WO2018014253A1 - 一种信号解码方法、装置及设备 - Google Patents
一种信号解码方法、装置及设备 Download PDFInfo
- Publication number
- WO2018014253A1 WO2018014253A1 PCT/CN2016/090691 CN2016090691W WO2018014253A1 WO 2018014253 A1 WO2018014253 A1 WO 2018014253A1 CN 2016090691 W CN2016090691 W CN 2016090691W WO 2018014253 A1 WO2018014253 A1 WO 2018014253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- coefficient
- antenna
- decoding
- time slot
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
- H04L1/0631—Receiver arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0667—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0891—Space-time diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
Definitions
- the present invention relates to the field of communications, and in particular, to a signal decoding method, apparatus, and device.
- MIMO Multiple-Input Multiple-Output
- space-time coding technology is introduced, that is, the signal is encoded in the two-dimensional direction of the spatial domain and the time domain, and spatial diversity of multiple antennas is used in space to improve the system gain.
- the more mature space-time coding techniques include the Alamouti coding scheme. See Figure 1, which is an architectural diagram of the Alamouti space-time coding scheme.
- the signal transmitting end has two antennas, which are respectively a first antenna and a second antenna, and the signal receiving end also has two antennas, which are a third antenna and a fourth antenna, respectively.
- the signal s is divided into two different signals after serial-to-parallel conversion, which are a transmission signal s 1 and a transmission signal s 2 , respectively.
- the third antenna transmits the signal s 1 and the fourth antenna transmits the signal s 2 ; in the second time slot, the third antenna transmits the signal -s 2 * , The fourth antenna transmits a signal s 1 * ("*" indicates a conjugate complex number).
- the first antenna receives the signal y 1 and the second antenna receives the signal y 2 ; in the second time slot, the first antenna receives the signal y' 1 , the second antenna Receive signal y' 2 .
- a decoded signal is obtained. And decoding signals
- Phase noise refers to the random variation of the phase of the output signal caused by various noises at the transmitting end of the signal.
- the Alamouti coding scheme is mainly for radio waves with long wavelength and low frequency, such as long wave (wavelength range is 10 ⁇ 1km, frequency range is 30 ⁇ 300kHz), medium wave (wavelength range is 1000 ⁇ 100m, frequency range is 300).
- phase noise is weak to negligible
- the decoded signal decoded by the signal receiving end Only related to the transmission signal s 1 , regardless of the transmission signal s 2 , and the decoded signal obtained by decoding It is only related to the transmission signal s 2 and is independent of the transmission signal s 1 and the decoding result is good.
- phase noise is generally severe, resulting in decoding of the signal receiving end decoding.
- the transmission signal s 2 causes interference to the transmission signal s 1 ; It is related not only to the transmission signal s 2 but also to the transmission signal s 1 , that is, the transmission signal s 1 causes interference to the transmission signal s 2 , and the decoding result is poor. Therefore, there is an urgent need for a method that can be applied to decoding a radio wave having a shorter wavelength and a higher frequency to achieve an improvement in decoding performance.
- an embodiment of the present invention provides a signal decoding method, apparatus, and device, which can still obtain good phase noise in a signal transmission end and a signal receiving end in a 2*2 system of MIMO.
- the purpose of the decoding result is a signal decoding method, apparatus, and device, which can still obtain good phase noise in a signal transmission end and a signal receiving end in a 2*2 system of MIMO.
- An embodiment of the present invention provides a signal decoding method, where the method is applied to a MIMO system, where the MIMO system includes a signal transmitting end and a signal receiving end, and the signal receiving end includes a first antenna and a second antenna, where The signal transmitting end includes a third antenna and a fourth antenna;
- the method includes:
- the channel fading coefficient including the first antenna, the second antenna, and the a channel fading coefficient corresponding to each of four channels formed between the third antenna and the fourth antenna, the phase noise coefficient including a phase noise coefficient of the signal transmitting end and a phase noise coefficient of the signal receiving end;
- the first signal and the second signal by using the decoding coefficient to obtain a first decoded signal and a second decoded signal, respectively, where the first decoded signal is only related to a transmitted signal corresponding to the third antenna And transmitting a signal corresponding to the fourth antenna is not related; the second decoding signal is only related to a transmission signal corresponding to the fourth antenna, and a transmission signal corresponding to the third antenna is not related, the sending signal is Is the signal before encoding.
- the calculating the decoding coefficients by using the channel fading coefficient and the phase noise coefficient obtained by performing channel estimation according to the first signal and the second signal include:
- the decoding coefficient is calculated using a phase noise coefficient obtained by performing channel estimation on a signal subjected to equalization processing.
- the first signal and the second signal respectively correspond to the same time slot, and the time slot includes a first time slot and a second time slot;
- the calculating the equalization coefficients by using the channel fading coefficients obtained by performing channel estimation according to the first signal and the second signal includes:
- the first set of equalization coefficients includes a first equalization coefficient, a second equalization coefficient, a third equalization coefficient, and a fourth equalization coefficient;
- the first time slot of the first signal is filtered by using the first equalization coefficient to obtain a first time slot of the third signal;
- the conjugate of the second time slot of the second signal is filtered by the fourth equalization coefficient to obtain a second time slot of the fourth signal.
- the first equalization coefficient The second equalization coefficient
- the third equalization coefficient The fourth equalization coefficient
- h 11 is a channel fading coefficient of the third antenna to the first antenna
- a conjugate of h 12 is a channel fading coefficient of the fourth antenna to the first antenna
- h 21 is a channel fading coefficient of the third antenna to the second antenna
- the conjugate of h 22 is the channel fading coefficient of the fourth antenna to the second antenna.
- the second set of equalization coefficients includes a fifth equalization coefficient, a sixth equalization coefficient, a seventh equalization coefficient, and an eighth equalization coefficient;
- the conjugate of the second time slot of the second signal is filtered by the eighth equalization coefficient to obtain a second time slot of the sixth signal.
- the fifth equalization coefficient The sixth equalization coefficient
- the seventh equalization coefficient The eighth equalization coefficient
- h 12 is a channel fading coefficient of the fourth antenna to the first antenna
- h 11 is a channel fading coefficient of the third antenna to the first antenna
- h 22 is a channel fading coefficient of the fourth antenna to the second antenna
- the conjugate of h 21 the h 21 is the channel fading coefficient of the third antenna to the second antenna.
- the calculating the decoding coefficient by using the phase noise coefficient obtained by performing channel estimation on the signal after the equalization processing includes:
- Decoding the first signal and the second signal by using the decoding coefficient to obtain the first decoded signal and the second decoded signal respectively include:
- the fifth signal and the sixth signal are decoded by the second set of decoding coefficients to obtain a second decoded signal.
- the first set of decoding coefficients includes a first decoding coefficient, a second decoding coefficient, a third decoding coefficient, and a fourth decoding coefficient;
- the first decoded signal Multiplying a first time slot of the third signal by the first decoding coefficient, multiplying a second time slot of the third signal by the second decoding coefficient, and using the fourth signal Multiplying the first time slot by the third decoding coefficient, multiplying the second time slot of the fourth signal by the fourth decoding coefficient, and summing the multiplied results to obtain a The first decoded signal is described.
- the first decoding coefficient The second decoding coefficient
- the third decoding coefficient The fourth decoding coefficient or,
- the first decoding coefficient The second decoding coefficient
- the third decoding coefficient The fourth decoding coefficient or,
- the first decoding coefficient The second decoding coefficient
- the third decoding coefficient The fourth decoding coefficient
- said Said Said Said Said Said Said Said Said Said a phase noise coefficient corresponding to a first time slot of the first signal where ⁇ ' rx1 is a phase noise coefficient corresponding to a second time slot of the first signal, a phase noise coefficient corresponding to a first time slot of the second signal, where ⁇ ' rx2 is a phase noise coefficient corresponding to a second time slot of the second signal, a phase noise coefficient corresponding to a first time slot of the first transmit signal, ⁇ ′ tx1 being a phase noise coefficient corresponding to a second time slot of the first transmit signal, a phase noise coefficient corresponding to a first time slot of the second transmit signal, ⁇ ′ tx2 being a phase noise coefficient corresponding to a second time slot of the second transmit signal Phase noise for the third antenna, Phase noise for the fourth antenna, Phase noise for the first antenna, a phase noise of the second antenna; the first transmit signal is a signal transmitted by the third antenna, and the second transmit signal is a signal transmitted by
- the second set of decoding coefficients includes a fifth decoding coefficient, a sixth decoding coefficient, a seventh decoding coefficient, and an eighth decoding coefficient;
- Decoding the fifth signal and the sixth signal by using the second set of decoding coefficients, and obtaining the second decoded signal includes:
- the fifth decoding coefficient The sixth decoding coefficient
- the seventh decoding coefficient The eighth decoding coefficient or,
- the fifth decoding coefficient The sixth decoding coefficient
- the seventh decoding coefficient The eighth decoding coefficient or,
- the fifth decoding coefficient The sixth decoding coefficient
- the seventh decoding coefficient The eighth decoding coefficient
- said Said Said Said Said Said Said Said Said Said a phase noise coefficient corresponding to a first time slot of the first signal where ⁇ ' rx1 is a phase noise coefficient corresponding to a second time slot of the first signal, a phase noise coefficient corresponding to a first time slot of the second signal, where ⁇ ' rx2 is a phase noise coefficient corresponding to a second time slot of the second signal, a phase noise coefficient corresponding to a first time slot of the first transmit signal, ⁇ ′ tx1 being a phase noise coefficient corresponding to a second time slot of the first transmit signal, a phase noise coefficient corresponding to a first time slot of the second transmit signal, ⁇ ′ tx2 being a phase noise coefficient corresponding to a second time slot of the second transmit signal Phase noise for the third antenna, Phase noise for the fourth antenna, Phase noise for the first antenna, a phase noise of the second antenna; the first transmit signal is a signal transmitted by the third antenna, and the second transmit signal is a signal transmitted by
- the equalizing processing the first signal and the second signal by using the equalization coefficient comprises:
- the first signal and the second signal are equalized by the equalization coefficient.
- the equalizing processing the first signal and the second signal by using the equalization coefficient comprises:
- An embodiment of the present invention provides a signal decoding apparatus, where the apparatus is applied to a MIMO system, where the MIMO system includes a signal transmitting end and a signal receiving end, and the signal receiving end includes a first antenna and a second antenna, where The signal transmitting end includes a third antenna and a fourth antenna;
- the device includes:
- a signal acquisition unit a decoding coefficient calculation unit, and a decoding unit
- the signal acquiring unit is configured to acquire a first signal received by the first antenna and a second signal received by the second antenna, where the first signal and the second signal are sent by the signal a third antenna and a fourth antenna;
- the decoding coefficient calculation unit is configured to calculate a decoding coefficient by using a channel fading coefficient and a phase noise coefficient obtained by performing channel estimation according to the first signal and the second signal;
- the channel fading coefficient includes the first antenna a channel fading coefficient corresponding to each of four channels formed between the second antenna, the third antenna, and the fourth antenna, the phase noise coefficient including a phase noise coefficient of the signal transmitting end and the signal Phase noise figure at the receiving end;
- the decoding unit is configured to decode the first signal and the second signal by using the decoding coefficient to obtain a first decoded signal and a second decoded signal, respectively, where the first decoded signal is only related to the first
- the transmission signal corresponding to the three antennas is related, and the transmission signal corresponding to the fourth antenna is not correlated; the second decoded signal is only related to the transmission signal corresponding to the fourth antenna, and the transmission signal corresponding to the third antenna Irrelevant, the transmitted signal is a signal before encoding.
- the decoding coefficient calculation unit specifically includes:
- Equalization coefficient calculation unit equalization unit, and decoding coefficient calculation subunit
- the equalization coefficient calculation unit is configured to calculate an equalization coefficient by using a channel fading coefficient obtained by performing channel estimation according to the first signal and the second signal;
- the equalizing unit is configured to perform equalization processing on the first signal and the second signal by using the equalization coefficient
- the decoding coefficient calculation subunit is configured to calculate the decoding coefficient by using a phase noise coefficient obtained by performing channel estimation on a signal subjected to equalization processing.
- the first signal and the second signal respectively correspond to the same time slot, and the time slot includes a first time slot and a second time slot;
- the equalization coefficient calculation unit is configured to: calculate a first set of equalization coefficients and a second set of equalization coefficients by using a channel fading coefficient obtained by performing channel estimation according to the first signal and the second signal;
- the equalizing unit specifically includes: a pre-processing unit and a filtering unit, where the filtering unit includes: a first filtering unit and a second filtering unit;
- the preprocessing unit is configured to preprocess the first signal and the second signal to obtain a first group of four signals and a second group of four signals, and the first group of four signals and The second group of four channels respectively include a first time slot of the first signal, a conjugate of the second time slot of the first signal, a first time slot of the second signal, and a second time slot of the second signal Conjugation
- the first filtering unit is configured to filter the first group of four channels by using the first group of equalization coefficients to obtain a third signal and a fourth signal, where the third signal and the fourth signal are respectively Corresponding to the time slot;
- the second filtering unit is configured to filter the second group of four signals by using the second group of equalization coefficients to obtain a fifth signal and a sixth signal, where the fifth signal and the sixth signal are respectively Corresponding to the time slot.
- the first set of equalization coefficients includes a first equalization coefficient, a second equalization coefficient, a third equalization coefficient, and a fourth equalization coefficient;
- the first filtering unit is specifically configured to:
- the first time slot of the first signal is filtered by using the first equalization coefficient to obtain a first time slot of the third signal;
- the conjugate of the second time slot of the second signal is filtered by the fourth equalization coefficient to obtain a second time slot of the fourth signal.
- the first equalization coefficient The second equalization coefficient
- the third equalization coefficient The fourth equalization coefficient
- h 11 is a channel fading coefficient of the third antenna to the first antenna
- a conjugate of h 12 is a channel fading coefficient of the fourth antenna to the first antenna
- h 21 is a channel fading coefficient of the third antenna to the second antenna
- the conjugate of h 22 is the channel fading coefficient of the fourth antenna to the second antenna.
- the second set of equalization coefficients includes a fifth equalization coefficient, a sixth equalization coefficient, a seventh equalization coefficient, and an eighth equalization coefficient;
- the second filtering unit is specifically configured to:
- the conjugate of the second time slot of the second signal is filtered by the eighth equalization coefficient to obtain a second time slot of the sixth signal.
- the fifth equalization coefficient The sixth equalization coefficient
- the seventh equalization coefficient The eighth equalization coefficient
- h 12 is a channel fading coefficient of the fourth antenna to the first antenna
- the h 1 * 1 is a conjugate of h 11
- the h 11 is a channel fading coefficient of the third antenna to the first antenna
- H 22 is a channel fading coefficient of the fourth antenna to the second antenna
- the h 21 is the channel fading coefficient of the third antenna to the second antenna.
- the decoding coefficient calculation subunit is specifically configured to:
- the decoding unit includes a first decoding unit and a second decoding unit
- the first decoding unit is configured to:
- the second decoding unit is configured to:
- the fifth signal and the sixth signal are decoded by the second set of decoding coefficients to obtain a second decoded signal.
- the first set of decoding coefficients includes a first decoding coefficient, a second decoding coefficient, a third decoding coefficient, and a fourth decoding coefficient;
- the first decoding unit is specifically configured to:
- the first decoded signal Multiplying a first time slot of the third signal by the first decoding coefficient, multiplying a second time slot of the third signal by the second decoding coefficient, and using the fourth signal Multiplying the first time slot by the third decoding coefficient, multiplying the second time slot of the fourth signal by the fourth decoding coefficient, and summing the multiplied results to obtain a The first decoded signal is described.
- the first decoding coefficient The second decoding coefficient
- the third decoding coefficient The fourth decoding coefficient or,
- the first decoding coefficient The second decoding coefficient
- the third decoding coefficient The fourth decoding coefficient or,
- the first decoding coefficient The second decoding coefficient
- the third decoding coefficient The fourth decoding coefficient
- said Said Said Said Said Said Said Said Said Said a phase noise coefficient corresponding to a first time slot of the first signal where ⁇ ' rx1 is a phase noise coefficient corresponding to a second time slot of the first signal, a phase noise coefficient corresponding to a first time slot of the second signal, where ⁇ ' rx2 is a phase noise coefficient corresponding to a second time slot of the second signal, a phase noise coefficient corresponding to a first time slot of the first transmit signal, ⁇ ′ tx1 being a phase noise coefficient corresponding to a second time slot of the first transmit signal, a phase noise coefficient corresponding to a first time slot of the second transmit signal, ⁇ ′ tx2 being a phase noise coefficient corresponding to a second time slot of the second transmit signal Phase noise for the third antenna, Phase noise for the fourth antenna, Phase noise for the first antenna, a phase noise of the second antenna; the first transmit signal is a signal transmitted by the third antenna, and the second transmit signal is a signal transmitted by
- the second set of decoding coefficients includes a fifth decoding coefficient, a sixth decoding coefficient, a seventh decoding coefficient, and an eighth decoding coefficient;
- the second decoding unit is specifically configured to:
- the fifth decoding coefficient The sixth decoding coefficient
- the seventh decoding coefficient The eighth decoding coefficient or,
- the fifth decoding coefficient The sixth decoding coefficient
- the seventh decoding coefficient The eighth decoding coefficient or,
- the fifth decoding coefficient The sixth decoding coefficient
- the seventh decoding coefficient The eighth decoding coefficient
- said Said Said Said Said Said Said Said Said Said a phase noise coefficient corresponding to a first time slot of the first signal where ⁇ ' rx1 is a phase noise coefficient corresponding to a second time slot of the first signal, a phase noise coefficient corresponding to a first time slot of the second signal, ⁇ ' rx2 being a phase noise coefficient corresponding to a second time slot of the second signal, a phase noise coefficient corresponding to a first time slot of the first transmit signal, ⁇ ′ tx1 being a phase noise coefficient corresponding to a second time slot of the first transmit signal, a phase noise coefficient corresponding to a first time slot of the second transmit signal, ⁇ ′ tx2 being a phase noise coefficient corresponding to a second time slot of the second transmit signal Phase noise for the third antenna, Phase noise for the fourth antenna, Phase noise for the first antenna, a phase noise of the second antenna; the first transmit signal is a signal transmitted by the third antenna, and the second transmit signal is a signal transmitted by the
- the equalization unit is specifically configured to:
- the first signal and the second signal are equalized by the equalization coefficient.
- the equalization unit is specifically configured to:
- the first signal and the second signal are equalized by the equalization coefficient.
- An embodiment of the present invention provides a signal decoding device, where the device is applied to a MIMO system, where the MIMO system includes a signal transmitting end and a signal receiving end, and the signal receiving end includes a first antenna and a second antenna, where The signal transmitting end includes a third antenna and a fourth antenna;
- the device includes: a memory and a processor
- the memory is configured to store a set of program instructions
- the processor is configured to invoke the program instructions stored in the memory to perform the following operations:
- the channel fading coefficient including the first antenna, the second antenna, and the a channel fading coefficient corresponding to each of four channels formed between the third antenna and the fourth antenna, the phase noise coefficient including a phase noise coefficient of the signal transmitting end and the letter Phase noise figure of the receiving end;
- the first signal and the second signal by using the decoding coefficient to obtain a first decoded signal and a second decoded signal, respectively, where the first decoded signal is only related to a transmitted signal corresponding to the third antenna And transmitting a signal corresponding to the fourth antenna is not related; the second decoding signal is only related to a transmission signal corresponding to the fourth antenna, and a transmission signal corresponding to the third antenna is not related, the sending signal is Is the signal before encoding.
- the present invention not only considers the channel fading in the process of solving the decoding coefficient, but also obtains the channel fading coefficient, and also considers the phase noise of the signal transmitting end and the signal receiving end to obtain the phase noise coefficient, and then uses the The decoding parameters obtained by the channel fading coefficient and the phase noise coefficient decode the first signal and the second signal, and the obtained decoded signal is a signal that is not interfered by other signals, and a good decoding effect is obtained.
- Figure 1 is an architectural diagram of an Alamouti space-time coding scheme
- FIG. 2 is a schematic diagram of a signal decoding method in the prior art
- FIG. 3 is a flowchart of a signal encoding method according to Embodiment 1 of the present invention.
- FIG. 5 is a schematic diagram of a signal encoding method according to Embodiment 2 of the present invention.
- FIG. 6 is a structural block diagram of a signal encoding apparatus according to Embodiment 3 of the present invention.
- Space-time coding is one of the most important technologies in MIMO technology.
- the Alamouti space-time coding scheme is only applicable to radio waves with longer medium wavelength and lower frequency, because the phase noise of the radio wave at the transmitting end is small and negligible, and thus the two channels after decoding at the receiving end
- the signals are independent of each other and the decoding performance is better.
- the phase noise of the transmitting end is larger, and the decoding signal obtained by the receiving end after decoding has interference of other signals, and the decoding result is poor.
- the specific principle is explained in detail below.
- h 11 , h 12 , h 21 and h 22 are a third antenna to a first antenna, a fourth antenna to a first antenna, a third antenna to a second antenna, and a fourth antenna to a second antenna.
- Channel fading coefficient then the received signals y 1 , y′ 1 , y 2 and y′ 2 can be obtained by equations (1) to (4), respectively:
- the first antenna at the receiving end performs decoding after receiving the signal y 1 and the signal y 1 ', and the specific decoding process is as follows:
- channel estimation is performed on four channels between the first antenna, the second antenna, the third antenna, and the fourth antenna, and a decoding coefficient matrix corresponding to the third antenna and the fourth antenna is obtained respectively.
- the so-called channel estimation is a process of estimating the model parameters of a certain channel model from the received data.
- implementation methods for channel estimation such as a channel estimation method based on a training sequence, a channel estimation method based on a pilot sequence, and the like. Since these methods are well known to those skilled in the art, they are not described herein again.
- the decoding coefficient vector A corresponding to the third antenna is obtained by channel estimation as:
- the decoding coefficient vector B corresponding to the fourth antenna is
- the signals received by the first antenna and the second antenna are serial-to-parallel converted, that is, the two signals are changed into four signals, and then the four signals that are serially converted are converted. They are respectively input into respective corresponding multipliers for multiplication, and the multiplication parameters in the multiplier are corresponding decoding coefficients in the decoding coefficient vector A.
- the signals of the second time slot of the first antenna and the second time slot of the second antenna need to be conjugated (Conj is conjugated) before being input to the corresponding multiplier.
- the multiplied signals are added to obtain a decoded signal corresponding to the third antenna.
- the decoding coefficient vector B can be used to obtain a decoded signal corresponding to the fourth antenna.
- Formula (5) and formula (6) can be obtained by combining the above formula (1) to formula (4) according to the above decoding process:
- the decoded signal corresponding to the first antenna obtained after decoding can be seen. Only related to the transmitted signal s 1 due to the decoded signal And the decoding coefficient matrix A is known, and the transmission signal s 1 can be obtained. Similarly, the decoded signal corresponding to the second antenna obtained after decoding Only related to the transmitted signal s 2 , then due to the decoded signal And the decoding coefficient matrix B is known, and the transmission signal s 2 can be obtained.
- the received signals y 1 , y′ 1 , y 2 and y' 2 become:
- ⁇ ′ rx1 is the phase noise coefficient corresponding to the received signal y′ 1
- ⁇ ′ rx2 is the phase noise coefficient corresponding to the received signal y′ 2
- ⁇ ' tx1 is the phase noise coefficient corresponding to the transmitted signal -s 2 *
- ⁇ ' tx2 is the phase noise coefficient corresponding to the transmitted signal s 1 * .
- Equation (11) and formula (12) can be obtained by combining the above formula (7) to formula (10) according to the above decoding process:
- FIG. 3 is a flowchart of a signal decoding method according to Embodiment 1 of the present invention.
- the signal decoding method provided in this embodiment is applied to a MIMO system, where the MIMO system includes a signal transmitting end and a signal receiving end, the signal receiving end includes a first antenna and a second antenna, and the signal transmitting end includes a third antenna. And a fourth antenna;
- the method includes the following steps:
- Step S101 Acquire a first signal received by the first antenna, and a second signal received by the second antenna, where the first signal and the second signal are from a third antenna and a fourth end of the signal transmitting end. antenna.
- the MIMO system of this embodiment is a 2*2 transceiver system, that is, the signal receiving end has two antennas, which are respectively a first antenna and a second antenna, and the signal transmitting end has two antennas, respectively a third antenna and a fourth antenna. .
- the signal s is divided into two different signals after serial-to-serial conversion, which are a transmission signal s 1 and a transmission signal s 2 , respectively.
- the third antenna transmits the signal s 1 and the fourth antenna transmits the signal s 2 ; in the second time slot, the third antenna transmits the signal -s 2 * , The fourth antenna transmits a signal s 1 * ("*" indicates a conjugate complex number).
- the signal s 1 and the signal -s 2 * transmitted by the third antenna are referred to as a first transmission signal; the signal s 2 and the signal s 1 * transmitted by the fourth antenna are referred to as a second transmission signal.
- the first antenna receives the signal y 1 and the second antenna receives the signal y 2 ; in the second time slot, the first antenna receives the signal y' 1 and the second antenna receives Signal y' 2 .
- the signal y 1 and the signal y' 1 are referred to as the first signal, and the signal y 2 and the signal y' 2 are referred to as the second signal.
- Step S102 Calculate a decoding coefficient by using a channel fading coefficient and a phase noise coefficient obtained by performing channel estimation according to the first signal and the second signal.
- the channel fading coefficient has four channels, and belongs to four channels formed between the first antenna, the second antenna, the third antenna, and the fourth antenna, respectively.
- the signal received at the signal receiving end is affected by the phase noise of the signal transmitting end and the signal receiving end, in addition to the attenuation. Since the signal transmitting end includes two antennas, and the signal receiving end includes two antennas, the phase noise also has four values, which are respectively in one-to-one correspondence with the four antennas. Moreover, in the normal case, the phase noise of the signal transmitting end and the phase noise of the signal receiving end are independent of each other.
- the decoding parameters of the prior art only consider the channel fading coefficient, and do not consider the phase noise coefficient, so that the decoded signal s 1 and the signal s 2 interfere with each other, and the decoding performance is poor.
- the decoding parameter considers not only the channel fading coefficient but also the phase noise coefficient of the signal transmitting end and the phase noise coefficient of the signal receiving end.
- the phase noise figure can also be obtained by channel estimation.
- the channel fading coefficient and the phase noise coefficient may be obtained by using one channel estimation, that is, the phase noise is taken as a part of the channel, and the channel fading coefficient and the phase noise coefficient are regarded as channel estimation.
- the channel that does not consider the phase noise is H, then the channel considering the phase noise is After that, the two are also obtained as a whole to obtain the decoding coefficients.
- the phase noise is taken into account in the channel, since the phase noise is dynamically changed with time, the channel is also dynamically changed, and the calculated decoding coefficient is also dynamically changed.
- the signal transmitting end needs to periodically send a training sequence for channel estimation, and obtain a decoding coefficient corresponding to the training sequence, when the first signal and the second signal are not corresponding to the training sequence.
- the decoding coefficients corresponding to the first signal and the second signal respectively by interpolation or the like. For example, suppose that the start time point of the time period T is t1, the corresponding decoding coefficient is m1, the end time point is t2, and the corresponding decoding coefficient is m2, then if the first signal and the second signal are received For t3, the t2>t3>t1, the corresponding decoding coefficient m3 may be equal to m1+(m2-m1)(t3-t1)/(t2-t1).
- the channel fading coefficient and the phase noise coefficient may also be obtained by two channel estimations, that is, the channel fading coefficient is obtained by the first channel estimation, and the phase noise coefficient is obtained by the second channel estimation.
- Performing two channel estimations relative to performing one channel estimation can greatly reduce the workload of a single channel estimation, thereby improving decoding efficiency. For example, if a training-based channel estimation method is adopted, when performing channel estimation once, the training sequence length of the channel estimation is L+1 (L is the channel impulse response length, and in the case where channel equalization is not performed, the L is greater than 1).
- L is the channel impulse response length, and in the case where channel equalization is not performed, the L is greater than 1.
- the channel fading and the phase noise are separated. Since the channel fading coefficient is a relatively stable parameter, the channel estimation can be performed at a long interval.
- the two channel estimates will be described in detail in the following embodiments, and will not be explained too much here.
- Step S103 Decoding the first signal and the second signal by using the decoding coefficient to obtain a first decoded signal and a second decoded signal, respectively.
- the transmission signal s 1 and the transmission signal s 2 are signals before space-time coding, and after space-time coding, the signal transmitted by the third antenna is a first transmission signal, where the The signal transmitted by the four antennas is the second transmitted signal.
- the present embodiment not only considers the channel fading, but also obtains the channel fading coefficient, and also considers the phase noise of the signal transmitting end and the signal receiving end, obtains the phase noise coefficient, and then utilizes the channel fading coefficient and the phase noise coefficient according to the channel.
- the obtained decoding parameters decode the first signal and the second signal, and the obtained decoded signal is a signal that is not interfered by other signals, and a good decoding effect is obtained.
- FIG. 4 it is a flowchart of a signal decoding method according to Embodiment 2 of the present invention.
- Step S201 Acquire a first signal received by the first antenna, and a second signal received by the second antenna, where the first signal and the second signal are from a third antenna and a fourth end of the signal transmitting end. antenna.
- the step S201 is the same as the step S101 of the first embodiment, and details are not described herein again.
- Step S202 Calculate an equalization coefficient by using a channel fading coefficient obtained by performing channel estimation according to the first signal and the second signal.
- channel estimation is performed twice, the first channel estimation obtains a channel fading coefficient, and the second channel estimation obtains a phase noise coefficient. It is assumed that the channel fading coefficients obtained by the first channel estimation are h 11 , h 12 , h 21 and h 22 , wherein the h 11 is a channel fading coefficient of the third antenna to the first antenna, the h 12 is a channel fading coefficient of the fourth antenna to the first antenna, the h 21 is a channel fading coefficient of the third antenna to the second antenna, and h 22 is the fourth antenna to Channel fading coefficient of the second antenna.
- Step S203 Perform equalization processing on the first signal and the second signal by using the equalization coefficient.
- the transmission signal is transmitted on four channels between the first antenna and the fourth antenna
- the channel fading coefficient obtained by channel estimation is used to obtain an equalization coefficient
- the first signal and the second signal are equalized by the equalization coefficient to cancel the channel fading pair to send signals.
- the effect is such that when the second channel estimation is performed, only the phase noise can be considered, and the workload of the channel estimation is reduced.
- a specific equalization process may include:
- First preprocessing the first signal and the second signal to obtain a first group of four signals and a second group of four signals, wherein the first group of four signals and the second group of four signals are respectively Each includes a first time slot of the first signal, a conjugate of the second time slot of the first signal, a first time slot of the second signal, and a conjugate of the second time slot of the second signal.
- the first signal and the second signal may be respectively subjected to serial-to-parallel conversion to obtain two a first time slot and a second time slot of the first one of the four signals, and a first time slot and a second time slot of the second signal, and then the first of the two sets of four signals
- the second time slot and the second time slot of the second signal are conjugated.
- the equalization process refers to filtering the two sets of four-way signals by using the equalization coefficients.
- the equalization processing step may be performed in the time domain or in the frequency domain. If the equalization process is performed in the time domain, the equalization coefficient is an equalization coefficient in the time domain; if the equalization process is performed in the frequency domain, the equalization coefficient is an equalization coefficient in the frequency domain. Since the first signal and the second signal are time domain signals, the equalization processing may be directly performed in the time domain, where the equalization processing refers to performing the two sets of four time domain signals by using the equalization coefficients.
- the equalization processing at this time refers to The two sets of four-way signals are multiplied by the equalization coefficient, and then converted into a time domain signal after the equalization process, so that the decoding in step S204 is performed in the time domain.
- the following formulas for equalization processing are performed in the time domain, and the frequency domain can refer to these formulas.
- the first group of equalization coefficients includes a first equalization coefficient W 11 , a second equalization coefficient W 12 , a third equalization coefficient W 13 , and a fourth equalization coefficient W 14 , the first equalization coefficient W 11 is filtered with a first time slot of the first signal, and the second equalization coefficient W 12 is filtered with a second time slot of the first signal.
- the third equalization coefficient W 13 is filtered with a first time slot of the second signal, and the fourth equalization coefficient W 14 is filtered with a second time slot of the second signal.
- the equalization coefficient corresponding to the second group of four-way signals is a second group of equalization coefficients
- the second group of equalization coefficients includes a fifth equalization coefficient W 21 , a sixth equalization coefficient W 22 , a seventh equalization coefficient W 23 , and an eighth An equalization coefficient W 24 , wherein the fifth equalization coefficient W 21 is filtered with a first time slot of the first signal, and the sixth equalization coefficient W 22 is filtered with a second time slot of the first signal.
- the seventh equalization coefficient W 23 is filtered with the first time slot of the second signal, and the eighth equalization coefficient W 24 is filtered with the second time slot of the second signal.
- the equalization coefficient needs to satisfy this condition.
- the first equalization coefficient The second equalization coefficient
- the third equalization coefficient The fourth equalization coefficient
- the fifth equalization coefficient The sixth equalization coefficient
- the seventh equalization coefficient The eighth equalization coefficient
- h 11 is a channel fading coefficient of the third antenna to the first antenna
- h 12 is a channel fading coefficient of the fourth antenna to the first antenna
- h 21 is a channel of the third antenna to the second antenna A fading coefficient
- the h 22 being a channel fading coefficient of the fourth antenna to the second antenna.
- the MIMO system for dual antenna transmission and dual antenna reception in this embodiment has the following features: the first antenna and the second antenna are relatively close, and the third antenna and the The four antennas are closer in distance, so the four channels formed between the first antenna and the fourth antenna have the same frequency selective fading, the difference is only in flat fading fading, so the h 11 is proportional to the h 12
- the third signal and the fourth signal corresponding to the first group of four signals are obtained, and the fifth signal and the sixth signal corresponding to the second group of four signals are obtained.
- the third signal comprises a first time slot And second time slot
- the fourth signal includes a first time slot And second time slot Combining the formula (7) to the formula (10), the following formulas (13) to (16) can be obtained:
- the fifth signal includes a first time slot And second time slot
- the sixth signal includes a first time slot And second time slot Combining the formula (7) to the formula (10), the following formulas (17) to (20) can be obtained:
- phase noise figure corresponding to the first time slot of the first signal a phase noise figure corresponding to a second time slot of the first signal, a phase noise coefficient corresponding to the first time slot of the second signal, a phase noise coefficient corresponding to a second time slot of the second signal, a phase noise figure corresponding to the first time slot of the first transmitted signal, a phase noise coefficient corresponding to a second time slot of the first transmitted signal, a phase noise figure corresponding to the first time slot of the second transmitted signal, a phase noise coefficient corresponding to a second time slot of the second transmit signal;
- the first transmit signal is a signal transmitted by the third antenna
- the second transmit signal is a signal transmitted by the fourth antenna
- Step S204 Calculating the decoding coefficient by using a phase noise coefficient obtained by performing channel estimation on the signal subjected to the equalization processing.
- the first signal and the second signal are equalized to cancel interference caused by four channels between the first antenna and the fourth antenna to transmit signals of the signal transmitting end, if the The third signal is regarded as a signal received by the first antenna of the signal receiving end, and the fourth signal is regarded as a signal received by the second antenna, and then the first antenna to the fourth antenna
- the four channels in between can be seen as flat channels, that is, channels without fading.
- the fifth signal is regarded as a signal received by the first antenna
- the sixth signal is regarded as a signal received by the second antenna
- the first antenna to the first can also be seen as channels without intersymbol interference.
- the signal subjected to the equalization processing is subjected to channel estimation to obtain a phase noise coefficient.
- a first group of phase noise coefficients that is, respective phase noise coefficients in the phase noise matrices H 1 and H 2 are obtained;
- the fifth signal and the sixth signal are channel estimated to obtain a second set of phase noise coefficients, that is, respective phase noise coefficients of the phase noise matrices H 3 and H 4 .
- the embodiment After obtaining the phase noise coefficient, the embodiment obtains a decoding coefficient according to the phase noise coefficient, and the decoding coefficient is used for decoding, so that the decoded signal is only related to the transmission signal s 1 or the transmission signal s 2 Related.
- the condition that the first decoding coefficient needs to be satisfied is that the decoded first decoding signal is only related to the transmission signal s 1 corresponding to the third antenna.
- the second set of decoding coefficients comprising: a fifth decoding coefficient w 21 , a sixth decoding coefficient w 22 , a seventh decoding coefficient w 23 , and an eighth decoding coefficient w 24 .
- the second decoding coefficient needs to be satisfied that the decoded second decoding signal is only related to the transmission signal s 2 corresponding to the fourth antenna.
- Step S205 Decoding the equalized signal by using the decoding parameter, and respectively obtaining a transmission signal corresponding to the third antenna and a transmission signal corresponding to the fourth antenna.
- the third signal is decoded by using the first set of decoding coefficients.
- the specific decoding process may be: multiplying the first time slot of the third signal by the first decoding coefficient, and multiplying the second time slot of the third signal by the second decoding coefficient And multiplying the first time slot of the fourth signal by the third decoding coefficient, multiplying the second time slot of the fourth signal by the fourth decoding coefficient, and multiplying the multiplied The result is summed to obtain a first decoded signal
- the fourth signal is decoded using the second set of decoding coefficients.
- the specific decoding process may be: multiplying the first time slot of the fifth signal and the fifth decoding coefficient, and multiplying the second time slot of the fifth signal by the sixth decoding coefficient And multiplying the first time slot of the sixth signal by the seventh decoding coefficient, multiplying the second time slot of the sixth signal by the eighth decoding coefficient, and multiplying the multiplied Resulting a summation to obtain the second decoded signal
- equation (22) can be obtained:
- equation (23) Combining the equations (13) through (16) with the third implementation of the first set of decoding coefficients, equation (23) can be obtained:
- the first decoded signal It is only related to the transmission signal s 1 corresponding to the third antenna, and is not interfered by the transmission signal s 2 , and a good decoding result is obtained.
- formula (24) can be obtained by combining the formula (17) to formula (20) and the first implementation of the second set of decoding coefficients:
- equation (25) Combining the equations (17) through (20) with the second implementation of the second set of decoding coefficients, equation (25) can be obtained:
- equation (26) Combining the equations (17) through (20) with the third implementation of the second set of decoding coefficients, equation (26) can be obtained:
- the second decoded signal It is only related to the transmission signal s 2 corresponding to the fourth antenna, and is not interfered by the transmission signal s 1 , and a good decoding result is obtained.
- the channel fading coefficient is obtained by the first channel estimation, and the equalization coefficient is obtained according to the channel fading coefficient, to perform equalization processing on the first signal and the second signal to obtain a third signal and a fourth signal.
- performing second channel estimation according to the third signal and the fourth signal to obtain a decoding coefficient, and decoding the first signal and the second signal by using the decoding coefficient, respectively A first decoded signal and the second decoded signal are obtained. Since the channel corresponding to the third signal and the channel corresponding to the fourth signal can be regarded as a channel without inter-symbol interference, the purpose of improving decoding efficiency is achieved.
- channel estimation method used for the two channel estimations may be referred to the prior art, and the present invention is not specifically limited.
- the second channel estimation is to obtain the phase noise coefficient. Since the phase noise coefficient is dynamically changed, if the training-based channel estimation method is adopted, the phase noise coefficient corresponding to the training sequence can be obtained, and the actual value can be obtained by interpolation. The phase noise figure corresponding to the signal (ie, the third signal and the fourth signal).
- FIG. 6 is a structural block diagram of a signal decoding apparatus according to Embodiment 3 of the present invention.
- the signal decoding apparatus provided in this embodiment is applied to a MIMO system, where the MIMO system includes a signal transmitting end and a signal receiving end, the signal receiving end includes a first antenna and a second antenna, and the signal transmitting end includes a third antenna. And a fourth antenna;
- the device includes:
- a signal acquisition unit 11 a decoding coefficient calculation unit 21, and a decoding unit 31;
- the signal acquiring unit 11 is configured to acquire a first signal received by the first antenna and a second signal received by the second antenna, where the first signal and the second signal are from the signal a third antenna and a fourth antenna at the transmitting end;
- the decoding coefficient calculation unit 21 is configured to calculate a decoding coefficient by using a channel fading coefficient and a phase noise coefficient obtained by performing channel estimation according to the first signal and the second signal;
- the channel fading coefficient includes the first a channel fading coefficient corresponding to each of four channels formed between the antenna, the second antenna, the third antenna, and the fourth antenna, the phase noise coefficient including the signal a phase noise figure of the transmitting end and a phase noise figure of the signal receiving end, and phase noise corresponding to the phase noise coefficient of the signal transmitting end is independent of the phase noise corresponding to the phase noise coefficient of the signal receiving end;
- the decoding unit 31 is configured to decode the first signal and the second signal by using the decoding coefficient to obtain a first decoded signal and a second decoded signal, respectively, where the first decoded signal is only related to the The transmission signal corresponding to the third antenna is related, and the transmission signal corresponding to the fourth antenna is not related; the second decoded signal is only related to the transmission signal corresponding to the fourth antenna, and the transmission corresponding to the third antenna The signal is not relevant.
- the present embodiment not only considers the channel fading, but also obtains the channel fading coefficient, and also considers the phase noise of the signal transmitting end and the signal receiving end, obtains the phase noise coefficient, and then utilizes the channel fading coefficient and the phase noise coefficient according to the channel.
- the obtained decoding parameters decode the first signal and the second signal, and the obtained decoded signal is a signal that is not interfered by other signals, and a good decoding effect is obtained.
- the decoding coefficient calculation unit 21 may obtain the channel fading coefficient and the phase noise coefficient by using one channel estimation, that is, the channel fading coefficient and the phase noise coefficient during channel estimation. It is calculated as a whole, and then the two are obtained as a whole to obtain the decoding coefficient; or, it can be obtained by two channel estimations, that is, the channel fading coefficient is obtained for the first channel estimation, and the second channel estimation is obtained. Phase noise figure.
- the decoding coefficient calculation unit 21 specifically includes:
- Equalization coefficient calculation unit 211 equalization unit 212, decoding coefficient calculation sub-unit 213;
- the equalization coefficient calculation unit 211 is configured to calculate an equalization coefficient by using a channel fading coefficient obtained by performing channel estimation according to the first signal and the second signal;
- the equalizing unit 212 is configured to perform equalization processing on the first signal and the second signal by using the equalization coefficient
- the decoding coefficient calculation sub-unit 213 is configured to calculate the decoding coefficient by using a phase noise coefficient obtained by performing channel estimation on the signal subjected to the equalization processing.
- the time slot includes a first time slot and a second time slot
- the equalization coefficient calculation unit 211 is specifically configured to: utilize the first signal according to the first signal Calculating, by the second signal, a channel fading coefficient obtained by channel estimation, a first set of equalization coefficients and a second set of equalization coefficients;
- the equalizing unit 212 specifically includes: a pre-processing unit and a filtering unit, where the filtering unit includes: a first filtering unit and a second filtering unit;
- the preprocessing unit is configured to preprocess the first signal and the second signal to obtain a first group of four signals and a second group of four signals, and the first group of four signals and The second group of four channels respectively include a first time slot of the first signal, a conjugate of the second time slot of the first signal, a first time slot of the second signal, and a second time slot of the second signal Conjugation
- the first filtering unit is configured to filter the first group of four channels by using the first group of equalization coefficients to obtain a third signal and a fourth signal, where the third signal and the fourth signal are respectively Corresponding to the time slot;
- the second filtering unit is configured to filter the second group of four signals by using the second group of equalization coefficients to obtain a fifth signal and a sixth signal, where the fifth signal and the sixth signal are respectively Corresponding to the time slot.
- the first set of equalization coefficients includes a first equalization coefficient, a second equalization coefficient, a third equalization coefficient, and a fourth equalization coefficient
- the first filtering unit is specifically configured to:
- the first time slot of the first signal is filtered by using the first equalization coefficient to obtain a first time slot of the third signal;
- the conjugate of the second time slot of the second signal is filtered by the fourth equalization coefficient to obtain a second time slot of the fourth signal.
- the second set of equalization coefficients includes a fifth equalization coefficient, a sixth equalization coefficient, a seventh equalization coefficient, and an eighth equalization coefficient
- the second filtering unit is specifically configured to:
- the conjugate of the second time slot of the second signal is filtered by the eighth equalization coefficient to obtain a second time slot of the sixth signal.
- the decoding coefficient calculation subunit 213 may be specifically configured to:
- the decoding unit 31 includes a first decoding unit 311 and a second decoding unit 312;
- the first decoding unit 311 is configured to:
- the second decoding unit 312 is configured to:
- the fifth signal and the sixth signal are decoded by the second set of decoding coefficients to obtain a second decoded signal.
- the first set of decoding coefficients includes a first decoding coefficient, a second decoding coefficient, a third decoding coefficient, and a fourth decoding coefficient
- the first decoding unit 311 is specifically configured to:
- the first decoded signal Multiplying a first time slot of the third signal by the first decoding coefficient, multiplying a second time slot of the third signal by the second decoding coefficient, and using the fourth signal Multiplying the first time slot by the third decoding coefficient, multiplying the second time slot of the fourth signal by the fourth decoding coefficient, and summing the multiplied results to obtain a The first decoded signal is described.
- the second set of decoding coefficients includes a fifth decoding coefficient, a sixth decoding coefficient, a seventh decoding coefficient, and an eighth decoding coefficient
- the second decoding unit 312 is specifically configured to:
- the equalizing unit 212 is specifically configured to:
- the first signal and the second signal are equalized by the equalization coefficient.
- the equalizing unit 212 is specifically configured to:
- the first signal and the second signal are equalized by the equalization coefficient.
- the equalization unit 212 can be implemented by a filter, and can be implemented by a transversal filter.
- a fourth embodiment of the present invention provides a signal decoding device, where the device is applied to a MIMO system, where the MIMO system includes a signal transmitting end and a signal receiving end, where the signal receiving end includes a first antenna and a second antenna, The signal transmitting end includes a third antenna and a fourth antenna;
- the apparatus includes a memory and a processor for storing a set of program instructions, the processor for invoking the program instructions stored by the memory to perform the following operations:
- the channel fading coefficient including the first antenna, the second antenna, and the a channel fading coefficient corresponding to each of four channels formed between the third antenna and the fourth antenna, the phase noise coefficient including a phase noise coefficient of the signal transmitting end and a phase noise coefficient of the signal receiving end, and the The phase noise corresponding to the phase noise coefficient of the signal transmitting end is independent of the phase noise corresponding to the phase noise coefficient of the signal receiving end;
- the transmitted signal is the signal before encoding.
- the processor may be a central processing unit (CPU), and the memory may be an internal memory of a random access memory (RAM) type.
- the processor and the memory may be integrated into one or more independent circuits or hardware, such as an Application Specific Integrated Circuit (ASIC).
- ASIC Application Specific Integrated Circuit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Noise Elimination (AREA)
Abstract
本发明实施例公开了一种信号解码方法、装置及设备,实现了在MIMO的2*2系统中信号发射端和接收端存在相位噪声的情况下依然能够得到良好的解码结果的目的。所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;所述方法包括:获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号。
Description
本发明涉及通信领域,特别是涉及一种信号解码方法、装置及设备。
在无线通信领域,多输入多输出(Multiple-Input Multiple-Out-put,MIMO)技术目前应用非常广泛。所谓MIMO技术是指在信号的发射端和接收端均采用多根天线,信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。
为了进一步提高MIMO系统的增益,出现了空时编码技术,即在空间域和时间域两维方向上对信号进行编码,在空间上采用多天线的空间分集来提高系统增益。
目前比较成熟的空时编码技术包括Alamouti编码方案,参见图1,该图为Alamouti空时编码方案的架构图。在该方案中,信号发射端有两根天线,分别为第一天线和第二天线,信号接收端也有两根天线,分别为第三天线和第四天线。信号s经过串并变换后分为两路不同的信号,分别为发送信号s1和发送信号s2。经过正交空时编码后,在第一个时隙内,第三天线发射信号s1,第四天线发射信号s2;在第二个时隙内,第三天线发射信号-s2
*,第四天线发射信号s1
*(“*”表示共轭复数)。作为信号的接收端,在第一个时隙内,第一天线接收信号y1,第二天线接收信号y2;在第二个时隙内,第一天线接收信号y′1,第二天线接收信号y′2。在所述第一天线和第二天线分别接收到两个时隙的信号之后,经过正交空时解码,得到解码信号以及解码信号
相位噪声(Phase Noise)是指信号的发射端在各种噪声的作用下引起的输出信号相位的随机变化。无线电波的波长越长、频率越低,相位噪声越轻微;反之,无线电波的波长越短,频率越高,相位噪声就越严重。而Alamouti编码方案主要针对于波长较长、频率较低的无线电波,例如长波(波长范围为10~1km,频率范围为30~300kHz)、中波(波长范围为1000~100m、频率范围为300~3000kHz)等,由于相位噪声微弱到可以忽略,信号接收端解码得到的解码信号只与发送信号s1相关,与发送信号s2无关,而解码得到的解码信号只与发送信号s2相关,与发送信号s1无关,解码结果良好。但是,对于波长较
短、频率较高的无线电波而言,例如微波(波长范围为10dm~0.1mm,频率范围为3000MHz~3000GHz)等,相位噪声一般较为严重,造成信号接收端解码得到的解码信号不仅与发送信号s1相关,还与发送信号s2相关,即发送信号s2对发送信号s1造成干扰;解码信号不仅与发送信号s2相关,还与发送信号s1相关,即发送信号s1对发送信号s2造成干扰,解码结果较差。所以,目前亟待需要出现一种能够适用于对波长较短、频率较高的无线电波进行解码的方法,以实现对解码的性能的提高。
发明内容
为了解决上述技术问题,本发明实施例提供了一种信号解码方法、装置及设备,实现了在MIMO的2*2系统中信号发射端和信号接收端存在相位噪声的情况下,依然能够得到良好的解码结果的目的。
本发明实施例提供了一种信号解码方法,所述方法应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;
所述方法包括:
获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;
利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信号接收端的相位噪声系数;
利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
优选的,所述利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数包括:
利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数;
利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理;
利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数。
优选的,所述第一信号和所述第二信号分别对应相同的时隙,所述时隙包括第一时隙和第二时隙;
所述利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数包括:
利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算第一组均衡系数和第二组均衡系数;
所述利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理包括:
对所述第一信号和所述第二信号进行预处理,得到第一组四路信号和第二组四路信号,所述第一组四路信号和所述第二组四路信号分别均包括第一信号的第一时隙、第一信号的第二时隙的共轭、第二信号的第一时隙以及第二信号的第二时隙的共轭;
利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,所述第三信号和所述第四信号分别对应所述时隙;
利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号,所述第五信号和所述第六信号分别对应所述时隙。
优选的,所述第一组均衡系数包括第一均衡系数、第二均衡系数、第三均衡系数和第四均衡系数;
所述利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,包括:
利用所述第一均衡系数对所述第一信号的第一时隙进行滤波,得到第三信号的第一时隙;
利用所述第二均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第三信号的第二时隙;
利用所述第三均衡系数对所述第二信号的第一时隙进行滤波,得到第四信号的第一时隙;
利用所述第四均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第四信号的第二时隙。
其中,所述h11为第三天线到第一天线的信道衰落系数,所述为h12的共轭,所述h12为第四天线到第一天线的信道衰落系数,所述h21为第三天线到第二天线的信道衰落系数,所述为h22的共轭,所述h22为第四天线到第二天线的信道衰落系数。
优选的,所述第二组均衡系数包括第五均衡系数、第六均衡系数、第七均衡系数和第八均衡系数;
所述利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号包括:
利用所述第五均衡系数对所述第一信号的第一时隙进行滤波,得到第五信号的第一时隙;
利用所述第六均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第五信号的第二时隙;
利用所述第七均衡系数对所述第二信号的第一时隙进行滤波,得到第六信号的第一时隙;
利用所述第八均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第六信号的第二时隙。
其中,所述h12为第四天线到第一天线的信道衰落系数,所述为h11的共轭,所述h11为第三天线到第一天线的信道衰落系数,所述h22为第四天线到第二天线的信道衰落系数,所述为h21的共轭,所述h21为第三天线到第二天线
的信道衰落系数。
优选的,所述利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数包括:
利用根据所述第三信号和所述第四信号进行信道估计得到的第一组相位噪声系数,计算第一组解码系数;
利用根据所述第五信号和所述第六信号进行信道估计得到的第二组相位噪声系数,计算第二组解码系数;
所述利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号包括:
利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到第一解码信号;
利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号。
优选的,所述第一组解码系数包括第一解码系数、第二解码系数、第三解码系数和第四解码系数;
所述利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到第一解码信号包括:
将所述第三信号的第一时隙与所述第一解码系数进行相乘,将所述第三信号的第二时隙与所述第二解码系数进行相乘,将所述第四信号的第一时隙与所述第三解码系数进行相乘,将所述第四信号的第二时隙与所述第四解码系数进行相乘,将相乘后的结果进行求和,得到所述第一解码信号。
其中,所述所述所述所述所述所述所述所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
优选的,所述第二组解码系数包括第五解码系数、第六解码系数、第七解码系数和第八解码系数;
所述利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号包括:
将所述第五信号的第一时隙与所述第五解码系数进行相乘,将所述第五信号的第二时隙与所述第六解码系数进行相乘,将所述第六信号的第一时隙与所述第七解码系数进行相乘,将所述第六信号的第二时隙与所述第八解码系数进行相乘,将相乘后的结果进行求和,得到所述第二解码信号。
其中,所述所述所述所述所述所述所述所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
优选的,所述利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理包括:
在时域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
优选的,所述利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理包括:
在频域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处
理。
本发明实施例提供了一种信号解码装置,所述装置应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;
所述装置包括:
信号获取单元、解码系数计算单元以及解码单元;
其中,所述信号获取单元,用于获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;
所述解码系数计算单元,用于利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信号接收端的相位噪声系数;
所述解码单元,用于利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
优选的,所述解码系数计算单元,具体包括:
均衡系数计算单元、均衡单元、解码系数计算子单元;
所述均衡系数计算单元,用于利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数;
所述均衡单元,用于利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理;
所述解码系数计算子单元,用于利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数。
优选的,所述第一信号和所述第二信号分别对应相同的时隙,所述时隙包括第一时隙和第二时隙;
所述均衡系数计算单元,具体用于:利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算第一组均衡系数和第二组均衡系数;
所述均衡单元,具体包括:预处理单元和滤波单元,所述滤波单元包括:第一滤波单元和第二滤波单元;
其中,所述预处理单元,用于对所述第一信号和所述第二信号进行预处理,得到第一组四路信号和第二组四路信号,所述第一组四路信号和所述第二组四路信号分别均包括第一信号的第一时隙、第一信号的第二时隙的共轭、第二信号的第一时隙以及第二信号的第二时隙的共轭;
所述第一滤波单元,用于利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,所述第三信号和所述第四信号分别对应所述时隙;
所述第二滤波单元,用于利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号,所述第五信号和所述第六信号分别对应所述时隙。
优选的,所述第一组均衡系数包括第一均衡系数、第二均衡系数、第三均衡系数和第四均衡系数;
所述第一滤波单元,具体用于:
利用所述第一均衡系数对所述第一信号的第一时隙进行滤波,得到第三信号的第一时隙;
利用所述第二均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第三信号的第二时隙;
利用所述第三均衡系数对所述第二信号的第一时隙进行滤波,得到第四信号的第一时隙;
利用所述第四均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第四信号的第二时隙。
其中,所述h11为第三天线到第一天线的信道衰落系数,所述为h12的共
轭,所述h12为第四天线到第一天线的信道衰落系数,所述h21为第三天线到第二天线的信道衰落系数,所述为h22的共轭,所述h22为第四天线到第二天线的信道衰落系数。
优选的,所述第二组均衡系数包括第五均衡系数、第六均衡系数、第七均衡系数和第八均衡系数;
所述第二滤波单元,具体用于:
利用所述第五均衡系数对所述第一信号的第一时隙进行滤波,得到第五信号的第一时隙;
利用所述第六均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第五信号的第二时隙;
利用所述第七均衡系数对所述第二信号的第一时隙进行滤波,得到第六信号的第一时隙;
利用所述第八均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第六信号的第二时隙。
其中,所述h12为第四天线到第一天线的信道衰落系数,所述h1
*
1为h11的共轭,所述h11为第三天线到第一天线的信道衰落系数,所述h22为第四天线到第二天线的信道衰落系数,所述为h21的共轭,所述h21为第三天线到第二天线的信道衰落系数。
优选的,所述解码系数计算子单元,具体用于:
利用根据所述第三信号和所述第四信号进行信道估计得到的第一组相位噪声系数,计算第一组解码系数;
利用根据所述第五信号和所述第六信号进行信道估计得到的第二组相位噪声系数,计算第二组解码系数;
所述解码单元包括第一解码单元和第二解码单元;
其中,所述第一解码单元,用于:
利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到
第一解码信号;
所述第二解码单元,用于:
利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号。
优选的,所述第一组解码系数包括第一解码系数、第二解码系数、第三解码系数和第四解码系数;
所述第一解码单元,具体用于:
将所述第三信号的第一时隙与所述第一解码系数进行相乘,将所述第三信号的第二时隙与所述第二解码系数进行相乘,将所述第四信号的第一时隙与所述第三解码系数进行相乘,将所述第四信号的第二时隙与所述第四解码系数进行相乘,将相乘后的结果进行求和,得到所述第一解码信号。
其中,所述所述所述所述所述所述所述所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相
位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
优选的,所述第二组解码系数包括第五解码系数、第六解码系数、第七解码系数和第八解码系数;
所述第二解码单元,具体用于:
将所述第五信号的第一时隙与所述第五解码系数进行相乘,将所述第五信号的第二时隙与所述第六解码系数进行相乘,将所述第六信号的第一时隙与所述第七解码系数进行相乘,将所述第六信号的第二时隙与所述第八解码系数进行相乘,将相乘后的结果进行求和,得到所述第二解码信号。
其中,所述所述所述所述所述所述所述所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第
二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
优选的,所述均衡单元,具体用于:
在时域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
优选的,所述均衡单元,具体用于:
在频域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
本发明实施例提供了一种信号解码设备,所述设备应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;
所述设备包括:存储器和处理器;
所述存储器,用于存储一组程序指令;
所述处理器,用于调用所述存储器存储的程序指令执行如下操作:
获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;
利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信
号接收端的相位噪声系数;
利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
由上述技术方案可以看出,本发明在求解解码系数的过程中,不仅考虑信道衰落,得到信道衰落系数,还考虑信号发射端的以及信号接收端的相位噪声,得到相位噪声系数,然后利用根据所述信道衰落系数和相位噪声系数得到的解码参数对所述第一信号和所述第二信号进行解码,得到的解码后信号是没有被其他信号干扰的信号,获得良好的解码效果。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为Alamouti空时编码方案的架构图;
图2为现有技术中的信号解码方法示意图;
图3为本发明实施例一提供的一种信号编码方法的流程图;
图4为本发明实施例二提供的一种信号编码方法的流程图;
图5为本发明实施例二提供的信号编码方法的示意图;
图6为本发明实施例三提供的一种信号编码装置的结构框图。
空时编码是MIMO技术中非常重要的技术之一。现有技术中Alamouti空时编码方案仅适用于中波长较长、频率较低的无线电波,因为这种无线电波在发射端的相位噪声较小,可以忽略不计,因而在接收端解码后的两路信号之间相互独立,解码性能较佳。而对于波长较短、频率较高的无线电波,发射端相位噪声较大,接收端在解码后得到的解码信号中有其他信号的干扰,解码结果较差,下面详细阐述具体原理。
参见图1,h11、h12、h21以及h22为第三天线到第一天线、第四天线到第一天线、第三天线到第二天线以及第四天线到第二天线之间的信道衰落系数,那么所述接收信号y1、y′1、y2和y′2分别可以通过公式(1)至(4)得到:
参见图2,接收端的第一天线在接收到信号y1和信号y1'后,进行解码,具体的解码过程如下:
首先对第一天线、第二天线、第三天线和第四天线之间的四个信道进行信道估计,分别得到第三天线和第四天线对应的解码系数矩阵。所谓信道估计,就是从接收数据中将假定的某个信道模型的模型参数估计出来的过程。信道估计可以有多种实现方法,常见的有基于训练序列的信道估计方法、基于导频序列的信道估计方法等,由于这些方法是本领域技术人员公知的内容,此处不再赘述。
在得到与第三天线对应的解码系数矩阵后,将第一天线和第二天线接收的信号进行串并变换,即由两路信号变为四路信号,然后将串并变换后的四路信号分别输入到各自对应的乘法器中进行相乘,所述乘法器中的相乘参数为所述解码系数向量A中对应的解码系数。其中,第一天线的第二个时隙和第二天线的第二个时隙的信号在输入到对应的乘法器之前需要先求共轭(Conj为求共轭)。最后,将相乘后的信号进行相加,得到与第三天线对应的解码信号同理,可以利用所述解码系数向量B得到与第四天线对应的解码信号
根据上述解码过程结合所述公式(1)至公式(4)可以得到公式(5)和公式(6):
根据公式(5)和公式(6)可以看出,解码后得到的与第一天线对应的解码信号只与发送信号s1相关,由于解码信号和解码系数矩阵A已知,则可以得到发送信号s1。同样,解码后得到的与第二天线对应的解码信号只与发送信号s2相关,那么由于解码信号和解码系数矩阵B已知,则可以得到发送信号s2。
但是,若发射端存在相位噪声,且发射端的第三天线和第四天线的相位噪声,分别与接收端的第一天线和第二天线的相位噪声相互独立时,接收信号y1、y′1、y2和y′2变为:
其中,为接收信号y1对应的相位噪声系数,φ′rx1为接收信号y′1对应的相位噪声系数,为接收信号y2对应的相位噪声系数,φ′rx2为接收信号y′2对应的相位噪声系数,为发射信号s1对应的相位噪声系数,φ′tx1为发射信号-s2
*对应的相位噪声系数,为发射信号s2对应的相位噪声系数,φ′tx2为发射信号s1
*对应的相位噪声系数。
根据上述解码过程结合所述公式(7)至公式(10)可以得到公式(11)和公式(12):
根据公式(11)和公式(12)可以看出,由于相位噪声随时间变化,是动态的,因此jφ12与-jφ′12、jφ22与-jφ′21在一般情况下不相同,所以公式(11)中无法消掉发送信号s2,发送信号s2对发送信号s1造成干扰;同理,公式(12)中无法消掉发送信号s1,发送信号s1对发送信号s2造成干扰,解码效果较差。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
参见图3,该图为本发明实施例一提供的一种信号解码方法的流程图。
本实施例提供的信号解码方法应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;
所述方法包括如下步骤:
步骤S101:获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线。
本实施例的MIMO系统是2*2的收发系统,即信号接收端有两根天线,分别为第一天线和第二天线,信号发射端有两根天线,分别为第三天线和第四天线。
在信号发射端,信号s经过串并变换后分为两路不同的信号,分别为发送信号s1和发送信号s2。在经过正交时空编码后,在第一个时隙内,第三天线发射信号s1,第四天线发射信号s2;在第二个时隙内,第三天线发射信号-s2
*,
第四天线发射信号s1
*(“*”表示共轭复数)。所述第三天线发射的信号s1和信号-s2
*称为第一发射信号;所述第四天线发射的信号s2和信号s1
*称为第二发射信号。在信号接收端,在第一个时隙内,第一天线接收信号y1,第二天线接收信号y2;在第二个时隙内,第一天线接收信号y′1,第二天线接收信号y′2。所述信号y1和所述信号y′1称为所述第一信号,所述信号y2和所述信号y′2称为所述第二信号。
步骤S102:利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数。
信号发射端的两根天线和信号接收端的两根天线之间形成四个信道,在信号从信号发射端到信号接收端的过程中,由于信号被散射、反射原因造成信号衰落,因此信号接收端接收到的信号并不是仅仅是信号发射端发射信号的叠加。为了将信号发射端发射的信号恢复出来,需要将信号衰落的程度计算出来,以在解码的过程中对接收到的第一信号和第二信号进行补偿。信号衰落的程度一般通过信道衰落系数来体现,而得到信道衰落系数的方式就是通过信道估计。在本实施例中,所述信道衰落系数有四个,分别属于所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道。现有技术在得到信道衰落系数后,利用所述信道衰落系数得到解码参数,以对所述第一信号和所述第二信号进行解码,得到所述发送信号s1和所述发送信号s2。
但是,对于波长较短、频率较高的无线电波而言,信号接收端接收到的信号除了受衰减的影响,还会受到信号发射端和信号接收端的相位噪声的影响。由于所述信号发射端包括两根天线,所述信号接收端包括两根天线,因此所述相位噪声也有四个值,分别与这四根天线一一对应。并且,在通常情况下,所述信号发射端的相位噪声和所述信号接收端的相位噪声之间是相互独立的。
现有技术的解码参数仅仅考虑了信道衰落系数,并没有考虑相位噪声系数,导致解码得到的信号s1和信号s2之间互相干扰,解码性能较差。而在本实施例中,所述解码参数不仅考虑信道衰落系数,还考虑信号发射端的相位噪声系数和信号接收端的相位噪声系数。与所述信道衰落系数相同的是,所述相位噪声系数也可以通过信道估计得到。具体在实现过程中,可以通过一次信道估计得到所述信道衰落系数和所述相位噪声系数,即将相位噪声作为信道的一部
分,在信道估计时将所述信道衰落系数和所述相位噪声系数看成一个整体来计算得到,若不考虑相位噪声的信道为H,那么考虑了相位噪声的信道即为之后,也是将二者作为一个整体来得到解码系数。需要注意的是,若将相位噪声考虑到信道中,由于相位噪声是随时间动态变化的,因此信道也是动态变化的,计算得到的解码系数也是动态变化的。假设采用基于训练的信道估计方法,那么所述信号发射端需要周期性的发送训练序列进行信道估计,得到训练序列对应的解码系数,当所述第一信号和所述第二信号不是训练序列对应的接收信号时,需要通过插值等方式估计出所述第一信号和所述第二信号分别对应的解码系数。例如,假设时间周期T的起始时间点为t1,对应的解码系数为m1;结束时间点为t2,对应的解码系数为m2,那么若所述第一信号和所述第二信号的接收时间为t3,所述t2>t3>t1,则对应的解码系数m3可以等于m1+(m2-m1)(t3-t1)/(t2-t1)。
或者,所述信道衰落系数和所述相位噪声系数也可以通过两次信道估计得到,即第一次信道估计得到信道衰落系数,第二次信道估计得到相位噪声系数。相对于进行一次信道估计,进行两次信道估计可以大大减少单次信道估计的工作量,从而提高解码效率。例如,若采用基于训练的信道估计方法,当进行一次信道估计时,信道估计的训练序列长度为L+1(L为信道冲激响应长度,在未进行信道均衡的情况下,所述L大于1)。而两次信道估计中,将信道衰落和相位噪声剥离开,由于信道衰落系数为相对稳定的参数,因此可以间隔很长时间进行一次信道估计。而对于相位噪声系数的估计,在进行了信道均衡的情况下,信道冲激响应长度为1,所需的训练序列长度为1+1=2,比进行一次信道估计需要的训练序列长度短,因此进行两次信道估计的计算量要小很多。关于两次信道估计将在下面的实施例中详细描述,此处先不做过多阐述。
步骤S103:利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号。
在通过信道估计得到所述信道衰落系数和所述相位噪声系数后,根据所述信道衰落系数和所述相位噪声系数得到所述解码参数,并利用所述解码参数对所述第一信号和所述第二信号进行解码,得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号s1相关,与所述第四天线
对应的发送信号s2不相关;所述第二解码信号仅与所述第四天线对应的发送信号s2相关,与所述第三天线对应的发送信号s1不相关。由图1可知,所述发送信号s1和所述发送信号s2为进行空时编码前的信号,进行空时编码后,所述第三天线发射的信号为第一发射信号,所述第四天线发射的信号为第二发射信号。
本实施例在求解解码系数的过程中,不仅考虑信道衰落,得到信道衰落系数,还考虑信号发射端的以及信号接收端的相位噪声,得到相位噪声系数,然后利用根据所述信道衰落系数和相位噪声系数得到的解码参数对所述第一信号和所述第二信号进行解码,得到的解码后信号是没有被其他信号干扰的信号,获得良好的解码效果。
实施例二
参见图4,该图为本发明实施例二提供的一种信号解码方法的流程图。
本实施例提供的信号解码方法包括如下步骤:
步骤S201:获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线。
由于所述步骤S201与所述实施例一的步骤S101相同,此处不再赘述。
步骤S202:利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数。
为了提高解码效率,在本实施例中进行两次信道估计,第一次信道估计得到信道衰落系数,第二次信道估计得到相位噪声系数。假设通过第一次信道估计,得到的信道衰落系数为h11、h12、h21以及h22,其中,所述h11为第三天线到所述第一天线的信道衰落系数,所述h12为所述第四天线到所述第一天线的信道衰落系数,所述h21为所述第三天线到所述第二天线的信道衰落系数,所述h22为所述第四天线到所述第二天线的信道衰落系数。
步骤S203:利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
由于发送信号在所述第一天线至所述第四天线之间的四个信道进行传输
过程中存在信道衰落,本实施例利用信道估计得到的信道衰落系数得到均衡系数,并利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理,以抵消信道衰落对发送信号造成的影响,这样在进行第二次信道估计的时候,仅考虑相位噪声即可,减少信道估计的工作量。
参见图5,具体的均衡处理过程可以包括:
首先对所述第一信号和所述第二信号进行预处理,得到第一组四路信号和第二组四路信号,所述第一组四路信号和所述第二组四路信号分别均包括第一信号的第一时隙、第一信号的第二时隙的共轭、第二信号的第一时隙以及第二信号的第二时隙的共轭。在实际应用中,为了得到所述第一组四路信号和所述第二组四路信号,可以分别对所述第一信号和所述第二信号均进行两次串并变换,得到这两组四路信号中的第一信号的第一时隙和第二时隙,以及第二信号的第一时隙和第二时隙,然后再对这两组四路信号中第一信号的第二时隙以及第二信号的第二时隙求共轭。
所谓均衡处理是指利用所述均衡系数对所述两组四路信号进行滤波。所述均衡处理步骤可以在时域上进行,也可以在频域上进行。若在时域上进行均衡处理,则所述均衡系数为时域的均衡系数;若在频域上进行均衡处理,则所述均衡系数为频域的均衡系数。由于所述第一信号和所述第二信号为时域信号,在时域上直接进行均衡处理即可,所述均衡处理是指利用所述均衡系数对所述两组四路时域信号进行卷积;但若是在频域上进行均衡处理,则需要将所述第一信号和所述第二信号由时域信号转换为频域信号,然后再进行均衡处理,此时的均衡处理是指利用所述均衡系数对所述两组四路信号进行相乘,然后在均衡处理之后再转换为时域信号,保证步骤S204中的解码是在时域上进行。为了简便,以下关于均衡处理的公式均是在时域上进行的,频域可以参照这些公式。
其中,所述第一组四路信号对应的均衡系数为第一组均衡系数,所述第一组均衡系数包括第一均衡系数W11、第二均衡系数W12、第三均衡系数W13和第四均衡系数W14,所述第一均衡系数W11与所述第一信号的第一时隙滤波,所述第二均衡系数W12与所述第一信号的第二时隙滤波,所述第三均衡系数W13与所述第二信号的第一时隙滤波,所述第四均衡系数W14与所述第二信号的第二时隙
滤波。
所述第二组四路信号对应的均衡系数为第二组均衡系数,所述第二组均衡系数包括第五均衡系数W21、第六均衡系数W22、第七均衡系数W23和第八均衡系数W24,其中,所述第五均衡系数W21与所述第一信号的第一时隙滤波,所述第六均衡系数W22与所述第一信号的第二时隙滤波,所述第七均衡系数W23与所述第二信号的第一时隙滤波,所述第八均衡系数W24与所述第二信号的第二时隙滤波。
由于均衡处理的目的在于抵消信道衰落的影响,因此所述均衡系数需要满足该条件。
其中,所述h11为第三天线到第一天线的信道衰落系数,所述h12为第四天线到第一天线的信道衰落系数,所述h21为第三天线到第二天线的信道衰落系数,所述h22为第四天线到第二天线的信道衰落系数。所述为h12的共轭,所述为h22的共轭,所述为h11的共轭,所述为h21的共轭。
需要注意的是,由于本实施例中针对的双天线发射、双天线接收的MIMO系统具有如下特点:所述第一天线和所述第二天线距离较近,所述第三天线和所述第四天线距离较近,所以所述第一天线至所述第四天线之间形成的四个通道频率选择性衰落一致,差异仅在于平坦衰落衰落,因此所述h11与所述h12具有比例关系,具体可以表示为h12=αh11;所述h21与所述h22也具有比例关系,具体可以表示为h21=βh22。
在经过均衡处理后,得到所述第一组四路信号对应的第三信号和第四信号,以及第二组四路信号对应的第五信号和第六信号。
通过所述公式(13)至公式(16)可得到:
通过公式(17)至公式(20)可得到:
所述
其中,所述为所述第一信号的第一时隙对应的相位噪声系数,为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,为第二发射信号的第二时隙对应的相位噪声系数;所述第一发射信号是所述第三
天线发射的信号,所述第二发射信号是所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为编码后的信号。
步骤S204:利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数。
本实施例对所述第一信号和所述第二信号进行均衡处理,以抵消所述第一天线至第四天线之间的四个信道对信号发射端发射信号造成的干扰,若将所述第三信号看成是所述信号接收端的第一天线接收的信号,将所述第四信号看作是所述第二天线接收的信号,那么在所述第一天线至所述第四天线之间的四个信道就可以看作为平坦信道,即没有衰落的信道。同理,若将所述第五信号看作是所述第一天线接收的信号,所述第六信号看作是所述第二天线接收的信号,那么在所述第一天线至所述第四天线之间的四个信道也可以看作为没有码间干扰的信道。
本实施例将进行均衡处理后的信号进行信道估计,得到相位噪声系数。具体的,通过根据所述第三信号和所述第四信号进行信道估计,得到第一组相位噪声系数,也就是相位噪声矩阵H1和H2中的各个相位噪声系数;通过根据所述第五信号和所述第六信号进行信道估计,得到第二组相位噪声系数,也就是相位噪声矩阵H3和H4的各个相位噪声系数。
本实施例在得到所述相位噪声系数后,根据所述相位噪声系数得到解码系数,所述解码系数用于解码,使得解码得到的信号仅与所述发送信号s1或所述发送信号s2相关。
具体的,根据所述第一组相位噪声系数计算第一组解码系数,所述第一组解码系数包括第一解码系数w11、第二解码系数w12、第三解码系数w13以及第四解码系数w14。
从上文可以得知,所述第一解码系数需要满足的条件是解码得到的所述第一解码信号仅与所述第三天线对应的发送信号s1相关。
在第三种可能实现的方式中,
根据所述第二组相位噪声系数计算第二组解码系数,所述第二组解码系数包括:第五解码系数w21、第六解码系数w22、第七解码系数w23以及第八解码系数w24。
从上文可以得知,所述第二解码系数需要满足的条件是解码得到的所述第二解码信号仅与所述第四天线对应的发送信号s2相关。
在第三种可能实现的方式中,
当然,可以理解的是,上述关于所述第一解码系数至所述第八解码系数的三种可能的实现方式并不构成对本发明的限定。
步骤S205:利用所述解码参数对所述均衡处理后的信号进行解码,分别得到所述第三天线对应的发送信号和所述第四天线对应的发送信号。
在本实施例中,在得到所述第一组解码系数后,利用所述第一组解码系数对所述第三信号进行解码。具体的解码过程可以为:将所述第三信号的第一时隙与所述第一解码系数进行相乘,将所述第三信号的第二时隙与所述第二解码系数进行相乘,将所述第四信号的第一时隙与所述第三解码系数进行相乘,将
所述第四信号的第二时隙与所述第四解码系数进行相乘,将相乘后的结果进行求和,得到第一解码信号
在得到所述第二组解码系数后,利用所述第二组解码系数对所述第四信号进行解码。具体的解码过程可以为:将所述第五信号的第一时隙与所述第五解码系数进行相乘,将所述第五信号的第二时隙与所述第六解码系数进行相乘,将所述第六信号的第一时隙与所述第七解码系数进行相乘,将所述第六信号的第二时隙与所述第八解码系数进行相乘,将相乘后的结果进行求和,得到所述第二解码信号
结合所述公式(13)至公式(16)以及所述第一组解码系数的第二种实现方式可以得到公式(22):
结合所述公式(13)至公式(16)以及所述第一组解码系数的第三种实现方式可以得到公式(23):
结合所述公式(17)至公式(20)以及所述第二组解码系数的第二种实现方式可以得到公式(25):
结合所述公式(17)至公式(20)以及所述第二组解码系数的第三种实现方式可以得到公式(26):
本实施例通过第一次信道估计得到信道衰落系数,根据所述信道衰落系数得到均衡系数,以对所述第一信号和所述第二信号进行均衡处理,得到第三信号和第四信号。在进行均衡处理后,根据所述第三信号和所述第四信号进行第二次信道估计,得到解码系数,利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和所述第二解码信号。由于所述第三信号对应的信道和所述第四信号对应的信道可以认为是没有码间干扰的信道,因此实现了提高解码效率的目的。
可以理解的是,所述两次信道估计所用到的信道估计方法可以参照现有技术,本发明不做具体限定。
另外,第二次信道估计是要得到相位噪声系数,由于相位噪声系数是动态变化的,若是采用基于训练的信道估计方法,可以在得到训练序列对应的相位噪声系数后,通过插值的方式得到实际信号(即第三信号和第四信号)对应的相位噪声系数。
实施例三
参见图6,该图为本发明实施例三提供的一种信号解码装置的结构框图。
本实施例提供的信号解码装置应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;
所述装置包括:
信号获取单元11、解码系数计算单元21以及解码单元31;
其中,所述信号获取单元11,用于获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;
所述解码系数计算单元21,用于利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号
发射端的相位噪声系数和所述信号接收端的相位噪声系数,且所述信号发射端的相位噪声系数对应的相位噪声,与所述信号接收端的相位噪声系数对应的相位噪声相互独立;
所述解码单元31,用于利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关。
本实施例在求解解码系数的过程中,不仅考虑信道衰落,得到信道衰落系数,还考虑信号发射端的以及信号接收端的相位噪声,得到相位噪声系数,然后利用根据所述信道衰落系数和相位噪声系数得到的解码参数对所述第一信号和所述第二信号进行解码,得到的解码后信号是没有被其他信号干扰的信号,获得良好的解码效果。
其中,所述解码系数计算单元21在具体实现过程中,可以通过一次信道估计得到所述信道衰落系数和所述相位噪声系数,即在信道估计时将所述信道衰落系数和所述相位噪声系数看成一个整体来计算得到,之后,也是将二者作为一个整体来得到解码系数;或者,也可以通过两次信道估计得到,即第一次信道估计得到信道衰落系数,第二次信道估计得到相位噪声系数。
若是后者,所述解码系数计算单元21,具体包括:
均衡系数计算单元211、均衡单元212、解码系数计算子单元213;
所述均衡系数计算单元211,用于利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数;
所述均衡单元212,用于利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理;
所述解码系数计算子单元213,用于利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数。
若所述第一信号和所述第二信号分别对应相同的时隙,所述时隙包括第一时隙和第二时隙;
则所述均衡系数计算单元211,具体用于:利用根据所述第一信号和所述
第二信号进行信道估计得到的信道衰落系数计算第一组均衡系数和第二组均衡系数;
所述均衡单元212,具体包括:预处理单元和滤波单元,所述滤波单元包括:第一滤波单元和第二滤波单元;
其中,所述预处理单元,用于对所述第一信号和所述第二信号进行预处理,得到第一组四路信号和第二组四路信号,所述第一组四路信号和所述第二组四路信号分别均包括第一信号的第一时隙、第一信号的第二时隙的共轭、第二信号的第一时隙以及第二信号的第二时隙的共轭;
所述第一滤波单元,用于利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,所述第三信号和所述第四信号分别对应所述时隙;
所述第二滤波单元,用于利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号,所述第五信号和所述第六信号分别对应所述时隙。
若所述第一组均衡系数包括第一均衡系数、第二均衡系数、第三均衡系数和第四均衡系数;
所述第一滤波单元,具体用于:
利用所述第一均衡系数对所述第一信号的第一时隙进行滤波,得到第三信号的第一时隙;
利用所述第二均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第三信号的第二时隙;
利用所述第三均衡系数对所述第二信号的第一时隙进行滤波,得到第四信号的第一时隙;
利用所述第四均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第四信号的第二时隙。
若所述第二组均衡系数包括第五均衡系数、第六均衡系数、第七均衡系数和第八均衡系数;
所述第二滤波单元,具体用于:
利用所述第五均衡系数对所述第一信号的第一时隙进行滤波,得到第五信
号的第一时隙;
利用所述第六均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第五信号的第二时隙;
利用所述第七均衡系数对所述第二信号的第一时隙进行滤波,得到第六信号的第一时隙;
利用所述第八均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第六信号的第二时隙。
所述解码系数计算子单元213,可以具体用于:
利用根据所述第三信号和所述第四信号进行信道估计得到的第一组相位噪声系数,计算第一组解码系数;
利用根据所述第五信号和所述第六信号进行信道估计得到的第二组相位噪声系数,计算第二组解码系数;
所述解码单元31包括第一解码单元311和第二解码单元312;
其中,所述第一解码单元311,用于:
利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到第一解码信号;
所述第二解码单元312,用于:
利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号。
若所述第一组解码系数包括第一解码系数、第二解码系数、第三解码系数和第四解码系数;
所述第一解码单元311,具体用于:
将所述第三信号的第一时隙与所述第一解码系数进行相乘,将所述第三信号的第二时隙与所述第二解码系数进行相乘,将所述第四信号的第一时隙与所述第三解码系数进行相乘,将所述第四信号的第二时隙与所述第四解码系数进行相乘,将相乘后的结果进行求和,得到所述第一解码信号。
若所述第二组解码系数包括第五解码系数、第六解码系数、第七解码系数和第八解码系数;
所述第二解码单元312,具体用于:
将所述第五信号的第一时隙与所述第五解码系数进行相乘,将所述第五信号的第二时隙与所述第六解码系数进行相乘,将所述第六信号的第一时隙与所述第七解码系数进行相乘,将所述第六信号的第二时隙与所述第八解码系数进行相乘,将相乘后的结果进行求和,得到所述第二解码信号。
可选的,所述均衡单元212,具体用于:
在时域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
可选的,所述均衡单元212,具体用于:
在频域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
在实际应用中,所述均衡单元212可以通过滤波器来实现,具体可以通过横向滤波器来实现。
实施例四
本发明实施例四提供一种信号解码设备,所述设备应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;
所述设备包括存储器和处理器,所述存储器用于存储一组程序指令,所述处理器用于调用所述存储器存储的程序指令执行如下操作:
获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;
利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信号接收端的相位噪声系数,且所述信号发射端的相位噪声系数对应的相位噪声,与所述信号接收端的相位噪声系数对应的相位噪声相互独立;
利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送
信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
可选地,所述处理器可以为中央处理器(Central Processing Unit,CPU),所述存储器可以为随机存取存储器(Random Access Memory,RAM)类型的内部存储器。所述处理器和存储器可以集成为一个或多个独立的电路或硬件,如:专用集成电路(Application Specific Integrated Circuit,ASIC)。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质可以是下述介质中的至少一种:只读存储器(英文:read-only memory,缩写:ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备及系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
Claims (29)
- 一种信号解码方法,其特征在于,所述方法应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;所述方法包括:获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信号接收端的相位噪声系数;利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
- 根据权利要求1所述的方法,其特征在于,所述利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数包括:利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数;利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理;利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数。
- 根据权利要求2所述的方法,其特征在于,所述第一信号和所述第二信号分别对应相同的时隙,所述时隙包括第一时隙和第二时隙;所述利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数包括:利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算第一组均衡系数和第二组均衡系数;所述利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理包括:对所述第一信号和所述第二信号进行预处理,得到第一组四路信号和第二组四路信号,所述第一组四路信号和所述第二组四路信号分别均包括第一信号的第一时隙、第一信号的第二时隙的共轭、第二信号的第一时隙以及第二信号的第二时隙的共轭;利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,所述第三信号和所述第四信号分别对应所述时隙;利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号,所述第五信号和所述第六信号分别对应所述时隙。
- 根据权利要求3所述的方法,其特征在于,所述第一组均衡系数包括第一均衡系数、第二均衡系数、第三均衡系数和第四均衡系数;所述利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,包括:利用所述第一均衡系数对所述第一信号的第一时隙进行滤波,得到第三信号的第一时隙;利用所述第二均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第三信号的第二时隙;利用所述第三均衡系数对所述第二信号的第一时隙进行滤波,得到第四信号的第一时隙;利用所述第四均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第四信号的第二时隙。
- 根据权利要求3所述的方法,其特征在于,所述第二组均衡系数包括第五均衡系数、第六均衡系数、第七均衡系数和第八均衡系数;所述利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号包括:利用所述第五均衡系数对所述第一信号的第一时隙进行滤波,得到第五信号的第一时隙;利用所述第六均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第五信号的第二时隙;利用所述第七均衡系数对所述第二信号的第一时隙进行滤波,得到第六信号的第一时隙;利用所述第八均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第六信号的第二时隙。
- 根据权利要求3至7任意一项所述的方法,其特征在于,所述利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数包括:利用根据所述第三信号和所述第四信号进行信道估计得到的第一组相位噪声系数,计算第一组解码系数;利用根据所述第五信号和所述第六信号进行信道估计得到的第二组相位噪声系数,计算第二组解码系数;所述利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号包括:利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到第一解码信号;利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号。
- 根据权利要求8所述的方法,其特征在于,所述第一组解码系数包括第一解码系数、第二解码系数、第三解码系数和第四解码系数;所述利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到第一解码信号包括:将所述第三信号的第一时隙与所述第一解码系数进行相乘,将所述第三信号的第二时隙与所述第二解码系数进行相乘,将所述第四信号的第一时隙与所述第三解码系数进行相乘,将所述第四信号的第二时隙与所述第四解码系数进行相乘,将相乘后的结果进行求和,得到所述第一解码信号。
- 其中,所述所述所述所述所述所述所述 所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
- 根据权利要求8所述的方法,其特征在于,所述第二组解码系数包括第五解码系数、第六解码系数、第七解码系数和第八解码系数;所述利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号包括:将所述第五信号的第一时隙与所述第五解码系数进行相乘,将所述第五信号的第二时隙与所述第六解码系数进行相乘,将所述第六信号的第一时隙与所述第七解码系数进行相乘,将所述第六信号的第二时隙与所述第八解码系数进行相乘,将相乘后的结果进行求和,得到所述第二解码信号。
- 其中,所述所述所述所述所述所述所述所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
- 根据权利要求2所述的方法,其特征在于,所述利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理包括:在时域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
- 根据权利要求2所述的方法,其特征在于,所述利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理包括:在频域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
- 一种信号解码装置,其特征在于,所述装置应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天 线和第二天线,所述信号发射端包括第三天线和第四天线;所述装置包括:信号获取单元、解码系数计算单元以及解码单元;其中,所述信号获取单元,用于获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号,所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;所述解码系数计算单元,用于利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信号接收端的相位噪声系数;所述解码单元,用于利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
- 根据权利要求15所述的装置,其特征在于,所述解码系数计算单元,具体包括:均衡系数计算单元、均衡单元、解码系数计算子单元;所述均衡系数计算单元,用于利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算均衡系数;所述均衡单元,用于利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理;所述解码系数计算子单元,用于利用将进行均衡处理后的信号进行信道估计得到的相位噪声系数计算所述解码系数。
- 根据权利要求16所述的装置,其特征在于,所述第一信号和所述第二信号分别对应相同的时隙,所述时隙包括第一时隙和第二时隙;所述均衡系数计算单元,具体用于:利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数计算第一组均衡系数和第二组均衡系数;所述均衡单元,具体包括:预处理单元和滤波单元,所述滤波单元包括:第一滤波单元和第二滤波单元;其中,所述预处理单元,用于对所述第一信号和所述第二信号进行预处理,得到第一组四路信号和第二组四路信号,所述第一组四路信号和所述第二组四路信号分别均包括第一信号的第一时隙、第一信号的第二时隙的共轭、第二信号的第一时隙以及第二信号的第二时隙的共轭;所述第一滤波单元,用于利用所述第一组均衡系数对所述第一组四路信号进行滤波,得到第三信号和第四信号,所述第三信号和所述第四信号分别对应所述时隙;所述第二滤波单元,用于利用所述第二组均衡系数对所述第二组四路信号进行滤波,得到第五信号和第六信号,所述第五信号和所述第六信号分别对应所述时隙。
- 根据权利要求17所述的装置,其特征在于,所述第一组均衡系数包括第一均衡系数、第二均衡系数、第三均衡系数和第四均衡系数;所述第一滤波单元,具体用于:利用所述第一均衡系数对所述第一信号的第一时隙进行滤波,得到第三信号的第一时隙;利用所述第二均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第三信号的第二时隙;利用所述第三均衡系数对所述第二信号的第一时隙进行滤波,得到第四信号的第一时隙;利用所述第四均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第四信号的第二时隙。
- 根据权利要求17所述的装置,其特征在于,所述第二组均衡系数包括第五均衡系数、第六均衡系数、第七均衡系数和第八均衡系数;所述第二滤波单元,具体用于:利用所述第五均衡系数对所述第一信号的第一时隙进行滤波,得到第五信号的第一时隙;利用所述第六均衡系数对所述第一信号的第二时隙的共轭进行滤波,得到第五信号的第二时隙;利用所述第七均衡系数对所述第二信号的第一时隙进行滤波,得到第六信号的第一时隙;利用所述第八均衡系数对所述第二信号的第二时隙的共轭进行滤波,得到第六信号的第二时隙。
- 根据权利要求17至20任意一项所述的装置,其特征在于,所述解码系数计算子单元,具体用于:利用根据所述第三信号和所述第四信号进行信道估计得到的第一组相位噪声系数,计算第一组解码系数;利用根据所述第五信号和所述第六信号进行信道估计得到的第二组相位噪声系数,计算第二组解码系数;所述解码单元包括第一解码单元和第二解码单元;其中,所述第一解码单元,用于:利用所述第一组解码系数对所述第三信号和所述第四信号进行解码,得到第一解码信号;所述第二解码单元,用于:利用所述第二组解码系数对所述第五信号和所述第六信号进行解码,得到第二解码信号。
- 根据权利要求22所述的装置,其特征在于,所述第一组解码系数包括第一解码系数、第二解码系数、第三解码系数和第四解码系数;所述第一解码单元,具体用于:将所述第三信号的第一时隙与所述第一解码系数进行相乘,将所述第三信号的第二时隙与所述第二解码系数进行相乘,将所述第四信号的第一时隙与所述第三解码系数进行相乘,将所述第四信号的第二时隙与所述第四解码系数进行相乘,将相乘后的结果进行求和,得到所述第一解码信号。
- 其中,所述所述所述所述所述所述所述所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声 系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
- 根据权利要求22所述的装置,其特征在于,所述第二组解码系数包括第五解码系数、第六解码系数、第七解码系数和第八解码系数;所述第二解码单元,具体用于:将所述第五信号的第一时隙与所述第五解码系数进行相乘,将所述第五信号的第二时隙与所述第六解码系数进行相乘,将所述第六信号的第一时隙与所述第七解码系数进行相乘,将所述第六信号的第二时隙与所述第八解码系数进行相乘,将相乘后的结果进行求和,得到所述第二解码信号。
- 其中,所述所述所述所述所述所述所述 所述所述为所述第一信号的第一时隙对应的相位噪声系数,φ′rx1为所述第一信号的第二时隙对应的相位噪声系数,为所述第二信号的第一时隙对应的相位噪声系数,φ′rx2为所述第二信号的第二时隙对应的相位噪声系数,为第一发射信号的第一时隙对应的相位噪声系数,φ′tx1为第一发射信号的第二时隙对应的相位噪声系数,为第二发射信号的第一时隙对应的相位噪声系数,φ′tx2为第二发射信号的第二时隙对应的相位噪声系数为第三天线的相位噪声,为第四天线的相位噪声,为第一天线的相位噪声,为第二天线的相位噪声;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号是所述第四天线发射的信号;所述第一发射信号是所述第三天线发射的信号,所述第二发射信号为所述第四天线发射的信号,所述第一发射信号和所述第二发射信号为进行编码后的信号;所述α为第三天线到第一天线的信道衰落系数与第四天线到第一天线的信道衰落系数的比值,所述β为第三天线到第二天线的信道衰落系数与第四天线到第二天线的信道衰落系数的比值。
- 根据权利要求16所述的装置,其特征在于,所述均衡单元,具体用于:在时域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
- 根据权利要求16所述的装置,其特征在于,所述均衡单元,具体用于:在频域上,利用所述均衡系数对所述第一信号和所述第二信号进行均衡处理。
- 一种信号解码设备,其特征在于,所述设备应用于MIMO系统中,所述MIMO系统包括信号发射端和信号接收端,所述信号接收端包括第一天线和第二天线,所述信号发射端包括第三天线和第四天线;所述设备包括:存储器和处理器;所述存储器,用于存储一组程序指令;所述处理器,用于调用所述存储器存储的程序指令执行如下操作:获取所述第一天线接收的第一信号,以及所述第二天线接收的第二信号, 所述第一信号和所述第二信号来自所述信号发射端的第三天线和第四天线;利用根据所述第一信号和所述第二信号进行信道估计得到的信道衰落系数和相位噪声系数,计算解码系数;所述信道衰落系数包括所述第一天线、所述第二天线、所述第三天线和所述第四天线之间形成的四个信道分别对应的信道衰落系数,所述相位噪声系数包括所述信号发射端的相位噪声系数和所述信号接收端的相位噪声系数;利用所述解码系数对所述第一信号和所述第二信号进行解码,分别得到第一解码信号和第二解码信号,所述第一解码信号仅与所述第三天线对应的发送信号相关,与所述第四天线对应的发送信号不相关;所述第二解码信号仅与所述第四天线对应的发送信号相关,与所述第三天线对应的发送信号不相关,所述发送信号为编码前的信号。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/090691 WO2018014253A1 (zh) | 2016-07-20 | 2016-07-20 | 一种信号解码方法、装置及设备 |
MYPI2018002122A MY190950A (en) | 2016-07-20 | 2016-07-20 | Signal decoding method, apparatus, and device |
CN201680079903.0A CN108496310B (zh) | 2016-07-20 | 2016-07-20 | 一种信号解码方法、装置及设备 |
EP16909181.6A EP3447933B1 (en) | 2016-07-20 | 2016-07-20 | Signal decoding method, apparatus and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/090691 WO2018014253A1 (zh) | 2016-07-20 | 2016-07-20 | 一种信号解码方法、装置及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018014253A1 true WO2018014253A1 (zh) | 2018-01-25 |
Family
ID=60992813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/090691 WO2018014253A1 (zh) | 2016-07-20 | 2016-07-20 | 一种信号解码方法、装置及设备 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3447933B1 (zh) |
CN (1) | CN108496310B (zh) |
MY (1) | MY190950A (zh) |
WO (1) | WO2018014253A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736938B (zh) * | 2018-09-07 | 2021-01-22 | 电子科技大学 | 用于大规模mimo上行链路信道估计和数据解调方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1864382A (zh) * | 2003-10-08 | 2006-11-15 | 美商亚瑟罗斯通讯股份有限公司 | 在多天线接收机中组合高数据率宽带分组信号的装置和方法 |
CN101039136A (zh) * | 2006-03-15 | 2007-09-19 | 华为技术有限公司 | 基于空频编码的多天线发射分集方法及其系统 |
CN101043297A (zh) * | 2006-03-20 | 2007-09-26 | 华为技术有限公司 | 一种多天线通信中发射信号的方法及系统 |
CN101437007A (zh) * | 2007-11-12 | 2009-05-20 | 华为技术有限公司 | Mimo系统的数据发送/接收方法、装置及设备 |
CN101488775A (zh) * | 2008-01-18 | 2009-07-22 | 中兴通讯股份有限公司 | 一种td-scdma系统中的空间复用方法和装置 |
US8416841B1 (en) * | 2009-11-23 | 2013-04-09 | Xilinx, Inc. | Multiple-input multiple-output (MIMO) decoding with subcarrier grouping |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7564917B2 (en) * | 2005-11-01 | 2009-07-21 | Intel Corporation | Multicarrier receiver and method for generating common phase error estimates for use in systems that employ two or more transmit antennas with independent local oscillators |
US7889822B2 (en) * | 2006-09-21 | 2011-02-15 | Broadcom Corporation | Frequency domain equalizer with one dominant interference cancellation for dual antenna radio |
CN101136731B (zh) * | 2007-08-09 | 2011-08-31 | 复旦大学 | 一种利用连续传输参数信令消除相位噪声的方法 |
JP4561916B2 (ja) * | 2008-10-31 | 2010-10-13 | ソニー株式会社 | 無線通信装置及び無線通信方法、信号処理装置及び信号処理方法、並びにコンピューター・プログラム |
CN105379131B (zh) * | 2014-03-11 | 2018-06-05 | 华为技术有限公司 | 一种信号处理方法、装置 |
CN105306118B (zh) * | 2015-10-19 | 2018-08-21 | 东南大学 | 广带异步可调多载波无线传输方法及系统 |
-
2016
- 2016-07-20 WO PCT/CN2016/090691 patent/WO2018014253A1/zh unknown
- 2016-07-20 MY MYPI2018002122A patent/MY190950A/en unknown
- 2016-07-20 EP EP16909181.6A patent/EP3447933B1/en active Active
- 2016-07-20 CN CN201680079903.0A patent/CN108496310B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1864382A (zh) * | 2003-10-08 | 2006-11-15 | 美商亚瑟罗斯通讯股份有限公司 | 在多天线接收机中组合高数据率宽带分组信号的装置和方法 |
CN101039136A (zh) * | 2006-03-15 | 2007-09-19 | 华为技术有限公司 | 基于空频编码的多天线发射分集方法及其系统 |
CN101043297A (zh) * | 2006-03-20 | 2007-09-26 | 华为技术有限公司 | 一种多天线通信中发射信号的方法及系统 |
CN101437007A (zh) * | 2007-11-12 | 2009-05-20 | 华为技术有限公司 | Mimo系统的数据发送/接收方法、装置及设备 |
CN101488775A (zh) * | 2008-01-18 | 2009-07-22 | 中兴通讯股份有限公司 | 一种td-scdma系统中的空间复用方法和装置 |
US8416841B1 (en) * | 2009-11-23 | 2013-04-09 | Xilinx, Inc. | Multiple-input multiple-output (MIMO) decoding with subcarrier grouping |
Also Published As
Publication number | Publication date |
---|---|
EP3447933A4 (en) | 2019-04-24 |
EP3447933A1 (en) | 2019-02-27 |
CN108496310A (zh) | 2018-09-04 |
CN108496310B (zh) | 2021-01-29 |
MY190950A (en) | 2022-05-23 |
EP3447933B1 (en) | 2020-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5661120B2 (ja) | 無線ネットワークにおけるダウンリンク・マルチユーザーmimo送信のための方法および装置 | |
CN104539341B (zh) | 无线宽带多天线mimo全双工系统主动式回波自干扰抑制方法 | |
JP2013538530A (ja) | マルチユーザ無線通信のための位相回転 | |
CN102104404A (zh) | 无线通信系统中多用户mimo的传输方法、基站和用户终端 | |
CN101573887B (zh) | 具有发送和接收分集的通信接收机中的数据均衡 | |
CN106716866B (zh) | 乒乓波束成形 | |
CN109067426A (zh) | 空间域与极化域联合的全双工自干扰消除方法 | |
US9148325B2 (en) | System and methods for compensation of I/Q imbalance in beamforming OFDM systems | |
CN105450274B (zh) | 基于能效最优的大规模多天线中继系统用户数优化方法 | |
WO2008113216A1 (fr) | Méthode d'évaluation d'un canal | |
JP7180514B2 (ja) | 無線通信システム、無線通信方法、送信局装置および受信局装置 | |
CN101588223B (zh) | 多输入多输出信道信息的获取方法、装置和系统 | |
EP1349297A1 (en) | A closed loop multiple antenna system | |
CN114696849B (zh) | 消除人工噪声的信号接收方法 | |
Dubois et al. | Time reversal applied to large MISO-OFDM systems | |
TWI298588B (en) | A diversity receiver | |
JP7196686B2 (ja) | 無線通信システム、無線通信方法、送信局装置および受信局装置 | |
JP5859913B2 (ja) | 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路 | |
EP3355610B1 (en) | Method and device for eliminating co-channel interference | |
CN110365421B (zh) | 一种单载波干扰抑制的多输入多输出水声通信方法 | |
CN103580815A (zh) | 一种异步的水下全速率协作通信方法 | |
WO2018014253A1 (zh) | 一种信号解码方法、装置及设备 | |
WO2014187356A1 (zh) | 发射信号的多输入多输出mimo检测方法、装置及系统 | |
JP2008283393A (ja) | Mmse等化回路、受信装置、及び通信システム、並びにその方法及びプログラム | |
WO2012159266A1 (zh) | 自适应多流波束赋形方法和基站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16909181 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016909181 Country of ref document: EP Effective date: 20181122 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |