WO2007101761A1 - Verfahren und vorrichtung zum betreiben einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zum betreiben einer brennkraftmaschine Download PDF

Info

Publication number
WO2007101761A1
WO2007101761A1 PCT/EP2007/050993 EP2007050993W WO2007101761A1 WO 2007101761 A1 WO2007101761 A1 WO 2007101761A1 EP 2007050993 W EP2007050993 W EP 2007050993W WO 2007101761 A1 WO2007101761 A1 WO 2007101761A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
error
cycle
reduction system
Prior art date
Application number
PCT/EP2007/050993
Other languages
English (en)
French (fr)
Inventor
Carsten Bruns
Alexander Ketterer
Gerd RÖSEL
Michaela Schneider
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to KR1020087023102A priority Critical patent/KR101312654B1/ko
Priority to US12/281,381 priority patent/US8000853B2/en
Publication of WO2007101761A1 publication Critical patent/WO2007101761A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for operating an internal combustion engine.
  • the internal combustion engine comprises an intake tract and an exhaust tract with an emission reduction system.
  • the intake and exhaust tract communicate depending on the switching position of at least one gas inlet valve and at least one gas from ⁇ leak valve with a combustion chamber of the internal combustion engine.
  • DE 199 53 601 C2 discloses a method for checking an exhaust gas catalytic converter of an internal combustion engine.
  • the exhaust gas catalyst is disposed in an exhaust passage of the internal combustion ⁇ machine.
  • the internal combustion engine comprises a lambda control device, which comprises an upstream of the Abgaska ⁇ talysators arranged broadband lambda probe and an air / fuel ratio controlled to a predetermined target value.
  • a conversion efficiency of the catalyst from ⁇ gas control means is increased, an oxygen loading of the Abgaskatalysa- tors during a diagnostic time to a predetermined value during stationary operation in feldswar ⁇ mer internal combustion engine by a control intervention of the lambda.
  • the NOX concentration in the exhaust duct upstream of the 3-way catalytic converter is detected by means of a NOX sensor. From Who ⁇ NOX concentration th during at least one lambda controller oscillation, a stationary diagnostic value is determined. The diagnostic value is compared with a predetermined threshold value and, when the threshold value is exceeded, an aged catalytic converter is concluded.
  • the object of the invention is to provide a method and a device for operating an internal combustion engine, which simply enables a low-emission operation of the internal combustion engine.
  • the object is solved by the features of the independent claims.
  • Advantageous embodiments of the invention are specified in the subclaims.
  • the invention is characterized by a method and a device for operating an internal combustion engine.
  • the internal combustion engine comprises an intake tract and an exhaust ⁇ tract with an exhaust gas catalyst.
  • the intake and the exhaust gas tract communicate depending on the switching position of at least one gas inlet valve and at least one gas from ⁇ leak valve with a combustion chamber of the internal combustion engine.
  • ⁇ ner a combustion process is controlled reduction system in which at least one combustion chamber of the internal combustion engine for the purposes of checking the emission.
  • a second driving cycle after the first driving cycle it is checked whether an error of the emission reduction system was detected during the first driving cycle.
  • Emission reduction system must be used. Insbeson ⁇ particular, this can contribute to a catalytic converter of the emission reduction system can be used with a lower maximum oxygen loading level must be used as the catalytic converter, the test without the possibility of deactivation over ⁇ the emission reduction system.
  • the degree of oxygen loading can also be referred to as oxygen storage.
  • this can contribute to an advertising pollutant threshold less sharp chosen the can than without the option to deactivate the Matterprü ⁇ fung the emission reduction system.
  • the exhaust gas catalytic converter with regard to an oxygen storage capacity of
  • Catalytic converter monitored This helps to monitor the TERMS ⁇ onsreduzi mecanicssystem particularly precise. Furthermore, this makes it possible to detect whether the catalytic converter is functioning properly.
  • the emission reduction system in the second drive cycle of the internal combustion engine, is only checked if the service life was longer than 20 minutes. This helps to identify very precisely whether the error of Emis ⁇ sion reduction system, in particular the catalytic converter could be resolved.
  • the service life is detected with a timer. This helps ⁇ transmit the collection period particularly easily and accurately it.
  • the service life is determined by comparing an oil temperature and / or a coolant temperature of the internal combustion engine at the end of the first driving cycle with the oil temperature or the coolant temperature at the beginning of the second driving cycle and by calculating the difference between the two oil temperatures. temperatures or the two coolant temperatures, the service life is determined. This allows the collection period special ⁇ DERS to determine precisely without having to state the period recognized directly.
  • the advantageous embodiments of the method can be readily transferred to the device as advantageous embodiments.
  • Figure 2 is a flowchart of a program for operating the internal combustion engine.
  • An internal combustion engine ( Figure 1) comprises an intake manifold 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake manifold 1 preferably comprises a throttle ⁇ flap 5, a collector 6 and a suction tube 7, which towards a cylinder Zl is guided via an inlet channel into a combustion chamber 9 of the engine block 2.
  • the engine block 2 comprises ei ⁇ ne crankshaft 8, which is coupled via a connecting rod 10 with the Kol ⁇ ben 11 of the cylinder Zl.
  • the internal combustion engine is preferably arranged in a motor vehicle.
  • the cylinder head 3 has a valve gear having at least one gas inlet valve 12, at least one gas outlet valve 13, and valve actuators 14, 15.
  • the cylinder head 3 further comprises an injection valve 22 and a spark plug 23. Alterna ⁇ tiv the injection valve 22 may be also arranged in the suction pipe. 7
  • the exhaust tract 4 comprises an exhaust gas catalytic converter 24, which is preferably designed as a three-way catalytic converter and which belongs to an emission reduction system of the internal combustion engine.
  • the exhaust gas catalyst 24 is suitable for storing and discharging oxygen as a function of an oxygen loading level of the exhaust gas catalytic converter 24. If the oxygen load level is maximum, no further oxygen can be taken up by the exhaust gas catalytic converter 24. If the degree of oxygen loading is minimal, then the catalytic converter 24 can not release any oxygen.
  • the Emissionsreduzie ⁇ assurance system in particular at a diesel internal combustion engine, a recirculation of exhaust gases from the exhaust gas tract 4 and / or respectively comprise the combustion chamber 9 into the intake system 1 the combustion chamber.
  • an exhaust gas recirculation rate can be set, for example, by a valve About ⁇ schneidungsphase in which the gas inlet valve 12 and the gas outlet valve 13 are opened simultaneously.
  • the recirculation of the exhaust gases for example, causes a lower combustion temperature in a combustion process in the combustion chamber 9 than without the recirculation of the exhaust gases.
  • the lower combustion temperature leads to lower pollutant production in the combustion process than at a higher combustion temperature.
  • a control device 25 is provided which is associated with sensors which detect different measured variables and in each case determine the value of the measured variable. Operating variables include the measured variables and the derived variables of the internal combustion engine.
  • the control device 25 determines at least one controlling variable ⁇ SSE function of at least one of the operating variables, which are then converted into one or more control signals for controlling the actuators by means of corresponding actuators.
  • the control device 25 may also be referred to as an apparatus for operating the internal combustion engine.
  • the sensors are a pedal position sensor 26 that detects an accelerator pedal position of an accelerator pedal 27, an air mass sensor 28 that detects an air mass flow upstream of the throttle valve 5, a throttle position sensor 30 that detects an opening degree of the throttle 5, a first temperature sensor 32 that detects an intake air temperature a second temperature sensor 33 detecting a coolant temperature TCO, a third temperature sensor 35 detecting an oil temperature TOIL, an intake manifold pressure sensor 34 detecting an intake manifold pressure in the accumulator 6, a crankshaft angle sensor 36 detecting a crankshaft angle, then a speed is assigned.
  • an exhaust gas probe 40 upstream of the Abgaska- talysators 24 are arranged, whose measuring signal taking into ⁇ actuating a gas duration of the combustion chamber 9 to the exhaust gas probe 40 is representative of an air / fuel ratio in the combustion chamber 9, and an exhaust gas probe 42 downstream of the catalytic converter 24, through which the Sauerstoffbeladungswin of the catalytic converter 24 can be checked.
  • the exhaust gas sensors 40, 42 upstream and / or downstream of the ex ⁇ gas catalyst 24 are further elements of the reductions in emissions z michssystems the internal combustion engine. Depending on the execution ⁇ the invention can form any subset of-called sensors can be present or there may be additional sensors available.
  • the actuators are, for example, the throttle valve 5, the gas inlet and gas outlet valves 12, 13, the injection valve 22 and / or the spark plug 23.
  • cylinders Z2 - Z4 are preferably provided, to which corresponding actuators are assigned.
  • a program (FIG. 2) for operating the internal combustion engine is preferably stored on a storage medium of the control device 25.
  • the program serves a combustion process in the combustion chamber 9 only then for the purposes of checking CHECK of the emission reduction system to steu ⁇ ern when the emission reduction system can function properly.
  • the program is gestar ⁇ tet timely after an engine start of the internal combustion engine in a step Sl, in which variables are initialized if necessary.
  • a step S2 it is checked whether an error ERROR of the emission reduction system was detected in the preceding drive cycle DC of the internal combustion engine. In particular, it can be checked whether an error has been detected ERROR the ex ⁇ gas catalyst 24 in step S2.
  • the error ERROR of the exhaust ⁇ catalyst refers to a lack of oxygen storage capacity of the catalytic converter 24. This can, for example, as shown in the cited document of the prior art, are checked.
  • the emission reduction system is used to check CHECK a lean phase or a fatty phase of engine operation bezüg ⁇ Lich their duration and / or with regard to their air / fuel ratio amplified. As a result, the exhaust gas catalyst 24 is selectively supplied or withdrawn oxygen.
  • step S2 the processing is continued in a step S3. If the condition of step S2 is not fulfilled ⁇ , the processing is set in a step S7 fortge ⁇ .
  • a standing time DUR_OFF is determined during which the internal combustion engine between the last driving ⁇ cycle DC and the current driving cycle DC has been parked.
  • the duration DUR_OFF for example, can be easily recorded with a timer.
  • a step S4 it is checked whether the service life DUR_OFF is greater than a predetermined repair time DUR_REPAIR.
  • the predetermined repair duration DUR_REPAIR can be, for example, between 20 and 30 minutes.
  • the predetermined repair duration DUR_REPAIR is the minimum time required to adequately cool the catalytic converter 24, which has been warmed up to operating temperature, and to replace it. If the standing time DUR_OFF smaller than the predetermined Repa ⁇ raturdauer DUR_REPAIR, the error ERROR may have been onsreduzi mecanicssystems not resolve the emission. If the Be ⁇ dingung of step S4 is not met, the machining ⁇ tung is continued in a step S5. If the condition in step S4 is satisfied, the processing in step S7 is continued.
  • step S7 the possibility is activated ACT to control the combustion process in the combustion chamber 9 in the sense of Kochprü ⁇ fens CHECK of the emission reduction system.
  • step S5 controlling the combustion process in the sense of checking CHECK is deactivated DEACT.
  • DEACT deactivated DEACT.
  • This allowed ⁇ light the development of toxic substances in the combustion process only then for the purposes of checking CHECK of the emission reduction system, if the emission reduction system can function without errors.
  • a step S6 the program can be terminated.
  • step S8 the processing can also be continued in a step S8.
  • the service life DUR_OFF is determined depending on thedemiiteltem- temperature TCO and / or the oil temperature TOIL at the end of the last drive cycle DC and depending on thedemiiteltemperatur TCO or the oil temperature TOIL at the beginning of the current drive cycle DC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Zum Betreiben einer Brennkraftmaschine wird innerhalb eines ersten Fahrzyklus (DC) der Brennkraftmaschine ein Verbrennungsprozess in mindestens einem Brennraum der Brennkraftmaschine im Sinne eines Überprüfens (CHECK) eines Emissionsreduzierungssystems der Brennkraftmaschine gesteuert. In einem zweiten Fahrzyklus (DC) nach dem ersten Fahrzyklus (DC) wird überprüft, ob während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des Emissionsreduzierungssystems erkannt wurde. Eine Standdauer (DUR_OFF) der Brennkraftmaschine zwischen dem ersten und dem zweiten Fahrzyklus (DC) wird ermittelt, falls während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des E-missionsreduzierungssystems erkannt wurde. In dem zweiten Fahrzyklus (DC) der Brennkraftmaschine wird der Verbrennungsprozess in dem mindestens einen Brennraum lediglich dann im Sinne des Überprüfens (CHECK) des Emissionsreduzierungssystems gesteuert, falls während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des Emissionsreduzierungssystems erkannt wurde und falls die Standdauer (DUR_OFF) größer war als eine vorgegebene Reparaturdauer (DUR_REPAIR).

Description

Beschreibung
Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben einer Brennkraftmaschine. Die Brennkraftmaschine umfasst einen Ansaugtrakt und einen Abgastrakt mit einem E- missionsreduzierungssystem. Der Ansaugtrakt und der Abgas- trakt kommunizieren abhängig von der Schaltstellung mindestens eines Gaseinlassventils bzw. mindestens eines Gasaus¬ lassventils mit einem Brennraum der Brennkraftmaschine.
Aus der DE 199 53 601 C2 ist ein Verfahren zum Überprüfen ei- nes Abgaskatalysators einer Brennkraftmaschine bekannt. Der Abgaskatalysator ist in einem Abgaskanal der Brennkraftma¬ schine angeordnet. Die Brennkraftmaschine weist eine Lambda- Regelungseinrichtung auf, die eine stromaufwärts des Abgaska¬ talysators angeordnete Breitband-Lambdasonde umfasst und ein Luft-/Kraftstoff-Verhältnis auf einen vorgegebenen Sollwert regelt. Zum Überprüfen einer Konvertierungsfähigkeit des Ab¬ gaskatalysators wird im stationären Betrieb bei betriebswar¬ mer Brennkraftmaschine durch einen Regeleingriff der Lambda- Regeleinrichtung eine Sauerstoffbeladung des Abgaskatalysa- tors während einer Diagnosezeit bis zu einem vorgegebenen Wert erhöht. Während der Diagnosezeit wird die NOX- Konzentration im Abgaskanal stromaufwärts des 3-Wege- Abgaskatalysators mittels eines NOX-Sensors erfasst. Aus Wer¬ ten der NOX-Konzentration während mindestens einer Lambda- Reglerschwingung wird ein stationärer Diagnosewert ermittelt . Der Diagnosewert wird mit einem vorgegebenen Schwellenwert verglichen und beim Überschreiten des Schwellenwertes wird auf einen gealterten Abgaskatalysator geschlossen.
Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zum Betreiben einer Brennkraftmaschine zu schaffen, das bzw. die einfach einen emissionsarmen Betrieb der Brennkraftmaschine ermöglicht. Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung zeichnet sich aus durch ein Verfahren und eine Vorrichtung zum Betreiben einer Brennkraftmaschine. Die Brennkraftmaschine umfasst einen Ansaugtrakt und einen Abgas¬ trakt mit einem Abgaskatalysator. Der Ansaugtrakt und der Ab- gastrakt kommunizieren abhängig von der Schaltstellung mindestens eines Gaseinlassventils bzw. mindestens eines Gasaus¬ lassventils mit einem Brennraum der Brennkraftmaschine. In¬ nerhalb eines ersten Fahrzyklus der Brennkraftmaschine wird ein Verbrennungsprozess in dem mindestens einen Brennraum der Brennkraftmaschine im Sinne eines Überprüfens des Emissions- reduzierungssystems gesteuert. In einem zweiten Fahrzyklus nach dem ersten Fahrzyklus wird überprüft, ob während des ersten Fahrzyklus ein Fehler des Emissionsreduzierungssystems erkannt wurde. Es wird eine Standdauer der Brennkraftmaschine zwischen dem ersten und dem zweiten Fahrzyklus ermittelt, falls während des ersten Fahrzyklus ein Fehler des Emissions¬ reduzierungssystems erkannt wurde. In dem zweiten Fahrzyklus der Brennkraftmaschine wird der Verbrennungsprozess in dem mindestens einen Brennraum lediglich dann im Sinne des Über- prüfens des Emissionsreduzierungssystems gesteuert, falls während des ersten Fahrzyklus der Fehler des Emissionsredu¬ zierungssystems erkannt wurde und falls die Standdauer größer war als eine vorgegebene Reparaturdauer.
Dies ermöglicht, den Verbrennungsprozess lediglich dann im Sinne des Überprüfens des Emissionsreduzierungssystems zu steuern, wenn die Möglichkeit besteht, dass das Emissionsre- duzierungssystem einwandfrei funktioniert. Insbesondere falls beim Steuern des Verbrennungsprozesses im Sinne des Überprü- fens des Emissionsreduzierungssystems eine Schadstoffentwick- lung des Verbrennungsprozesses größer ist als die Schadstoff¬ entwicklung des Verbrennungsprozesses außerhalb des Überprü¬ fens des Emissionsreduzierungssystems, so ermöglicht die De- aktivierungsmöglichkeit des Überprüfens des Emissionsreduzie- rungssystems die Schadstoffentwicklung bei dem Verbrennungs- prozess lediglich dann zu erhöhen, wenn der einwandfreie Betrieb des Emissionsreduzierungssystems möglich ist. Somit trägt die Deaktivierungsmöglichkeit des Überprüfens des Emis¬ sionsreduzierungssystems zu einem emissionsarmen Betrieb der Brennkraftmaschine bei. Ferner kann dies dazu beitragen, dass man ein Emissionsreduzierungssystem verwenden kann, das weniger leistungsfähig ist als das Emissionsreduzierungssystem, das ohne die Deaktivierungsmöglichkeit der Überprüfung des
Emissionsreduzierungssystems verwendet werden muss. Insbeson¬ dere kann dies dazu beitragen, dass ein Abgaskatalysator des Emissionsreduzierungssystems mit einem geringeren maximalen Sauerstoff-Beladungsgrad verwendet werden kann als der Abgas- katalysator, der ohne die Deaktivierungsmöglichkeit der Über¬ prüfung des Emissionsreduzierungssystems verwendet werden muss. Der Sauerstoff-Beladungsgrad kann auch als Sauerstoff- Speicher bezeichnet werden. Ferner kann dies dazu beitragen, dass ein SchadstoffSchwellenwert weniger scharf gewählt wer- den kann als ohne die Deaktivierungsmöglichkeit der Überprü¬ fung des Emissionsreduzierungssystems.
In einer vorteilhaften Ausgestaltung des Verfahrens wird zum Überprüfen des Emissionsreduzierungssystems der Abgaskataly- sator im Hinblick auf eine SauerstoffSpeicherfähigkeit des
Abgaskatalysators überwacht. Dies trägt dazu bei, das Emissi¬ onsreduzierungssystem besonders präzise zu überwachen. Ferner ermöglicht dies, zu erkennen, ob der Abgaskatalysator einwandfrei funktioniert.
In einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird in dem zweiten Fahrzyklus der Brennkraftmaschine das E- missionsreduzierungssystem lediglich dann überprüft, falls die Standdauer länger als 20 min war. Dies trägt dazu bei, besonders präzise erkennen zu können, ob der Fehler des Emis¬ sionsreduzierungssystems, insbesondere des Abgaskatalysators behoben werden konnte. In einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird die Standdauer mit einem Zeitmesser erfasst. Dies trägt dazu bei, die Standdauer besonders einfach und präzise zu er¬ mitteln .
In einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird die Standdauer ermittelt, indem eine Öltemperatur und/oder eine Kühlmitteltemperatur der Brennkraftmaschine am Ende des ersten Fahrzyklusses mit der Öltemperatur bzw. der Kühlmitteltemperatur zu Beginn des zweiten Fahrzyklusses verglichen wird und indem aus dem Unterschied der beiden Öltem- peraturen bzw. der beiden Kühlmitteltemperaturen die Standdauer ermittelt wird. Dies ermöglicht, die Standdauer beson¬ ders präzise zu ermitteln, ohne dass die Standdauer direkt erfasst werden muss.
Die vorteilhaften Ausgestaltungen des Verfahrens können ohne weiteres als vorteilhafte Ausgestaltungen auf die Vorrichtung übertragen werden.
Die Erfindung ist im folgenden anhand der schematischen Zeichnungen näher erläutert .
Es zeigen:
Figur 1 eine Brennkraftmaschine,
Figur 2 ein Ablaufdiagramm eines Programms zum Betreiben der Brennkraftmaschine.
Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.
Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgastrakt 4. Der Ansaugtrakt 1 umfasst vorzugsweise eine Drossel¬ klappe 5, einen Sammler 6 und ein Saugrohr 7, das hin zu einem Zylinder Zl über einen Einlasskanal in einen Brennraum 9 des Motorblocks 2 geführt ist. Der Motorblock 2 umfasst ei¬ ne Kurbelwelle 8, die über eine Pleuelstange 10 mit dem Kol¬ ben 11 des Zylinders Zl gekoppelt ist. Die Brennkraftmaschine ist vorzugsweise in einem Kraftfahrzeug angeordnet.
Der Zylinderkopf 3 umfasst einen Ventiltrieb mit mindestens einem Gaseinlassventil 12, mindestens einem Gasauslassventil 13 und Ventilantrieben 14, 15. Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 22 und eine Zündkerze 23. Alterna¬ tiv kann das Einspritzventil 22 auch in dem Saugrohr 7 angeordnet sein.
Der Abgastrakt 4 umfasst einen Abgaskatalysator 24, der vor- zugsweise als Drei-Wege-Katalysator ausgebildet ist und der zu einem Emissionsreduzierungssystem der Brennkraftmaschine gehört. Der Abgaskatalysator 24 eignet sich zum Speichern und Abgeben von Sauerstoff abhängig von einem Sauerstoff- Beladungsgrad des Abgaskatalysators 24. Ist der Sauerstoff- Beladungsgrad maximal, so kann kein weiterer Sauerstoff von dem Abgaskatalysator 24 aufgenommen werden. Ist der Sauerstoff-Beladungsgrad minimal, so kann der Abgaskatalysator 24 keinen Sauerstoff abgeben. Ferner kann das Emissionsreduzie¬ rungssystem, insbesondere bei einer Diesel- Brennkraftmaschine, ein Rückführen von Abgasen aus dem Abgas¬ trakt 4 und/oder dem Brennraum 9 in den Ansaugtrakt 1 bzw. den Brennraum 9 umfassen. Bei dem Rückführen der Abgase kann eine Abgasrückführrate beispielsweise durch eine Ventilüber¬ schneidungsphase eingestellt werden, in der das Gaseinlass- ventil 12 und das Gasauslassventil 13 gleichzeitig geöffnet sind. Das Rückführen der Abgase bewirkt beispielsweise eine geringere Verbrennungstemperatur bei einem Verbrennungspro- zess in dem Brennraum 9 als ohne das Rückführen der Abgase. Die geringere Verbrennungstemperatur führt zu einer geringe- ren Schadstoffproduktion bei dem Verbrennungsprozess als bei einer höheren Verbrennungstemperatur. Eine Steuervorrichtung 25 ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Wert der Messgröße ermitteln. Betriebsgrößen umfassen die Messgrößen und von diesen abgeleitete Größen der Brennkraft- maschine. Die Steuervorrichtung 25 ermittelt abhängig von mindestens einer der Betriebsgrößen mindestens eine Stellgrö¬ ße, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden. Die Steuervorrichtung 25 kann auch als Vorrichtung zum Betreiben der Brennkraftmaschine bezeichnet werden.
Die Sensoren sind ein Pedalstellungsgeber 26, der eine Fahrpedalstellung eines Fahrpedals 27 erfasst, ein Luftmassensensor 28, der einen Luftmassenstrom stromaufwärts der Drossel- klappe 5 erfasst, ein Drosselklappenstellungssensor 30, der einen Öffnungsgrad der Drosselklappe 5 erfasst, ein erster Temperatursensor 32, der eine Ansauglufttemperatur erfasst, ein zweiter Temperatursensor 33, der eine Kühlmitteltemperatur TCO erfasst, ein dritter Temperatursensor 35, der eine Öltemperatur TOIL erfasst, ein Saugrohrdrucksensor 34, der einen Saugrohrdruck in dem Sammler 6 erfasst, ein Kurbelwel- lenwinkelsensor 36, der einen Kurbelwellenwinkel erfasst, dem dann eine Drehzahl zugeordnet wird. Ferner ist in dem Abgas¬ trakt bevorzugt eine Abgassonde 40 stromaufwärts des Abgaska- talysators 24 angeordnet, deren Messsignal unter Berücksich¬ tigung einer Gaslaufzeit von dem Brennraum 9 zu der Abgassonde 40 repräsentativ ist für ein Luft-/Kraftstoff-Verhältnis in dem Brennraum 9, und eine Abgassonde 42 stromabwärts des Abgaskatalysators 24, durch die die Sauerstoffbeladungsfähig- keit des Abgaskatalysators 24 überprüft werden kann. Die Ab- gassonden 40, 42 stromaufwärts und/oder stromabwärts des Ab¬ gaskatalysators 24 sind weitere Elemente des Emissionsredu- zierungssystems der Brennkraftmaschine. Je nach Ausführungs¬ form der Erfindung kann eine beliebige Untermenge der genann- ten Sensoren vorhanden sein oder es können auch zusätzliche Sensoren vorhanden sein. Die Stellglieder sind beispielsweise die Drosselklappe 5, die Gaseinlass- und Gasauslassventile 12, 13, das Einspritzventil 22 und/oder die Zündkerze 23.
Neben dem Zylinder Zl sind bevorzugt weitere Zylinder Z2 - Z4 vorgesehen, denen entsprechende Stellglieder zugeordnet sind.
Ein Programm (Figur 2) zum Betreiben der Brennkraftmaschine ist vorzugsweise auf einem Speichermedium der Steuervorrich- tung 25 gespeichert. Das Programm dient dazu, einen Verbren- nungsprozess in dem Brennraum 9 lediglich dann im Sinne eines Überprüfens CHECK des Emissionsreduzierungssystems zu steu¬ ern, wenn das Emissionsreduzierungssystem einwandfrei funktionieren kann. Bevorzugt wird das Programm zeitnah nach einem Motorstart der Brennkraftmaschine in einem Schritt Sl gestar¬ tet, in dem gegebenenfalls Variablen initialisiert werden.
In einem Schritt S2 wird überprüft, ob in dem vorhergehenden Fahrzyklus DC der Brennkraftmaschine ein Fehler ERROR des E- missionsreduzierungssystems erkannt wurde. Insbesondere kann in dem Schritt S2 geprüft werden, ob ein Fehler ERROR des Ab¬ gaskatalysators 24 erkannt wurde. Der Fehler ERROR des Abgas¬ katalysators bezieht sich beispielsweise auf eine mangelnde SauerstoffSpeicherfähigkeit des Abgaskatalysators 24. Diese kann beispielsweise, wie in dem eingangs zitierten Dokument des Standes der Technik dargestellt, überprüft werden. Dabei wird zum Überprüfen CHECK des Emissionsreduzierungssystems eine Magerphase oder eine Fettphase des Motorbetriebs bezüg¬ lich ihrer Dauer und/oder bezüglich ihres Luft-/Kraftstoff- Verhältnisses verstärkt. Dadurch wird dem Abgaskatalysator 24 gezielt Sauerstoff zugeführt bzw. entzogen. Dies ist gleich¬ bedeutend mit einem Erhöhen bzw. Erniedrigen des Sauerstoffbeladungsgrades des Abgaskatalysators 24. Mit der Abgassonde 42 stromabwärts des Abgaskatalysators 24 kann die Auswirkung der verstärkten Mager- bzw. Fettphase überwacht werden. Abhängig von der Auswirkung wird auf den Fehler ERROR des Emissionsreduzierungssystems geschlossen oder nicht. Somit wird beim Steuern des Verbrennungsprozesses im Sinne des Überprü- fens CHECK des Emissionsreduzierungssystems die Schadstoff¬ entwicklung des Verbrennungsprozesses erhöht gegenüber dem Betrieb der Brennkraftmaschine außerhalb des Überprüfens CHECK des Emissionsreduzierungssystems. Ist die Bedingung des Schritts S2 erfüllt, so wird die Bearbeitung in einem Schritt S3 fortgesetzt. Ist die Bedingung des Schritts S2 nicht er¬ füllt, so wird die Bearbeitung in einem Schritt S7 fortge¬ setzt .
In dem Schritt S3 wird eine Standdauer DUR_OFF ermittelt, während der die Brennkraftmaschine zwischen dem letzten Fahr¬ zyklus DC und dem aktuellen Fahrzyklus DC abgestellt war. Die Standdauer DUR_OFF kann beispielsweise einfach mit einem Zeitmesser erfasst werden.
In einem Schritt S4 wird überprüft, ob die Standdauer DUR_OFF größer ist als eine vorgegebene Reparaturdauer DUR_REPAIR. Die vorgegebene Reparaturdauer DUR_REPAIR kann beispielsweise zwischen 20 und 30 Minuten betragen. Die vorgegebene Repara- turdauer DUR_REPAIR ist die Dauer, die mindestens benötigt wird, um den auf Betriebstemperatur aufgewärmten Abgaskatalysator 24 adäquat abkühlen zu lassen und ihn auszutauschen. Ist die Standdauer DUR_OFF kleiner als die vorgegebene Repa¬ raturdauer DUR_REPAIR, so kann der Fehler ERROR des Emissi- onsreduzierungssystems nicht behoben worden sein. Ist die Be¬ dingung des Schritts S4 nicht erfüllt, so wird die Bearbei¬ tung in einem Schritt S5 fortgesetzt. Ist die Bedingung in des Schritts S4 erfüllt, so wird die Bearbeitung in dem Schritt S7 fortgesetzt.
In dem Schritt S7 wird die Möglichkeit aktiviert ACT, den Verbrennungsprozess in dem Brennraum 9 im Sinne des Überprü¬ fens CHECK des Emissionsreduzierungssystems zu steuern.
In dem Schritt S5 wird das Steuern des Verbrennungsprozesses im Sinne des Überprüfens CHECK deaktiviert DEACT. Dies ermög¬ licht, die Schadstoffentwicklung bei dem Verbrennungsprozess lediglich dann im Sinne des Überprüfens CHECK des Emissions- reduzierungssystems zu erhöhen, wenn das Emissionsreduzie- rungssystem fehlerfrei funktionieren kann. Ist im letzten Fahrzyklus DC der Fehler ERROR aufgetreten und war die Stand¬ dauer DUR_OFF kleiner als die vorgegebene Reparaturdauer DUR_REPAIR, so war eine Reparatur des Fehlers ERROR unmög¬ lich. Somit muss nicht unnötig die Schadstoffentwicklung des Verbrennungsprozesses im Sinne des Überprüfens CHECK des E- missionsreduzierungssystems erhöht werden.
In einem Schritt S6 kann das Programm beendet werden.
Alternativ zu dem Schritt S3 kann die Bearbeitung auch in einem Schritt S8 fortgesetzt werden. In dem Schritt S8 wird die Standdauer DUR_OFF ermittelt abhängig von der Kühlmiiteltem- peratur TCO und/oder der Öltemperatur TOIL am Ende des letzten Fahrzyklus DC und abhängig von der Kühlmiiteltemperatur TCO bzw. der Öltemperatur TOIL zu Beginn des aktuellen Fahrzyklus DC.

Claims

Patentansprüche :
1. Verfahren zum Betreiben einer Brennkraftmaschine, die einen Ansaugtrakt (1) und einen Abgastrakt (4) umfasst, die mit mindestens einem Brennraum (9) der Brennkraftmaschine kommu¬ nizieren abhängig von der Schaltstellung mindestens eines Gaseinlassventils (12) bzw. mindestens eines Gasauslassven¬ tils (13) , bei dem
- innerhalb eines ersten Fahrzyklus (DC) der Brennkraftma- schine ein Verbrennungsprozess in dem mindestens einen Brenn¬ raum (9) im Sinne eines Überprüfens (CHECK) eines Emissions- reduzierungssystems der Brennkraftmaschine gesteuert wird,
- in einem zweiten Fahrzyklus (DC) nach dem ersten Fahrzyklus (DC) überprüft wird, ob während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des Emissionsreduzierungssystems erkannt wurde,
- eine Standdauer (DUR_OFF) der Brennkraftmaschine zwischen dem ersten und dem zweiten Fahrzyklus (DC) ermittelt wird, falls während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des Emissionsreduzierungssystems erkannt wurde,
- in dem zweiten Fahrzyklus (DC) der Brennkraftmaschine der Verbrennungsprozess in dem mindestens einen Brennraum (9) le¬ diglich dann im Sinne des Überprüfens (CHECK) des Emissions¬ reduzierungssystems gesteuert wird, falls während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des Emissionsreduzierungs¬ systems erkannt wurde und falls die Standdauer (DUR_OFF) grö¬ ßer war als eine vorgegebene Reparaturdauer (DUR_REPAIR) .
2. Verfahren nach Anspruch 1, bei dem zum Überprüfen (CHECK) des Emissionsreduzierungssystems ein Abgaskatalysator (24) der Brennkraftmaschine im Hinblick auf eine Sauerstoff- Speicherfähigkeit des Abgaskatalysators (24) überwacht wird.
3. Verfahren nach einem der vorstehenden Ansprüche, bei dem in dem zweiten Fahrzyklus (DC) der Brennkraftmaschine das E- missionsreduzierungssystem lediglich dann überprüft (CHECK) wird, falls die Standdauer (DUR_OFF) länger als zwanzig Minuten war.
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Standdauer (DUR_OFF) mit einem Zeitmesser erfasst wird.
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Standdauer (DUR_OFF) ermittelt wird, indem eine Öltempe- ratur (TOIL) und/oder eine Kühlwassertemperatur (TCO) der Brennkraftmaschine am Ende des ersten Fahrzyklus (DC) mit der Öltemperatur (TOIL) bzw. der Kühlwassertemperatur (TCO) zu Beginn des zweiten Fahrzyklus (DC) verglichen wird und indem aus dem Unterschied der beiden Öltemperaturen (TOIL) bzw. der beiden Kühlwassertemperaturen (TCO) die Standdauer (DUR_OFF) ermittelt wird.
6. Vorrichtung zum Betreiben einer Brennkraftmaschine, die einen Ansaugtrakt (1) und einen Abgastrakt (4) umfasst, die mit mindestens einem Brennraum (9) der Brennkraftmaschine kommunizieren abhängig von der Schaltstellung mindestens eines Gaseinlassventils (12) bzw. mindestens eines Gasauslass- ventils (13), wobei die Vorrichtung ausgebildet ist zum
- Steuern eines Verbrennungsprozesses in dem mindestens einen Brennraum (9) im Sinne eines Überprüfens (CHECK) eines Emis- sionsreduzierungssystems der Brennkraftmaschine innerhalb ei¬ nes ersten Fahrzyklus (DC) der Brennkraftmaschine, - Überprüfen, ob während des ersten Fahrzyklus (DC) ein Feh¬ ler (ERROR) des Emissionsreduzierungssystems erkannt wurde, in einem zweiten Fahrzyklus (DC) nach dem ersten Fahrzyklus (DC) ,
- Ermitteln einer Standdauer (DUR_OFF) der Brennkraftmaschine zwischen dem ersten und dem zweiten Fahrzyklus (DC) , falls während des ersten Fahrzyklus (DC) ein Fehler (ERROR) des E- missionsreduzierungssystems erkannt wurde,
- Steuern des Verbrennungsprozesses in dem mindestens einen Brennraum (9) lediglich dann im Sinne des Überprüfens (CHECK) des Emissionsreduzierungssystems in dem zweiten Fahrzyklus (DC) der Brennkraftmaschine, falls während des ersten Fahr¬ zyklus (DC) ein Fehler (ERROR) des Emissionsreduzierungssys- tems erkannt wurde und falls die Standdauer (DUR_OFF) größer war als eine vorgegebene Reparaturdauer (DUR_REPAIR) .
PCT/EP2007/050993 2006-03-03 2007-02-01 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine WO2007101761A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020087023102A KR101312654B1 (ko) 2006-03-03 2007-02-01 내연 기관의 작동 방법 및 장치
US12/281,381 US8000853B2 (en) 2006-03-03 2007-02-01 Method and device for operating an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006009989A DE102006009989B4 (de) 2006-03-03 2006-03-03 Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006009989.3 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007101761A1 true WO2007101761A1 (de) 2007-09-13

Family

ID=38128424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050993 WO2007101761A1 (de) 2006-03-03 2007-02-01 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US8000853B2 (de)
KR (1) KR101312654B1 (de)
DE (1) DE102006009989B4 (de)
WO (1) WO2007101761A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009989B4 (de) * 2006-03-03 2008-04-17 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010030868B4 (de) * 2010-07-02 2022-11-10 Robert Bosch Gmbh Verfahren zur Diagnose und/oder zur Anpassung von mindestens einem System einer Vorrichtung
CN114136639B (zh) * 2021-10-20 2023-10-03 中国航发四川燃气涡轮研究院 火焰筒压降测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044251A1 (en) * 1997-04-01 1998-10-08 Ab Volvo Diagnostic system in an engine management system
DE19953601A1 (de) * 1999-11-08 2001-05-23 Siemens Ag Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE10031924A1 (de) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Überprüfung von Katalysatorheizmassnahmen bei Brennkraftmaschinen
WO2006027299A1 (de) * 2004-09-08 2006-03-16 Siemens Aktiengesellschaft Verfahren zur diagnose von zylinderbezogenen einzelkatalysatoren einer otto-mehrzylinder-brennkraftmaschine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182670A (ja) * 1989-12-11 1991-08-08 Mitsubishi Electric Corp 内燃機関の電子制御装置
JP2807769B2 (ja) * 1990-08-30 1998-10-08 本田技研工業株式会社 内燃エンジンの制御装置の故障診断方法
JPH06341340A (ja) * 1993-06-02 1994-12-13 Unisia Jecs Corp 内燃機関の空燃比制御装置の診断装置
DE4400203C1 (de) * 1994-01-05 1995-08-03 Daimler Benz Ag Verfahren zur Überwachung von Fahrzeugfunktionskomponenten
JP3188579B2 (ja) * 1994-02-15 2001-07-16 三菱電機株式会社 空燃比センサの故障検出装置
US5431042A (en) * 1994-03-10 1995-07-11 General Motors Corporation Engine emissions analyzer
US5941918A (en) * 1997-07-30 1999-08-24 Engelhard Corporation Automotive on-board monitoring system for catalytic converter evaluation
JP2002317678A (ja) * 2001-02-16 2002-10-31 Toyota Motor Corp 内燃機関の排気系異常検出装置
JP3729083B2 (ja) * 2001-04-27 2005-12-21 日産自動車株式会社 エンジンの排気浄化装置
DE102004015836A1 (de) * 2004-03-31 2005-11-03 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
KR100552791B1 (ko) * 2004-07-01 2006-02-21 현대자동차주식회사 차량의 배출가스 자가진단장치의 산소센서의 동작성체크방법
DE102004058714B4 (de) * 2004-12-06 2006-08-31 Siemens Ag Verfahren und Vorrichtung zum Überprüfen von Temperaturwerten eines Temperatursensors einer Brennkraftmaschine
US7444233B2 (en) * 2005-12-27 2008-10-28 Nissan Motor Co., Ltd. Diagnostic apparatus and diagnostic method for an internal combustion engine
US8600605B2 (en) * 2006-01-30 2013-12-03 GM Global Technology Operations LLC Distributed diagnostics architecture
DE102006009989B4 (de) * 2006-03-03 2008-04-17 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US8037672B2 (en) * 2007-10-09 2011-10-18 Delphi Technologies, Inc. Method and apparatus for detecting a non-operational status of a catalyst in an engine exhaust conduit
US7802563B2 (en) * 2008-03-25 2010-09-28 Fors Global Technologies, LLC Air/fuel imbalance monitor using an oxygen sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044251A1 (en) * 1997-04-01 1998-10-08 Ab Volvo Diagnostic system in an engine management system
DE19953601A1 (de) * 1999-11-08 2001-05-23 Siemens Ag Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE10031924A1 (de) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Überprüfung von Katalysatorheizmassnahmen bei Brennkraftmaschinen
WO2006027299A1 (de) * 2004-09-08 2006-03-16 Siemens Aktiengesellschaft Verfahren zur diagnose von zylinderbezogenen einzelkatalysatoren einer otto-mehrzylinder-brennkraftmaschine

Also Published As

Publication number Publication date
DE102006009989A1 (de) 2007-09-06
KR20080108473A (ko) 2008-12-15
DE102006009989B4 (de) 2008-04-17
US20090012671A1 (en) 2009-01-08
US8000853B2 (en) 2011-08-16
KR101312654B1 (ko) 2013-09-27

Similar Documents

Publication Publication Date Title
DE102006010497B4 (de) Abgasreinigungsvorrichtung für einen Verbrennungsmotor
DE102011057117B4 (de) Vorrichtung zum Reinigen von Abgas und Verfahren zum Steuern desselben
DE102011007565B4 (de) Dieselpartikelfiltersteuerung
DE102010012988B4 (de) Verfahren zur Diagnose eines flüssigkeitsgekühlten Abgaskrümmers einer Brennkraftmaschine
DE102007021594B4 (de) Verfahren zur Diagnose der Undichtigkeit eines Injektors sowie zugehöriges Steuergerät
US8459005B2 (en) Method and device for diagnosing a particle filter
EP1337745B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
EP1084331B1 (de) Verfahren und vorrichtung zum überwachen der funktionsfähigkeit eines katalysators einer brennkraftmaschine
DE102011005225A1 (de) Anormalitätsdiagnosevorrichtung eines Verbrennungsmotors mit einem Turbolader
DE102018113179B4 (de) Abgasreinigungssystem für einen Verbrennungsmotor
EP1305514B1 (de) Verfahren zur diagnose der funktionstüchtigkeit eines abgasrückführungssystems einer brennkraftmaschine
WO2019120904A1 (de) Verfahren und vorrichtung zum bestimmen des verschmutzungsgrades eines luftfilters einer verbrennungskraftmaschine
DE102005052990A1 (de) Abgasreinigungsvorrichtung für eine Brennkraftmaschine
DE102008040857B4 (de) Steuergerät und Informationserlangungsgerät für ein Abgassystem einer Brennkraftmaschine
DE102018107769A1 (de) Verfahren für eine Regeneration eines Otto-Partikel-Filters eines Verbrennungsmotors eines Fahrzeugs
DE102007026945B4 (de) Verfahren und Vorrichtung zum Überprüfen eines Abgasrückführsystems und Computerprogramm zur Durchführung des Verfahrens
DE112006003630B4 (de) Verfahren zum Überwachen des Sekundärluftsystems in einer Abgasreinigungsanlage
WO2007101761A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102010025662B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007007815B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006003593A1 (de) Vorrichtung und Verfahren zum Schützen eines Katalysators vor Fehlzündungen
DE4433632A1 (de) Verfahren zur Überwachung einer Heizeinrichtung eines im Abgassystem einer Brennkraftmaschine angebrachten Sensors
DE112022000592T5 (de) Diagnose und management von auslassventilfehlern
DE102005046956B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers
DE102005046955B3 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12281381

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023102

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07704314

Country of ref document: EP

Kind code of ref document: A1