WO2007102298A1 - Rotary drive apparatus and electron beam irradiation apparatus - Google Patents

Rotary drive apparatus and electron beam irradiation apparatus Download PDF

Info

Publication number
WO2007102298A1
WO2007102298A1 PCT/JP2007/052576 JP2007052576W WO2007102298A1 WO 2007102298 A1 WO2007102298 A1 WO 2007102298A1 JP 2007052576 W JP2007052576 W JP 2007052576W WO 2007102298 A1 WO2007102298 A1 WO 2007102298A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
rotary
beam irradiation
irradiation apparatus
shaft
Prior art date
Application number
PCT/JP2007/052576
Other languages
French (fr)
Japanese (ja)
Inventor
Yasumitsu Wada
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007102298A1 publication Critical patent/WO2007102298A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31793Problems associated with lithography

Definitions

  • the present invention relates to a rotation drive device used when a disk master is manufactured by irradiating a substrate with an electron beam, and an electron beam irradiation device including the same.
  • high-density discs such as CD (Compact Disk) and DVD (Digital Versatile Disk) are manufactured by irradiating a substrate with a laser beam using a disc master production device. As it progresses, it is thought that it will shift to electron beam irradiation.
  • Patent Document 1 discloses an electron beam injection unit (electron beam injection unit) that emits an electron beam and a rotation drive unit that rotationally drives a substrate irradiated with the electron beam of the electron beam emission unit force.
  • An apparatus for manufacturing a master disk having a (rotation drive unit) and a moving means (translation drive unit) for moving the rotation drive unit relative to the electron beam emitting unit is disclosed.
  • the rotation driving means includes a housing (spindle nosing) that rotatably supports a rotating shaft (spindle shaft), an insulating turntable that rotates together with the rotating shaft and mounts a base, and the inside of the turntable.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-36569
  • a rotation driving means having a rotary connector is used.
  • This rotary connector uses a rolling bearing, and mercury is used for the connecting part (contact point) of the rotating part and the fixed part.
  • Friction is generated between the fixed part and the rotating part by the rolling bearing and the contact. As a result, there is a possibility that wear may occur in the portion where friction occurs, and there is room for improvement in terms of durability.
  • the problems to be solved by the present invention include the above-described problems as an example.
  • the invention according to claim 1 is a housing that rotatably supports a rotating shaft, and an insulating property that is provided so as to rotate together with the rotating shaft and mounts a substrate.
  • a rotary transformer for supplying a clamp voltage to the clamp electrode while allowing relative rotation of the clamp electrode and the casing with the rotation of the rotating shaft.
  • the invention described in claim is an electron beam irradiation apparatus for irradiating a substrate with an electron beam, the electron beam emitting means for emitting the electron beam, and the electron beam emitting means from the electron beam emitting means
  • a vacuum chamber that introduces an electron beam into the interior, a housing that rotatably supports a rotating shaft, an insulating turntable that is installed in the vacuum chamber so as to rotate together with the rotating shaft, and on which a substrate is placed.
  • a clamp electrode provided in a turntable, a rotary transformer for supplying a clamp voltage to the clamp electrode while allowing relative rotation between the clamp electrode and the casing accompanying rotation of the rotary shaft; and the rotation Rotation drive means including a motor for rotating the shaft, and movement means for moving the rotation drive means relative to the electron beam emission means.
  • FIG. 1 is a block diagram showing an overall configuration of a master disk manufacturing apparatus 1 according to the present embodiment.
  • the electron beam is used in a vacuum atmosphere because it has a characteristic of being significantly attenuated in the air atmosphere. Accordingly, a turntable or the like on which a substrate for producing an electron gun or an optical disc master is placed in a vacuum atmosphere.
  • a silicon (Si) substrate is used for manufacturing an optical disc master.
  • the silicon substrate is coated with an electron beam resist on its main surface.
  • the substrate coated with the electron beam resist is rotated in the disc master production equipment.
  • An electron beam that is driven to rotate and modulated by an information data signal is irradiated, and a latent image of fine uneven patterns such as pits and groups is formed in a spiral shape.
  • the substrate is removed from the master disk manufacturing apparatus.
  • a conductive film is formed on the main surface of the substrate on which the pattern has been formed, and is subjected to an electroplating process to produce an optical disc master (stamper).
  • a disk master manufacturing apparatus 1 includes a vacuum chamber 2, a rotary drive device 3 that drives a disk substrate disposed in the vacuum chamber 2, and an electron beam attached to the vacuum chamber 2. It has an electron column 4 containing an optical system.
  • An optical disk substrate (hereinafter simply referred to as a disk substrate) 5 for an optical disk master is placed on a turntable 6.
  • the turntable 6 is rotationally driven with respect to the vertical axis of the main surface of the disk substrate by a spindle nosing 11 that rotatably supports a spindle shaft 7 connected thereto.
  • the rotary drive device 3 is installed on a feed stage (hereinafter simply referred to as a stage) 8.
  • the stage 8 is coupled to a feed motor 9 which is a translational drive device via a ball screw 10, and the rotary drive device 3 including the spindle nosing 11 and the turntable 6 is connected in a plane parallel to the main surface of the disk substrate 5. It is possible to translate in a predetermined direction.
  • the turntable 6 is made of an insulating material such as ceramic, and the disk substrate 5 is clamped on the turntable 6 by an electrostatic clamp mechanism described later.
  • a laser length measuring device 15 for detecting the translational position of the main surface of the disk substrate 5 is provided.
  • This laser length measuring device 15 has a light emitting device, a light receiving device, and a detection unit (not shown), and the power of the light emitting device is also emitted, and the laser beam reflected by the reflecting mirror 19 provided on the stage 8 is received by the light receiving device. The light is received, and the position of the main surface of the disk substrate 5 in the translational movement direction is detected by interference of light waves. Then, the detection result is output to the feed motor control circuit 20.
  • the feed motor control circuit 20 calculates an error in the position of the stage 8 based on the input result, and controls the drive of the feed motor 9 so as to correct the error. Further, the calculated stage position error is output to an irradiation position adjustment circuit 33 described later.
  • the vacuum chamber 2 is installed via a vibration isolator (not shown) such as an air damper. Therefore, the transmission of vibration due to external force is suppressed.
  • a vacuum pump 22 is connected to the vacuum chamber 2, and the chamber is evacuated by the vacuum pump 22 so that the inside of the chamber becomes a vacuum atmosphere at a predetermined pressure.
  • an electron beam source 25 In an electron column 4 for emitting an electron beam, an electron beam source 25, a converging lens 26, a beam modulator 27, an aperture 28, a beam deflector 29, and an objective lens 30 are arranged in this order in the beam upstream. It is arranged from the side toward the downstream side.
  • the electron column 4 is attached to the ceiling surface of the vacuum chamber 2 so that an electron beam outlet 31 provided at the tip of the electron column 4 is located in the vacuum chamber 2.
  • the electron beam emission port 31 is arranged to face a position close to the main surface of the disk substrate 5 on the turntable 6.
  • the electron beam source 25 emits an electron beam accelerated to, for example, several lOKeV by a cathode (not shown) to which a high voltage to which a power source power (not shown) is supplied is applied.
  • the converging lens 26 converges the emitted electron beam and guides it to the aperture 28.
  • the beam modulator 27 operates based on the signal from the recording signal generator 32, and performs on / off control of the electron beam. That is, for example, when the beam is turned off, a voltage is applied between the electrodes of the beam modulator 27 to greatly deflect the passing electron beam. As a result, the electron beam is not converged in the aperture hole of the aperture 28 and is prevented from passing through the aperture 28. As a result, the beam can be turned off.
  • the beam deflector 29 applies a voltage to the electrode and deflects the passing electron beam in response to a control signal from the irradiation position adjusting circuit 33. Thereby, the position of the electron beam spot with respect to the disk substrate 5 is controlled.
  • the irradiation position adjustment circuit 33 controls the voltage applied to the electrode of the beam deflector 29 based on the position error of the stage 8 input from the feed motor control circuit 20.
  • FIG. 2 is a cross-sectional view schematically showing the internal structure of the spindle saw and the winging 11 of the disk master production apparatus 1 shown in FIG. 1 in order to explain the overall structure of the rotary drive device 3.
  • the spindle housing 11 houses a spindle shaft 7 that is rotatably supported, a spindle motor 35 for rotating the spindle shaft 7, a rotary transformer 42, a rectifier circuit 43, and the like. .
  • the spindle shaft 7 is rotatably supported by a spindle housing 11 via a gas bearing 36.
  • This gas bearing 36 has a bar Bearing air is supplied from the outside via a rub (not shown), and the air is ejected from the gas bearing 36 into the gap to rotatably support the spindle shaft 7.
  • the air is exhausted out of the vacuum chamber 2 from the spindle housing 11 via a pipe (not shown). Further, one end side (the upper side in FIG.
  • a magnetic member 35A for rotationally driving the spindle shaft 7 is attached to the lower portion of the gas bearing 36 in the spindle shaft 7! /.
  • the spindle motor 35 is composed of the magnetic member 35A and a coil 35B provided around the magnetic member 35A, and rotates the spindle shaft 7 using an electromagnetic force generated by passing a current through the coil 35B. Let As a result, the turntable 6 fixed to one end side of the spindle shaft 7 is rotated.
  • the spindle motor 35 is driven and controlled by the spindle motor control circuit 21 (see FIG. 1).
  • a rotary encoder 39 is provided below the spindle motor 35 on the spindle shaft 7.
  • the rotary encoder 39 includes a light emitting portion and a light receiving portion (not shown), and the spindle shaft 7 is driven by a pulse of light (for example, infrared rays) passing through a slit (not shown) formed in a disk 39a provided on the spindle shaft 7. Detects the rotation angle of.
  • the rotation angle of the spindle shaft 7 detected by the rotary encoder 39 is output to a control device (not shown).
  • a coaxial cable 38 for supplying a high voltage to the disk substrate 5 and the turntable 6 is provided in the spindle shaft 7.
  • the coaxial cable 38 has an inner conductor (core wire) 38A and an outer conductor 38B, and is provided in a through hole 7a formed at the center of the spindle shaft 7.
  • One end side (upper side in FIG. 2) of the inner conductor 38A is connected to an electrostatic clamp electrode 50 provided in the turntable 6, and the other end side (lower side in FIG. 2) is connected to the rectifier circuit 43.
  • one end side of the outer conductor 38B is interposed via the contact member 51. The other end is connected to the rectifier circuit 43.
  • the coaxial cable 38 is supplied via a terminal 41 provided on the spindle housing 11, a rotary transformer 42, and a rectifier circuit 43.
  • the rotary transformer 42 is fixed to the tip of the other end side (lower side in FIG. 2) of the spindle shaft 7 and rotates with a shaft 42A, and a fixed portion 42B fixed to the spindle shaft and the winging 11 side.
  • the rotating part 42A and the fixed part 42B are provided so as to face each other in a non-contact manner.
  • a through hole 42a is provided at a substantially central portion of the rotary transformer 42 so as to be substantially along the shaft axial direction, and the tip end force on the other end side of the spindle shaft 7 is also provided so as to project in the through hole 42a.
  • Earth shaft 7A is inserted.
  • the rectifying circuit 43 is installed on the other end side of the spindle shaft 7 and is connected to the rotating portion 42A of the rotary transformer 42, and is supplied from the AC power supply 40 via the terminal 41 and the rotary transformer 42. Converts AC voltage to DC voltage.
  • an electromagnetic shield member 44 is provided in a portion where an alternating current flows in the spindle motor and the bossing 11, that is, around the rotary transformer 42 and the rectifier circuit 43.
  • the magnetic field generated by the rotary transformer 42 and the rectifier circuit 43 through which an alternating current flows is attenuated, and the magnetic field affects the trajectory of the electron beam irradiated from the electron column 4 to the disk substrate 5 to deteriorate the recording accuracy. It is now possible to prevent the inconvenience.
  • the tip of the earth shaft 7a is in contact with a contact member 52 provided on the spindle knowing 11 side, and slides at the contact portion when the spindle shaft 7 rotates. Yes.
  • the sliding portion 54 is positioned on a substantially axis X of the spindle shaft 7.
  • the contact member 52 is grounded via a terminal 53, whereby the potential of the spindle shaft 7 is grounded. Note that, as described above, the force for supplying a voltage between the disk substrate 5 and the electrostatic clamp electrode 50 from the AC power source 40 via the rectifier circuit 43 and the coaxial cable 38 is because the external conductor 38B and the spindle shaft 7 are electrically connected.
  • the output on the outer conductor 38B side of the rectifier circuit 43 is connected to the disk substrate 5 and grounded.
  • FIG. Figure 3 shows the portion of the electrical circuit of the master disc manufacturing device 1 that is related to the electrostatic clamping function.
  • the AC power supply 40 is connected to a primary coil 55 provided in the fixed portion 42 B of the rotary transformer 42.
  • the secondary coil 56 provided in the rotating part 42 A of the rotary transformer 42 is connected to the rectifier circuit 43.
  • the rotation drive device 3 includes the housing (spindle knowing in this example) 11 that rotatably supports the rotating shaft (spindle shaft in this example) 7 and the rotation.
  • An insulating turntable 6 that is provided so as to rotate together with the shaft 7 and on which a substrate (disk substrate in this example) 5 is placed, and a clamp electrode (electrostatic clamp electrode in this example) provided in the turntable 6 50 and a single transformer 42 for supplying a clamp voltage to the clamp electrode 50 while allowing relative rotation between the clamp electrode 50 and the casing 11 as the rotary shaft 7 rotates. .
  • the substrate 5 placed on the turntable 6 is gripped (clamped) by the electrostatic force of the clamp electrode 50 provided in the turntable 6.
  • a clamp voltage is supplied via the rotary transformer 42 from the casing 11, that is, the fixed side, to the clamp electrode 50 on the rotating body rotating with the rotating shaft 7.
  • the clamp electrode 5 It is possible to improve the durability that does not wear as in the case where power is supplied while allowing relative rotation between 0 and the casing 11 at the contact portion.
  • An electron beam irradiation apparatus (disc original disk manufacturing apparatus in this example) 1 is an electron beam irradiation apparatus 1 that irradiates a substrate 5 with an electron beam, and an electron beam injection unit (1) that emits an electron beam.
  • an electron column) 4 a vacuum chamber 2 (in this example, a vacuum chamber) 2 for introducing an electron beam from the electron beam emitting means 4, and a casing 11 that rotatably supports a rotating shaft 7, Insulating turntable 6 that is provided in vacuum chamber 2 so as to rotate together with rotating shaft 7 and on which substrate 5 is placed, clamp electrode 50 provided in turntable 6, and rotating shaft 7 are rotated.
  • the rotary transformer 42 for supplying a clamp voltage to the clamp electrode 50 while allowing relative rotation between the clamp electrode 50 and the casing 11 and a motor for rotating the rotary shaft 7 (in this example, a spindle motor) ) Characterized in that it includes a rotary drive means (in this example, a rotary drive device) 3 including 35 and a moving means (in this example, a stage) 8 for moving the rotary drive means 3 relative to the electron beam emitting means 4 To
  • the electron beam emitted from the electron beam emitting means 4 is introduced into the vacuum chamber 2 and placed on the turntable 6 of the rotation driving means 3. Is incident on.
  • the rotation driving means 3 is moved relative to the electron beam injection means 4 by the moving means 8, and the turntable 6 is rotated by driving the rotating shaft 7 by the motor 35 in the rotation driving means 3.
  • predetermined drawing is performed on the substrate 5.
  • the substrate 5 is rotated by the electrostatic force of the clamp electrode 50 provided in the turntable 6 and the force that is gripped (clamped) in a state of being placed on the turntable 6.
  • the body side clamp electrode 50 is supplied via the casing 11, that is, the fixed side force, the clamp voltage force, and the single transformer 42.
  • power can be supplied in a non-contact manner while allowing relative rotation between the clamp electrode 50 and the housing 11 by supplying power through a transformer mechanism via electromagnetic induction.
  • the rotary transformer 42 is provided with a primary side fixing portion (in this example, a fixing portion) 42B provided on the casing 11 side and supplied with an AC power supply voltage.
  • the secondary side rotating part (in this example, the rotating part) 42A is provided on the rotary shaft 7 side so as to face the side fixing part 42B in a non-contact manner and is excited by electromagnetic induction from the primary side fixing part 42B. It is characterized by providing.
  • the rotary transformer 42 provided in the rotation driving means 3 is provided on the housing 11 side and supplied with an AC power supply voltage.
  • a rectification unit is provided so as to rotate together with the rotation shaft 7, and rectifies the AC voltage excited by the secondary side rotation unit 42A and supplies a clamp voltage (In this example, a rectifier circuit) 43 is provided.
  • the AC voltage induced in the secondary side rotating unit 42A can be rectified and converted into a direct current based on the AC power supply voltage of the primary side fixing unit 42B, and supplied to the clamp electrode as a clamp voltage.
  • the rotation driving means 3 is provided so as to rotate together with the rotation shaft 7, and rectifies the AC voltage excited by the secondary side rotation unit 42A and clamps it. It is characterized by having rectifying means 43 for supplying.
  • the AC voltage thus generated can be rectified and converted into a DC voltage and supplied to the clamp electrode 50 as a clamp voltage.
  • the sliding portion 54 for grounding the potential of the rotary shaft 7 while allowing the relative rotation between the rotary shaft 7 and the housing 11 is provided on the rotary shaft 7. It is provided on a substantially axial line X.
  • the rotation driving means 3 is a sliding portion for grounding the potential of the rotating shaft 7 while allowing the rotating shaft 7 and the housing 11 to rotate relative to each other. 54 on the axis X of the rotary shaft 7.
  • the rotation driving unit 3 is an electromagnetic shielding unit that attenuates a magnetic field that also generates at least one force of the rotary transformer 42 and the rectifying unit 43 (in this example, an electromagnetic shielding unit). Member) 44.
  • Fig. 4 is a cross-sectional view schematically showing the internal structure of the spindleno / housing 11 in this modification, and corresponds to Fig. 2 described above. The same parts as those in FIG.
  • the earth shaft 7A on which the force at the other end of the spindle shaft 7 also protrudes is connected to a connection member 60 provided on the spindle nosing 11 via a conductive magnetic fluid 61. Yes.
  • the potential of the spindle shaft 7 is designed to be grounded via the earth shaft 7A, the conductive magnetic fluid 61, the connecting member 60, and the spindle housing 11.
  • a conductive fluid connection portion (in this example, conductive material) for grounding the potential of the rotary shaft 7 while allowing the relative rotation between the rotary shaft 7 and the casing 11 is allowed.
  • Magnetic fluid Magnetic fluid
  • the rotating shaft 7 By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the conductive fluid connecting portion 61, it is incident when used in an electron beam irradiation apparatus, for example. It is possible to prevent the electrons from being charged on the substrate 5. In addition, the contact resistance is small and wear can be suppressed as compared with the case where the conductive connection is made through the sliding portion.
  • the rotation driving means 3 is a conductive fluid connection for grounding the potential of the rotating shaft 7 while allowing relative rotation between the rotating shaft 7 and the housing 11. It has the part 61.
  • the rotating shaft 7 By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the conductive fluid connecting portion 61, the electrons incident from the electron beam emitting means 4 are made to the substrate. 5 can be prevented from being charged. In addition, the contact resistance is small and wear can be suppressed compared to the case of conducting conductive connection through a sliding portion.
  • the force that seals the radial gap between the opening 11a of the spindle housing 11 and the spindle shaft 7 with the vacuum seal portion 37 is not limited to this, and the conductive magnetic fluid is used instead of the vacuum seal portion. It is also possible to have a structure that allows the spindle shaft and the spindle housing 11 to be electrically connected while performing the seal using!
  • FIG. 5 is a cross-sectional view schematically showing the internal structure of the spindle nose / housing 11 in this modification.
  • FIG. 3 is a plan view corresponding to FIG. 2 described above. The same parts as those in FIG.
  • a conductive magnetic fluid 62 is provided in the radial gap between the opening 11 a of the spindle housing 11 and the spindle shaft 7.
  • the gap between the opening 1 la and the spindle shaft 7 can be sealed with the conductive magnetic fluid 62, and the airtightness inside the spindle nosing 11 can be maintained.
  • the electric potential of the spindle shaft 7 is grounded via the spindle housing 11 via the conductive magnetic fluid 62.
  • a conductive fluid connection portion (in this example, conductive material) for grounding the potential of the rotary shaft 7 while allowing the relative rotation between the rotary shaft 7 and the casing 11 is allowed.
  • (Magnetic fluid) 62 is provided.
  • the rotation driving means 3 is a conductive fluid connection for grounding the potential of the rotating shaft 7 while allowing the relative rotation between the rotating shaft 7 and the casing 11. It has the part 62, It is characterized by the above-mentioned.
  • the rotating shaft 7 By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the conductive fluid connecting portion 62, the electrons incident from the electron beam emitting means 4 are made to the substrate. 5 can be prevented from being charged. In addition, the contact resistance is small and wear can be suppressed compared to the case of conducting conductive connection through a sliding portion.
  • the rotational drive device 3 in the above embodiment is provided with a spindle nosing 11 that rotatably supports the spindle shaft 7, and an insulating turn on which the disk substrate 5 is placed so as to rotate together with the spindle shaft 7.
  • the electrostatic clamp electrode 50 provided in the table 6, the electrostatic clamp electrode 50 provided in the turntable 6, and the electrostatic clamp electrode 50 while allowing the relative rotation of the electrostatic clamp electrode 50 and the spindle nosing 11 accompanying the rotation of the spindle shaft 7 are allowed.
  • a rotary transformer 42 for supplying a clamp voltage to the motor In the rotary drive device 3 of the present embodiment, the disk substrate 5 placed on the turntable 6 is gripped (clamped) by the electrostatic force of the electrostatic clamp electrode 50 provided in the turntable 6. .
  • a clamp voltage is supplied via a rotary transformer 42 from the spindle housing 11, that is, the fixed side, to the electrostatic clamp electrode 50 on the rotating body rotating together with the spindle shaft 7.
  • the disk master manufacturing apparatus 1 in the above embodiment is a disk master manufacturing apparatus 1 that irradiates a disk substrate 5 with an electron beam, and includes an electron column 4 that emits an electron beam, and the electron column 4.
  • a vacuum chamber 2 for introducing the electron beam into the interior, a spindle housing 11 for rotatably supporting the spindle shaft 7, and the spindle shaft 7 are provided in the vacuum chamber 2 so as to rotate.
  • an electron beam emitted from the electron column 4 is introduced into the vacuum chamber 2 and placed on the turntable 6 of the rotary drive device 3. Is incident on.
  • the rotary drive device 3 is moved relative to the electronic column 4 by the stage 8, and the spindle shaft 7 is driven by the spindle motor 35 in the rotary drive device 3 to rotate the turntable 6. A predetermined drawing is performed.
  • the disk substrate 5 is gripped (clamped) while being placed on the turntable 6 by the electrostatic force of the electrostatic clamp electrode 50 provided in the turntable 6 Spin
  • a clamping voltage from the spindle nosing 11, that is, the fixed side clamp, is supplied to the electrostatic clamp electrode 50 on the rotating body rotating together with the dollar shaft 7 through the rotary transformer 42.
  • power can be supplied in a non-contact manner while allowing relative rotation between the electrostatic clamp electrode 50 and the spindle housing 11 by supplying power with a transformer mechanism via electromagnetic induction.
  • FIG. 1 is a block diagram showing an overall configuration of a master disc manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the internal configuration of the spindle saw and ousting shown in FIG.
  • FIG. 3 is a circuit diagram in which a portion related to the electrostatic clamping function is extracted from the electric circuit of the master disk manufacturing apparatus.
  • FIG. 4 is a cross-sectional view schematically showing an internal configuration of a spindle housing in a modified example in which a ground shaft and a casing are electrically connected by a conductive magnetic fluid.
  • FIG. 5 is a cross-sectional view schematically showing an internal configuration of a spindle housing in a modification using a conductive magnetic fluid instead of a vacuum seal portion.
  • a Rotating part (secondary rotating part)
  • Rectifier circuit (rectifier means)
  • Electrostatic clamp electrode (clamp electrode) Conductive magnetic fluid (conductive fluid connection) Conductive magnetic fluid (conductive fluid connection)

Abstract

[PROBLEMS] To improve durability by supplying power in a non-contact manner from a fixed side to a rotating side, by using a transformer mechanism through electromagnetic induction. [MEANS FOR SOLVING PROBLEMS] A clamp electrode, which is arranged in a turntable and rotates with a spindle shaft is supplied with a clamp voltage from a housing side through a rotary transformer, and a substrate placed on a turntable is clamped by static electricity of the clamp electrode. Thus, power can be supplied in the non-contact manner by supplying power through the transformer mechanism through electromagnetic induction, abrasion is not caused, and durability is improved.

Description

明 細 書  Specification
回転駆動装置及び電子ビーム照射装置  Rotation drive device and electron beam irradiation device
技術分野  Technical field
[0001] 本発明は、基板に電子ビームを照射してディスク原盤を製造する際等に用いる回 転駆動装置及びこれを備えた電子ビーム照射装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a rotation drive device used when a disk master is manufactured by irradiating a substrate with an electron beam, and an electron beam irradiation device including the same.
背景技術  Background art
[0002] 近年、大容量の画像 ·音声データ、デジタルデータを記録可能な種々の記録媒体 の開発がなされている。例えば、 CD (Compact Disk)や DVD (Digital Versatile Disk )等の高密度ディスクは、ディスク原盤製造装置により基板にレーザビームを照射す ることにより製造されているが、今後、記録の高密度化が進むにつれ、電子ビームの 照射へ移行すると考えられている。  In recent years, various recording media capable of recording large-capacity image / audio data and digital data have been developed. For example, high-density discs such as CD (Compact Disk) and DVD (Digital Versatile Disk) are manufactured by irradiating a substrate with a laser beam using a disc master production device. As it progresses, it is thought that it will shift to electron beam irradiation.
[0003] 例えば、特許文献 1には、電子ビームを射出する電子ビーム射出手段 (電子ビーム 射出部)と、この電子ビーム射出部力 の電子ビームが照射される基板を回転駆動さ せる回転駆動手段(回転駆動部)と、この回転駆動部を電子ビーム射出部に対し相 対移動させる移動手段 (並進駆動部)とを有するディスク原盤製造装置が開示されて いる。上記回転駆動手段は、回転軸 (スピンドルシャフト)を回転可能に支持する筐 体 (スピンドルノヽウジング)と、回転軸とともに回転し、基盤を載置する絶縁性のターン テーブルと、このターンテーブル内に設けたクランプ電極 (チヤッキング電極)と、回転 軸の回転に伴うクランプ電極と筐体との相対回転を許容しつつ当該クランプ電極にク ランプ電圧を給電するためのロータリコネクタと、回転軸を回転駆動するモータとを有 している。  [0003] For example, Patent Document 1 discloses an electron beam injection unit (electron beam injection unit) that emits an electron beam and a rotation drive unit that rotationally drives a substrate irradiated with the electron beam of the electron beam emission unit force. An apparatus for manufacturing a master disk having a (rotation drive unit) and a moving means (translation drive unit) for moving the rotation drive unit relative to the electron beam emitting unit is disclosed. The rotation driving means includes a housing (spindle nosing) that rotatably supports a rotating shaft (spindle shaft), an insulating turntable that rotates together with the rotating shaft and mounts a base, and the inside of the turntable. The provided clamp electrode (chucking electrode), a rotary connector for supplying a clamp voltage to the clamp electrode while allowing relative rotation between the clamp electrode and the casing as the rotary shaft rotates, and the rotary shaft being driven to rotate Motor.
[0004] 特許文献 1 :特開 2003— 36569号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-36569
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記従来技術では、ロータリコネクタを有する回転駆動手段を用いている。このロー タリコネクタには、転がり軸受けが用いられており、その回転部及び固定部の接続部( 接点)には水銀が用いられている。このような構成であるロータリコネクタを用いると、 転がり軸受け及び接点によって固定部と回転部間に摩擦が生じる。その結果、摩擦 が生じる部分に摩耗が発生する可能性があり、耐久性の点で改善の余地があった。 [0005] In the above-described prior art, a rotation driving means having a rotary connector is used. This rotary connector uses a rolling bearing, and mercury is used for the connecting part (contact point) of the rotating part and the fixed part. When using a rotary connector having such a configuration, Friction is generated between the fixed part and the rotating part by the rolling bearing and the contact. As a result, there is a possibility that wear may occur in the portion where friction occurs, and there is room for improvement in terms of durability.
[0006] 本発明が解決しょうとする課題には、上記した問題が一例として挙げられる。  [0006] The problems to be solved by the present invention include the above-described problems as an example.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、請求項 1記載の発明は、回転軸を回転可能に支持す る筐体と、前記回転軸とともに回転するように設けられ、基板を載置する絶縁性のタ ーンテーブルと、このターンテーブル内に設けたクランプ電極と、前記回転軸の回転 に伴う前記クランプ電極と前記筐体との相対回転を許容しつつ当該クランプ電極にク ランプ電圧を給電するためのロータリトランスとを有する。 [0007] In order to solve the above-described problem, the invention according to claim 1 is a housing that rotatably supports a rotating shaft, and an insulating property that is provided so as to rotate together with the rotating shaft and mounts a substrate. A turntable, a clamp electrode provided in the turntable, and a power supply for supplying a clamp voltage to the clamp electrode while allowing relative rotation of the clamp electrode and the casing with the rotation of the rotating shaft. And a rotary transformer.
上記課題を解決するために、請求項記載の発明は、電子ビームを基板に照射する 電子ビーム照射装置であって、前記電子ビームを射出する電子ビーム射出手段と、 この電子ビーム射出手段からの前記電子ビームを内部へ導入する真空室と、回転軸 を回転可能に支持する筐体、前記回転軸とともに回転するように前記真空室内に設 けられ、基板を載置する絶縁性のターンテーブル、このターンテーブル内に設けたク ランプ電極、前記回転軸の回転に伴う前記クランプ電極と前記筐体との相対回転を 許容しつつ当該クランプ電極にクランプ電圧を給電するためのロータリトランス、及び 、前記回転軸を回転駆動するモータを含む回転駆動手段と、この回転駆動手段を前 記電子ビーム射出手段に対し相対移動させる移動手段とを有する。  In order to solve the above-mentioned problem, the invention described in claim is an electron beam irradiation apparatus for irradiating a substrate with an electron beam, the electron beam emitting means for emitting the electron beam, and the electron beam emitting means from the electron beam emitting means A vacuum chamber that introduces an electron beam into the interior, a housing that rotatably supports a rotating shaft, an insulating turntable that is installed in the vacuum chamber so as to rotate together with the rotating shaft, and on which a substrate is placed. A clamp electrode provided in a turntable, a rotary transformer for supplying a clamp voltage to the clamp electrode while allowing relative rotation between the clamp electrode and the casing accompanying rotation of the rotary shaft; and the rotation Rotation drive means including a motor for rotating the shaft, and movement means for moving the rotation drive means relative to the electron beam emission means.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明の一実施の形態を図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0009] 図 1は、本実施形態のディスク原盤製造装置 1の全体構成を示すブロック図である FIG. 1 is a block diagram showing an overall configuration of a master disk manufacturing apparatus 1 according to the present embodiment.
[0010] まず、光ディスクの原盤の製造工程の概要について以下に説明する。電子ビーム は、大気雰囲気中では著しく減衰する特性を有していることから、真空雰囲気中で使 用される。従って、電子銃や光ディスク原盤を作製するための基板を載置したターン テーブル等は真空雰囲気中に配される。光ディスク原盤の製造には、例えば、シリコ ン(Si)基板が用いられる。シリコン基板は、その主面上に電子線用レジストが塗布さ れる。電子線用レジストが塗布された基板は、ディスク原盤製造装置内において、回 転駆動されるとともに情報データ信号によって変調された電子ビームが照射され、ピ ット、グループなどの微細凹凸パターンの潜像が螺旋状に形成される。 First, an outline of a manufacturing process of an optical disc master will be described below. The electron beam is used in a vacuum atmosphere because it has a characteristic of being significantly attenuated in the air atmosphere. Accordingly, a turntable or the like on which a substrate for producing an electron gun or an optical disc master is placed in a vacuum atmosphere. For example, a silicon (Si) substrate is used for manufacturing an optical disc master. The silicon substrate is coated with an electron beam resist on its main surface. The substrate coated with the electron beam resist is rotated in the disc master production equipment. An electron beam that is driven to rotate and modulated by an information data signal is irradiated, and a latent image of fine uneven patterns such as pits and groups is formed in a spiral shape.
[0011] 当該基板は、電子ビーム露光が終了した後、ディスク原盤製造装置力 取り出され [0011] After the electron beam exposure is completed, the substrate is removed from the master disk manufacturing apparatus.
、現像処理が施される。次に、パターユング及びレジスト除去の処理が行われ、基板 上に微細な凹凸パターンが形成される。パターン形成された基板の主面には導電膜 が形成され、電铸処理が施されて光ディスク原盤 (スタンパ)が製造される。 Development processing is performed. Next, patterning and resist removal are performed to form a fine uneven pattern on the substrate. A conductive film is formed on the main surface of the substrate on which the pattern has been formed, and is subjected to an electroplating process to produce an optical disc master (stamper).
[0012] 図 1に示すように、ディスク原盤製造装置 1は、真空チャンバ 2、真空チャンバ 2内に 配されたディスク基板を駆動する回転駆動装置 3、及び真空チャンバ 2に取り付けら れた電子ビーム光学系を含む電子カラム 4を有して 、る。光ディスク原盤用の光ディ スク基板 (以下、単にディスク基板と称する) 5は、ターンテーブル 6上に載置されてい る。ターンテーブル 6は、これに接続されたスピンドルシャフト 7を回転可能に支持す るスピンドルノヽウジング 11によってディスク基板主面の垂直軸に関して回転駆動され る。回転駆動装置 3は送りステージ (以下、単にステージと称する) 8上に設置されて いる。このステージ 8は、並進駆動装置である送りモータ 9にボールネジ 10を介して 結合され、スピンドルノヽウジング 11及びターンテーブル 6を含む回転駆動装置 3をデ イスク基板 5の主面と平行な面内の所定方向に並進移動することが可能となっている 。なお、ターンテーブル 6は、例えばセラミック等の絶縁材料カゝらなり、ディスク基板 5 は後述する静電クランプ機構によりターンテーブル 6上にクランプされる。  As shown in FIG. 1, a disk master manufacturing apparatus 1 includes a vacuum chamber 2, a rotary drive device 3 that drives a disk substrate disposed in the vacuum chamber 2, and an electron beam attached to the vacuum chamber 2. It has an electron column 4 containing an optical system. An optical disk substrate (hereinafter simply referred to as a disk substrate) 5 for an optical disk master is placed on a turntable 6. The turntable 6 is rotationally driven with respect to the vertical axis of the main surface of the disk substrate by a spindle nosing 11 that rotatably supports a spindle shaft 7 connected thereto. The rotary drive device 3 is installed on a feed stage (hereinafter simply referred to as a stage) 8. The stage 8 is coupled to a feed motor 9 which is a translational drive device via a ball screw 10, and the rotary drive device 3 including the spindle nosing 11 and the turntable 6 is connected in a plane parallel to the main surface of the disk substrate 5. It is possible to translate in a predetermined direction. The turntable 6 is made of an insulating material such as ceramic, and the disk substrate 5 is clamped on the turntable 6 by an electrostatic clamp mechanism described later.
[0013] 真空チャンバ 2には(又はその外部でもよい)、ディスク基板 5の主面の並進移動位 置を検出するためのレーザ測長器 15が設けられている。このレーザ測長器 15は、図 示しない発光器、受光器及び検出部を有しており、発光器力も射出され、ステージ 8 に設けられた反射鏡 19で反射されたレーザビームを受光器で受光し、光波の干渉 によりディスク基板 5の主面の並進移動方向における位置を検出する。そして、この 検出結果を送りモータ制御回路 20に出力する。送りモータ制御回路 20は、この入力 された結果に基づきステージ 8の位置の誤差を算出し、その誤差を修正するように送 りモータ 9の駆動を制御する。また、算出したステージ位置の誤差を後述する照射位 置調整回路 33に出力する。  In the vacuum chamber 2 (or outside thereof), a laser length measuring device 15 for detecting the translational position of the main surface of the disk substrate 5 is provided. This laser length measuring device 15 has a light emitting device, a light receiving device, and a detection unit (not shown), and the power of the light emitting device is also emitted, and the laser beam reflected by the reflecting mirror 19 provided on the stage 8 is received by the light receiving device. The light is received, and the position of the main surface of the disk substrate 5 in the translational movement direction is detected by interference of light waves. Then, the detection result is output to the feed motor control circuit 20. The feed motor control circuit 20 calculates an error in the position of the stage 8 based on the input result, and controls the drive of the feed motor 9 so as to correct the error. Further, the calculated stage position error is output to an irradiation position adjustment circuit 33 described later.
[0014] なお、真空チャンバ 2は、エアーダンバなどの防振台(図示しない)を介して設置さ れ、外部力もの振動の伝達が抑制されている。また、この真空チャンバ 2には真空ポ ンプ 22が接続されており、この真空ポンプ 22によってチャンバ力 排気することによ りチャンバ内部が所定圧力の真空雰囲気となるように設定されて 、る。 [0014] The vacuum chamber 2 is installed via a vibration isolator (not shown) such as an air damper. Therefore, the transmission of vibration due to external force is suppressed. A vacuum pump 22 is connected to the vacuum chamber 2, and the chamber is evacuated by the vacuum pump 22 so that the inside of the chamber becomes a vacuum atmosphere at a predetermined pressure.
[0015] 電子ビームを射出するための電子カラム 4内には、電子ビーム源 25、収束レンズ 2 6、ビーム変調器 27、アパーチャ 28、ビーム偏向器 29、及び対物レンズ 30がこの順 でビーム上流側から下流側に向けて配置されている。この電子カラム 4は、その先端 に設けられた電子ビーム射出口 31が真空チャンバ 2内に位置するように、真空チヤ ンバ 2の天井面に取り付けられている。このとき、電子ビーム射出口 31は、ターンテ 一ブル 6上のディスク基板 5の主面に近接した位置に対向して配置されている。  [0015] In an electron column 4 for emitting an electron beam, an electron beam source 25, a converging lens 26, a beam modulator 27, an aperture 28, a beam deflector 29, and an objective lens 30 are arranged in this order in the beam upstream. It is arranged from the side toward the downstream side. The electron column 4 is attached to the ceiling surface of the vacuum chamber 2 so that an electron beam outlet 31 provided at the tip of the electron column 4 is located in the vacuum chamber 2. At this time, the electron beam emission port 31 is arranged to face a position close to the main surface of the disk substrate 5 on the turntable 6.
[0016] 電子ビーム源 25は、図示しない電源力も供給される高電圧が印加される陰極(図 示せず)により、例えば、数 lOKeVに加速された電子ビームを射出する。収束レンズ 26は、射出された電子ビームを収束してアパーチャ 28へと導く。ビーム変調器 27は 、記録信号発生器 32からの信号に基づいて動作し、電子ビームのオン'オフ制御を 行う。すなわち、例えばビームをオフとする場合には、ビーム変調器 27の電極間に電 圧を印加して通過する電子ビームを大きく偏向させる。これにより、電子ビームはァパ 一チヤ 28の絞り孔に収束されない状態となってアパーチャ 28を通過するのを阻止さ れ、その結果、ビームオフ状態とすることができる。  [0016] The electron beam source 25 emits an electron beam accelerated to, for example, several lOKeV by a cathode (not shown) to which a high voltage to which a power source power (not shown) is supplied is applied. The converging lens 26 converges the emitted electron beam and guides it to the aperture 28. The beam modulator 27 operates based on the signal from the recording signal generator 32, and performs on / off control of the electron beam. That is, for example, when the beam is turned off, a voltage is applied between the electrodes of the beam modulator 27 to greatly deflect the passing electron beam. As a result, the electron beam is not converged in the aperture hole of the aperture 28 and is prevented from passing through the aperture 28. As a result, the beam can be turned off.
[0017] ビーム偏向器 29は、照射位置調整回路 33からの制御信号に応答し、電極に電圧 を印加して通過する電子ビームを偏向させる。これにより、ディスク基板 5に対する電 子ビームスポットの位置制御を行う。なお、前述したように、照射位置調整回路 33は 、上記送りモータ制御回路 20から入力されるステージ 8の位置誤差に基づき、ビーム 偏向器 29の電極に印加する電圧の制御を行う。  The beam deflector 29 applies a voltage to the electrode and deflects the passing electron beam in response to a control signal from the irradiation position adjusting circuit 33. Thereby, the position of the electron beam spot with respect to the disk substrate 5 is controlled. As described above, the irradiation position adjustment circuit 33 controls the voltage applied to the electrode of the beam deflector 29 based on the position error of the stage 8 input from the feed motor control circuit 20.
[0018] 図 2は回転駆動装置 3の全体構成を説明するために、図 1に示すディスク原盤製造 装置 1のスピンドルノ、ウジング 11の内部の構成を模式的に示す断面図である。  FIG. 2 is a cross-sectional view schematically showing the internal structure of the spindle saw and the winging 11 of the disk master production apparatus 1 shown in FIG. 1 in order to explain the overall structure of the rotary drive device 3.
[0019] スピンドルハウジング 11の内部には、回転可能に支持されたスピンドルシャフト 7、 このスピンドルシャフト 7を回転駆動するためのスピンドルモータ 35、ロータリトランス 4 2、及び整流回路 43等が収容されている。スピンドルシャフト 7は、スピンドルハウジン グ 11に気体軸受 36を介して回転自在に支持されている。この気体軸受 36には、バ ルブ(図示せず)を介して外部から軸受用のエアーが供給され、当該エアーが気体 軸受 36から空隙部に噴出しスピンドルシャフト 7を回転自在に支持する。そして、この エアーは、スピンドルハウジング 11からパイプ(図示せず)を介して真空チャンバ 2外 に排気されるようになっている。また、スピンドルシャフト 7の一端側(図 2中上側)はス ピンドルノヽウジング 11の開口部 11aを貫通しており、その先端部にはターンテーブル 6が固定されている。なお、上記開口部 11aとスピンドルシャフト 7との径方向の間隙 は真空シール部 37によってシールされており、これによりスピンドルハウジング 11内 部の気密性が保持されるようになっている。なお、上記真空シール部の代わりに差動 排気シール部を用いてもょ 、。 The spindle housing 11 houses a spindle shaft 7 that is rotatably supported, a spindle motor 35 for rotating the spindle shaft 7, a rotary transformer 42, a rectifier circuit 43, and the like. . The spindle shaft 7 is rotatably supported by a spindle housing 11 via a gas bearing 36. This gas bearing 36 has a bar Bearing air is supplied from the outside via a rub (not shown), and the air is ejected from the gas bearing 36 into the gap to rotatably support the spindle shaft 7. The air is exhausted out of the vacuum chamber 2 from the spindle housing 11 via a pipe (not shown). Further, one end side (the upper side in FIG. 2) of the spindle shaft 7 passes through the opening 11a of the spindle nosing 11 and the turntable 6 is fixed to the tip thereof. The radial gap between the opening 11a and the spindle shaft 7 is sealed by a vacuum seal portion 37, whereby the airtightness inside the spindle housing 11 is maintained. Note that a differential exhaust seal can be used instead of the vacuum seal.
[0020] スピンドルシャフト 7における気体軸受 36の下方部には、スピンドルシャフト 7を回転 駆動するための磁性部材 35Aが取り付けられて!/、る。前記のスピンドルモータ 35は 、上記磁性部材 35A及びその周囲に設けられたコイル 35B等カゝら構成されており、 コイル 35Bに電流を流すことにより発生した電磁力を利用してスピンドルシャフト 7を 回転させる。その結果、スピンドルシャフト 7の一端側に固定されたターンテーブル 6 が回転される。なお、スピンドルモータ 35は、スピンドルモータ制御回路 21により駆 動制御される(図 1参照)。  [0020] A magnetic member 35A for rotationally driving the spindle shaft 7 is attached to the lower portion of the gas bearing 36 in the spindle shaft 7! /. The spindle motor 35 is composed of the magnetic member 35A and a coil 35B provided around the magnetic member 35A, and rotates the spindle shaft 7 using an electromagnetic force generated by passing a current through the coil 35B. Let As a result, the turntable 6 fixed to one end side of the spindle shaft 7 is rotated. The spindle motor 35 is driven and controlled by the spindle motor control circuit 21 (see FIG. 1).
[0021] また、スピンドルシャフト 7における上記スピンドルモータ 35の下方部には、ロータリ 一エンコーダ 39が設けられている。このロータリーエンコーダ 39は、図示しない発光 部と受光部を備えており、スピンドルシャフト 7に設けた円盤 39aに形成されたスリット (図示せず)を通過する光(例えば赤外線)のパルスによりスピンドルシャフト 7の回転 角度を検出する。このロータリーエンコーダ 39により検出されたスピンドルシャフト 7の 回転角度は、図示しない制御装置等に出力される。  A rotary encoder 39 is provided below the spindle motor 35 on the spindle shaft 7. The rotary encoder 39 includes a light emitting portion and a light receiving portion (not shown), and the spindle shaft 7 is driven by a pulse of light (for example, infrared rays) passing through a slit (not shown) formed in a disk 39a provided on the spindle shaft 7. Detects the rotation angle of. The rotation angle of the spindle shaft 7 detected by the rotary encoder 39 is output to a control device (not shown).
[0022] 一方、スピンドルシャフト 7内には、ディスク基板 5及びターンテーブル 6に高電圧を 供給するための同軸ケーブル 38が設けられている。この同軸ケーブル 38は、内部導 体 (芯線) 38A及び外部導体 38Bを有しており、スピンドルシャフト 7の中心に形成さ れた貫通孔 7a内に設けられている。内部導体 38Aの一端側(図 2中上側)はターン テーブル 6内に設けられた静電クランプ電極 50に接続され、他端側(図 2中下側)は 整流回路 43に接続されている。また、外部導体 38Bの一端側は接点部材 51を介し てディスク基板 5に接続され、他端側は整流回路 43に接続されている。当該同軸ケ 一ブル 38には、交流電源 40からの供給電圧力 スピンドルハウジング 11に設けられ た端子 41、 ロータリトランス 42、及び整流回路 43を介して供給される。 On the other hand, a coaxial cable 38 for supplying a high voltage to the disk substrate 5 and the turntable 6 is provided in the spindle shaft 7. The coaxial cable 38 has an inner conductor (core wire) 38A and an outer conductor 38B, and is provided in a through hole 7a formed at the center of the spindle shaft 7. One end side (upper side in FIG. 2) of the inner conductor 38A is connected to an electrostatic clamp electrode 50 provided in the turntable 6, and the other end side (lower side in FIG. 2) is connected to the rectifier circuit 43. Also, one end side of the outer conductor 38B is interposed via the contact member 51. The other end is connected to the rectifier circuit 43. The coaxial cable 38 is supplied via a terminal 41 provided on the spindle housing 11, a rotary transformer 42, and a rectifier circuit 43.
[0023] ロータリトランス 42は、スピンドルシャフト 7の他端側(図 2中下側)先端に固定されシ ャフトと共に回転する回転部 42Aと、スピンドルノ、ウジング 11側に固定された固定部 42Bとを有する。これら回転部 42Aと固定部 42Bとは、非接触に対向配置するように 設けられている。このロータリトランス 42の略中心部にはシャフト軸方向に略沿うよう に貫通孔 42aが設けられており、この貫通孔 42a内にスピンドルシャフト 7の他端側先 端力も突設するように設けられたアースシャフト 7Aが挿通されている。一方、整流回 路 43は、スピンドルシャフト 7の他端側に内設されており、上記ロータリトランス 42の 回転部 42Aと接続され、交流電源 40から端子 41、 ロータリトランス 42を介して供給さ れた交流電圧を直流電圧に変換する。  [0023] The rotary transformer 42 is fixed to the tip of the other end side (lower side in FIG. 2) of the spindle shaft 7 and rotates with a shaft 42A, and a fixed portion 42B fixed to the spindle shaft and the winging 11 side. Have The rotating part 42A and the fixed part 42B are provided so as to face each other in a non-contact manner. A through hole 42a is provided at a substantially central portion of the rotary transformer 42 so as to be substantially along the shaft axial direction, and the tip end force on the other end side of the spindle shaft 7 is also provided so as to project in the through hole 42a. Earth shaft 7A is inserted. On the other hand, the rectifying circuit 43 is installed on the other end side of the spindle shaft 7 and is connected to the rotating portion 42A of the rotary transformer 42, and is supplied from the AC power supply 40 via the terminal 41 and the rotary transformer 42. Converts AC voltage to DC voltage.
[0024] なお、スピンドルノ、ウジング 11内における交流電流が流れる部分、すなわちロータ リトランス 42と整流回路 43の周囲には、電磁シールド部材 44が設けられている。これ により、交流電流が流れるロータリトランス 42及び整流回路 43から発生する磁界を減 衰させ、当該磁界が電子カラム 4からディスク基板 5に照射される電子ビームの軌道 に影響を与えて記録精度の悪ィ匕等を招くのを防止できるようになって 、る。  Note that an electromagnetic shield member 44 is provided in a portion where an alternating current flows in the spindle motor and the bossing 11, that is, around the rotary transformer 42 and the rectifier circuit 43. As a result, the magnetic field generated by the rotary transformer 42 and the rectifier circuit 43 through which an alternating current flows is attenuated, and the magnetic field affects the trajectory of the electron beam irradiated from the electron column 4 to the disk substrate 5 to deteriorate the recording accuracy. It is now possible to prevent the inconvenience.
[0025] 上記アースシャフト 7aは、その先端がスピンドルノヽウジング 11側に設けられた接点 部材 52に当接されており、スピンドルシャフト 7の回転時には当該当接部分で摺動す るようになっている。この摺動部 54は、スピンドルシャフト 7の略軸心線 X上に位置す るようになっている。上記接点部材 52は、端子 53を介して接地されており、これにより スピンドルシャフト 7の電位が接地されるようになっている。なお、前述したように交流 電源 40から整流回路 43及び同軸ケーブル 38を介してディスク基板 5と静電クランプ 電極 50間に電圧が供給される力 外部導体 38Bとスピンドルシャフト 7が導通してい るため、整流回路 43の外部導体 38B側の出力はディスク基板 5に導通するとともに 接地されるようになって 、る。  [0025] The tip of the earth shaft 7a is in contact with a contact member 52 provided on the spindle knowing 11 side, and slides at the contact portion when the spindle shaft 7 rotates. Yes. The sliding portion 54 is positioned on a substantially axis X of the spindle shaft 7. The contact member 52 is grounded via a terminal 53, whereby the potential of the spindle shaft 7 is grounded. Note that, as described above, the force for supplying a voltage between the disk substrate 5 and the electrostatic clamp electrode 50 from the AC power source 40 via the rectifier circuit 43 and the coaxial cable 38 is because the external conductor 38B and the spindle shaft 7 are electrically connected. The output on the outer conductor 38B side of the rectifier circuit 43 is connected to the disk substrate 5 and grounded.
[0026] 次に、図 3を参照して、ディスク基板 5の静電クランプ機構について説明する。図 3 は、ディスク原盤製造装置 1の電気回路のうち、静電クランプ機能に関わる部分を抽 出した回路図である。 Next, the electrostatic clamping mechanism of the disk substrate 5 will be described with reference to FIG. Figure 3 shows the portion of the electrical circuit of the master disc manufacturing device 1 that is related to the electrostatic clamping function. FIG.
[0027] この図に示すように、交流電源 40は、ロータリトランス 42の前記固定部 42Bに設け られた一次側コイル 55に接続されている。一方、ロータリトランス 42の前記回転部 42 Aに設けられた二次側コイル 56は整流回路 43に接続されている。このような構成に より、交流電源 40のスィッチ 57を ONにすると、一次側コイル 55に流れる一次電流に より二次側コイル 56が励磁され、当該電磁誘導により誘導電流が発生する。この誘 起された誘導電流は整流回路 43で整流され、これにより発生した直流電圧が静電ク ランプ電極 50とディスク基板 5との間に印加される。その結果、静電クランプ電極 50 とディスク基板 5との間に静電力が発生し、この静電力によりディスク基板 5をターンテ 一ブル 6に吸着させてクランプできるようになつている。なお、交流電源 40のスィッチ 57を OFFとすると、静電クランプ電極 50とディスク基板 5との間に帯電した電荷は整 流回路 43の並列抵抗 58に電流となって流れるため、一定時間経過後、静電クラン プ電極 50とディスク基板 5とは同電位となり、吸着力が消滅するようになっている。な お、この図 3では整流回路 43として代表的な回路を一例として示したが、これに限ら れず、他の方式の整流回路を用いてもよい。  As shown in this figure, the AC power supply 40 is connected to a primary coil 55 provided in the fixed portion 42 B of the rotary transformer 42. On the other hand, the secondary coil 56 provided in the rotating part 42 A of the rotary transformer 42 is connected to the rectifier circuit 43. With such a configuration, when the switch 57 of the AC power supply 40 is turned on, the secondary coil 56 is excited by the primary current flowing through the primary coil 55, and an induced current is generated by the electromagnetic induction. This induced current is rectified by the rectifier circuit 43, and a DC voltage generated thereby is applied between the electrostatic clamp electrode 50 and the disk substrate 5. As a result, an electrostatic force is generated between the electrostatic clamp electrode 50 and the disk substrate 5, and the disk substrate 5 is attracted to the turntable 6 by this electrostatic force and can be clamped. If the switch 57 of the AC power supply 40 is turned OFF, the charged charge between the electrostatic clamp electrode 50 and the disk substrate 5 flows as a current through the parallel resistor 58 of the rectifier circuit 43, and therefore after a certain time has elapsed. The electrostatic clamp electrode 50 and the disk substrate 5 are at the same potential, and the attractive force disappears. In FIG. 3, a typical circuit is shown as an example of the rectifier circuit 43. However, the present invention is not limited to this, and other types of rectifier circuits may be used.
[0028] 以上説明したように、本実施形態における回転駆動装置 3は、回転軸 (この例では スピンドルシャフト) 7を回転可能に支持する筐体 (この例ではスピンドルノヽウジング) 1 1と、回転軸 7とともに回転するように設けられ、基板 (この例ではディスク基板) 5を載 置する絶縁性のターンテーブル 6と、このターンテーブル 6内に設けたクランプ電極( この例では静電クランプ電極) 50と、回転軸 7の回転に伴うクランプ電極 50と筐体 11 との相対回転を許容しつつ当該クランプ電極 50にクランプ電圧を給電するための口 一タリトランス 42とを有することを特徴とする。  [0028] As described above, the rotation drive device 3 according to the present embodiment includes the housing (spindle knowing in this example) 11 that rotatably supports the rotating shaft (spindle shaft in this example) 7 and the rotation. An insulating turntable 6 that is provided so as to rotate together with the shaft 7 and on which a substrate (disk substrate in this example) 5 is placed, and a clamp electrode (electrostatic clamp electrode in this example) provided in the turntable 6 50 and a single transformer 42 for supplying a clamp voltage to the clamp electrode 50 while allowing relative rotation between the clamp electrode 50 and the casing 11 as the rotary shaft 7 rotates. .
[0029] 本実施形態の回転駆動装置 3においては、ターンテーブル 6内に設けたクランプ電 極 50の静電力によって、ターンテーブル 6に載置された基板 5が把持 (クランプ)され る。そして、回転軸 7とともに回転する回転体側のクランプ電極 50に対し、筐体 11す なわち固定側からクランプ電圧をロータリトランス 42を介して供給する。このように、電 磁誘導を介したトランス機構により給電することで、クランプ電極 50と筐体 11との相対 回転を許容しつつ、非接触で電力を供給することができる。この結果、クランプ電極 5 0と筐体 11との相対回転を接触部分で許容して給電する場合のように摩耗すること がなぐ耐久性を向上することができる。 In the rotary drive device 3 of the present embodiment, the substrate 5 placed on the turntable 6 is gripped (clamped) by the electrostatic force of the clamp electrode 50 provided in the turntable 6. Then, a clamp voltage is supplied via the rotary transformer 42 from the casing 11, that is, the fixed side, to the clamp electrode 50 on the rotating body rotating with the rotating shaft 7. In this way, power can be supplied in a non-contact manner while allowing relative rotation between the clamp electrode 50 and the housing 11 by supplying power with a transformer mechanism via electromagnetic induction. As a result, the clamp electrode 5 It is possible to improve the durability that does not wear as in the case where power is supplied while allowing relative rotation between 0 and the casing 11 at the contact portion.
[0030] 本実施形態における電子ビーム照射装置 (この例ではディスク原盤製造装置) 1は 、電子ビームを基板 5に照射する電子ビーム照射装置 1であって、電子ビームを射出 する電子ビーム射出手段 (この例では電子カラム) 4と、この電子ビーム射出手段 4か らの電子ビームを内部へ導入する真空室 (この例では真空チャンバ) 2と、回転軸 7を 回転可能に支持する筐体 11と、回転軸 7とともに回転するように真空室 2内に設けら れ、基板 5を載置する絶縁性のターンテーブル 6、このターンテーブル 6内に設けたク ランプ電極 50、回転軸 7の回転に伴うクランプ電極 50と筐体 11との相対回転を許容 しつつ当該クランプ電極 50にクランプ電圧を給電するためのロータリトランス 42、及 び、回転軸 7を回転駆動するモータ (この例ではスピンドルモータ) 35を含む回転駆 動手段 (この例では回転駆動装置) 3と、この回転駆動手段 3を電子ビーム射出手段 4に対し相対移動させる移動手段 (この例ではステージ) 8とを有することを特徴とする  [0030] An electron beam irradiation apparatus (disc original disk manufacturing apparatus in this example) 1 according to the present embodiment is an electron beam irradiation apparatus 1 that irradiates a substrate 5 with an electron beam, and an electron beam injection unit (1) that emits an electron beam. In this example, an electron column) 4, a vacuum chamber 2 (in this example, a vacuum chamber) 2 for introducing an electron beam from the electron beam emitting means 4, and a casing 11 that rotatably supports a rotating shaft 7, Insulating turntable 6 that is provided in vacuum chamber 2 so as to rotate together with rotating shaft 7 and on which substrate 5 is placed, clamp electrode 50 provided in turntable 6, and rotating shaft 7 are rotated. The rotary transformer 42 for supplying a clamp voltage to the clamp electrode 50 while allowing relative rotation between the clamp electrode 50 and the casing 11 and a motor for rotating the rotary shaft 7 (in this example, a spindle motor) ) Characterized in that it includes a rotary drive means (in this example, a rotary drive device) 3 including 35 and a moving means (in this example, a stage) 8 for moving the rotary drive means 3 relative to the electron beam emitting means 4 To
[0031] 本実施形態の電子ビーム照射装置 1においては、電子ビーム射出手段 4から射出 された電子ビームが真空室 2内に導入され、回転駆動手段 3のターンテーブル 6に載 置された基板 5に入射される。このとき回転駆動手段 3は移動手段 8によって電子ビ ーム射出手段 4に対し相対移動され、さらに回転駆動手段 3においてモータ 35によ つて回転軸 7が駆動されることでターンテーブル 6が回転されることで、基板 5に対し 所定の描画が行われる。 In the electron beam irradiation apparatus 1 of the present embodiment, the electron beam emitted from the electron beam emitting means 4 is introduced into the vacuum chamber 2 and placed on the turntable 6 of the rotation driving means 3. Is incident on. At this time, the rotation driving means 3 is moved relative to the electron beam injection means 4 by the moving means 8, and the turntable 6 is rotated by driving the rotating shaft 7 by the motor 35 in the rotation driving means 3. Thus, predetermined drawing is performed on the substrate 5.
[0032] このとき、基板 5は、ターンテーブル 6内に設けたクランプ電極 50の静電力によって 、ターンテーブル 6に載置された状態で把持 (クランプ)される力 回転軸 7とともに回 転する回転体側のクランプ電極 50に対し筐体 11すなわち固定側力 クランプ電圧 力 一タリトランス 42を介し供給される。このように、電磁誘導を介したトランス機構に より給電することで、クランプ電極 50と筐体 11との相対回転を許容しつつ、非接触で 電力を供給することができる。この結果、クランプ電極 50と筐体 11との相対回転を接 触部分で許容して給電する場合のように摩耗することがなぐ耐久性を向上すること ができる。 [0033] 上記実施形態における回転駆動装置 3においては、ロータリトランス 42は、筐体 11 側に設けられ交流電源電圧が供給される 1次側固定部(この例では固定部) 42Bと、 1次側固定部 42Bと非接触に対向配置するように回転軸 7側に設けられ、当該 1次側 固定部 42Bからの電磁誘導により励磁される 2次側回転部(この例では回転部) 42A とを備えることを特徴とする。 [0032] At this time, the substrate 5 is rotated by the electrostatic force of the clamp electrode 50 provided in the turntable 6 and the force that is gripped (clamped) in a state of being placed on the turntable 6. The body side clamp electrode 50 is supplied via the casing 11, that is, the fixed side force, the clamp voltage force, and the single transformer 42. In this way, power can be supplied in a non-contact manner while allowing relative rotation between the clamp electrode 50 and the housing 11 by supplying power through a transformer mechanism via electromagnetic induction. As a result, it is possible to improve durability without causing wear as in the case of supplying power while allowing relative rotation between the clamp electrode 50 and the housing 11 at the contact portion. [0033] In the rotary drive device 3 in the above-described embodiment, the rotary transformer 42 is provided with a primary side fixing portion (in this example, a fixing portion) 42B provided on the casing 11 side and supplied with an AC power supply voltage. The secondary side rotating part (in this example, the rotating part) 42A is provided on the rotary shaft 7 side so as to face the side fixing part 42B in a non-contact manner and is excited by electromagnetic induction from the primary side fixing part 42B. It is characterized by providing.
[0034] 筐体 11側において 1次側固定部 42Bに供給された交流電源電圧に基づき、これ に対向して回転軸 7側に配置された 2次側回転部 42Aに非接触にて電磁誘導にて 起電力が誘起されることにより、クランプ電極 50と筐体 11との相対回転を許容しつつ 、非接触で電力をクランプ電極 50へ供給することができる。  [0034] Based on the AC power supply voltage supplied to the primary side fixing part 42B on the case 11 side, electromagnetic induction is performed in a non-contact manner on the secondary side rotating part 42A arranged on the rotary shaft 7 side opposite thereto. By inducing the electromotive force, the electric power can be supplied to the clamp electrode 50 in a non-contact manner while allowing the relative rotation between the clamp electrode 50 and the housing 11.
[0035] 上記実施形態における電子ビーム照射装置 1においては、回転駆動手段 3に備え られたロータリトランス 42は、筐体 11側に設けられ交流電源電圧が供給される 1次側 固定部 42Bと、 1次側固定部 42Bと非接触に対向配置するように回転軸 7側に設けら れ、当該 1次側固定部 42B力 の電磁誘導により励磁される 2次側回転部 42Aとを 備えることを特徴とする。  [0035] In the electron beam irradiation apparatus 1 in the above embodiment, the rotary transformer 42 provided in the rotation driving means 3 is provided on the housing 11 side and supplied with an AC power supply voltage. A primary side fixed part 42B provided on the rotary shaft 7 side so as to be opposed to the non-contact, and a secondary side rotary part 42A that is excited by electromagnetic induction of the primary side fixed part 42B. Features.
[0036] 筐体 11側において 1次側固定部 42Bに供給された交流電源電圧に基づき、これ に対向して回転軸 7側に配置された 2次側回転部 42Aに非接触にて電磁誘導にて 起電力が誘起されることにより、クランプ電極 50と筐体 11との相対回転を許容しつつ 、非接触で電力をクランプ電極 50へ供給することができる。  [0036] Based on the AC power supply voltage supplied to the primary-side fixing part 42B on the case 11 side, electromagnetic induction is performed in a non-contact manner on the secondary-side rotating part 42A disposed on the rotating shaft 7 side opposite to the AC power supply voltage. By inducing the electromotive force, the electric power can be supplied to the clamp electrode 50 in a non-contact manner while allowing the relative rotation between the clamp electrode 50 and the housing 11.
[0037] 上記実施形態における回転駆動装置 3においては、回転軸 7とともに回転するよう に設けられ、 2次側回転部 42Aで励磁された交流電圧を整流しクランプ電圧を供給 するための整流手段 (この例では整流回路) 43を有することを特徴とする。  [0037] In the rotation drive device 3 in the above-described embodiment, a rectification unit is provided so as to rotate together with the rotation shaft 7, and rectifies the AC voltage excited by the secondary side rotation unit 42A and supplies a clamp voltage ( In this example, a rectifier circuit) 43 is provided.
[0038] これにより、 1次側固定部 42Bの交流電源電圧に基づき 2次側回転部 42Aに誘起 された交流電圧を整流して直流化し、クランプ電圧としてクランプ電極に供給すること ができる。  [0038] Thereby, the AC voltage induced in the secondary side rotating unit 42A can be rectified and converted into a direct current based on the AC power supply voltage of the primary side fixing unit 42B, and supplied to the clamp electrode as a clamp voltage.
[0039] 上記実施形態における電子ビーム照射装置 1においては、回転駆動手段 3は、回 転軸 7とともに回転するように設けられ、 2次側回転部 42Aで励磁された交流電圧を 整流しクランプ電圧を供給するための整流手段 43を有することを特徴とする。  [0039] In the electron beam irradiation apparatus 1 in the above embodiment, the rotation driving means 3 is provided so as to rotate together with the rotation shaft 7, and rectifies the AC voltage excited by the secondary side rotation unit 42A and clamps it. It is characterized by having rectifying means 43 for supplying.
[0040] これにより、 1次側固定部 42Bの交流電源電圧に基づき 2次側回転部 42Aに誘起 された交流電圧を整流して直流化し、クランプ電圧としてクランプ電極 50に供給する ことができる。 [0040] This induces the secondary side rotating part 42A based on the AC power supply voltage of the primary side fixing part 42B. The AC voltage thus generated can be rectified and converted into a DC voltage and supplied to the clamp electrode 50 as a clamp voltage.
[0041] 上記実施形態における回転駆動装置 3においては、回転軸 7と筐体 11との相対回 転を許容しつつ回転軸 7の電位を接地するための摺動部 54を、回転軸 7の略軸心 線 X上に設けたことを特徴とする。  In the rotary drive device 3 in the above embodiment, the sliding portion 54 for grounding the potential of the rotary shaft 7 while allowing the relative rotation between the rotary shaft 7 and the housing 11 is provided on the rotary shaft 7. It is provided on a substantially axial line X.
[0042] 摺動部 54を介して、回転軸 7と筐体 11との相対回転を許容しつつ回転軸 7を接地 電位とすることにより、例えば電子ビーム照射装置に用いた場合に入射電子が基板 5 に帯電するのを防止することができる。また導電性流体を用いて導電接続する場合 に比べ、アース抵抗を小さくすることができる。  [0042] By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 through the sliding portion 54, incident electrons are not emitted when used in, for example, an electron beam irradiation apparatus. It is possible to prevent the substrate 5 from being charged. In addition, the ground resistance can be reduced as compared with the case of conductive connection using a conductive fluid.
[0043] 上記実施形態における電子ビーム照射装置 1においては、回転駆動手段 3は、回 転軸 7と筐体 11との相対回転を許容しつつ回転軸 7の電位を接地するための摺動部 54を、回転軸 7の略軸心線 X上に有することを特徴とする。  In the electron beam irradiation apparatus 1 in the above embodiment, the rotation driving means 3 is a sliding portion for grounding the potential of the rotating shaft 7 while allowing the rotating shaft 7 and the housing 11 to rotate relative to each other. 54 on the axis X of the rotary shaft 7.
[0044] 摺動部 54を介して、回転軸 7と筐体 11との相対回転を許容しつつ回転軸 7を接地 電位とすることにより、電子ビーム射出手段 4から入射した電子が基板 5に帯電する のを防止することができる。また導電性流体を用いて導電接続する場合に比べ、ァー ス抵抗を小さくすることができる。  [0044] By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the sliding portion 54, electrons incident from the electron beam emitting means 4 are applied to the substrate 5. It is possible to prevent charging. Further, the ground resistance can be reduced as compared with the case of conducting conductive connection using a conductive fluid.
[0045] 上記実施形態における電子ビーム照射装置 1においては、回転駆動手段 3は、口 一タリトランス 42及び整流手段 43の少なくとも一方力も発生する磁界を減衰させる電 磁シールド手段 (この例では電磁シールド部材) 44を有することを特徴とする。  In the electron beam irradiation apparatus 1 according to the above-described embodiment, the rotation driving unit 3 is an electromagnetic shielding unit that attenuates a magnetic field that also generates at least one force of the rotary transformer 42 and the rectifying unit 43 (in this example, an electromagnetic shielding unit). Member) 44.
[0046] これにより、交流電流が流れるロータリトランス 42及び整流手段 43から発生する磁 界を減衰させ、当該磁界が電子ビーム射出手段 4から基板 5に照射される電子ビー ムの軌道に影響を与えて記録精度の悪ィ匕等を招くのを防止することができる。  This attenuates the magnetic field generated from the rotary transformer 42 and the rectifying means 43 through which an alternating current flows, and the magnetic field affects the trajectory of the electron beam irradiated onto the substrate 5 from the electron beam emitting means 4. Thus, it is possible to prevent the recording accuracy from being deteriorated.
[0047] なお、本実施形態は、上記に限られず、種々の変形が可能である。以下、そのよう な変形例を順を追って説明する。  Note that the present embodiment is not limited to the above, and various modifications are possible. Hereinafter, such modifications will be described step by step.
[0048] (1)アースシャフトと筐体を導電性磁性流体で導通させる場合  [0048] (1) In the case where the earth shaft and the housing are electrically connected by a conductive magnetic fluid
上記実施形態では、アースシャフト 7Aと接点部材 52とを摺動させることによりスピン ドルシャフト 7の電位を接地させる構造とした力 これに限られず、アースシャフト 7Aと スピンドルハウジング 11とを導電性磁性流体により導通させる構造としてもよ 、。 [0049] 図 4は本変形例におけるスピンドルノ、ウジング 11の内部の構成を模式的に示す断 面図であり、前述の図 2に対応する図である。図 2と同様の部分には同符号を付し、 説明を省略する。 In the above embodiment, the force is such that the potential of the spindle shaft 7 is grounded by sliding the earth shaft 7A and the contact member 52, but the present invention is not limited to this, and the earth shaft 7A and the spindle housing 11 are connected to the conductive magnetic fluid. Also good as a structure to make it conductive. [0049] Fig. 4 is a cross-sectional view schematically showing the internal structure of the spindleno / housing 11 in this modification, and corresponds to Fig. 2 described above. The same parts as those in FIG.
[0050] この図に示すように、スピンドルシャフト 7の他端部力も突設されたアースシャフト 7A は、スピンドルノヽウジング 11に設けられた接続部材 60と導電性磁性流体 61を介して 接続されている。これにより、スピンドルシャフト 7の電位は、アースシャフト 7A、導電 性磁性流体 61、接続部材 60及びスピンドルハウジング 11を介して接地されるよう〖こ なっている。  [0050] As shown in this figure, the earth shaft 7A on which the force at the other end of the spindle shaft 7 also protrudes is connected to a connection member 60 provided on the spindle nosing 11 via a conductive magnetic fluid 61. Yes. As a result, the potential of the spindle shaft 7 is designed to be grounded via the earth shaft 7A, the conductive magnetic fluid 61, the connecting member 60, and the spindle housing 11.
[0051] 本変形例における回転駆動装置 3においては、回転軸 7と筐体 11との相対回転を 許容しつつ回転軸 7の電位を接地するための導電性流体接続部(この例では導電性 磁性流体) 61を設けたことを特徴とする。  [0051] In the rotational drive device 3 in the present modification, a conductive fluid connection portion (in this example, conductive material) for grounding the potential of the rotary shaft 7 while allowing the relative rotation between the rotary shaft 7 and the casing 11 is allowed. (Magnetic fluid) 61 is provided.
[0052] 導電性流体接続部 61を介して、回転軸 7と筐体 11との相対回転を許容しつつ回転 軸 7を接地電位とすることにより、例えば電子ビーム照射装置に用いた場合に入射電 子が基板 5に帯電するのを防止することができる。また摺動部を介して導電接続する 場合に比べ、接触抵抗が小さく摩耗を抑制することができる。  [0052] By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the conductive fluid connecting portion 61, it is incident when used in an electron beam irradiation apparatus, for example. It is possible to prevent the electrons from being charged on the substrate 5. In addition, the contact resistance is small and wear can be suppressed as compared with the case where the conductive connection is made through the sliding portion.
[0053] 本変形例における電子ビーム照射装置 1においては、回転駆動手段 3は、回転軸 7と筐体 11との相対回転を許容しつつ回転軸 7の電位を接地するための導電性流体 接続部 61を有することを特徴とする。  [0053] In the electron beam irradiation apparatus 1 according to the present modification, the rotation driving means 3 is a conductive fluid connection for grounding the potential of the rotating shaft 7 while allowing relative rotation between the rotating shaft 7 and the housing 11. It has the part 61.
[0054] 導電性流体接続部 61を介して、回転軸 7と筐体 11との相対回転を許容しつつ回転 軸 7を接地電位とすることにより、電子ビーム射出手段 4から入射した電子が基板 5に 帯電するのを防止することができる。また摺動部を介して導電接続する場合に比べ、 接触抵抗が小さく摩耗を抑制することができる。  [0054] By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the conductive fluid connecting portion 61, the electrons incident from the electron beam emitting means 4 are made to the substrate. 5 can be prevented from being charged. In addition, the contact resistance is small and wear can be suppressed compared to the case of conducting conductive connection through a sliding portion.
[0055] (2)真空シール部の代わりに導電性磁性流体を用いる場合  [0055] (2) When using a conductive magnetic fluid instead of the vacuum seal
上記実施形態では、スピンドルハウジング 11の開口部 11aとスピンドルシャフト 7と の径方向の間隙を真空シール部 37によってシールするようにした力 これに限られ ず、真空シール部の代わりに導電性磁性流体を用いてシールを行 、つつスピンドル シャフトとスピンドルハウジング 11とを導通させる構造としてもよ!/、。  In the above embodiment, the force that seals the radial gap between the opening 11a of the spindle housing 11 and the spindle shaft 7 with the vacuum seal portion 37 is not limited to this, and the conductive magnetic fluid is used instead of the vacuum seal portion. It is also possible to have a structure that allows the spindle shaft and the spindle housing 11 to be electrically connected while performing the seal using!
[0056] 図 5は本変形例におけるスピンドルノ、ウジング 11の内部の構成を模式的に示す断 面図であり、前述の図 2に対応する図である。図 2と同様の部分には同符号を付し、 説明を省略する。 [0056] FIG. 5 is a cross-sectional view schematically showing the internal structure of the spindle nose / housing 11 in this modification. FIG. 3 is a plan view corresponding to FIG. 2 described above. The same parts as those in FIG.
[0057] この図に示すように、本変形例ではスピンドルハウジング 11の開口部 11aとスピンド ルシャフト 7との径方向の間隙に導電性磁性流体 62が設けられている。これにより、 開口部 1 laとスピンドルシャフト 7との間隙を導電性磁性流体 62によってシールする ことができ、スピンドルノヽウジング 11内部の気密性を保持できる。さらに、この導電性 磁性流体 62を介し、スピンドルシャフト 7の電位がスピンドルハウジング 11を介して接 地されるようになっている。  As shown in this figure, in this modification, a conductive magnetic fluid 62 is provided in the radial gap between the opening 11 a of the spindle housing 11 and the spindle shaft 7. As a result, the gap between the opening 1 la and the spindle shaft 7 can be sealed with the conductive magnetic fluid 62, and the airtightness inside the spindle nosing 11 can be maintained. Further, the electric potential of the spindle shaft 7 is grounded via the spindle housing 11 via the conductive magnetic fluid 62.
[0058] 本変形例における回転駆動装置 3においては、回転軸 7と筐体 11との相対回転を 許容しつつ回転軸 7の電位を接地するための導電性流体接続部(この例では導電性 磁性流体) 62を設けたことを特徴とする。  [0058] In the rotary drive device 3 in this modification, a conductive fluid connection portion (in this example, conductive material) for grounding the potential of the rotary shaft 7 while allowing the relative rotation between the rotary shaft 7 and the casing 11 is allowed. (Magnetic fluid) 62 is provided.
[0059] 導電性流体接続部 62を介して、回転軸 7と筐体 11との相対回転を許容しつつ回転 軸 7を接地電位とすることにより、例えば電子ビーム照射装置に用いた場合に入射電 子が基板 5に帯電するのを防止することができる。また摺動部を介して導電接続する 場合に比べ、接触抵抗が小さく摩耗を抑制することができる。  [0059] By allowing the rotation shaft 7 to be grounded while allowing the relative rotation between the rotation shaft 7 and the housing 11 via the conductive fluid connection portion 62, for example, when used in an electron beam irradiation apparatus. It is possible to prevent the electrons from being charged on the substrate 5. In addition, the contact resistance is small and wear can be suppressed as compared with the case where the conductive connection is made through the sliding portion.
[0060] 本変形例における電子ビーム照射装置 1においては、回転駆動手段 3は、回転軸 7と筐体 11との相対回転を許容しつつ回転軸 7の電位を接地するための導電性流体 接続部 62を有することを特徴とする。  [0060] In the electron beam irradiation apparatus 1 according to this modification, the rotation driving means 3 is a conductive fluid connection for grounding the potential of the rotating shaft 7 while allowing the relative rotation between the rotating shaft 7 and the casing 11. It has the part 62, It is characterized by the above-mentioned.
[0061] 導電性流体接続部 62を介して、回転軸 7と筐体 11との相対回転を許容しつつ回転 軸 7を接地電位とすることにより、電子ビーム射出手段 4から入射した電子が基板 5に 帯電するのを防止することができる。また摺動部を介して導電接続する場合に比べ、 接触抵抗が小さく摩耗を抑制することができる。  [0061] By allowing the rotating shaft 7 to be grounded while allowing the relative rotation between the rotating shaft 7 and the housing 11 via the conductive fluid connecting portion 62, the electrons incident from the electron beam emitting means 4 are made to the substrate. 5 can be prevented from being charged. In addition, the contact resistance is small and wear can be suppressed compared to the case of conducting conductive connection through a sliding portion.
[0062] 上記実施形態における回転駆動装置 3は、スピンドルシャフト 7を回転可能に支持 するスピンドルノヽウジング 11と、スピンドルシャフト 7とともに回転するように設けられ、 ディスク基板 5を載置する絶縁性のターンテーブル 6と、このターンテーブル 6内に設 けた静電クランプ電極 50と、スピンドルシャフト 7の回転に伴う静電クランプ電極 50と スピンドルノヽウジング 11との相対回転を許容しつつ当該静電クランプ電極 50にクラ ンプ電圧を給電するためのロータリトランス 42とを有する。 [0063] 本実施形態の回転駆動装置 3においては、ターンテーブル 6内に設けた静電クラン プ電極 50の静電力によって、ターンテーブル 6に載置されたディスク基板 5が把持( クランプ)される。そして、スピンドルシャフト 7とともに回転する回転体側の静電クラン プ電極 50に対し、スピンドルハウジング 11すなわち固定側からクランプ電圧をロータ リトランス 42を介して供給する。このように、電磁誘導を介したトランス機構により給電 することで、静電クランプ電極 50とスピンドルノヽウジング 11との相対回転を許容しつ つ、非接触で電力を供給することができる。この結果、静電クランプ電極 50とスピンド ルハウジング 11との相対回転を接触部分で許容して給電する場合のように摩耗する ことがなぐ耐久性を向上することができる。 The rotational drive device 3 in the above embodiment is provided with a spindle nosing 11 that rotatably supports the spindle shaft 7, and an insulating turn on which the disk substrate 5 is placed so as to rotate together with the spindle shaft 7. The electrostatic clamp electrode 50 provided in the table 6, the electrostatic clamp electrode 50 provided in the turntable 6, and the electrostatic clamp electrode 50 while allowing the relative rotation of the electrostatic clamp electrode 50 and the spindle nosing 11 accompanying the rotation of the spindle shaft 7 are allowed. And a rotary transformer 42 for supplying a clamp voltage to the motor. In the rotary drive device 3 of the present embodiment, the disk substrate 5 placed on the turntable 6 is gripped (clamped) by the electrostatic force of the electrostatic clamp electrode 50 provided in the turntable 6. . A clamp voltage is supplied via a rotary transformer 42 from the spindle housing 11, that is, the fixed side, to the electrostatic clamp electrode 50 on the rotating body rotating together with the spindle shaft 7. Thus, by supplying power by the transformer mechanism via electromagnetic induction, it is possible to supply electric power in a non-contact manner while permitting relative rotation between the electrostatic clamp electrode 50 and the spindle nosing 11. As a result, it is possible to improve durability without causing wear as in the case of supplying power while allowing relative rotation between the electrostatic clamp electrode 50 and the spindle housing 11 at the contact portion.
[0064] また、上記実施形態におけるディスク原盤製造装置 1は、電子ビームをディスク基 板 5に照射するディスク原盤製造装置 1であって、電子ビームを射出する電子カラム 4 と、この電子カラム 4からの電子ビームを内部へ導入する真空チャンバ 2と、スピンド ルシャフト 7を回転可能に支持するスピンドルハウジング 11と、スピンドルシャフト 7とと もに回転するように真空チャンバ 2内に設けられ、ディスク基板 5を載置する絶縁性の ターンテーブル 6、このターンテーブル 6内に設けた静電クランプ電極 50、スピンドル シャフト 7の回転に伴う静電クランプ電極 50とスピンドルノヽウジング 11との相対回転を 許容しつつ当該静電クランプ電極 50にクランプ電圧を給電するためのロータリトラン ス 42、及び、スピンドルシャフト 7を回転駆動するスピンドルモータ 35を含む回転駆 動装置 3と、この回転駆動装置 3を電子カラム 4に対し相対移動させるステージ 8とを 有する。  In addition, the disk master manufacturing apparatus 1 in the above embodiment is a disk master manufacturing apparatus 1 that irradiates a disk substrate 5 with an electron beam, and includes an electron column 4 that emits an electron beam, and the electron column 4. A vacuum chamber 2 for introducing the electron beam into the interior, a spindle housing 11 for rotatably supporting the spindle shaft 7, and the spindle shaft 7 are provided in the vacuum chamber 2 so as to rotate. Insulating turntable 6 to be placed, electrostatic clamp electrode 50 provided in this turntable 6, and electrostatic clamp electrode 50 associated with rotation of spindle shaft 7 and spindle nosing 11 while allowing relative rotation Rotary transformer 42 for supplying clamp voltage to electrostatic clamp electrode 50 and spindle shaft 7 are driven to rotate A rotary drive device 3 including a spindle motor 35 for rotating, and a stage 8 for moving the rotary drive device 3 relative to the electronic column 4.
[0065] 本実施形態のディスク原盤製造装置 1においては、電子カラム 4から射出された電 子ビームが真空チャンバ 2内に導入され、回転駆動装置 3のターンテーブル 6に載置 されたディスク基板 5に入射される。このとき回転駆動装置 3はステージ 8によって電 子カラム 4に対し相対移動され、さらに回転駆動装置 3においてスピンドルモータ 35 によってスピンドルシャフト 7が駆動されターンテーブル 6が回転されることで、デイス ク基板 5に対し所定の描画が行われる。  In the disc master manufacturing apparatus 1 of the present embodiment, an electron beam emitted from the electron column 4 is introduced into the vacuum chamber 2 and placed on the turntable 6 of the rotary drive device 3. Is incident on. At this time, the rotary drive device 3 is moved relative to the electronic column 4 by the stage 8, and the spindle shaft 7 is driven by the spindle motor 35 in the rotary drive device 3 to rotate the turntable 6. A predetermined drawing is performed.
[0066] このとき、ディスク基板 5は、ターンテーブル 6内に設けた静電クランプ電極 50の静 電力によって、ターンテーブル 6に載置された状態で把持 (クランプ)される力 スピン ドルシャフト 7とともに回転する回転体側の静電クランプ電極 50に対しスピンドルノヽゥ ジング 11すなわち固定側カゝらクランプ電圧がロータリトランス 42を介し供給される。こ のように、電磁誘導を介したトランス機構により給電することで、静電クランプ電極 50 とスピンドルハウジング 11との相対回転を許容しつつ、非接触で電力を供給すること ができる。この結果、静電クランプ電極 50とスピンドルノヽウジング 11との相対回転を 接触部分で許容して給電する場合のように摩耗することがなぐ耐久性を向上するこ とがでさる。 At this time, the disk substrate 5 is gripped (clamped) while being placed on the turntable 6 by the electrostatic force of the electrostatic clamp electrode 50 provided in the turntable 6 Spin A clamping voltage from the spindle nosing 11, that is, the fixed side clamp, is supplied to the electrostatic clamp electrode 50 on the rotating body rotating together with the dollar shaft 7 through the rotary transformer 42. In this way, power can be supplied in a non-contact manner while allowing relative rotation between the electrostatic clamp electrode 50 and the spindle housing 11 by supplying power with a transformer mechanism via electromagnetic induction. As a result, it is possible to improve durability without causing wear as in the case of supplying power while allowing relative rotation between the electrostatic clamp electrode 50 and the spindle nosing 11 at the contact portion.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の一実施形態であるディスク原盤製造装置の全体構成を示すブロック 図である。 FIG. 1 is a block diagram showing an overall configuration of a master disc manufacturing apparatus according to an embodiment of the present invention.
[図 2]図 1に示したスピンドルノ、ウジングの内部の構成を模式的に示す断面図である  2 is a cross-sectional view schematically showing the internal configuration of the spindle saw and ousting shown in FIG.
[図 3]ディスク原盤製造装置の電気回路のうち、静電クランプ機能に関わる部分を抽 出した回路図である。 FIG. 3 is a circuit diagram in which a portion related to the electrostatic clamping function is extracted from the electric circuit of the master disk manufacturing apparatus.
[図 4]アースシャフトと筐体を導電性磁性流体で導通させる変形例におけるスピンドル ハウジングの内部の構成を模式的に示す断面図である。  FIG. 4 is a cross-sectional view schematically showing an internal configuration of a spindle housing in a modified example in which a ground shaft and a casing are electrically connected by a conductive magnetic fluid.
[図 5]真空シール部の代わりに導電性磁性流体を用いる変形例におけるスピンドル ハウジングの内部の構成を模式的に示す断面図である。  FIG. 5 is a cross-sectional view schematically showing an internal configuration of a spindle housing in a modification using a conductive magnetic fluid instead of a vacuum seal portion.
符号の説明 Explanation of symbols
1 ディスク原盤製造装置 (電子ビーム照射装置)  1 Disc master production equipment (electron beam irradiation equipment)
2 真空チャンノ (真空室)  2 Vacuum channel (vacuum chamber)
3 回転駆動装置(回転駆動手段)  3 Rotation drive device (Rotation drive means)
4 電子カラム (電子ビーム射出手段)  4 Electron column (electron beam injection means)
5 ディスク基板(基板)  5 Disc substrate (substrate)
6 ターンテーブル  6 Turntable
7 スピンドノレシャフト(回転軸)  7 Spinner shaft (rotating shaft)
8 ステージ (移動手段)  8 stages (moving means)
11 スピンドルハウジング(筐体) スピンドノレモータ(モータ) 11 Spindle housing (housing) Spinner motor (motor)
ロータリトランス Rotary transformer
A 回転部(2次側回転部)A Rotating part (secondary rotating part)
B 固定部(1次側固定部) B fixed part (primary side fixed part)
整流回路 (整流手段)  Rectifier circuit (rectifier means)
静電クランプ電極(クランプ電極) 導電性磁性流体 (導電性流体接続部) 導電性磁性流体 (導電性流体接続部)  Electrostatic clamp electrode (clamp electrode) Conductive magnetic fluid (conductive fluid connection) Conductive magnetic fluid (conductive fluid connection)

Claims

請求の範囲 The scope of the claims
[1] 回転軸を回転可能に支持する筐体と、  [1] a housing that rotatably supports the rotating shaft;
前記回転軸とともに回転するように設けられ、基板を載置する絶縁性のターンテー ブルと、  An insulative turntable that is provided to rotate together with the rotating shaft and on which a substrate is placed;
このターンテーブル内に設けたクランプ電極と、  A clamp electrode provided in the turntable;
前記回転軸の回転に伴う前記クランプ電極と前記筐体との相対回転を許容しつつ 当該クランプ電極にクランプ電圧を給電するためのロータリトランスと  A rotary transformer for supplying a clamp voltage to the clamp electrode while permitting relative rotation between the clamp electrode and the casing in accordance with rotation of the rotary shaft;
を有することを特徴とする回転駆動装置。  A rotary drive device comprising:
[2] 請求項 1記載の回転駆動装置において、  [2] In the rotary drive device according to claim 1,
前記ロータリトランスは、  The rotary transformer is
前記筐体側に設けられ交流電源電圧が供給される 1次側固定部と、  A primary side fixing portion provided on the housing side and supplied with an AC power supply voltage;
前記 1次側固定部と非接触に対向配置するように前記回転軸側に設けられ、当該 Provided on the rotary shaft side so as to be opposed to the primary side fixing portion in a non-contact manner,
1次側固定部からの電磁誘導により励磁される 2次側回転部と Secondary side rotating part excited by electromagnetic induction from primary side fixed part
を備えることを特徴とする回転駆動装置。  A rotary drive device comprising:
[3] 請求項 2記載の回転駆動装置において、 [3] In the rotary drive device according to claim 2,
前記回転軸とともに回転するように設けられ、前記 2次側回転部で励磁された交流 電圧を整流し前記クランプ電圧を供給するための整流手段を有することを特徴とする 回転駆動装置。  A rotary drive device, comprising: a rectifier provided so as to rotate together with the rotary shaft, for rectifying an AC voltage excited by the secondary side rotary unit and supplying the clamp voltage.
[4] 請求項 1乃至 3のいずれか 1項記載の回転駆動装置において、  [4] The rotary drive device according to any one of claims 1 to 3,
前記回転軸と前記筐体との相対回転を許容しつつ前記回転軸の電位を接地する ための摺動部を、前記回転軸の略軸心線上に設けたことを特徴とする回転駆動装置  A rotary drive device characterized in that a sliding portion for grounding the potential of the rotary shaft while allowing relative rotation between the rotary shaft and the housing is provided on a substantially axial line of the rotary shaft.
[5] 請求項 1乃至 3のいずれか 1項記載の回転駆動装置において、 [5] The rotary drive device according to any one of claims 1 to 3,
前記回転軸と前記筐体との相対回転を許容しつつ前記回転軸の電位を接地する ための導電性流体接続部を設けたことを特徴とする回転駆動装置。  A rotation drive device comprising a conductive fluid connection portion for grounding a potential of the rotation shaft while allowing relative rotation between the rotation shaft and the casing.
[6] 電子ビームを基板に照射する電子ビーム照射装置であって、  [6] An electron beam irradiation apparatus for irradiating a substrate with an electron beam,
前記電子ビームを射出する電子ビーム射出手段と、  Electron beam emitting means for emitting the electron beam;
この電子ビーム射出手段からの前記電子ビームを内部へ導入する真空室と、 回転軸を回転可能に支持する筐体、前記回転軸とともに回転するように前記真空 室内に設けられ、基板を載置する絶縁性のターンテーブル、このターンテーブル内 に設けたクランプ電極、前記回転軸の回転に伴う前記クランプ電極と前記筐体との相 対回転を許容しつつ当該クランプ電極にクランプ電圧を給電するためのロータリトラ ンス、及び、前記回転軸を回転駆動するモータを含む回転駆動手段と、 A vacuum chamber for introducing the electron beam from the electron beam emitting means into the interior; A housing that rotatably supports a rotating shaft, an insulating turntable that is provided in the vacuum chamber so as to rotate together with the rotating shaft, and on which a substrate is placed, a clamp electrode provided in the turntable, the rotating shaft Rotation drive means including a rotary transformer for supplying a clamp voltage to the clamp electrode while allowing relative rotation between the clamp electrode and the casing accompanying rotation of the housing, and a motor for driving the rotation shaft to rotate When,
この回転駆動手段を前記電子ビーム射出手段に対し相対移動させる移動手段と を有することを特徴とする電子ビーム照射装置。  An electron beam irradiation apparatus comprising: a moving unit that moves the rotation driving unit relative to the electron beam emitting unit.
[7] 請求項 6記載の電子ビーム照射装置にお 、て、 [7] In the electron beam irradiation apparatus according to claim 6,
前記回転駆動手段に備えられた前記ロータリトランスは、  The rotary transformer provided in the rotation driving means is
前記筐体側に設けられ交流電源電圧が供給される 1次側固定部と、  A primary side fixing portion provided on the housing side and supplied with an AC power supply voltage;
前記 1次側固定部と非接触に対向配置するように前記回転軸側に設けられ、当該 1次側固定部からの電磁誘導により励磁される 2次側回転部と  A secondary side rotating part provided on the rotating shaft side so as to be opposed to the primary side fixing part in a non-contact manner, and excited by electromagnetic induction from the primary side fixing part;
を備えることを特徴とする電子ビーム照射装置。  An electron beam irradiation apparatus comprising:
[8] 請求項 7記載の電子ビーム照射装置にお 、て、 [8] In the electron beam irradiation apparatus according to claim 7,
前記回転駆動手段は、  The rotation driving means includes
前記回転軸とともに回転するように設けられ、前記 2次側回転部で励磁された交流 電圧を整流し前記クランプ電圧を供給するための整流手段を有することを特徴とする 電子ビーム照射装置。  An electron beam irradiation apparatus comprising: a rectifying unit that is provided so as to rotate together with the rotating shaft, and that rectifies an AC voltage excited by the secondary rotating unit and supplies the clamp voltage.
[9] 請求項 6乃至 8のいずれか 1項記載の電子ビーム照射装置において、 [9] In the electron beam irradiation apparatus according to any one of claims 6 to 8,
前記回転駆動手段は、  The rotation driving means includes
前記回転軸と前記筐体との相対回転を許容しつつ前記回転軸の電位を接地する ための摺動部を、前記回転軸の略軸心線上に有することを特徴とする電子ビーム照 射装置。  An electron beam irradiation apparatus comprising: a sliding portion for grounding the electric potential of the rotating shaft while allowing relative rotation between the rotating shaft and the housing on a substantially axial line of the rotating shaft. .
[10] 請求項 9記載の電子ビーム照射装置において、  [10] The electron beam irradiation apparatus according to claim 9,
前記回転駆動手段は、  The rotation driving means is
前記ロータリトランス及び前記整流手段の少なくとも一方力も発生する磁界を減衰さ せる電磁シールド手段を有することを特徴とする電子ビーム照射装置。  An electron beam irradiation apparatus comprising electromagnetic shielding means for attenuating a magnetic field that also generates at least one force of the rotary transformer and the rectifying means.
[11] 請求項 6乃至 8のいずれか 1項記載の電子ビーム照射装置において、 前記回転駆動手段は、 [11] The electron beam irradiation apparatus according to any one of claims 6 to 8, The rotation driving means includes
前記回転軸と前記筐体との相対回転を許容しつつ前記回転軸の電位を接地する ための導電性流体接続部を有することを特徴とする電子ビーム照射装置。  An electron beam irradiation apparatus comprising: a conductive fluid connecting portion for grounding the potential of the rotating shaft while allowing relative rotation between the rotating shaft and the casing.
[12] 請求項 11記載の電子ビーム照射装置にお!、て、  [12] In the electron beam irradiation apparatus according to claim 11,!
前記回転駆動手段は、  The rotation driving means is
前記ロータリトランス及び前記整流手段の少なくとも一方力も発生する磁界を減衰さ せる電磁シールド手段を有することを特徴とする電子ビーム照射装置。  An electron beam irradiation apparatus comprising electromagnetic shielding means for attenuating a magnetic field that also generates at least one force of the rotary transformer and the rectifying means.
[13] 請求項 6乃至 8のいずれか 1項記載の電子ビーム照射装置において、 [13] The electron beam irradiation apparatus according to any one of claims 6 to 8,
前記回転駆動手段は、  The rotation driving means includes
前記ロータリトランス及び前記整流手段の少なくとも一方力も発生する磁界を減衰さ せる電磁シールド手段を有することを特徴とする電子ビーム照射装置。  An electron beam irradiation apparatus comprising electromagnetic shielding means for attenuating a magnetic field that also generates at least one force of the rotary transformer and the rectifying means.
PCT/JP2007/052576 2006-03-09 2007-02-14 Rotary drive apparatus and electron beam irradiation apparatus WO2007102298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-063828 2006-03-09
JP2006063828A JP2009134775A (en) 2006-03-09 2006-03-09 Rotary driving unit and electron beam irradiating unit

Publications (1)

Publication Number Publication Date
WO2007102298A1 true WO2007102298A1 (en) 2007-09-13

Family

ID=38474740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052576 WO2007102298A1 (en) 2006-03-09 2007-02-14 Rotary drive apparatus and electron beam irradiation apparatus

Country Status (2)

Country Link
JP (1) JP2009134775A (en)
WO (1) WO2007102298A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326453A (en) * 1998-04-21 1998-12-08 Pioneer Electron Corp Rotation driving mechanism
JP2001155125A (en) * 1999-11-25 2001-06-08 Sony Corp Information recording medium and information recorder
JP2002260295A (en) * 2001-02-28 2002-09-13 Sony Corp Electron beam irradiation device
WO2002073612A1 (en) * 2001-03-14 2002-09-19 Sony Corporation Optical recording/reproducing apparatus, optical reproducing apparatus, optical recording/reproducing medium, optical recording/reproducing method, optical recording method, optical reproducing meethod, and optical layer detecting method
JP2003036569A (en) * 2001-07-24 2003-02-07 Pioneer Electronic Corp Apparatus for manufacturing master disk and rotary driving device for substrate
JP2005165839A (en) * 2003-12-04 2005-06-23 Nippon Signal Co Ltd:The Reader/writer, ic tag, article control device, and optical disk device
JP2005293661A (en) * 2004-03-31 2005-10-20 Toshiba Corp Optical recording medium and optical recording apparatus
JP2005338755A (en) * 2004-04-26 2005-12-08 Ricoh Co Ltd Rotary driving apparatus, electron beam drawing apparatus and optical disk

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326453A (en) * 1998-04-21 1998-12-08 Pioneer Electron Corp Rotation driving mechanism
JP2001155125A (en) * 1999-11-25 2001-06-08 Sony Corp Information recording medium and information recorder
JP2002260295A (en) * 2001-02-28 2002-09-13 Sony Corp Electron beam irradiation device
WO2002073612A1 (en) * 2001-03-14 2002-09-19 Sony Corporation Optical recording/reproducing apparatus, optical reproducing apparatus, optical recording/reproducing medium, optical recording/reproducing method, optical recording method, optical reproducing meethod, and optical layer detecting method
JP2003036569A (en) * 2001-07-24 2003-02-07 Pioneer Electronic Corp Apparatus for manufacturing master disk and rotary driving device for substrate
JP2005165839A (en) * 2003-12-04 2005-06-23 Nippon Signal Co Ltd:The Reader/writer, ic tag, article control device, and optical disk device
JP2005293661A (en) * 2004-03-31 2005-10-20 Toshiba Corp Optical recording medium and optical recording apparatus
JP2005338755A (en) * 2004-04-26 2005-12-08 Ricoh Co Ltd Rotary driving apparatus, electron beam drawing apparatus and optical disk

Also Published As

Publication number Publication date
JP2009134775A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4322919B2 (en) Electron beam drawing device
US6686597B2 (en) Substrate rotating device, and manufacturing method and apparatus of recording medium master
JP3040887B2 (en) Information recording device
JP2005203726A (en) Workpiece centering clamp apparatus, rotation driving apparatus, electronic beam exposure apparatus and optical disk stamper
US20060221536A1 (en) Air cleaning method and air cleaning apparatus for storage medium drives
WO2007102298A1 (en) Rotary drive apparatus and electron beam irradiation apparatus
JP2003160858A (en) Cathodic arc film-forming apparatus
US8653488B2 (en) Electron beam apparatus
JP4251526B2 (en) Disc master production device and substrate rotation drive device
US20070182942A1 (en) Exposure device
JP4251525B2 (en) Disc master production equipment
JP3970527B2 (en) Rotation drive device and disk master production apparatus using the same
JP2006309821A (en) Electron beam adjustment method and optical disk master drawing device using this method
JP4439144B2 (en) Disc master production equipment
JP4124556B2 (en) Disc master production apparatus and method
JPH118291A (en) Electrostatic attraction device
JP4937014B2 (en) Blanking apparatus and electron beam drawing apparatus
JP2002212714A (en) Film deposition apparatus using cathode arc discharge
JPWO2008114422A1 (en) Beam drawing device
JP2002260295A (en) Electron beam irradiation device
JP2004213708A (en) Exposure device for optical disk master disk
JP2001344833A (en) Electron beam lithogaphic equipment
JPH10326453A (en) Rotation driving mechanism
JP2004047170A (en) Electron beam lithography system
JP2003242924A (en) Electron beam lithography device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP