかに記載のガラス。 [II] It is used for sealing an electronic component or a display device. Glass in any one.
PCT/JP2007/054385 2006-03-13 2007-03-07 Process for melting glass and glass WO2007105550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800016328A CN101360688B (en) 2006-03-13 2007-03-07 Process for melting glass and glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006066861 2006-03-13
JP2006-066861 2006-03-13
JP2007-045579 2007-02-26
JP2007045579A JP5170817B2 (en) 2006-03-13 2007-02-26 Glass melting method

Publications (1)

Publication Number Publication Date
WO2007105550A1 true WO2007105550A1 (en) 2007-09-20

Family

ID=38509383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054385 WO2007105550A1 (en) 2006-03-13 2007-03-07 Process for melting glass and glass

Country Status (4)

Country Link
JP (1) JP5170817B2 (en)
KR (1) KR100984753B1 (en)
CN (1) CN101360688B (en)
WO (1) WO2007105550A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193065A (en) * 2011-03-16 2012-10-11 Nippon Electric Glass Co Ltd Optical glass
EP2947054A1 (en) * 2014-05-22 2015-11-25 Heraeus Quarzglas GmbH & Co. KG Component, in particular for use in a Czochralski method for quartz glass and method for producing such a component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354447B2 (en) * 2008-08-13 2013-11-27 日本電気硝子株式会社 Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
CN104936916A (en) * 2013-04-04 2015-09-23 日本电气硝子株式会社 Optical glass
JP6489414B2 (en) * 2014-12-16 2019-03-27 日本電気硝子株式会社 Glass manufacturing method
JP5979455B2 (en) * 2015-06-16 2016-08-24 日本電気硝子株式会社 Optical glass
JP7121337B2 (en) * 2018-07-05 2022-08-18 日本電気硝子株式会社 Glass material manufacturing method and glass material
JP7205043B2 (en) * 2019-10-15 2023-01-17 Yejガラス株式会社 Low-melting stannous phosphate-based glass frit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788037A (en) * 1980-11-14 1982-06-01 Toshiba Corp Discharging apparatus for molten glass from glass melting furnace
JP2001010843A (en) * 1999-04-30 2001-01-16 Ohara Inc Crystalline low-melting glass and sealing composition
JP2003246629A (en) * 2002-02-26 2003-09-02 Olympus Optical Co Ltd Method of producing die for molding optical element and die for molding optical element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777882B1 (en) * 1998-04-22 2000-07-21 Produits Refractaires NEW FRIED MATERIALS PRODUCED FROM ZIRCON AND ZIRCONIA
FR2832403B1 (en) * 2001-11-20 2004-07-23 Saint Gobain Ct Recherches NON-SHAPED REFRACTORY COMPOSITION, IN PARTICULAR FOR THE PRODUCTION OF SOLES FROM A GLASS FURNACE
JP4446283B2 (en) * 2002-11-29 2010-04-07 日本電気硝子株式会社 Glass melting furnace
TWI272257B (en) * 2002-11-29 2007-02-01 Nippon Electric Glass Co Glass smelting furnace and manufacturing method of glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788037A (en) * 1980-11-14 1982-06-01 Toshiba Corp Discharging apparatus for molten glass from glass melting furnace
JP2001010843A (en) * 1999-04-30 2001-01-16 Ohara Inc Crystalline low-melting glass and sealing composition
JP2003246629A (en) * 2002-02-26 2003-09-02 Olympus Optical Co Ltd Method of producing die for molding optical element and die for molding optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193065A (en) * 2011-03-16 2012-10-11 Nippon Electric Glass Co Ltd Optical glass
EP2947054A1 (en) * 2014-05-22 2015-11-25 Heraeus Quarzglas GmbH & Co. KG Component, in particular for use in a Czochralski method for quartz glass and method for producing such a component
US9938635B2 (en) 2014-05-22 2018-04-10 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a component, particularly for use in a crucible pulling method for quartz glass

Also Published As

Publication number Publication date
JP5170817B2 (en) 2013-03-27
KR100984753B1 (en) 2010-10-01
CN101360688A (en) 2009-02-04
JP2007277076A (en) 2007-10-25
KR20080047624A (en) 2008-05-29
CN101360688B (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5384203B2 (en) Sealing glass
WO2007105550A1 (en) Process for melting glass and glass
JP3814810B2 (en) Bismuth glass composition
KR20170096026A (en) Lead-free glass and sealing material
JP4596358B2 (en) Glass for sealing
JP2003238199A (en) Press frit
JP4093353B2 (en) Frit for sealing metal vacuum double structure container and metal vacuum double structure container
JP2000302560A (en) Cast refractory containing zirconia in high content
JP4529173B2 (en) Glass for sealing and sealing method
JP2005132650A (en) Composite material for sealing
JP2663577B2 (en) Sealing composition
JP3741526B2 (en) Substrate glass for display devices
JP2007186395A (en) Bismuth based glass composition and bismuth based sealing material
JP2007161524A (en) Bismuth-based glass composition
JP4154732B2 (en) Sealing bismuth glass mixture
JP5252364B2 (en) Glass melting equipment and glass melting method
JP4621995B2 (en) Bismuth glass composition and bismuth material
JP5071876B2 (en) Metal cap for light transmission
JP5709033B2 (en) Bismuth glass
JP4556544B2 (en) Glass for sealing
JP5026121B2 (en) Antimony phosphate glass composition
JP4406918B2 (en) Composite material for sealing
JP2004018312A (en) Low-melting glass and its manufacturing process
WO2016114075A1 (en) Lead-free glass and sealing material
JPH1179784A (en) Water resisting glass flit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001632.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07715276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715276

Country of ref document: EP

Kind code of ref document: A1