US9270353B2 - Communication system for spatially-encoded wireless communications - Google Patents

Communication system for spatially-encoded wireless communications Download PDF

Info

Publication number
US9270353B2
US9270353B2 US14/237,109 US201214237109A US9270353B2 US 9270353 B2 US9270353 B2 US 9270353B2 US 201214237109 A US201214237109 A US 201214237109A US 9270353 B2 US9270353 B2 US 9270353B2
Authority
US
United States
Prior art keywords
electromagnetic
radiator
baseband information
wireless communications
radiator elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/237,109
Other versions
US20140199954A1 (en
Inventor
Warren Grossman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/237,109 priority Critical patent/US9270353B2/en
Publication of US20140199954A1 publication Critical patent/US20140199954A1/en
Priority to US15/049,234 priority patent/US9712220B2/en
Application granted granted Critical
Publication of US9270353B2 publication Critical patent/US9270353B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • This patent application relates to a method and system of wireless communication.
  • RF wireless communications devices include a RF antenna and transceiver that allows the communications device to transmit and receive wireless information via a wireless communications protocol.
  • Known wireless communications protocols include long-range protocols (e.g. GSM, GPRS, CDMA, EDGE, UMTS, EvDO, HSPA) and short-range protocols (irDA, Bluetooth (IEEE 802.15), and WiFi (IEEE 802.11x)). None of these communications protocols make optimum use of the available communications bandwidth.
  • This patent application describes a wireless communications device and associated communications protocol that allows the communications device to wirelessly transmit information by spatially-encoding an electromagnetic carrier (e.g. modulating the diameter and/or radial position and/or angular position of the carrier) with a portion of the information to be transmitted.
  • an electromagnetic carrier e.g. modulating the diameter and/or radial position and/or angular position of the carrier
  • a wireless communications device that comprises an electromagnetic radiator and a signal processor coupled to the radiator.
  • the electromagnetic radiator comprises an array of electromagnetic radiator elements.
  • the signal processor is configured to effect applying of a modulated electromagnetic carrier to one or more of the radiator elements selected, in real-time, based on instantaneous samples of baseband information, and to effect transmission of the modulated carrier via the selected radiator elements.
  • the modulated carrier is generated from the baseband information.
  • a method of wireless transmission of baseband information using a wireless communications device is configured with an electromagnetic radiator comprising an array of electromagnetic radiator elements.
  • the method comprises the wireless communications applying a modulated carrier to one or more of the radiator elements of the electromagnetic radiator, and transmitting the modulated carrier via the selected radiator elements.
  • the wireless communications device selects the one or more radiator elements, in real time, based on instantaneous samples of baseband information.
  • the wireless communications device generates the modulated carrier from the baseband information.
  • the signal processor may be configured to select the one or more radiator elements so as to vary the diameter of the transmitted carrier based on the instantaneous baseband information.
  • the signal processor may be configured to select the one or more radiator elements so as to vary the radial position of the transmitted carrier, relative to a centre of the transmission, based on the instantaneous baseband information.
  • the signal processor may be configured to select the one or more radiator elements so as to vary the angular position of the transmitted carrier, relative to a reference angular position, based on the instantaneous baseband information.
  • the wireless communications device and the method of wireless transmission can make better use of the available communications bandwidth.
  • FIG. 1 is a schematic view of the communications device, depicting the signal processor, a local oscillator, and an electromagnetic radiator;
  • FIGS. 2 a and 2 b are respectively a top plan view and a side elevation of a first embodiment of the electromagnetic radiator
  • FIG. 3 depicts a second embodiment of the electromagnetic radiator
  • FIGS. 4 a and 4 b depict a third embodiment of the electromagnetic radiator
  • FIG. 5 depicts a sample wireless transmission according to the method of wireless transmission in which the rate of change of angular position of the transmitted carrier varies based on the baseband information
  • FIG. 6 depicts a sample wireless transmission in which the radial position of the transmitted carriers vary based on the baseband information
  • FIG. 7 depicts a sample wireless transmission in which the radial position and the rate of change of angular position of the transmitted carrier varies based on the baseband information.
  • FIG. 1 is a schematic view of a wireless communications device, denoted generally as 100 .
  • the wireless communications device 100 is a two-way wireless communications device.
  • the wireless communications device 100 may be referred to as a wireless data communication device, a wireless telephone, a portable computer, or a wireless base station, as examples.
  • the wireless communications device 100 includes a communication subsystem 102 , and may also include an input subsystem 104 and an output subsystem 106 both coupled to the communication subsystem 102 .
  • the input subsystem 104 allows the user of the wireless communications device 100 to provide data and/or voice input to the wireless communications device 100 , and may include a keyboard and/or a microphone, as examples.
  • the output subsystem 106 provides visual and/or sound output for the user of the wireless communications device 100 , and may include a LCD display and/or a speaker, as examples.
  • the communication subsystem 102 performs communication functions, such as data and voice communications, and includes a plurality of transceivers (transmitters/receivers) 112 , and a local oscillator 114 , an electromagnetic radiator 200 and a signal processor 120 coupled to the transceivers 112 .
  • Electromagnetic signals are received by the electromagnetic radiator 200 and intended for receipt by the output subsystem 106 are input to the transceivers 112 , which perform functions such as frequency down conversion and analog to digital conversion, in preparation for more complex communication functions performed by the signal processor 120 .
  • data intended to be transmitted by the input subsystem 104 are processed by the signal processor 120 and input to the transceivers 112 in preparation for transmission via the electromagnetic radiator 200 .
  • the electromagnetic radiator 200 comprises an array of electromagnetic radiator elements. Each radiator element is configured to transmit and/or receive electromagnetic radiation. Multiple embodiments of the electromagnetic radiator 200 are envisaged.
  • the electromagnetic radiator 200 may comprise an RF antenna array, and the electromagnetic radiator elements are configured as a plurality of grounded monopoles which comprise a ground plane 210 , and a plurality of elongate conductors 212 . Each elongate conductor 212 may be electrically isolated from the ground plane 210 , but extending through the ground plane 210 from a respective radiator feed point 214 that is disposed below the ground plane 210 .
  • the elongate conductors 212 are substantially equidistantly spaced about the surface 210 .
  • the elongate conductors 212 define a plurality of concentric circles.
  • the density of elongate conductors 212 in each circle may be greater in the inner circles than in the outer circles.
  • each circle may include the same number of elongate conductors 212 , with the result that the distance between adjacent conductors 212 in the inner circles is less than the distance between adjacent conductors 212 in the outer circles.
  • the electromagnetic radiator 200 may again comprise an RF antenna array, but the electromagnetic radiator elements are configured as a plurality of patch antennas which comprise a conductive layer 206 , the ground plane 210 , and the plurality of elongate conductors 212 .
  • a dielectric substrate 208 may be disposed between the conductive layer 206 and the ground plane 210 .
  • the conductive layer 206 and the ground plane 210 are disposed on opposite faces of the dielectric substrate, and the conductive layer 206 is provided as a plurality of planar antenna elements that are electrically isolated from each other.
  • the conductive layer 206 is oriented substantially parallel to the ground plane 210 .
  • Each elongate conductor 212 is electrically isolated from the ground plane 210 , but extends through the ground plane 210 and the dielectric, from a respective radiator feed point 214 that is disposed below the ground plane 210 , and terminates at a respective planar antenna element.
  • the ground plane 210 comprises a planar ground plane, and the elongate conductors 212 are disposed about the ground plane 210 , perpendicular to the ground plane 210 , to thereby provide a planar antenna array.
  • the ground plane 210 may comprise an arcuate ground plane, and the elongate conductors 212 are disposed about the ground plane 210 to thereby provide an arcuate antenna array.
  • each radiator feed point 214 is coupled to a respective one of the transceivers 112 , and each transceiver 112 is connected to the signal processor 120 via a local bus.
  • the electromagnetic radiator 200 depicted in FIGS. 2 a , 2 b , 3 , 4 a and 4 b may comprise a laser array, with the electromagnetic radiator elements being configured as laser transmitter/receivers 212 .
  • Each laser transmitter/receiver 212 may mounted on a substrate 210 , and may be connected to a respective radiator feed point 214 that is disposed below the substrate 210 .
  • each laser transmitter/receiver 212 may comprise a semiconductor laser diode that is closely-mounted or integrated with a laser phototransistor.
  • each semiconductor laser diode is configured to produce a beam of monochromatic, low divergent, singularly-polarized light, and the wave-front of each light beam is coherent over the distance between the electromagnetic radiator 200 and the corresponding receiver.
  • each laser phototransistor is configured to detect a beam of monochromatic, low divergent, singularly-polarized light directed at the phototransistor.
  • the signal processor 120 is configured with computer processing instructions which, when executed by the signal processor 120 , implements a signal processing procedure.
  • the operation of the signal processing procedure will be discussed in greater detail below.
  • the signal processing procedure is configured to initiate electromagnetic (RF or laser) transmission of baseband information received from the input subsystem 104 by selecting one or more of the transceivers 112 (and their associated radiator elements) for transmission by the electromagnetic radiator 200 , based on the received baseband information.
  • the signal processing procedure is also configured to facilitate delivery of baseband information to the output subsystem 106 based on the transceivers 112 (and the associated radiator elements) from which the signal processor receives demodulated electromagnetic (RF or laser) transmissions.
  • the signal processing procedure may be implemented as a set of computer processing instructions, the functionality of the signal processing procedure may be implemented in electronics hardware instead.
  • the signal processor 120 receives the baseband information from the input subsystem 104 as a series of digital values, and uses a portion of the received baseband information to select one or more transceivers 112 and transmits the baseband information to each of the selected transceivers 112 .
  • Each selected transceiver 112 performs digital to analog conversion on the baseband information, and uses the analog baseband information to modulate the amplitude and/or phase of the carrier generated by the local oscillator 114 .
  • Each transceiver 112 applies the modulated carrier to the associated radiator feed point(s) 214 . As a result, the modulated carrier is only transmitted (as a RF or laser transmission) from the radiator elements that are associated with the selected radiator feed points 214 .
  • the signal processor 120 selects transceivers 112 and varies the selection thereof (and hence also varies the selection of radiator feed points 214 ), in real-time, in accordance with a portion of each digital baseband value. In one implementation, the signal processor 120 varies the selection of transceivers 112 (and hence the location of active radiator feed points 214 ), in real-time, so that the instantaneous angular position of each modulated carrier, as each modulated carrier is transmitted by the electromagnetic radiator 200 , varies based on the baseband information.
  • each radiator feed point 214 on the surface of the electromagnetic radiator 200 can be specified by its polar co-ordinates (e.g. radius from a reference point on the surface of the electromagnetic radiator 200 , and angular position relative to a reference angular position on the surface of the electromagnetic radiator 200 )
  • the signal processor 120 may select the radiator feed point(s) 214 such that the instantaneous angular position of each electromagnetic (RF or laser) transmission from the surface of the electromagnetic radiator 200 , relative to a reference angular position on the surface of the electromagnetic radiator 200 , increases, in real-time, as a characteristic (e.g.
  • the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
  • the signal processor 120 may select the radiator feed point(s) 214 such that the instantaneous rate of change of the angular position of each electromagnetic (RF or laser) transmission from the surface of the electromagnetic radiator 200 , increases, in real-time, as a characteristic of the baseband information increases, and the instantaneous rate of change of the angular position of each electromagnetic transmission decreases, in real-time, as the characteristic of the baseband information decreases.
  • the signal processor 120 may also simultaneously activate multiple radiator feed points 214 , and vary the instantaneous rate of change of the angular position of each transmission based on respective characteristics of the baseband information.
  • the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
  • the signal processor 120 varies the selection of transceivers 112 (and hence the location of active radiator feed points 214 ), in real-time, so that the instantaneous radial position of each modulated carrier, as the modulated carrier is transmitted by the electromagnetic radiator 200 , relative to the centre of all such electromagnetic transmissions, varies based on the baseband information.
  • each radiator feed point 214 on the surface of the electromagnetic radiator 200 can be specified by its polar co-ordinates (e.g. radius from a reference point on the surface of the electromagnetic radiator 200 , and angular position relative to a reference angular position on the surface of the electromagnetic radiator 200 )
  • the signal processor 120 may select the radiator feed point(s) 214 such that the instantaneous radial position of each electromagnetic (RF or laser) transmission from the surface of the electromagnetic radiator 200 , relative to the centre of all such electromagnetic transmissions, increases, in real-time, as a characteristic of the baseband information increases, and the instantaneous radial position of each electromagnetic transmission from the surface of the electromagnetic radiator 200 , relative to the centre of all such electromagnetic transmissions, decreases, in real-time, as the characteristic of the baseband information decreases.
  • the rate of change of the angular position of each electromagnetic transmission may remain constant.
  • the signal processor 120 may simultaneously activate multiple radiator feed points 214 , and vary the instantaneous radial position of each electromagnetic transmission, relative to the centre of all such transmissions, based on respective characteristics of the baseband information.
  • the radiator feed points 214 are activated/deactivated in a sequence that produces two (or more) distinct simultaneous electromagnetic transmissions.
  • the simultaneous electromagnetic transmissions do not interfere with one another, in the sense that a receiver that receives the two (or more) electromagnetic transmissions can correctly decode the information that is encoded in each electromagnetic transmission.
  • the electromagnetic radiator 200 depicted in FIG. 3 may be particularly advantageous for implementing this modulation scheme.
  • the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
  • the signal processor 120 may select the radiator feed point(s) 214 based on a combination of the foregoing controls. For example, as shown in FIG. 7 , the signal processor 120 may select the radiator feed point(s) 214 such that the rate of change of the angular position of each electromagnetic transmission from the surface of the electromagnetic radiator 200 , increases, in real-time, as a characteristic of the baseband information increases, and the instantaneous radial position of each electromagnetic transmission from the surface of the electromagnetic radiator 200 , relative to the centre of all such transmissions, increases, in real-time, as another characteristic of the baseband information increases.
  • the rate of change of the angular position of each electromagnetic transmission from the surface of the electromagnetic radiator 200 may increase, in real-time, as a characteristic of the baseband information decrease, and the instantaneous radial distance of each electromagnetic transmission from the surface of the electromagnetic radiator 200 , relative to the centre of all such transmissions, may decrease, in real-time, as another characteristic of the baseband information increases.
  • the electromagnetic radiator 200 depicted in FIG. 3 may be particularly advantageous for implementing this modulation scheme.
  • the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
  • the signal processor 120 varies the instantaneous number of transceivers 112 that are selected, in real-time, so that the diameter of the modulated carrier, as it is transmitted by the electromagnetic radiator 200 , varies based the baseband information. Simultaneously, the signal processor 120 may also cause each selected transceiver 112 to vary a different characteristic of each electromagnetic transmission, in real time, based the baseband information.
  • the signal processor 120 may increase the instantaneous number of transceivers 112 (and hence the instantaneous number of radiator feed points 214 ) selected, in real-time, as a characteristic of the baseband information increases, and may decrease the instantaneous number of transceivers 112 (and hence the instantaneous number of radiator feed points 214 ) selected, in real-time, as the characteristic of the baseband information decreases.
  • the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may also cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
  • each transceiver 112 When the communication subsystem 102 is in signal reception mode, each transceiver 112 receives a modulated carrier from the associated radiator feed point 214 of the electromagnetic radiator 200 , and uses the carrier generated by the local oscillator 114 to demodulate the modulated carrier and recover a portion of the information that was encoded in the modulated carrier. Each transceiver 112 performs analog to digital conversion on the recovered information, and forwards the recovered information to the signal processor 120 as a series of digital values. Based on the transceivers 112 (and hence antenna feed points 214 ) from which the signal processor 120 receives the digital values, the signal processor 120 recovers the remainder of the digital baseband information that was encoded in the modulated carrier.
  • the instantaneous diameter of the modulated carrier may vary based on the baseband information, in which case the signal processor 120 may recover each digital baseband value, in real-time, from the instantaneous diameter of the modulated carrier as at the surface of the electromagnetic radiator 200 .
  • the instantaneous radial position of the modulated carrier may vary based on the baseband information, in which case the signal processor 120 may recover each digital baseband value, in real-time, from the instantaneous radial distance of the received modulated carrier relative to the centre of the reception at the surface of the electromagnetic radiator 200 .
  • the instantaneous angular position of the modulated carrier may vary based on the baseband information, in which case the signal processor 120 may recover each digital baseband value, in real-time, from the instantaneous angular position of the received modulated carrier relative to a reference angular position at the surface of the electromagnetic radiator 200 .
  • the foregoing methods of modulation may be advantageously implemented in short-range and/or line-of-sight wireless communications networks.

Abstract

A method of spatially-encoded wireless transmission using a wireless communications device that is configured with an electromagnetic radiator involves applying a modulated carrier to one or more radiator elements of the electromagnetic radiator. The radiator elements are selected based on instantaneous samples of baseband information, and the modulated carrier is generated from the baseband information. The modulated carrier is then transmitted via the selected radiator elements.

Description

RELATED APPLICATIONS
This patent application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 61/515,117, filed Aug. 4, 2011, entitled “Communication System for Spatially-Encoded Wireless Communications”.
FIELD OF THE INVENTION
This patent application relates to a method and system of wireless communication.
BACKGROUND
RF wireless communications devices include a RF antenna and transceiver that allows the communications device to transmit and receive wireless information via a wireless communications protocol. Known wireless communications protocols include long-range protocols (e.g. GSM, GPRS, CDMA, EDGE, UMTS, EvDO, HSPA) and short-range protocols (irDA, Bluetooth (IEEE 802.15), and WiFi (IEEE 802.11x)). None of these communications protocols make optimum use of the available communications bandwidth.
SUMMARY
This patent application describes a wireless communications device and associated communications protocol that allows the communications device to wirelessly transmit information by spatially-encoding an electromagnetic carrier (e.g. modulating the diameter and/or radial position and/or angular position of the carrier) with a portion of the information to be transmitted.
In accordance with a first aspect of the disclosure, there is provided a wireless communications device that comprises an electromagnetic radiator and a signal processor coupled to the radiator. The electromagnetic radiator comprises an array of electromagnetic radiator elements. The signal processor is configured to effect applying of a modulated electromagnetic carrier to one or more of the radiator elements selected, in real-time, based on instantaneous samples of baseband information, and to effect transmission of the modulated carrier via the selected radiator elements. The modulated carrier is generated from the baseband information.
In accordance with a second aspect of the disclosure, there is provided a method of wireless transmission of baseband information using a wireless communications device. The wireless communications device is configured with an electromagnetic radiator comprising an array of electromagnetic radiator elements. The method comprises the wireless communications applying a modulated carrier to one or more of the radiator elements of the electromagnetic radiator, and transmitting the modulated carrier via the selected radiator elements. The wireless communications device selects the one or more radiator elements, in real time, based on instantaneous samples of baseband information. The wireless communications device generates the modulated carrier from the baseband information.
The signal processor may be configured to select the one or more radiator elements so as to vary the diameter of the transmitted carrier based on the instantaneous baseband information. The signal processor may be configured to select the one or more radiator elements so as to vary the radial position of the transmitted carrier, relative to a centre of the transmission, based on the instantaneous baseband information. The signal processor may be configured to select the one or more radiator elements so as to vary the angular position of the transmitted carrier, relative to a reference angular position, based on the instantaneous baseband information.
Since a portion of the baseband data is encoded into the carrier by modulating the diameter and/or the radial position and/or the angular position of the carrier, the wireless communications device and the method of wireless transmission can make better use of the available communications bandwidth.
BRIEF DESCRIPTION OF THE DRAWINGS
An exemplary wireless communications device, and method of wireless transmission will now be described, with reference to the accompanying drawings, in which:
FIG. 1 is a schematic view of the communications device, depicting the signal processor, a local oscillator, and an electromagnetic radiator;
FIGS. 2 a and 2 b are respectively a top plan view and a side elevation of a first embodiment of the electromagnetic radiator;
FIG. 3 depicts a second embodiment of the electromagnetic radiator;
FIGS. 4 a and 4 b depict a third embodiment of the electromagnetic radiator;
FIG. 5 depicts a sample wireless transmission according to the method of wireless transmission in which the rate of change of angular position of the transmitted carrier varies based on the baseband information;
FIG. 6 depicts a sample wireless transmission in which the radial position of the transmitted carriers vary based on the baseband information; and
FIG. 7 depicts a sample wireless transmission in which the radial position and the rate of change of angular position of the transmitted carrier varies based on the baseband information.
DETAILED DESCRIPTION
FIG. 1 is a schematic view of a wireless communications device, denoted generally as 100. Preferably, the wireless communications device 100 is a two-way wireless communications device. Depending on the exact functionality provided, the wireless communications device 100 may be referred to as a wireless data communication device, a wireless telephone, a portable computer, or a wireless base station, as examples.
The wireless communications device 100 includes a communication subsystem 102, and may also include an input subsystem 104 and an output subsystem 106 both coupled to the communication subsystem 102. The input subsystem 104 allows the user of the wireless communications device 100 to provide data and/or voice input to the wireless communications device 100, and may include a keyboard and/or a microphone, as examples. The output subsystem 106 provides visual and/or sound output for the user of the wireless communications device 100, and may include a LCD display and/or a speaker, as examples.
The communication subsystem 102 performs communication functions, such as data and voice communications, and includes a plurality of transceivers (transmitters/receivers) 112, and a local oscillator 114, an electromagnetic radiator 200 and a signal processor 120 coupled to the transceivers 112. Electromagnetic signals are received by the electromagnetic radiator 200 and intended for receipt by the output subsystem 106 are input to the transceivers 112, which perform functions such as frequency down conversion and analog to digital conversion, in preparation for more complex communication functions performed by the signal processor 120. Conversely, data intended to be transmitted by the input subsystem 104 are processed by the signal processor 120 and input to the transceivers 112 in preparation for transmission via the electromagnetic radiator 200.
Preferably, the electromagnetic radiator 200 comprises an array of electromagnetic radiator elements. Each radiator element is configured to transmit and/or receive electromagnetic radiation. Multiple embodiments of the electromagnetic radiator 200 are envisaged. In one embodiment, depicted in FIGS. 2 a and 2 b, the electromagnetic radiator 200 may comprise an RF antenna array, and the electromagnetic radiator elements are configured as a plurality of grounded monopoles which comprise a ground plane 210, and a plurality of elongate conductors 212. Each elongate conductor 212 may be electrically isolated from the ground plane 210, but extending through the ground plane 210 from a respective radiator feed point 214 that is disposed below the ground plane 210.
In the embodiment of FIGS. 2 a and 2 b, the elongate conductors 212 are substantially equidistantly spaced about the surface 210. In another embodiment, depicted in FIG. 3, the elongate conductors 212 define a plurality of concentric circles. Moreover, the density of elongate conductors 212 in each circle may be greater in the inner circles than in the outer circles. For instance, each circle may include the same number of elongate conductors 212, with the result that the distance between adjacent conductors 212 in the inner circles is less than the distance between adjacent conductors 212 in the outer circles.
In another embodiment, depicted in FIGS. 4 a and 4 b, the electromagnetic radiator 200 may again comprise an RF antenna array, but the electromagnetic radiator elements are configured as a plurality of patch antennas which comprise a conductive layer 206, the ground plane 210, and the plurality of elongate conductors 212. A dielectric substrate 208 may be disposed between the conductive layer 206 and the ground plane 210. In this embodiment, the conductive layer 206 and the ground plane 210 are disposed on opposite faces of the dielectric substrate, and the conductive layer 206 is provided as a plurality of planar antenna elements that are electrically isolated from each other. Preferably, the conductive layer 206 is oriented substantially parallel to the ground plane 210. Each elongate conductor 212 is electrically isolated from the ground plane 210, but extends through the ground plane 210 and the dielectric, from a respective radiator feed point 214 that is disposed below the ground plane 210, and terminates at a respective planar antenna element.
In each embodiment, preferably the ground plane 210 comprises a planar ground plane, and the elongate conductors 212 are disposed about the ground plane 210, perpendicular to the ground plane 210, to thereby provide a planar antenna array. Alternately, the ground plane 210 may comprise an arcuate ground plane, and the elongate conductors 212 are disposed about the ground plane 210 to thereby provide an arcuate antenna array. Further, each radiator feed point 214 is coupled to a respective one of the transceivers 112, and each transceiver 112 is connected to the signal processor 120 via a local bus.
Alternately, the electromagnetic radiator 200 depicted in FIGS. 2 a, 2 b, 3, 4 a and 4 b may comprise a laser array, with the electromagnetic radiator elements being configured as laser transmitter/receivers 212. Each laser transmitter/receiver 212 may mounted on a substrate 210, and may be connected to a respective radiator feed point 214 that is disposed below the substrate 210. As an example, each laser transmitter/receiver 212 may comprise a semiconductor laser diode that is closely-mounted or integrated with a laser phototransistor. Preferably, each semiconductor laser diode is configured to produce a beam of monochromatic, low divergent, singularly-polarized light, and the wave-front of each light beam is coherent over the distance between the electromagnetic radiator 200 and the corresponding receiver. Similarly, preferably each laser phototransistor is configured to detect a beam of monochromatic, low divergent, singularly-polarized light directed at the phototransistor.
The signal processor 120 is configured with computer processing instructions which, when executed by the signal processor 120, implements a signal processing procedure. The operation of the signal processing procedure will be discussed in greater detail below. However, it is sufficient at this point to note that the signal processing procedure is configured to initiate electromagnetic (RF or laser) transmission of baseband information received from the input subsystem 104 by selecting one or more of the transceivers 112 (and their associated radiator elements) for transmission by the electromagnetic radiator 200, based on the received baseband information. The signal processing procedure is also configured to facilitate delivery of baseband information to the output subsystem 106 based on the transceivers 112 (and the associated radiator elements) from which the signal processor receives demodulated electromagnetic (RF or laser) transmissions. It should also be understood that although the signal processing procedure may be implemented as a set of computer processing instructions, the functionality of the signal processing procedure may be implemented in electronics hardware instead.
When the communication subsystem 102 is in signal transmission mode, the signal processor 120 receives the baseband information from the input subsystem 104 as a series of digital values, and uses a portion of the received baseband information to select one or more transceivers 112 and transmits the baseband information to each of the selected transceivers 112. Each selected transceiver 112 performs digital to analog conversion on the baseband information, and uses the analog baseband information to modulate the amplitude and/or phase of the carrier generated by the local oscillator 114. Each transceiver 112 applies the modulated carrier to the associated radiator feed point(s) 214. As a result, the modulated carrier is only transmitted (as a RF or laser transmission) from the radiator elements that are associated with the selected radiator feed points 214.
The signal processor 120 selects transceivers 112 and varies the selection thereof (and hence also varies the selection of radiator feed points 214), in real-time, in accordance with a portion of each digital baseband value. In one implementation, the signal processor 120 varies the selection of transceivers 112 (and hence the location of active radiator feed points 214), in real-time, so that the instantaneous angular position of each modulated carrier, as each modulated carrier is transmitted by the electromagnetic radiator 200, varies based on the baseband information.
For example, assuming that the location of each radiator feed point 214 on the surface of the electromagnetic radiator 200 can be specified by its polar co-ordinates (e.g. radius from a reference point on the surface of the electromagnetic radiator 200, and angular position relative to a reference angular position on the surface of the electromagnetic radiator 200), the signal processor 120 may select the radiator feed point(s) 214 such that the instantaneous angular position of each electromagnetic (RF or laser) transmission from the surface of the electromagnetic radiator 200, relative to a reference angular position on the surface of the electromagnetic radiator 200, increases, in real-time, as a characteristic (e.g. amplitude, frequency, phase) of the baseband information increases, and the instantaneous angular position of each electromagnetic transmission from the surface of the electromagnetic radiator 200, relative to a reference angular position on the surface of the electromagnetic radiator 200, decreases, in real-time, as the characteristic of the baseband information decreases. At the same time, the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
Alternately, as shown in FIG. 5, the signal processor 120 may select the radiator feed point(s) 214 such that the instantaneous rate of change of the angular position of each electromagnetic (RF or laser) transmission from the surface of the electromagnetic radiator 200, increases, in real-time, as a characteristic of the baseband information increases, and the instantaneous rate of change of the angular position of each electromagnetic transmission decreases, in real-time, as the characteristic of the baseband information decreases. The signal processor 120 may also simultaneously activate multiple radiator feed points 214, and vary the instantaneous rate of change of the angular position of each transmission based on respective characteristics of the baseband information. Although not shown in FIG. 5, at the same time, the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
In another implementation, the signal processor 120 varies the selection of transceivers 112 (and hence the location of active radiator feed points 214), in real-time, so that the instantaneous radial position of each modulated carrier, as the modulated carrier is transmitted by the electromagnetic radiator 200, relative to the centre of all such electromagnetic transmissions, varies based on the baseband information.
For example, assuming again that the location of each radiator feed point 214 on the surface of the electromagnetic radiator 200 can be specified by its polar co-ordinates (e.g. radius from a reference point on the surface of the electromagnetic radiator 200, and angular position relative to a reference angular position on the surface of the electromagnetic radiator 200), the signal processor 120 may select the radiator feed point(s) 214 such that the instantaneous radial position of each electromagnetic (RF or laser) transmission from the surface of the electromagnetic radiator 200, relative to the centre of all such electromagnetic transmissions, increases, in real-time, as a characteristic of the baseband information increases, and the instantaneous radial position of each electromagnetic transmission from the surface of the electromagnetic radiator 200, relative to the centre of all such electromagnetic transmissions, decreases, in real-time, as the characteristic of the baseband information decreases. At the same time, the rate of change of the angular position of each electromagnetic transmission may remain constant.
As shown in FIG. 6, the signal processor 120 may simultaneously activate multiple radiator feed points 214, and vary the instantaneous radial position of each electromagnetic transmission, relative to the centre of all such transmissions, based on respective characteristics of the baseband information. Preferably, the radiator feed points 214 are activated/deactivated in a sequence that produces two (or more) distinct simultaneous electromagnetic transmissions. Moreover, preferably the simultaneous electromagnetic transmissions do not interfere with one another, in the sense that a receiver that receives the two (or more) electromagnetic transmissions can correctly decode the information that is encoded in each electromagnetic transmission. The electromagnetic radiator 200 depicted in FIG. 3 may be particularly advantageous for implementing this modulation scheme.
At the same time, the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
Alternately, the signal processor 120 may select the radiator feed point(s) 214 based on a combination of the foregoing controls. For example, as shown in FIG. 7, the signal processor 120 may select the radiator feed point(s) 214 such that the rate of change of the angular position of each electromagnetic transmission from the surface of the electromagnetic radiator 200, increases, in real-time, as a characteristic of the baseband information increases, and the instantaneous radial position of each electromagnetic transmission from the surface of the electromagnetic radiator 200, relative to the centre of all such transmissions, increases, in real-time, as another characteristic of the baseband information increases. Conversely, the rate of change of the angular position of each electromagnetic transmission from the surface of the electromagnetic radiator 200 may increase, in real-time, as a characteristic of the baseband information decrease, and the instantaneous radial distance of each electromagnetic transmission from the surface of the electromagnetic radiator 200, relative to the centre of all such transmissions, may decrease, in real-time, as another characteristic of the baseband information increases. Again, the electromagnetic radiator 200 depicted in FIG. 3 may be particularly advantageous for implementing this modulation scheme.
Although not shown in FIG. 6, at the same time, the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
In another implementation, the signal processor 120 varies the instantaneous number of transceivers 112 that are selected, in real-time, so that the diameter of the modulated carrier, as it is transmitted by the electromagnetic radiator 200, varies based the baseband information. Simultaneously, the signal processor 120 may also cause each selected transceiver 112 to vary a different characteristic of each electromagnetic transmission, in real time, based the baseband information.
For example, the signal processor 120 may increase the instantaneous number of transceivers 112 (and hence the instantaneous number of radiator feed points 214) selected, in real-time, as a characteristic of the baseband information increases, and may decrease the instantaneous number of transceivers 112 (and hence the instantaneous number of radiator feed points 214) selected, in real-time, as the characteristic of the baseband information decreases. At the same time, the signal processor 120 may also cause each selected transceiver 112 to increase the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information increases, and may also cause each selected transceiver 112 to decrease the frequency and/or phase of each electromagnetic transmission, in real time, as the same or a different characteristic of the baseband information decreases.
When the communication subsystem 102 is in signal reception mode, each transceiver 112 receives a modulated carrier from the associated radiator feed point 214 of the electromagnetic radiator 200, and uses the carrier generated by the local oscillator 114 to demodulate the modulated carrier and recover a portion of the information that was encoded in the modulated carrier. Each transceiver 112 performs analog to digital conversion on the recovered information, and forwards the recovered information to the signal processor 120 as a series of digital values. Based on the transceivers 112 (and hence antenna feed points 214) from which the signal processor 120 receives the digital values, the signal processor 120 recovers the remainder of the digital baseband information that was encoded in the modulated carrier.
As above, the instantaneous diameter of the modulated carrier may vary based on the baseband information, in which case the signal processor 120 may recover each digital baseband value, in real-time, from the instantaneous diameter of the modulated carrier as at the surface of the electromagnetic radiator 200. Alternately, the instantaneous radial position of the modulated carrier may vary based on the baseband information, in which case the signal processor 120 may recover each digital baseband value, in real-time, from the instantaneous radial distance of the received modulated carrier relative to the centre of the reception at the surface of the electromagnetic radiator 200. Alternately, or additionally, the instantaneous angular position of the modulated carrier may vary based on the baseband information, in which case the signal processor 120 may recover each digital baseband value, in real-time, from the instantaneous angular position of the received modulated carrier relative to a reference angular position at the surface of the electromagnetic radiator 200. Depending on the wavelength selected, the foregoing methods of modulation may be advantageously implemented in short-range and/or line-of-sight wireless communications networks.

Claims (14)

The invention claimed is:
1. A wireless communications device comprising:
an electromagnetic radiator comprising an array of radiator elements; and
a signal processor coupled to the electromagnetic radiator, the signal processor being configured to receive baseband information, the signal processor further configured to transmit an electromagnetic signal from the electromagnetic radiator by applying a carrier signal to the electromagnetic radiator, the applying a carrier signal comprising continuously rotating a feed point of the carrier signal between the radiator elements at an instantaneous rate of angular rotation and varying the instantaneous rate of angular rotation, in real-time, based on the received baseband information.
2. The wireless communications device according to claim 1, wherein the radiator elements each has a respective angular position relative to a common reference point, and the transmitting an electromagnetic signal comprises selecting one or more of the radiator elements in real-time each based on the respective angular position thereof and the instantaneous rate of angular rotation, and applying the carrier signal to the one or more selected radiator elements.
3. The wireless communications device according to Claim 2, wherein the signal processor is configured to vary a diameter of the electromagnetic signal, in real time, by varying an instantaneous number of the one or more radiator elements based on the instantaneous baseband information.
4. The wireless communications device according to claim 2, wherein the transmitting an electromagnetic signal further comprises varying at least one of a frequency and a phase of the carrier signal based on the baseband information.
5. The wireless communications device according to Claim 2, wherein the signal processor is configured to vary a radial position of the electromagnetic signal, relative to the common reference point, in real-time, based on one characteristic of the received baseband information, and to vary the instantaneous rate of angular rotation based on another aspect of the received baseband information.
6. The wireless communications device according to claim 2, wherein the transmitting an electromagnetic signal further comprises varying at least one of a frequency and a phase of the carrier signal based on the baseband information.
7. The wireless communications device according to claim 2, wherein the selecting the one or more radiator elements comprises selecting the one or more radiator elements so as to produce at least two distinct simultaneous transmissions of the electromagnetic signal.
8. A method of spatially-encoded wireless transmission of baseband information using a wireless communications device, the wireless communications device being configured with an electromagnetic radiator comprising an array of radiator elements, the method comprising:
the wireless communications device receiving baseband information; and
the wireless communications device transmitting an electromagnetic signal from the electromagnetic radiator by applying a carrier signal to the electromagnetic radiator, the applying a carrier signal comprising continuously rotating a feed point of the carrier signal between the radiator elements at an instantaneous rate of angular rotation and varying the instantaneous rate of angular rotation, in real time, based on the received baseband information.
9. The method according to claim 8, wherein the radiator elements each has a respective angular position relative to a common reference point, and the transmitting an electromagnetic signal comprises selecting one or more of the radiator elements in real-time each based on the respective angular position thereof and the instantaneous rate of angular rotation, and applying the carrier signal to the one or more selected radiator elements.
10. The method according to claim 9, wherein the selecting the one or more radiator elements comprises varying a diameter of the electromagnetic signal, in real time, by varying an instantaneous number of the one or more radiator elements based on the baseband information.
11. The method according to claim 10, wherein the transmitting an electromagnetic signal further comprises varying at least one of a frequency and a phase of the carrier signal based on the baseband information.
12. The method according to claim 9, wherein the transmitting an electromagnetic signal comprises varying a radial position of the electromagnetic signal, relative to the common reference point, in real-time, based on one characteristic of the received baseband information, and varying the instantaneous rate of angular rotation based on another aspect of the received baseband information.
13. The method according to claim 9, wherein the transmitting an electromagnetic signal further comprises varying at least one of a frequency and a phase of the carrier signal based on the baseband information.
14. The method according to claim 9, wherein the selecting the one or more radiator elements comprises selecting the one or more radiator elements so as to produce at least two distinct simultaneous transmissions of the electromagnetic signal.
US14/237,109 2011-08-04 2012-08-03 Communication system for spatially-encoded wireless communications Expired - Fee Related US9270353B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/237,109 US9270353B2 (en) 2011-08-04 2012-08-03 Communication system for spatially-encoded wireless communications
US15/049,234 US9712220B2 (en) 2011-08-04 2016-02-22 Communication system for spatially-encoded wireless communications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161515117P 2011-08-04 2011-08-04
PCT/CA2012/000724 WO2013016809A2 (en) 2011-08-04 2012-08-03 Communication system for spatially-encoded wireless communications
US14/237,109 US9270353B2 (en) 2011-08-04 2012-08-03 Communication system for spatially-encoded wireless communications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2012/000724 A-371-Of-International WO2013016809A2 (en) 2011-08-04 2012-08-03 Communication system for spatially-encoded wireless communications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/049,234 Continuation US9712220B2 (en) 2011-08-04 2016-02-22 Communication system for spatially-encoded wireless communications

Publications (2)

Publication Number Publication Date
US20140199954A1 US20140199954A1 (en) 2014-07-17
US9270353B2 true US9270353B2 (en) 2016-02-23

Family

ID=47629730

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/237,109 Expired - Fee Related US9270353B2 (en) 2011-08-04 2012-08-03 Communication system for spatially-encoded wireless communications
US15/049,234 Active US9712220B2 (en) 2011-08-04 2016-02-22 Communication system for spatially-encoded wireless communications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/049,234 Active US9712220B2 (en) 2011-08-04 2016-02-22 Communication system for spatially-encoded wireless communications

Country Status (5)

Country Link
US (2) US9270353B2 (en)
AU (2) AU2012289697A1 (en)
CA (1) CA2844102A1 (en)
IL (1) IL230796A (en)
WO (1) WO2013016809A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712220B2 (en) * 2011-08-04 2017-07-18 Warren Grossman Communication system for spatially-encoded wireless communications

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122383A1 (en) * 2000-09-01 2002-09-05 Shiquan Wu Adaptive time diversity and spatial diversity for OFDM
US20060153312A1 (en) * 2005-01-07 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for space-time frequency block coding in a wireless communication system
US20060192710A1 (en) 2003-07-30 2006-08-31 Christian Schieblich Antennas array calibration arrangement and method
US20070080888A1 (en) 2005-05-31 2007-04-12 Farrokh Mohamadi Control of an Integrated Beamforming Array Using Near-Field-Coupled or Far-Field-Coupled Commands
US20070104283A1 (en) * 2005-10-31 2007-05-10 Jin-Kyu Han Apparatus and method for transmitting/receiving data in a multi-antenna communication system
US20090003480A1 (en) * 2006-03-15 2009-01-01 Huawei Technologies Co., Ltd. Method And Apparatus For Multi-Antenna Transmitting Based On Spatial-Frequency Encoding
US20090003466A1 (en) * 2004-07-07 2009-01-01 Mahmoud Taherzadehboroujeni System and Method for Mapping Symbols for Mimo Transmission
US20090147868A1 (en) * 2005-07-15 2009-06-11 Bin Chul Ihm Method and apparatus for transmitting pilot symbols in wireless communication system
US20090220030A1 (en) 2008-02-28 2009-09-03 Uhl Brecken H System and method for modulating a signal at an antenna
US20090316807A1 (en) * 2006-01-13 2009-12-24 Sang Gook Kim Method and apparatus for achieving transmit diversity and spatial multiplexing using antenna selection based on feedback information
US20100144305A1 (en) 2008-12-05 2010-06-10 Passif Semiconductor Corporation Passive Wireless Receiver
US20100208844A1 (en) 2008-11-25 2010-08-19 Uhl Brecken H System and method for arbitrary phase and amplitude modulation in an antenna
US20100207819A1 (en) * 2008-11-25 2010-08-19 Uhl Brecken H System and method for electronically steering an antenna
US20110170624A1 (en) * 2010-01-14 2011-07-14 Massachusetts Institute Of Technology Space-time digital power amplifier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457251B2 (en) * 2008-11-25 2013-06-04 Invertix Corporation System and method for spreading and de-spreading a signal at an antenna
US9270353B2 (en) * 2011-08-04 2016-02-23 Warren Grossman Communication system for spatially-encoded wireless communications

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122383A1 (en) * 2000-09-01 2002-09-05 Shiquan Wu Adaptive time diversity and spatial diversity for OFDM
US20060192710A1 (en) 2003-07-30 2006-08-31 Christian Schieblich Antennas array calibration arrangement and method
US20090003466A1 (en) * 2004-07-07 2009-01-01 Mahmoud Taherzadehboroujeni System and Method for Mapping Symbols for Mimo Transmission
US20060153312A1 (en) * 2005-01-07 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for space-time frequency block coding in a wireless communication system
US20070080888A1 (en) 2005-05-31 2007-04-12 Farrokh Mohamadi Control of an Integrated Beamforming Array Using Near-Field-Coupled or Far-Field-Coupled Commands
US20090147868A1 (en) * 2005-07-15 2009-06-11 Bin Chul Ihm Method and apparatus for transmitting pilot symbols in wireless communication system
US20070104283A1 (en) * 2005-10-31 2007-05-10 Jin-Kyu Han Apparatus and method for transmitting/receiving data in a multi-antenna communication system
US20090316807A1 (en) * 2006-01-13 2009-12-24 Sang Gook Kim Method and apparatus for achieving transmit diversity and spatial multiplexing using antenna selection based on feedback information
US20090003480A1 (en) * 2006-03-15 2009-01-01 Huawei Technologies Co., Ltd. Method And Apparatus For Multi-Antenna Transmitting Based On Spatial-Frequency Encoding
US20090220030A1 (en) 2008-02-28 2009-09-03 Uhl Brecken H System and method for modulating a signal at an antenna
US20100208844A1 (en) 2008-11-25 2010-08-19 Uhl Brecken H System and method for arbitrary phase and amplitude modulation in an antenna
US20100207819A1 (en) * 2008-11-25 2010-08-19 Uhl Brecken H System and method for electronically steering an antenna
US20100144305A1 (en) 2008-12-05 2010-06-10 Passif Semiconductor Corporation Passive Wireless Receiver
US20110170624A1 (en) * 2010-01-14 2011-07-14 Massachusetts Institute Of Technology Space-time digital power amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9712220B2 (en) * 2011-08-04 2017-07-18 Warren Grossman Communication system for spatially-encoded wireless communications

Also Published As

Publication number Publication date
US20160248493A1 (en) 2016-08-25
CA2844102A1 (en) 2013-02-07
AU2017200532A1 (en) 2017-02-23
IL230796A (en) 2017-06-29
US9712220B2 (en) 2017-07-18
WO2013016809A2 (en) 2013-02-07
US20140199954A1 (en) 2014-07-17
WO2013016809A3 (en) 2013-05-10
AU2012289697A1 (en) 2014-02-27
IL230796A0 (en) 2014-03-31

Similar Documents

Publication Publication Date Title
US11265064B2 (en) Method and apparatus for focused data communications
US10727888B2 (en) Proximity detection based on an electromagnetic field perturbation
US9312597B2 (en) Signal tracking and antenna positioning system
US20210006441A1 (en) Direct radiation wireless digital communications system and method based on digital coding metamaterial
JP2018501754A (en) Wireless energy transmission using electromagnetic alignment
CN103190088A (en) Sensor-aided wireless combining
Galappaththige et al. Link budget analysis for backscatter-based passive IoT
HongZhe et al. Direction dependent antenna modulation using a two element array
AU2016257257B2 (en) System and method for mobile communication through geostationary satellites
JP2006042201A (en) Distance measurement system, distance measuring method and communication equipment
US10116396B1 (en) Millimeter-wave sourceless receiver
US9712220B2 (en) Communication system for spatially-encoded wireless communications
US11698453B2 (en) Environment scanning using a cellular network
CN102611485A (en) 3D space multi-antenna wireless communication system
US10833416B2 (en) Antenna having an omni directional beam pattern with uniform gain over a wide frequency band
US10389023B2 (en) Method and device for transmitting and receiving signal by using multiple beams in wireless communication system
EP4152629A2 (en) Radio-frequency exposure beam management and selection in communications systems
US20230268668A1 (en) Electronic Devices with Polarization Management Capabilities
US20140349598A1 (en) Signal Carrier Modulation Using a Polarization Switchable Antenna
US20240097743A1 (en) Systems and Methods for Controlling Reconfigurable Intelligent Surfaces
US11848747B1 (en) Multiple user access channel
US20240007148A1 (en) Beam Control for Communication via Reflective Surfaces
US20230370863A1 (en) User Equipment Mobility for Communication Using Reflective Surfaces
US20230421241A1 (en) Reflective Devices for Conveying Radio-Frequency Signals
US20230370134A1 (en) Network-Independent Intelligent Reflecting Surface

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY