WO2007104209A1 - Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale - Google Patents

Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale Download PDF

Info

Publication number
WO2007104209A1
WO2007104209A1 PCT/CN2007/000075 CN2007000075W WO2007104209A1 WO 2007104209 A1 WO2007104209 A1 WO 2007104209A1 CN 2007000075 W CN2007000075 W CN 2007000075W WO 2007104209 A1 WO2007104209 A1 WO 2007104209A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
space
frequency
coding
phase offset
Prior art date
Application number
PCT/CN2007/000075
Other languages
English (en)
French (fr)
Inventor
Lina Chen
Peigang Jiang
Jianghua Liu
Original Assignee
Huawei Technologies Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd filed Critical Huawei Technologies Co., Ltd
Publication of WO2007104209A1 publication Critical patent/WO2007104209A1/zh
Priority to US12/206,370 priority Critical patent/US8111772B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • Multi-antenna transmission method and device based on space frequency coding This application claims to be submitted to the Chinese Patent Office on March 15, 2006, the application number is 200610070854.2, and the invention name is "multi-antenna transmit diversity method based on space-frequency coding and its system" Priority of Chinese Patent Application, the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of mobile communications, and in particular, to a multi-antenna transmission method and apparatus based on space-frequency coding applied in an OFDM communication system.
  • MIMO Multiple Input Multiple Output
  • OFDM orthogonal frequency division multiplexing
  • the gain obtained by diversity can improve system performance and space.
  • the gain obtained by multiplexing can increase the transmission rate of the system.
  • the prior art scheme-space-frequency coding is an extension of space-time coding, which is mainly applied in OFDM systems by replacing the time dimension of space-time coding with frequency.
  • the coding is completed by the dimension.
  • the space frequency coding obtains spatial diversity gain or spatial multiplexing gain by coding on multiple subcarriers and multiple antennas.
  • the space frequency coding mainly includes: a space frequency block code ( space frequency Block code, called tube "SFBC") and spatial multiplexing coding (spatial multiplexing coding) of the space-frequency block code 0 encoding Is less than or equal to 1, orthogonal or non-orthogonal encoding on a plurality of antennas by the transmitting end, the receiving end for a maximum likelihood decoding gain diversity is achieved.
  • SFBC space frequency Block code
  • spatial multiplexing coding spatial multiplexing coding
  • the sub-carrier numbered k of the transmitting antenna 1 is sent with S, the number numbered k+1 Transmitted on the carrier-; Transmit Antenna 2
  • the encoded subcarrier encoded with k is transmitted &, and the subcarrier with the number k+1 is transmitted S.
  • the encoding rate is defined as n/k, where n represents the number of data symbols transmitted by a space-frequency encoding operation, and k represents the number of sub-carriers required for a space-frequency encoding operation.
  • the coding rate of the two-antenna orthogonal space-frequency coding is 1.
  • several subcarriers occupied by a space frequency coding operation are called subcarrier sets.
  • the data received by the antenna on the two subcarriers can be expressed as equations (2) and (3). .
  • ⁇ , and h 2 respectively represent the channel fading factor experienced by the two transmitting antennas to the receiving antenna, and the receiving end performs channel estimation to perform the following maximum likelihood decoding on the data, such as equations (4) and (5). ) as shown.
  • the spatial multiplexing code has a coding rate greater than 1, which increases the rate of data transmission by transmitting different data on the same subcarrier of different antennas, that is, obtains spatial multiplexing gain.
  • the coding matrix of spatial multiplexing coding is as shown in the following equations (10) ⁇ (12).
  • Cyclic Shift Diversity is also a transmit diversity technique applied to an OFDM system. It obtains the frequency diversity gain by transmitting the same OFDM symbol on different antennas after different cyclic shifts in the time domain, and its specific transmission
  • the structure of the shooter is shown in Figure 2.
  • Cyclic Prefix a cyclic prefix
  • each antenna transmits a cyclic shift of the same OFDM symbol in the time domain
  • the signal of the OFDM symbol in the time domain is x("), (o ⁇ " ⁇ w- 1)
  • the orthogonality of the subcarriers will not change.
  • the cyclic shift in the time domain is known.
  • the bit is equivalent to a phase rotation added to the symbol in the frequency domain. After the time domain rotation, the signal obtained in the frequency domain is:
  • the CSD implementation diversity also has some unavoidable defects: First, the channel diversity coding is required to obtain the frequency diversity gain. Second, although the CSD can guarantee the coding rate of 1, it can be seen that CSD cannot obtain the full set gain, diversity. The performance is not as good as the orthogonal space-frequency block code. Third, the inappropriate delay value will cause the frequency response on some sub-carriers to be zero, which will cause the punching effect and affect the performance of the decoder. Fourth, when CSD is used in combination with a space-frequency block code, the frequency domain response of the channel is changed to affect the orthogonality of the space-frequency block code, thereby reducing the performance of the space-frequency block code.
  • the technical problem to be solved by the embodiments of the present invention is to provide a multi-antenna transmission method and apparatus based on space-frequency coding, to solve the problem that when the orthogonal air-frequency block code is used in the prior art, when the number of transmitting antennas is greater than 2, The coding rate is guaranteed to be 1; when the CSD takes an inappropriate delay value, a puncturing effect is generated; and when the spatial multiplexing coding is used, the transmission diversity gain cannot be obtained.
  • an embodiment of the present invention provides a multi-antenna transmission method based on space frequency coding, and the method includes the following steps:
  • Each of the encoded data after phase offset is added to each antenna is subjected to orthogonal frequency division multiplexing modulation; and the data after orthogonal frequency division multiplexing modulation is transmitted through the transmitting antenna.
  • an embodiment of the present invention further provides a multi-antenna transmitting apparatus based on space frequency coding, including: at least one space frequency encoding unit, configured to perform space frequency coding on input data, and output at least two encoded data;
  • the at least two data mapping units are respectively connected to the space frequency coding unit, and configured to map the coded data to the same subcarriers of the antennas in the corresponding antenna group;
  • At least two phase offset units are respectively connected to the two data mapping units for phase shifting the coded data on each subcarrier of each antenna;
  • At least two orthogonal frequency division multiplexing modulation units are respectively connected to the phase offset unit, and configured to perform orthogonal frequency division multiplexing modulation on the phase-shifted and superposed encoded data on the antenna;
  • At least two transmitting units are respectively connected to two orthogonal frequency division multiplexing modulation units for transmitting the modulated encoded data.
  • the embodiment of the present invention can effectively avoid the punching effect of the CSD by replacing the cyclic shift of the CSD time domain with the phase offset of the frequency domain, and can directly solve the problem of directly combining the orthogonal space frequency block code and the CSD.
  • the embodiment of the present invention can obtain the frequency diversity gain by combining the space frequency coding and the phase offset transmission diversity while obtaining the transmit diversity gain and the spatial multiplexing gain.
  • the space frequency block code and the phase offset it is possible to solve the problem that the code rate is less than 1 when the number of transmit antennas is greater than 2 by simply using the space frequency block code.
  • the problem of simply using spatial multiplexing coding and not obtaining diversity gain for each data stream is solved.
  • 1 is a transmitter system component in a prior art using space-frequency block code transmit diversity
  • FIG. 2 is a transmitter system component for implementing transmit diversity using CSD in the prior art
  • FIG. 3 is a multi-antenna transmit data in space and frequency according to an embodiment of the present invention combining a space-frequency block code and a phase offset.
  • FIG. 4 is a schematic structural diagram of a multi-antenna transmitting apparatus combining a space frequency block code and a phase offset according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another structure of a multi-antenna transmitting apparatus combining a space frequency block code and a phase offset according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of two-dimensional mapping of data in time and frequency when multi-antenna transmission is performed by combining spatial multiplexing coding and phase offset according to an embodiment of the present invention
  • Figure ⁇ is a schematic diagram of a multi-antenna transmission device combining spatial multiplexing coding and phase offset according to an embodiment of the present invention
  • FIG. 8 is another schematic structural diagram of a multi-antenna transmitting apparatus combining spatial multiplexing coding and phase offset according to an embodiment of the present invention
  • FIG. 8 is another schematic structural diagram of a multi-antenna transmitting apparatus combining spatial multiplexing coding and phase offset according to an embodiment of the present invention
  • FIG. 9 is a flow chart of a multi-antenna transmission method combining a space frequency block code and a phase offset according to an embodiment of the present invention.
  • the embodiment of the present invention considers that when the number of transmitting antennas is greater than 2, in order to ensure that the encoding rate is 1, the space frequency block code and the cyclic delay diversity CSD can be combined.
  • the antennas are divided into two groups, each group having at least one antenna.
  • the input data is subjected to space-frequency block coding through the coding matrix in the formula (1), and then two parallel-encoded data are output, and each data is mapped to one transmit antenna group.
  • the data is subjected to orthogonal frequency division multiplexing modulation on different antennas in one antenna group, and then subjected to different cyclic delays to be transmitted on the respective antennas.
  • the solution of the present invention uses the phase offset of the frequency domain instead of the time domain cyclic delay of the CSD, and the phase offset satisfies: the phase offset on the same transmitting antenna per n subcarriers A change occurs in the set, and the phase offsets on the same subcarrier are different between different transmit antennas in the same antenna group.
  • the phase offsets on the same subcarrier are different between different transmit antennas in the same antenna group.
  • multi-antenna transmission combined with space frequency block code and phase offset, and spatial multiplexing, multi-antenna transmission combining coding and phase offset are taken as an example to illustrate, but not Limited to this.
  • FIG. 3 is a schematic diagram of two-dimensional mapping of time and frequency of multi-antenna transmission data combining a space-frequency block code and a phase offset according to an embodiment of the present invention, as shown in FIG. 3.
  • the subcarrier k and the subcarrier k+1 are subcarrier pairs of one space frequency block coding
  • the antenna 1 and the antenna 2 are the first group antenna
  • the phase offset of the subcarrier k and the subcarrier k+1 on the antenna 1 is the antenna 2
  • the phase offset of the subcarrier k and the subcarrier k+1 is;
  • the antenna 3 and the antenna 4 are the second antenna, the phase offset of the subcarrier k and the subcarrier k+1 on the antenna 3 is ⁇ , and the subcarrier on the antenna 4
  • the phase offset of k and subcarrier k+1 is ⁇ 4 .
  • the signals received by the receiving end on the frequency domain subcarriers k and k+1 can be expressed as equations (22) and (23), respectively.
  • FIG. 4 is a schematic structural diagram of a multi-antenna transmitting apparatus combining a space frequency block code and a phase offset according to an embodiment of the present invention.
  • the apparatus for multi-antenna transmit diversity based on space-frequency coding includes at least: a space frequency coding unit, two data mapping units, two phase offset units, two OFDM multiplexing modulation units, and two transmit antennas.
  • the space frequency coding unit is configured to perform space frequency coding on the input data and output at least two coded data;
  • the data mapping unit is connected to the space frequency coding unit, and is configured to encode the input channels.
  • the data is mapped to the same subcarrier of each antenna in a certain antenna group; the phase offset unit is configured to add a phase offset to each of the encoded data on each subcarrier of each antenna received; orthogonal frequency division The multiplexing modulation unit is connected to the phase offset unit and configured to perform orthogonal frequency division multiplexing modulation on the superposed encoded data on each subcarrier of an antenna; the transmitting antenna and the orthogonal frequency division multiplexing modulation unit Connected, used to transmit data after orthogonal frequency division multiplexing modulation.
  • the apparatus includes: a space frequency coding unit 10, two data mapping units (20-1 and 20-2, respectively), and four phases.
  • Offset units ie 30-1, 30-2, 30-3 and 30-4, the same below
  • four OFDM multiplexing modulation units namely 40-1, 40-2, 40-3 and 40-4
  • the space frequency encoding unit 10 outputs the first antenna group frequency domain data and the second antenna group frequency domain data to the data mapping unit 20-1 and the data mapping unit 20-2, respectively.
  • the data mapping unit 2 0-1 and phase shift units 30-1 and 30-2 are connected, and the data mapping unit 20-2 is connected to the phase shift unit 30-3 and 30-4, respectively, said four phase shift means (such as 30-1, 30-2, 30-3, and 30-4), four OFDM multiplexing modulation units (such as 4 0-1, 40-2, 40-3, and 40-4) and four transmit antennas (50 -1, 50-2, 50-3, and 50-4) - Corresponding and connected in sequence.
  • each antenna group has at least one transmit antenna after the antenna is grouped, and at least one antenna group includes at least two transmit antennas, and the number of the transmit antennas Just to ensure the implementation of the antenna group, the essence of the present invention is not affected.
  • each antenna group includes Two transmit antennas.
  • the grouping of the antennas is specifically as shown in FIG. 4, and the transmitting antennas in the same dotted line frame belong to the same antenna group.
  • the space frequency encoding unit 10 is for performing space frequency coding on the input data.
  • the space frequency encoding unit 10 uses a formula Equation (1) is a second-order orthogonal coding matrix. It can be understood that as long as the encoding is performed only in space and frequency two-dimensionally, it can be guaranteed to be completed in one OFDM symbol period.
  • the second-order orthogonal coding is used to ensure that the coding rate is 1 and the decoding method is single. Other codes larger than second order or non-orthogonal can also be used theoretically, without limitation. Assuming that the input data is ⁇ , S2 , after passing through the space-frequency encoding unit 10, two encoded data are output, which are S, -, and .
  • the data mapping units (such as 20-1 and 20-2) are configured to respectively copy one encoded data for each phase offset unit 30 connected thereto according to the received input encoded data, and sequentially map the encoded data to each sub- On the carrier.
  • the phase offset unit is configured to add a phase offset of the input frequency domain coded data to other phase offset units in the antenna group in which it is located, and the phase offsets are all different. It can be understood that the phase offset unit has the same phase offset of the frequency domain encoded data carried on the adjacent n spatial frequency block code subcarrier pairs transmitted by the same transmitting antenna, and the phase offset is different every n subcarrier sets, and Subcarriers of the same frequency on different antennas in the same antenna group have different phase offsets.
  • the subcarrier k and the subcarrier k+1 are subcarrier pairs of one space frequency block code
  • the transmitting antenna 50-1 and the transmitting antenna 50-2 are the first group antenna.
  • the phase offset of the subcarrier k and the subcarrier k+1 on the transmitting antenna 50-1 is ⁇ [ , the phase offset of the subcarrier k and the subcarrier k+1 on the transmitting antenna 50-2 is;
  • the transmitting antenna 50-3 and the transmitting antenna 50-4 is the second group antenna, the phase offset of the subcarrier k and the subcarrier k+1 on the transmitting antenna 50-3 is ⁇ , and the phase offset of the subcarrier k and the subcarrier k+1 on the transmitting antenna 50-4 is
  • the OFDM modulation unit outputs the phase offset encoded data output by the phase shift unit Modulation onto subcarriers of OFDM.
  • the unit can be implemented by the IFFT, and the specific implementation process is well known to those skilled in the art, and details are not described herein.
  • the transmit antenna is used to transmit the output of the OFjDM modulation unit by radio frequency.
  • the time-varying phase sequence can be used to speed up the channel change, corresponding to the first preferred embodiment of the present invention, ie, making, and changing in real time, each or The difference between multiple OFDM symbols.
  • FIG. 5 is another schematic structural diagram of a device for transmitting multiple antennas based on space frequency coding according to an embodiment of the present invention. This embodiment takes three antennas as an example.
  • the apparatus at least includes: a space frequency coding unit 51, three phase offset units (taking 52-1, 52-2, and 52-3 as examples), and three orthogonal frequency division multiplexing modulation sheep elements (to 53 -1, 53-2, and 53-3 are examples) and three firing units (exemplified by 54-1, 54-2, and 54-3).
  • the space frequency encoding unit 51 is configured to perform space frequency coding on the input data, and transmit the output two encoded data through two antenna groups respectively; the three phase offset units are used to Receiving, by the space frequency coding unit, each of the coded data to be added a phase offset; the three orthogonal frequency division multiplexing modulation units are respectively connected to three phase offset units, and are used to receive the additional Each phase encoded data of the phase offset is modulated onto a corresponding subcarrier for orthogonal frequency division multiplexing modulation; the three transmitting units are respectively connected to three orthogonal frequency division multiplexing modulation units for transmitting modulated The encoded data.
  • the fourth embodiment of the present invention contemplates that when spatial multiplexing coding is used, the inability to obtain a frequency diversity gain for each data stream results in a degradation in transmission quality. Therefore, the embodiment of the present invention can obtain the frequency diversity gain while obtaining the spatial multiplexing gain by combining the spatial multiplexing coding and the phase offset.
  • FIG. 6 which combines spatial multiplexing coding and phase offset according to an embodiment of the present invention.
  • the phase offset of the encoded data on antenna 1 is such that the phase offset on antenna 2 is ⁇ , the phase offset on antenna 3 is, and the phase offset on antenna 4 is .
  • the phase shift of the encoded data on the antenna 1 is such that the phase shift on the antenna 2 is such that the phase shift on the antenna 3 is such that the phase shift on the antenna 4 is.
  • the data of each phase offset on each antenna is added, and after adding, the data transmitted by antenna 1 on subcarrier k is + S 2 e , and the data transmitted by antenna 2 is ' 2 + S 2 e je '
  • the data transmitted by the antenna 3 is + S 2 e ' ⁇ , and the data transmitted by the antenna 4 is + S 2 e je ".
  • a time-varying phase sequence can be used in the fourth preferred embodiment to speed up channel variation, corresponding to the first preferred embodiment of the present invention, namely, ⁇ 2 , , , 0 ⁇ ⁇ , real time The change is different between each of the OFDM symbols. Referring to FIG. 7, FIG.
  • the device includes: at least one a space frequency encoding unit 71, at least two data mapping units (represented generally by 72), at least two phase offset units, an adding unit, an orthogonal frequency division multiplexing modulation unit, and a transmitting antenna.
  • the present invention is fully described. In this embodiment, eight phase shifting units (represented by 73), four adding units (represented by 74), and four orthogonal frequency division multiplexing modulation units are used.
  • a four-transmitting antenna represented by 76
  • the space-frequency encoding unit 71 is configured to perform space-frequency encoding on the input data and output at least two encoded data
  • the data mapping unit 72 and
  • the space frequency coding unit 71 is connected to map the input coded data to the same subcarrier of each antenna in a certain antenna group; the phase offset unit 73.
  • the method is configured to add a phase offset to each of the encoded data on each subcarrier of each antenna.
  • the adding unit 74 is connected to the phase offset unit 73, and is configured to receive each subcarrier on an antenna.
  • the orthogonal frequency division multiplexing modulation unit 75 is connected to the adding unit 74, and configured to perform the superimposed encoded data on each subcarrier of an antenna.
  • the orthogonal frequency division multiplexing modulation is connected to the orthogonal frequency division multiplexing modulation unit 75 for transmitting the orthogonal frequency division multiplexing modulated data.
  • the phase offset unit 73 adds the coded data to each channel on the received subcarriers of each antenna. After the phase shift, the adding unit 74 superimposes the encoded data of the additional phase offset on each subcarrier received on an antenna; and then sends the superposed encoded data to the orthogonal frequency division complex.
  • the modulating unit 75 With the modulating unit 75, the subsequent processing is the same as that of the above embodiment, and details are not described herein again.
  • FIG. 8 is another schematic structural diagram of a multi-antenna transmitting apparatus based on spatial multiplexing coding and phase offset according to an embodiment of the present invention.
  • the apparatus includes: a space frequency encoding unit 81 and two data. Mapping units 821 and 822, two phase shifting units 831 and 832, two adding units 841 and 842, two orthogonal frequency division multiplexing modulation units 851 and 852, and two transmitting units 861 and 862.
  • the space frequency encoding unit 81 is configured to perform spatial frequency coding on the input data to output at least two encoded data; the two data mapping units 821 and 822 are connected to the space frequency encoding unit 81, and configured to Mapping a certain encoded data to the same subcarrier of each antenna in a certain antenna group; the two phase offset units 831 and 832 are respectively connected to two data mapping units 821 and 822 for each Phase-shifting the encoded data on each subcarrier of the antenna; the two adding units 841 and 842 are respectively connected to the two phase shifting units 831 and 832, and are used to receive each sub-carrier on an antenna Adding each of the encoded data after the additional phase offset on the carrier; the two orthogonal frequency division multiplexing modulation units 851 and 852 are respectively connected to the two adding units 841 and 842 for passing the antenna The phase-shifted and superimposed encoded data is subjected to orthogonal frequency division multiplexing modulation; the two transmitting units 861 and 862 are respectively connected to two orthogon
  • the embodiment of the present invention further provides a multi-antenna transmission method combining spatial multiplexing coding and phase offset, and the flow thereof is as shown in FIG. 9.
  • the method includes:
  • Step S10 performing space-frequency coding on the input data, and outputting the multi-channel encoded data
  • Step S20 Mapping the multiplexed data to the same subcarrier of each antenna in the antenna group
  • Step S30 adding a phase offset to each coded data on each subcarrier of each antenna; modulation; - Step S50: transmitting the Orthogonal Frequency Division Multiplexing modulated data through the transmit antenna.
  • the method further includes the steps of: adding each phase encoded data after phase offset to each antenna before performing orthogonal frequency division multiplexing modulation on each coded data. Add together.
  • step S10 the input data is subjected to space frequency coding.
  • the space-frequency coding unit 10 uses the second-order orthogonal coding matrix shown by the formula (1). Suppose the input data is? And c, after passing through the space-frequency coding unit 10, output two-way coded data, respectively, , , and .
  • step S20 grouping the plurality of transmit antennas, and mapping the multiplexed data to the same subcarriers of the antennas in the antenna group;
  • the number of antenna groups is equal to the number of channels of the space frequency coded data; when the space frequency coding uses spatial multiplexing coding, the number of antenna groups is 1.
  • phase offsets are respectively added to the respective encoded data on different subcarriers of the antennas.
  • the phase offset is satisfied: the frequency domain coded data carried on the adjacent n air frequency block code subcarrier pairs transmitted by the same transmitting antenna has the same phase offset, and the phase offset is different every n subcarrier sets, and Making subcarriers of the same frequency on different antennas in the same antenna group have different phase offsets.
  • the space frequency coding uses space frequency block codes, each data is mapped into different antenna groups respectively; when space frequency coding adopts spatial multiplexing When encoding, multiple data is mapped into the same antenna group.
  • step S40 orthogonally frequency-division modulation is performed on each coded data to which phase offset is added to each antenna, or the coded data after phase offset is added to each antenna is added, and then added
  • the latter coded data is subjected to orthogonal frequency division modulation; in the embodiment of the present invention, it can be implemented by IFFT OFDM modulation.
  • step S 5 the orthogonal frequency division multiplex data transmitted by the transmitting antenna after the modulation. That is to say, the encoded data after subcarrier mapping (that is, after orthogonal frequency division multiplexing modulation) is transmitted through the antenna.
  • the phase offset of the coded data on one of the transmit antennas in the same antenna group may be set to 0; at the same time, the phase offset in different antenna groups may be offset. Set to the same.
  • phase offset is also introduced in the frequency domain to obtain additional CSD-like frequency diversity gain.
  • the phase offset is satisfied: the phase offset of each coded data on the same transmit antenna changes once every n subcarrier sets, and the phase offsets on the same subcarriers are different between different data on the same transmit antenna, and the same antenna The phase offsets on the same subcarrier are different between different transmit antennas within the group.
  • the present invention can effectively avoid the punching effect of the CSD by replacing the cyclic shift of the CSD time domain with the phase shift of the frequency domain, and can solve the problem of directly combining the orthogonal space frequency block code and the CSD.
  • the present invention can obtain the frequency diversity gain by combining the space frequency coding and the phase offset transmission diversity while obtaining the transmit diversity gain and the spatial multiplexing gain.
  • the space frequency block code and the phase offset it is possible to solve the problem of simply using the space frequency block code when the number of transmitting antennas is larger than 2 and the coding rate is less than 1.
  • the present invention can effectively ensure that the channel change speed in the n subcarrier sets is not changed by setting the phase offset to one change per n subcarrier sets, thereby ensuring interference when the receiving end uses the interference cancellation receiver. The accuracy of the estimation is not affected by the phase offset.

Description

基于空频编码的多天线发射方法及装置 本申请要求于 2006 年 3 月 15 日提交中国专利局、 申请号为 200610070854.2, 发明名称为"基于空频编码的多天线发射分集方法及其系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及移动通信领域, 特别涉及一种应用于 OFDM通信系统中基于 空频编码的多天线发射方法及装置。
背景技术 近年来, 多入多出 ( Multiple Input Multiple Output, 简称" MIMO" )技术 因为能提高无线通信系统的传输谱效率和可靠性受到了很大的关注,并巳经应 用于实际的通信系统中, 同时, 多载波正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称" OFDM" )技术也因为能够很好的克服无线信道的 多径特性和比单载波频谱效率高的特点成为研究的热点。这两种技术相互结合 成为移动通信系统中的关键技术, 在包括第三代移动通信 ( The Third Generation, 简称" 3G" )的长期演进(Long Term Evolution, 简称" LTF' ), 乃 至第四代移动通信 ( The Fourth Generation, 筒称" 4G" )等方案中将得到广泛 应用。 基于 MIMO和 OFDM技术, 可以实现各种发射分集和空间复用方案 , 分 集获得的增益可以改善系统的性能,空间复用获得的增益可以提高系统的传输 速率。 目前,现有技术方案一空频编码是对空时编码的一种拓展, 它主要应用在 OFDM 系统中, 通过将空时编码的时间维度置换为频率维度来完成编码。 具 体如图 1所示。 空频编码通过在多个子载波、 多个天线上进行编码来获得空间 分集增益或空间复用增益。 目前空频编码主要包括: 空频分組码 (Space Frequency Block Code, 筒称" SFBC")和空间复用编码 (Spatial Multiplexing Coding )0 所述空频分组码的编码速率小于等于 1, 通过发射端在多个天线上 进行正交或非正交的编码,接收端进行最大似然译码来获得分集增益。 目前两 天线的正交空频编码应用最为广泛, 其编码矩阵如下式(1 ) 所示,
Figure imgf000004_0001
( 1 ) 式中 、 为空频编码前的数据符号, 经过上式所示的两天线正交 空频编码之后, 发射天线 1的编号为 k的子载波上发送 S , 编号为 k+ 1的子 载波上发送- ; 发射天线 2的编码为 k的编码子载波发送&, 编号为 k+ 1 的子载波上发送 S。 定义编码速率为 n/k, 其中 n表示一次空频编码操作发送 的数据符号个数, k代表一次空频编码操作所需要的子载波个数。 从(1 ) 式 中可看出, 两天线正交空频编码的编码速率为 1。 本文中将进行一次空频编码 操作所占用的若干个子载波称为子载波集。 假设接收端只有一个接收天线,并且同一发射天线相邻两个子载波上的数 据经历的信道衰落因子相同,那么在两个子载波上该天线接收到的数据可以表 示为式(2)和 (3)。
-} =hlSl+h2S2+nl (2)
Figure imgf000004_0002
其中 Λ,和 h2分别表示两个发射天线上到接收天线所经历的信道衰落因子, 接收端进行信道估计后可以对数据进行如下的最大似然译码,如式( 4 )和( 5 ·) 所示。
Figure imgf000004_0003
其中 和 表示对符号 和 &的估计。 从式 (4)和(5) 中可以看出, 经过 STBC发射分集之后符号 S和 S2都获 得了 2阶的分集。 当发射天线数等于 3和 4时, 只存在着编码速率为 1/2和 3/4的正交空频编 码, 其编码矩阵分别如下式(6) - (9) 所示。 编码速率为 1/2的三天线正交空频编码矩阵:
Figure imgf000005_0001
编码速率为 1/2的四天线正交空频编码矩阵:
Figure imgf000005_0002
编码速率为 3/4的三天线正交空频编码矩阵:
Figure imgf000005_0003
编码速率为 3/4的四天线正交空频编码矩阵: y、
Figure imgf000006_0001
所述空间复用编码的编码速率大于 1, 它通过在不同天线的同一子载波上 发送不同的数据来提高数据传输的速率, 即获得空间复用增益。 当发射天线数 等于 2, 3, 4时, 空间复用编码的编码矩阵如下式 (10) ~ ( 12)所示。
G, = 同时发送两个数据流 (10)
-_同时发送三个数据流 ( 11 )
同时发送四个数据流 ( 12)
Figure imgf000006_0002
由编码速率的定义可知式(10) - ( 12) 的编码速率分别为 2、 3、 4, 相 对于编码速率为 1 的空频分组码, 空间复用编码大大的提高了数据传输的速 率。 因此可以看出,单纯使用现有技术一中的空频分组码无法获得空间复用增 益, 并且当发射天线数大于 2时, 空频分组码的编码速率小于 1会降低系统的 传输速率。或者单纯使用现有技术一中的空间复用编码虽然能够同时发送多个 数据流获得空间复用增益,但是每个数据流无法获得分集增益使得每个数据流 的传输可靠性降低。 现有技术方案二循环延时分集(Cyclic Shift Diversity, 简称" CSD")也是 应用于 OFDM系统的一种发射分集技术。 它通过对相同 OFDM符号在时域上 的进行不同的循环移位后在不同天线上发射来获得频率分集增益,其具体的发 射机结构如图 2所示。 如果系统中共有 M个发送天线,经过 IFFT处理后的 OFDM符号分别输入 到 M个发送天线上, 第一个天线不移位(循环移位 = 0 ), 第二个天线至第 M个 天线上需要对 OFDM符号进行循环移位, 不同天线上移位的位数是不同的, 分别表示为 „,'" = ··'Μ , 其中 =ο。 假设 IFFT的长度是 N , .循环移位的位数 应满足 o≤ „≤N-i。 经过循环移位后, 每个天线上的 OFDM符号需要加上循环 前缀(Cyclic Prefix), 再从不同的天线上同时发送出去。 因为每个天线上发送的是同一个 OFDM符号在时域上不同的循环移位, 假设这个 OFDM符号在时域上的信号为 x("),(o≤"≤w- 1) , 在频域上每个载波对 应的信号为^ ^ = o,〜N_i, 由于 CP长度相同, 子载波的正交性不会改变。 由 FFT的性质可知,在时域上的循环移位等效于在频域上的符号加了一个相位旋 转。 则经过时域旋转后, 频域得到的信号为:
Z(k) = X(k)e-J2MIN ,k = Q,"'N~[ ( 13) 式(13) 中的 表示的是时域中循环移位的位数。 根据上面的移位关系可 以得到每个天线在频域上每个子载波上的信号为:
Z„, (k) = X{k)e-J2,*5"IN ,k = 0,---N~l;m = l,--M ( 14) 假设接收端的接收天线数为 1, 则接收端在频域的接收信号为:
Figure imgf000007_0001
其中 表示的是在第 /r个子载波上的接收信号, 表示的在第 个子 载波上第 m个发送天线到接收天线之间频域信道响应。 NW表示的是加性高斯 白噪声。 式(15) 的结果可以把所述的多天线系统等效为一个单天线系统, 即: Y(_k、 = H e(k X(k、 + NQ),k = 0 ·· N -1 ( 16) 等效的信道为:
M
H。 (k) = Τ Hm (k)e j2A8"'IN ( 17 ) 从最后的等效结果中可以看出不同天线在时域的循环移位,等效于在时域 上引入了多径, 在频域的表现就是频率选择性增强了, 这样利用 OFDM调制 前的信道编码就可以获得频率分集增益, 与单天线系统相比,在同样信道编码 和交织下, 这种循环移位方法可以获得更多的频率分集增益。 关于 CSD的祥细说明,可以参照 ^ elay Diversity Modulation for M O systems)) (中文可译为 《多入多出系统的多载波时延分集调制》 ) 但是,单纯使用该现有技术方案二基于 OFDM的 CSD实现分集也具有一 些无法避免的缺陷: 第一, 需要通过信道编码才能获得频率分集增益; 第二, CSD虽然可以保证编码速率为 1 , 但可以看出, CSD无法获得满分集增益, 分集性能不如正交空频分组码; 第三, 不恰当的时延取值会导致某些子载波上 频率响应为零, 产生打孔效应, 影响译码器的性能。 第四, 将 CSD与空频分 组码相结合使用时, 由于改变了信道的频域响应会影响空频分组码的正交性, 从而降低空频分组码的性能。
发明内容 本发明实施例解决的技术问题是提供一种基于空频编码的多天线发射方 法及装置, 以解决现有技术中使用正交空频分組码时, 当发射天线数大于 2 时, 无法保证编码速率为 1; 当 CSD取不当的时延值时, 产生打孔效应; 以 及使用空间复用编码时无法获得发射分集增益得问题。 为解决上述技术问题,本发明实施例提供了一种基于空频编码的多天线发 射方法, 所述方法包括步骤:
对输入数据进行空频编码, 输出多路编码后的数据;
将所述多路编码后的数据映射到所述天线组内各天线的相同子载波上; 为各天线不同子载波上各路编码数据分别附加相位偏移;
将各天线上附加相位偏移后的各路编码数据进行正交频分复用调制; 将正交频分复用调制后的数据通过发射天线发送。
另外, 本发明实施例还提供一种基于空频编码的多天线发射装置, 包括: 至少一个空频编码单元,用于对输入数据进行空频编码,输出至少两路编 码后的数据; 至少两个数据映射单元, 分别与空频编码单元相连, 用于将所述编码后的 数据映射到对应天线组内各天线的相同子载波上;
至少两个相位偏移单元,分别与两个数据映射单元相连, 用于对各天线的 子载波上各路所述编码数据进行相位偏移; _
至少两个正交频分复用调制单元,分别与相位偏移单元相连, 用于将天线 上经过相位偏移并叠加后的编码数据进行正交频分复用调制;
至少两个发射单元, 分別与两个正交频分复用调制单元相连, 用于发射调 制后的所述编码数据。
由此可见, 本发明实施例通过用频域的相位偏移代替 CSD时域的循环移 位能够有效的避免 CSD的打孔效应, 同时能够解决直接将正交空频分组码和 CSD相结合的时候正交空频分组码的正交性被破坏的问题。 - 本发明实施例通过将空频编码和相位偏移发射分集相结合在获得发射分 集增益和空间复用增益的同时能够获得频率分集增益。通过将空频分组码和相 位偏移相结合能够解决单纯使用空频分组码当发射天线数大于 2 时编码速率 小于 1的问题。通过将空间复用编码和相位偏移相结合解决了单純使用空间复 用编码, 每个数据流无法获得分集增益的问题。
附图说明
图 1是现有技术一中采用空频分組码发射分集时发射机系统组成;
图 2是现有技术二中使用 CSD实现发射分集的发射机系统组成; 图 3 是本发明实施例所述将空频分组码和相位偏移相结合的多天线发射 时数据在空间和频率二维的映射的示意图; ―
图 4是本发明实施例所述将空频分组码和相位偏移相结合的多天线发射 装置结构示意图;
图 5是本发明实施例所述将空频分组码和相位偏移相结合的多天线发射 装置的另一结构示意图;
图 6 为本发明实施例所述将空间复用编码和相位偏移相结合的多天线发 射时数据在时间和频率二维的映射的示意图;
图 Ί 为本发明实施例所述将空间复用编码和相位偏移相结合的多天线发 射的装置示意图; 图 8 为本发明实施例所述将空间复用编码和相位偏移相结合的多天线发 射装置的另一结构示意图;
图 9是本发明实施例所述将空频分組码和相位偏移相结合的多天线发射 方法的流程图。
具体实施方式
本发明实施例考虑到当发射天线数大于 2时,为了保证编码速率为 1可以 通过将空频分组码和循环延时分集 CSD相结合。 此时将天线分为两组, 每组 至少一个天线。 将输入数据经过公式(1 ) 中的编码矩阵进行空频分组编码之 后输出两路并行的编码后的数据,各路数据分别映射到一个发射天线組。在一 个天线组内的不同天线上将数据进行正交频分复用调制后再进行不同的循环 时延后在各天线上发射。 但直接将空频分组码和 CSD如上述直接相结合存在 问题的原因在于,接收端在频域子载波 k和 k+1上接收到的信号可以分别表示 为式( 18 )和( 19 ) (假设接收端只有一个天线)。
Figure imgf000010_0001
( 19 ) 若按照式(4 )和式(5 )的方式进行译码且获得 2阶分集增益, 则要满足 式 ( 20 ), 即:
Figure imgf000010_0002
由于子载波 k 和 k+1 的间隔一般小于信道的相关带宽, 可以认为 若要使式 ( 20 )成
Figure imgf000010_0003
, 此时, 只有当 = =0时才能满足, 这相当于没有进行 CSD, 因此无法使用 CSD实现频率 分集增益。 若要获得满足式(20), H k、 = Η' Η2Λή = H' !、 , 则要求相同 天线上发送用于空频分组码的相邻 n 个子载内承载的频域数据具有相同的相 位偏移, 但直接使用 CSD无法满足该要求。 同时, 考虑到使用 CSD获得分集 增益的本质在于, 在不同天线发送的相同的频域数据上乘以不同的相位偏移。 因此, 本发明方案将空频分组码和 CSD相结合时, 使用频域的相位偏移来代 替 CSD的时域循环时延, 该相位偏移满足: 同一发射天线上相位偏移每 n个 子载波集发生一次变化,且同一天线组内不同发射天线之间在相同子载波上的 相位偏移不同。熟悉本领域的技术人员可知,本发明实施例既可以满足式( 20 ), 也可以获得类似于使用 CSD时获得频率分集增益。
下面结合附图及实施例对本发明作进一步地详细描述。在本发明所述实施 例中,分别以空频分組码与相位偏移相结合的多天线发射, 和空间复用,编码与 相位偏移相结合的多天线发射为例来说明, 但并不限于此。
请参阅图 3, 为本发明实施例所述将空频分组码和相位偏移相结合的多天 线发射时数据在时间和频率二维的映射的示意图, 如图 3所示。 其中, 子载波 k和子载波 k+1为一次空频分组编码的子载波对, 天线 1和天线 2为第一组天 线, 天线 1上子载波 k和子载波 k+1的相位偏移为 , 天线 2上子载波 k和子 载波 k+1的相位偏移为 ; 天线 3和天线 4为第二组天线, 天线 3上子载波 k 和子载波 k+1的相位偏移为 ^ ,天线 4上子载波 k和子载波 k+1的相位偏移为 θ4。 其中, ≠ °
在只有一个接收天线的条件下,接收端在频域子载波 k和 k+1上接收到的 信号可以分别表示为式 (22)和(23)。
Y (k) = (H, (k) eje' +H2(k) e- ) S, + (H3 (k) +H4(k) )S2+N,(^) ( 22 )
= H (k)Sx +H2e(k)S2 +Nx{k)
7(/c + l) = Hx (k + 1) eA +H2(k + l) e—j<h )(-S2*) + (H3(k + l) ew' +H4(k + l) e/ ) S* +N2(k)
(23) 熟悉本领域的技术人员可知, 此时按照式(4 )和式(5 )的方式进行译码 则可以满足式(20 ), 从而获得 2阶分集增益, 同时, 由于 θ,≠θ, , 因 此也可以获得类似 CSD的分集增益。 为了更好地说明本发明方案, 下面结合本发明较佳实施例来说明。 还请参阅图 4, 为本发明实施例所述将空频分组码和相位偏移相结合的多 天线发射装置的结构示意图。
基于空频编码的多天线发射分集的装置至少包括: 一个空频编码单元、 两 个数据映射单元、 两个相位偏移单元、 两个 OFDM复用调制单元和两个发射 天线。 其中, 所述空频编码单元, 用于对输入数据进行空频编码并输出至少两 路编码后的数据; 所述数据映射单元, 与空频编码单元相连, 用于将输入的各 路编码后的数据映射到某天线组内各天线的相同子载波上; 所述相位偏移单 元, 用于为接收到的各天线各子载波上各路所述编码数据附加相位偏移; 正交 频分复用调制单元, 与相位偏移单元相连,用于将某天线各子载波上经过叠加 后的编码数据进行正交频分复用调制; 所述发射天线, 与正交频分复用调制单 相连, 用于发送正交频分复用调制后的数据。 为了能充分描述本发明, 本实 施例以四天线为例来说明, 所述装置包括: 一个空频编码单元 10、 两个数据 映射单元 (分別为 20-1和 20-2 )、 四个相位偏移单元, 即 30-1、 30-2、 30-3和 30-4, 下同)、 四个 OFDM复用调制单元, 即 40-1、 40-2, 40-3和 40-4, 下同) 和四个发射天线, 即 50-1、 50-2、 50-3和 50-4为例, 但并不限于此。 其中, 所述空频编码单元 10分别输出第一天线组频域数据和第二天线组频域数据到 数据映射单元 20-1和数据映射单元 20-2, 所述数据映射单元 20-1与相位偏移 单元 30-1和 30-2分别相连, 而所述数据映射单元 20-2与相位偏移单元 30-3 和 30-4分别相连, 所述四个相位偏移单元(比如 30-1、 30-2、 30-3和 30-4 )、 四个 OFDM复用调制单元 (比如 40-1、 40-2、 40- 3和 40-4 )和四个发射天线 ( 50-1、 50-2、 50- 3和 50-4 )——对应且依次连接。
本实施例之所以需要至少四个发射天线,是为了保证天线分组后,每个天 线组都有至少一个发射天线,且至少有一个天线组至少包括两个发射天线 , 所 述发射天线的个数只是为了保证天线组的实现, 并不影响本发明实质, 为了简 化说明,在下述关于本发明第一较佳实施例的说明中,假定每个天线组都包括 两个发射天线。 在本发明第一较佳实施例中, 天线的分组具体如图 4所示, 同 一虚线框内发射天线属于同一个天线组。 空频编码单元 10用于对输入数据进行空频编码。 为了保证在一个 OFDM 符号周期内完成空频编码过程, 所述空频编码单元 10使用公式
Figure imgf000013_0001
公式(1 ) 为 2阶正交编码矩阵。 可以理解, 只要是只在空间和频率二维 进行编码就可以保证在一个 OFDM符号周期内完成。 使用 2阶正交编码是为 了保证编码速率为 1和解码方法筒单。其他大于二阶或非正交的编码在理论上 也可以使用, 没有限制。 假设输入数据为 ^、 S2 , 则经过空频编码单元 10后, 输出两路编码数据, 分别是 S、 - 和 、 。
所述数据映射单元(比如 20-1和 20-2 )用于根据接收到的输入编码数据 为每个与其连接的相位偏移单元 30分别复制一路编码数据, 并把编码数据依 次映射到各子载波上。 所述相位偏移单元用于为输入的频域编码数据附加上与其所在天线组内 其它相位偏移单元的相位偏移, 所述相位偏移均不相同。 可以理解, 相位偏移 单元使得同一发射天线发送的相邻 n个空频分组码子载波对上承载的频域编 码数据具有相同的相位偏移,每隔 n个子载波集相位偏移不同, 并且使得同一 天线组内不同天线上相同频率的子载波具有不同的相位偏移。例如,在本发明 第一 4交佳实施例中,子载波 k和子载波 k+1为一个空频分组码的子载波对,发 射天线 50-1和发射天线 50-2为第一组天线,发射天线 50-1上子载波 k和子载 波 k+1的相位偏移为 Θ[ , 发射天线 50-2上子载波 k和子载波 k+1的相位偏移 为 ; 发射天线 50-3和发射天线 50-4为第二組天线,发射天线 50-3上子载波 k和子载波 k+1的相位偏移为 Θ, , 发射天线 50-4上子载波 k和子载波 k+1的 相位偏移为 ,其中, 所述 OFDM调制单元将相位偏移单元输出的附加了相位偏移的编码数据 调制到 OFDM的子载波上。 该单元可以通过 IFFT实现, 其具体的实现过程对 于本领域技术人员来已为公知技术, 在此不再赘述。: 所述发射天线用于通过射频发送 OFjDM调制单元的输出。 在本发明笫二较佳实施例中, 为了简化实现, 可以将同一天线组内的其中 一个发射天线 50上频域编码数据的相位偏移设置为 0, 对应本发明第一较佳 实施例中, 即满足 = 0 , ¾ = 0; 同时, 可以将不同天线组内的相位偏移序列 设为相同的相位序列, 以实现相位偏移单元 30的复用, 对应本发明第一较佳 实施例中, 即满足 在本发明第三较佳实施例中, 可以通过时变的相位序列以加快信道的变 化, 对应本发明第一较佳实施例中, 即使得 、 、 和 实时变化, 每个或 多个 OFDM符号之间不同。 还请参阅图 5, 为本发明实施例所述基于空频编码的多天线发射的装置另 一结构示意图。 本实施例以三个天线为例。 所述装置至少包括: 一个空频编码 单元 51、 三个相位偏移单元 (以 52-1、 52-2和 52-3为例)、 三个正交频分复 用调制羊元 (以 53-1、 53-2和 53-3为例 ) 以及三个发射单元 (以 54-1、 54-2 和 54-3为例)。 其中, 所述空频编码单元 51 , 用于对输入数据进行空频编码, 并将输出的两路编码后的数据分别通过两个天线组发射;所述三个相位偏移单 元, 用于对接收到空频编码单元发送的各路所述编码数据附加相位偏移; 所述 三个正交频分复用调制单元, 与三个相位偏移单元分别相连, 用于将接收到所 述附加相位偏移的各路编码数据调制到相应子载波上进行正交频分复用调制; 所述三个发射单元, 与三个正交频分复用调制单元分别相连, 用于发射调制后 的所述编码数据。
该装置中各个单元的功能和作用详见上述装置中各个单元的功能和作用, 在此不再赘述。
另夕卜, 本发明第四实施例考虑到当使用空间复用编码时,每个数据流无法 获得频率分集增益会导致传输质量下降。因此本发明实施例通过将空间复用编 码和相位偏移相结合使得在获得空间复用增益的同时能够获得频率分集增益。
还请参阅图 6, 为本发明实施例所述将空间复用编码和相位偏移相结合的 多天线发射时数据在时间和频率二维的映射的示意图。 ^-设发射天线数为 4, 采用公式( 10 )所示的编码速率为 2的空间复用编码。 从公式( 10 )可以看出 完成一次空间复用编码只需要一个子载波, 图 6以子载波 k为例进行描述。其 他子载波上的操作类似, 此处不再赘述。 此时将所有的发射天线只分为 1组, 空间复用编码将输入的数据直接转换为两路并行的数据,各路数据都映射到所 有天线上发送。 在子载波 k上, 编码后的数据 在天线 1上的相位偏移为 , 在天线 2上的相位偏移为 Θ , 在天线 3上的相位偏移为 , 在天线 4上的相 位偏移为 。 编码后的数据 在天线 1上的相位偏移为 , 在天线 2上的相 位偏移为 , 在天线 3上的相位偏移为 , 在天线 4上的相位偏移为 。 然 后将每个天线上经过相位偏移的各路数据相加, 相加后在子载波 k上天线 1 发送的数据为 + S2e , 天线 2发送的数据为 '2 + S2eje' , 天线 3发送的 数据为 + S2e '^ , 天线 4发送的数据为 + S2eje"。 在本发明的第五较佳实施例中, 为了筒化实现, 可以将第四较佳实施例中 同一天线组内的其中一个发射天线上频域编码数据的相位偏移设置为 0, 对应 本发明第一较佳实施例中, 即满足 = 0 , = 0。 在本发明第六较佳实施例中,可在第四较佳实施例中通过时变的相位序列 以加快信道的变化, 对应本发明第一较佳实施例中, 即使得 、 θ 2 , 、 、 0^ θ , 实时变化, 每个或多个 OFDM符号之间不同。 再请参阅图 7, 为本发明实施例所述将空间复用编码和相位偏移相结合的 多天线发射装置的结构示意图。本实施例以四个发射天线为例,但并不限于此。 所述装置包括: 至少一个空频编码单元 71、 至少两个数据映射单元(统一用 72表示 )、 至少两个相位偏移单元、 一个加法单元、 一个正交频分复用调制单 元和一个发射天线。 其中, 为了能充分的描述本发明, 本实施例所述以八个相 位偏移单元 (统一用 73表示)、 四个加法单元 (统一用 74表示)、 四个正交频 分复用调制单元(统一用 75表示)和四发射天线 (统一用 76表示)。 其中, 所述空频编码单元 71 , 用于对输入数据进行空频编码并输出至少两路编码后 的数据; 所述数据映射单元 72, 与空频编码单元 71相连, 用于将输入的各路 编码后的数据映射到某天线组内各天线的相同子载波上; 所述相位偏移单元 73 , 用于为接收到的各天线各子载波上各路所述编码数据附加相位偏移;所述 加法单元 74, 与相位偏移单元 73相连, 用于将某天线上接收到的各子载波上 所述附加相位偏移后的各路编码数据叠加; 所述正交频分复用调制单元 75 , 与加法单元 74相连, 用于将某天线各子载波上经过叠加后的编码数据进行正 交频分复用调制; 所述发射天线 76, 与正交频分复用调制单元 75相连, 用 于发送正交频分复用调制后的数据。
本实施例与上述实施例的不同之处在于,当所述空频编码为空间复用编码 时, 所述相位偏移单元 73在接收到的各天线的子载波上各路所述编码数据附 加相位偏移后, 所述加法单元 74, 将某天线上接收到的各子载波上所述附加 相位偏移后的各路编码数据叠加;然后将叠加后的编码数据发送到正交频分复 用调制单元 75上, 其后的处理过程与上述实施例相同, 在此不再赘述。
所述装置中各个单元的功能和作用请参见上述装置中各个单元的功能和 作用, 在此不再赘述。
再请参阅图 8, 为本发明实施例所述基于空间复用编码和相位偏移相结合 的多天线发射装置的另一结构示意图, 所述装置包括: 一个空频编码单元 81、 两个数据映射单元 821和 822、 两个相位偏移单元 831和 832、 两个加法单元 841和 842、 两个正交频分复用调制单元 851和 852以及两个发射单元 861和 862。 其中, 所述一个空频编码单元 81 , 用于对输入数据进行空频编码输出至 少两路编码后的数据; 所述两个数据映射单元 821和 822, 与空频编码单元 81 相连, 用于将某路编码后的数据映射到某个天线组内各天线的相同子载波上; 所述两个相位偏移单元 831和 832,分别与两个数据映射单元 821和 822相连, 用于对各天线的子载波上各路所述编码数据进行相位偏移;所述两个加法单元 841和 842, 分別与两个相位偏移单元 831和 832相连, 用于将某天线上接收 到的各子载波上所述附加相位偏移后的各路编码数据相加;所述两个正交频分 复用调制单元 851和 852, 分别与两个加法单元 841和 842相连, 用于将天线 上经过相位偏移并叠加后的编码数据进行正交频分复用调制;所述两个发射单 元 861和 862, 分别与两个正交频分复用调制单元 851和 852相连, 用于发射 调制后的所述编码数据。
其具体的实现过程详见上述, 在此不再赘述。 此外,本发明实施例还提供一种将空间复用编码和相位偏移相结合的多天 线发射方法, 其流程如图 9所示。 所述方法包括:
步骤 S10: 对输入数据进行空频编码, 输出多路编码后的数据;
步驟 S20: 将所述多路编码后的数据映射到所述天线组内各天线的相同子 载波上;
步骤 S30: 为各天线不同子载波上各路编码数据分别附加相位偏移; 调制; - 步驟 S50: 将正交频分复用调制后的数据通过发射天线发送。
当所述空频编码为空频复用码时, 所述方法还包括步骤: 在各路编码数据 进行正交频分复用调制前, 将各天线上附加相位偏移后的各路编码数据相加。 在步骤 S10中, 对输入数据进行空频编码。 为了保证一个 OFDM符号周 期内完成一次空频编码过程, 空频编码单元 10使用公式( 1 )所示的 2阶正交 编码矩阵。 假设输入数据为?、 c , 则经过空频编码单元 10后, 输出两路编 码数据, 分别是 、 — 和 、 。
接着进入步骤 S20, 将多个发射天线进行分组, 将所述多路编码后的数据 映射到所述天线组内各天线的相同子载波上;
当空频编码釆用空频分组码时,天线组数等于空频编码数据的路数; 当空 频编码采用空间复用编码时, 天线组数为 1。
接着进入步骤 S30, 为各天线不同子载波上各路编码数据分别附加相位偏 移。 其中, 所述相位偏移满足: 同一发射天线发送的相邻 n个空频分組码子载 波对上承载的频域编码数据具有相同的相位偏移,每隔 n个子载波集相位偏移 不同 ,并且使得同一天线组内不同天线上相同频率的子载波具有不同的相位偏 当所述空频编码采用空频分组码时, 每路数据分别映射到不同的天线组 内; 当空频编码采用空间复用编码时, 多路数据映射到同一天线组内。
接着进入步骤 S40,将各天线上附加相位偏移后的各路编码数据进行正交 频分调制, 或者先将各天线上附加相位偏移后的各路编码数据相加后,在对相 加后的编码数据进行正交频分调制; 在本发明实施例中, 可以通过 IFFT实现 OFDM调制。 接着进入步骤 S50, 将正交频分复用调制后的数据通过发射天线发送。也 就是说 ,·通过天线发送子载波映射后 (即正交频分复用调制后) 的编码数据。
所述方法中各个步骤的实现过程详见上述装置中各个单元的功能和作用,在此 不再赘述。 另外, 为了筒化实现过程, 在本发明实施例中, 还可以将同一天线组内的 其中一个发射天线上编码数据的相位偏移设置为 0; 同时, 可以将不同天线组 内的相位偏移设为相同。 此外, 本发明实施例中, 还可以通过使用时变的相位 偏移以更好地适应信道变化。
本发明实施例在使用空频编码获得空间分集增益和空间复用增益的同时, 还在频域引入相位偏移获得额外的类似 CSD的频率分集增益。 该相位偏移满 足: 同一发射天线上各路编码数据的相位偏移每 n个子载波集发生一次变化, 且同一发射天线上不同路数据之间相同子载波上的相位偏移不同,且同一天线 组内不同发射天线之间在相同子载波上的相位偏移不同。
由此可见, 本发明通过用频域的相位偏移代替 CSD时域的循环移位能够 有效的避免 CSD的打孔效应 , 同时能够解决直接将正交空频分组码和 CSD相 结合的时候正交空频分组码的正交性被破坏的问题。
同时,.本发明通过将空频编码和相位偏移发射分集相结合在获得发射分集 增益和空间复用增益的同时能够获得频率分集增益。通过将空频分组码和相位 偏移相结合能够解决单纯使用空频分组码当发射天线数大于 2 时编码速率小 于 1的问题。通过将空间复用编码和相位偏移相结合解决了单纯使用空间复用 编码, 每个数椐流无法获得分集增益的问题。 此夕卜,本发明通过将相位偏移设置为每 n个子载波集发生一次变化能够有 效的保证在 n个子载波集内信道变化速度不被改变,从而保证接收端使用干扰 消余接收机时干扰估计精度不受相位偏移的影响。
. 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1. 一种基于空频编码的多天线发射方法, 其特征在于, 包括步驟: 对输入数据进行空频编码, 输出多路编码后的数据;
将所述多路编码后的数据映射到所述天线组内各天线的相同子载波上; 为各天线不同子载波上各路编码数据分别附加相位偏移;
对各天线上附加相位偏移后的各路编码数据进行正交频分复用调制; 将正交频分复用调制后的数据通过发射天线发送。
2. 根据权利要求 1所述的基于空频编码的多天线发射方法,其特征在于, 当所述空频编码为空间复用编码时,将各天线上附加相位偏移后的各路编码数 据相加后进行正交频分复用调制。
3. 根据权利要求 1或 2所述的基于空频编码的多天线发射方法, 其特征 在于, 所述方法还包括:
将多个发射天线进行分组, 当空频编码采用空频分组码时, 天线組数等于 空频编码数据的路数; 当空频编码采用空间复用编码时, 天线組数为 1。
4. 根据权利要求 3所述的基于空频编码的多天线发射方法,其特征在于, 当所述空频编码采用空频分组码时,各路数据分别映射到不同的天线組内; 当 空频编码采用空间复用编码时 , 多路数据映射到同一天线组内。
5. 根据权利要求 3所述的基于空频编码的多天线发射方法,其特征在于, 所述相位偏移满足的条件为:
同一发射天线上各路编码数据的相位偏移每 n个子载波集发生一次变化, 且同一发射天线上不同路数据之间相同子载波上的相位偏移不同,且同一天线 组内不同发射天线之间在相同子载波上的相位偏移不同, 其中 n为正整数。
6. 根据权利要求 3所述的基于空频编码的多天线发射方法, 其特征在于, 所述对输入数据进行空频编码的过程为:
对输入数据使用 N阶、 正交或非正交空频分組码和 /或空间复用编码矩阵 进行空频编码, 其中, N为大于等于 2的正整数。
7. 根据权利要求 3所述的基于空频编码的多天线发射方法,其特征在于, 所述附加相位偏移是时变或时不变。
8. 根据权利要求 3所述的基于空频编码的多天线发射方法,其特征在于, 在各所述天线組内将一个相位偏移设置零。
9. 一种基于空频编码的多天线发射装置, 其特征在于, 包括:
至少一个空频编码单元, 用于对输入数据进行空频编码,输出至少两路编 码后的数据;—
至少两个数据映射单元,分别与所述空频编码单元相连, 用于将所述编码 后的数据映射到对应天线组内各天线的相同子载波上;
至少两个相位偏移单元,分別与所述数据映射单元相连, 用于对各天线的 子载波上各路所述编码数据进行相位偏移;
至少两个正交频分复用调制单元,分别与所述相位偏移单元相连, 用于将 天线上经过相位偏移并叠加后的编码数据进行正交频分复用调制;
至少两个发射单元,分别与所述正交频分复用调制单元相连, 用于发射调 制后的所述编码数据。
10.根据权利要求 9所述的基于空频编码的多天线发射装置,其特征在于, 所述装置还包括: 至少两个加法单元, 分别与所述相位偏移单元相连, 每个加 法单元分别用于将一根天线上接收到的各子载波上所述附加相位偏移后的各 路编码数据相加。
11.根据权利要求 9所述的基于空频编码的多天线发射装置,其特征在于, 所述相位偏移单元包括:
相位偏移设置子单元,用于为接收到的各天线各子载波上各路所述编码数 据设置相位偏移,该相位偏移满足以下条件: 同一发射天线上各路编码数据的 相位偏移每 n个子载波集发生一次变化,且同一发射天线上不同路数据之间相 同子载波上的相位偏移不同,且同一天线组内不同发射天线之间在相同子载波 上的相位偏移不同, 其中 n为正整数;
相位偏移执行子单元, 与相位偏移设置子单元相连,根据所设置用于空频 编码的子载波进行相位偏移。
12.根据权利要求 9所述的基于空频编码的多天线发射装置,其特征在于, 所述空频编码单元通过 N阶、 正交或非正交空频分组码和 \或空间复用码编码 矩阵进行空频编码, 其中 N为大于等于 2的正整数。
PCT/CN2007/000075 2006-03-15 2007-01-09 Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale WO2007104209A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/206,370 US8111772B2 (en) 2006-03-15 2008-09-08 Method and apparatus for multi-antenna transmitting based on spatial-frequency encoding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610070854.2 2006-03-15
CN2006100708542A CN101039136B (zh) 2006-03-15 2006-03-15 基于空频编码的多天线发射分集方法及其系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/206,370 Continuation US8111772B2 (en) 2006-03-15 2008-09-08 Method and apparatus for multi-antenna transmitting based on spatial-frequency encoding

Publications (1)

Publication Number Publication Date
WO2007104209A1 true WO2007104209A1 (fr) 2007-09-20

Family

ID=38509030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000075 WO2007104209A1 (fr) 2006-03-15 2007-01-09 Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale

Country Status (3)

Country Link
US (1) US8111772B2 (zh)
CN (1) CN101039136B (zh)
WO (1) WO2007104209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359621A1 (en) * 2008-11-20 2011-08-24 Belair Networks Inc. System and method for frequency offsetting of information communicated in mimo based wireless networks

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156289A4 (en) * 2007-05-04 2010-11-17 Agere Systems Inc METHOD FOR SELECTING CONSTELLATION ROTATION ANGLES FOR QUASI-ORTHOGONAL SPACE-TIME AND SPACE FREQUENCY BLOCK ENCODING
CN101414898A (zh) * 2007-10-19 2009-04-22 华为技术有限公司 接收合并方法、系统及设备
US20110164526A1 (en) * 2008-09-04 2011-07-07 Bando Chemical Industries Ltd Method and apparatus for uplink signal transmission and channel estimation in wireless access network
EP2323275B1 (en) * 2008-09-05 2015-12-02 Alcatel Lucent Method and device for uplink signals transmission in wireless access network
US8428018B2 (en) * 2008-09-26 2013-04-23 Lg Electronics Inc. Method of transmitting reference signals in a wireless communication having multiple antennas
CN101729212B (zh) * 2008-10-16 2014-02-05 中兴通讯股份有限公司南京分公司 一种空频分组码的子载波映射方法
CN101459645B (zh) * 2009-01-15 2012-11-14 清华大学 一种多天线正交频分复用系统中的基于子带的检测方法
CN101795153A (zh) * 2009-02-03 2010-08-04 华为技术有限公司 一种高层信令的编码方法及装置
CN101873201B (zh) * 2009-04-23 2013-08-07 中兴通讯股份有限公司 多天线的分集方法及装置
CN101635592B (zh) * 2009-04-24 2013-02-06 重庆邮电大学 一种lte mimo 的8-tx发射分集方法
EP2442471A4 (en) * 2009-06-12 2017-08-02 Mitsubishi Electric Corporation Communication apparatus
CN101944988B (zh) * 2009-07-08 2013-07-24 上海无线通信研究中心 谱域信道复用传输系统的发射接收装置及方法
CN101635619B (zh) * 2009-08-28 2012-09-05 华为技术有限公司 子载波发送方法、基站和系统
US8434336B2 (en) * 2009-11-14 2013-05-07 Qualcomm Incorporated Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
CN102075301A (zh) * 2009-11-20 2011-05-25 松下电器产业株式会社 无线通信系统及其基站和符号发送方法
CN102111364B (zh) * 2009-12-29 2013-09-11 上海无线通信研究中心 基于单天线正交频分复用的谱域信号发送装置及方法
US9345006B2 (en) 2010-05-03 2016-05-17 Nokia Solutions And Networks Oy Space Frequency block coding for PUCCH
CN107612597B (zh) 2011-02-18 2021-01-05 太阳专利托管公司 信号生成方法及信号生成装置
US9294165B2 (en) 2011-04-19 2016-03-22 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
EP2597805A4 (en) * 2011-06-24 2013-07-24 Panasonic Corp SENDING DEVICE, TRANSMISSION PROCEDURE, RECEPTION DEVICE AND RECEPTION PROCEDURE
US9270353B2 (en) * 2011-08-04 2016-02-23 Warren Grossman Communication system for spatially-encoded wireless communications
CN103718491B (zh) * 2011-09-19 2016-09-21 富士通株式会社 数据传输方法、系统、发射机和接收机
US9450659B2 (en) * 2011-11-04 2016-09-20 Alcatel Lucent Method and apparatus to generate virtual sector wide static beams using phase shift transmit diversity
TWI474648B (zh) 2012-01-03 2015-02-21 Realtek Semiconductor Corp 射頻傳送方法及其射頻傳送系統
CN103209014B (zh) * 2012-01-17 2016-08-03 瑞昱半导体股份有限公司 射频传送方法及其射频传送系统
EP2854318B1 (en) 2012-05-22 2020-11-04 Sun Patent Trust Transmission method and transmission system
KR20140060405A (ko) * 2012-11-09 2014-05-20 삼성전자주식회사 수신 신호 분리 방법 및 장치
US9590716B2 (en) * 2013-04-30 2017-03-07 Intellectual Discovery Co., Ltd. Transmission, reception and system using multiple antennas
WO2015198145A1 (en) * 2014-06-27 2015-12-30 Techflux, Ltd. Bandwidth signaling
CN107005295B (zh) * 2014-12-11 2020-09-29 华为技术有限公司 一种数据流的传输方法、发送端设备、接收端设备及系统
CN106489277B (zh) * 2015-06-30 2019-11-12 华为技术有限公司 一种基于同频组网的载波处理方法及装置
CN106899533A (zh) * 2015-12-18 2017-06-27 华为技术有限公司 多天线分集发射、多天线分集接收方法及装置
TWI577149B (zh) * 2016-01-11 2017-04-01 國立中山大學 分散式類正交空時/空頻區塊編碼之雙向中繼網路的通訊方法
WO2018014253A1 (zh) * 2016-07-20 2018-01-25 华为技术有限公司 一种信号解码方法、装置及设备
WO2018018627A1 (zh) * 2016-07-29 2018-02-01 深圳市道通智能航空技术有限公司 一种数据传输方法、系统及接收装置
US11201647B2 (en) * 2016-08-11 2021-12-14 Motorola Mobility Llc Method and apparatus for equal energy codebooks for coupled antennas with transmission lines
US10089521B2 (en) * 2016-09-02 2018-10-02 VeriHelp, Inc. Identity verification via validated facial recognition and graph database
US10742283B2 (en) * 2017-07-28 2020-08-11 Qualcomm Incorporated Transmit diversity schemes for uplink sequence transmissions
WO2019158002A1 (zh) * 2018-02-13 2019-08-22 华为技术有限公司 一种传输方法和通信设备
CN115314164A (zh) * 2022-08-09 2022-11-08 上海金卓科技有限公司 Sc-fde波形空时码的编码方法和装置及解码方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462519A (zh) * 2001-05-14 2003-12-17 松下电器产业株式会社 多载波通信方法和多载波通信装置
US6807145B1 (en) * 1999-12-06 2004-10-19 Lucent Technologies Inc. Diversity in orthogonal frequency division multiplexing systems
WO2005022681A2 (en) * 2003-08-08 2005-03-10 Intel Corporation Multicarrier mimo transmission
US20060018250A1 (en) * 2004-07-21 2006-01-26 Young-Mo Gu Apparatus and method for transmitting and receiving a signal in an orthogonal frequency division multiplexing system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406261B2 (en) * 1999-11-02 2008-07-29 Lot 41 Acquisition Foundation, Llc Unified multi-carrier framework for multiple-access technologies
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7245879B2 (en) 2003-08-08 2007-07-17 Intel Corporation Apparatus and associated methods to perform intelligent transmit power control with subcarrier puncturing
US7746886B2 (en) * 2004-02-19 2010-06-29 Broadcom Corporation Asymmetrical MIMO wireless communications
US8588326B2 (en) * 2004-07-07 2013-11-19 Apple Inc. System and method for mapping symbols for MIMO transmission
US20060153312A1 (en) * 2005-01-07 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for space-time frequency block coding in a wireless communication system
US7995664B2 (en) * 2005-07-15 2011-08-09 Lg Electronics Inc. Method and apparatus for transmitting pilot symbols in wireless communication system
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
KR100991796B1 (ko) * 2006-01-13 2010-11-03 엘지전자 주식회사 피드백 정보 기반 안테나 선택을 사용하여 전송 다이버시티및 공간 다중화를 성취하기 위한 방법 및 장치
US20070189151A1 (en) * 2006-02-10 2007-08-16 Interdigital Technology Corporation Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system
WO2007106366A2 (en) * 2006-03-10 2007-09-20 Interdigital Technology Corporation Method and apparatus for scaling soft bits for decoding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807145B1 (en) * 1999-12-06 2004-10-19 Lucent Technologies Inc. Diversity in orthogonal frequency division multiplexing systems
CN1462519A (zh) * 2001-05-14 2003-12-17 松下电器产业株式会社 多载波通信方法和多载波通信装置
WO2005022681A2 (en) * 2003-08-08 2005-03-10 Intel Corporation Multicarrier mimo transmission
US20060018250A1 (en) * 2004-07-21 2006-01-26 Young-Mo Gu Apparatus and method for transmitting and receiving a signal in an orthogonal frequency division multiplexing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359621A1 (en) * 2008-11-20 2011-08-24 Belair Networks Inc. System and method for frequency offsetting of information communicated in mimo based wireless networks
EP2359621A4 (en) * 2008-11-20 2014-07-16 Belair Networks Inc SYSTEM AND METHOD FOR FREQUENCY DISTRIBUTION OF MIMO-BASED INFORMATION IN WIRELESS NETWORKS

Also Published As

Publication number Publication date
US20090003480A1 (en) 2009-01-01
CN101039136B (zh) 2011-09-14
US8111772B2 (en) 2012-02-07
CN101039136A (zh) 2007-09-19

Similar Documents

Publication Publication Date Title
WO2007104209A1 (fr) Procédé et appareil de transmission multi-antenne utilisant un codage en fréquence spatiale
US7436903B2 (en) Multicarrier transmitter and method for transmitting multiple data streams with cyclic delay diversity
US9178658B2 (en) System and method for channel interleaver and layer mapping in a communications system
JP4391703B2 (ja) 直交送信ダイバーシチおよびマルチキャリアcdma通信システム用のインタリーブ方法および装置
KR100817497B1 (ko) 다중 안테나를 위한 심볼 생성 장치 및 방법
TWI433514B (zh) 用於多輸入多輸出多頻帶正交分頻多工技術通信系統之交錯之方法及系統
CN102119500A (zh) 用于sc-fdma发射分集的系统和方法
KR20060053962A (ko) 다수 안테나 통신 시스템을 위한 송신기 및 수신기와, 다수안테나 통신 시스템에서 데이터를 송신하는 방법 및수신하는 방법
WO2010143720A1 (ja) 通信装置
CN101208878B (zh) 发射分集方案
KR20120035827A (ko) 디지털 비디오 방송 시스템에서 다중 안테나 전송 방법 및 이를 지원하는 장치
EP2234286B1 (en) Method and apparatus for performing cyclic delay mapping to signals in multiple antenna transmitters
WO2010078786A1 (zh) 多天线信号处理系统及方法
KR100769671B1 (ko) Mb-ofdm 송수신장치 및 그 신호처리 방법
EP1661346B1 (en) Apparatus and method for providing a multi-carrier signal to be transmitted and apparatus and method for providing an output signal from a received multi-carrier signal
CN101001099B (zh) 一种分布式互助中转方法及中转系统
EP1792425B1 (en) Mb-ofdm transmitter and receiver and signal processing method thereof
WO2010105541A1 (zh) 用于多信息流通信的数据交错通信方法
AU2009267791B2 (en) Parallel packet transmission
JP7304406B2 (ja) 信号の送信および受信
Zerrouki et al. A physical layer simulation for WiMAX MIMO-OFDM system: Throughput comparison between 2× 2 STBC and 2× 2 V-BLAST in Rayleigh fading channel
Shwetha et al. The performance analysis of MIMO OFDM system with different M-QAM modulation and Convolution channel coding
WO2007104203A1 (fr) Procédé de transmission multi-antenne dans un système de multiplexage par répartition orthogonale de la fréquence et appareil associé
Kumar et al. Space Time Block Code Analysis for MIMO-OFDM System
CN102067476B (zh) 发送设备、接收设备以及发送和接收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07702007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07702007

Country of ref document: EP

Kind code of ref document: A1