WO2007099236A1 - Méthode de détection électrochimique de séquences cibles d'acide nucléique - Google Patents

Méthode de détection électrochimique de séquences cibles d'acide nucléique Download PDF

Info

Publication number
WO2007099236A1
WO2007099236A1 PCT/FR2007/000373 FR2007000373W WO2007099236A1 WO 2007099236 A1 WO2007099236 A1 WO 2007099236A1 FR 2007000373 W FR2007000373 W FR 2007000373W WO 2007099236 A1 WO2007099236 A1 WO 2007099236A1
Authority
WO
WIPO (PCT)
Prior art keywords
target sequence
nucleic acid
oxidizing agent
nucleotide base
electric current
Prior art date
Application number
PCT/FR2007/000373
Other languages
English (en)
Other versions
WO2007099236B1 (fr
Inventor
Damien Marchal
Benoît LIMOGES
Murielle Dequaire
Original Assignee
Universite Paris Diderot - Paris 7
Universite De Bourgogne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0601936A external-priority patent/FR2898133B1/fr
Priority claimed from FR0700157A external-priority patent/FR2911149A1/fr
Application filed by Universite Paris Diderot - Paris 7, Universite De Bourgogne filed Critical Universite Paris Diderot - Paris 7
Priority to EP07731073A priority Critical patent/EP1996725B1/fr
Priority to AT07731073T priority patent/ATE510028T1/de
Priority to JP2008557791A priority patent/JP5320077B2/ja
Priority to CN200780015917.7A priority patent/CN101437961B/zh
Priority to US12/280,826 priority patent/US8313638B2/en
Publication of WO2007099236A1 publication Critical patent/WO2007099236A1/fr
Publication of WO2007099236B1 publication Critical patent/WO2007099236B1/fr
Priority to KR1020087022299A priority patent/KR101345077B1/ko
Priority to HK09109110.7A priority patent/HK1129909A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/10Characterised by chemical treatment
    • C12Q2523/115Characterised by chemical treatment oxidising agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/30Characterised by physical treatment
    • C12Q2523/305Denaturation or renaturation by physical action
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/113Nucleic acid detection characterized by the use of physical, structural and functional properties the label being electroactive, e.g. redox labels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/50Detection characterised by immobilisation to a surface
    • C12Q2565/537Detection characterised by immobilisation to a surface characterised by the capture oligonucleotide acting as a primer

Definitions

  • the present invention relates to a method for the electrochemical detection of nucleic acid target sequences and to a detection set for the implementation of said method.
  • oligonucleotide probes incorporating said sequence are made and these probes are fixed on a solid support.
  • the probes include a given number of nucleotides that has an oxidizable nucleotide base. Then, the determined biological sample is brought into contact with the solid support on which said probes are grafted so that, where appropriate, hybridization of the nucleic acid containing the target sequence with the probe occurs.
  • the hybrid nucleic acid is then reacted with a transition metal complex capable of oxidizing nucleotide bases of the oligonucleotide probe; and determining the presence or absence of this hybridization, which occurs if the biological sample comprises a nucleic acid including said target sequence, by applying a variable electric field to the sample and by measuring in parallel the electric current flowing therethrough.
  • the electric current then being a function of the number of given bases that can be oxidized.
  • the electric current response is different depending on whether the probe is hybridized with the nucleic acid containing the target sequence or as it is not.
  • the electric current of oxidation of the base of the nucleotides of the hybridized probe has a value higher than that associated with the oxidation of the base of the non-hybrid nucleotides.
  • the present invention proposes a method for the electrochemical detection of nucleic acid target sequences, said method being of the type according to which: a biological sample is provided which can contain at least one nucleic acid, said nucleic acid being capable of containing a specific target sequence, said biological sample being mixed with an oxidizing agent, said target sequence comprising a nucleotide base capable of being oxidized by said oxidizing agent; providing complementary means capable of coupling with said determined target sequence; applying an electric field to said sample, said electric field being adapted to cause a reaction of said oxidizing agent with said nucleotide base, and measuring an electric current which passes through said sample to determine the presence of said target sequence; according to the invention said complementary means comprise activatable amplification means adapted to replicate said target sequence, said amplification means comprising at least nucleotides of a type including said nucleotide base, said nucleotides of said type being able to be consumed during replication to form replicated
  • a feature of the invention lies in the implementation of a method for amplifying a nucleic acid and the simultaneous measurement of an electric current, the measurement of this electric current testifying or not to the consumption of one of the elements of the amplification means during this and precisely one of the free nucleotides.
  • the oxidizing agent can react only with a more and more limited quantity of nucleotide bases corresponding to the nucleotides free, and therefore fewer electronic transfers will occur, and the finally measured electric current will decrease.
  • the oxidizing agent can also oxidize the bases of the nucleotides incorporated in the nucleic acid initially present and in the nucleic acids synthesized by replication, but that the electric current The result is weak compared with that resulting from the oxidation of the bases of the free nucleotides.
  • the nucleic acid on which a target sequence is to be identified is a single or double-stranded DNA or RNA molecule.
  • the activatable amplification means comprise means adapted to hybridize upstream of a target sequence and means to proceed with its replication. The number of nucleic acids resulting from this replication grows exponentially with time, so that the number of free nucleotides having the oxidizable nucleotide base It also decreases exponentially over time, and at the same time the decrease in the current passing through the sample is rapidly perceptible.
  • the nitrogenous base which is associated with the free nucleotides is a purine nucleotide base, for example guanine or a chemical analog of guanine, for example of the mercaptoguanine or oxoguanine type, and the oxidizing agent used is a ruthenium complex.
  • the latter has a reduced form and an oxidized form, the latter irreversibly catalyze the oxidation of guanine.
  • the resulting measured current is substantially a function of the concentration of free nucleotides having the guanine residue, since although the oxidizing agent also oxidizes the guanine of the nucleotides incorporated into the replicated nucleic acid the kinetics of oxidation as well as the diffusion coefficient of the free nucleotides are much greater than that of said replicated nucleic acids.
  • the decrease in the current that passes through the sample is also a function of time.
  • the starting sample has a high concentration of nucleic acid, and these nucleic acids of the same type all have the target sequence, the consumption of nucleotides will be all the more important.
  • the measurement of the variation of electric current will be all the more perceptible the more quickly.
  • the concentration of nucleic acid is less important, a longer time will be necessary to observe the variation of the current.
  • said invention is applicable for quantitative determination of the target sequence.
  • this electric current is measured after having applied the electric field for a predetermined, relatively constant time for the same amplification. Indeed, between the instant when the electric field is applied and the instant when the electric current which then crosses the sample is maximum, a transient phase is established during which the mobility of the ionized chemical species present in the sample goes grow to a maximum. Also, to provide maximum sensitivity, it is preferable to measure the electric current when it is maximum, or after a predetermined time as will be explained in more detail below. Be that as it may, the measurement of the electric current is carried out by means of known electrochemical techniques of the potential scanning voltammetry type that can be linear, cyclic, impulse or even potential jump type such as chronoamperometry.
  • said electric field is applied between electrodes adapted to be bathed in said sample.
  • an electric field is applied between an electrode based on metal oxides or based on carbon or else based on a noble metal and a reference electrode plunging both in the sample, taking care to present a constant active surface of the electrodes for each current measurement of the same amplification to be certain that the current variation is the result of the decrease in charge carriers and not no surface variation.
  • an electrode of a noble metal such as gold or platinum may be chosen.
  • said oxidizing agent is confined to the surface of one of said electrodes, either via a gel, a membrane, or a film applied to the electrode and which precisely traps the oxidizing agent; or via a polymer on which the oxidizing agent is coupled, the assembly being adsorbed or grafted onto the surface of one of the electrodes.
  • the present invention provides a set of electrochemical detection of target nucleic acid sequences, said set comprising: means for receiving a biological sample capable of containing at least one nucleic acid, said nucleic acid being capable of containing a nucleic acid.
  • said biological sample being mixed with an oxidizing agent, said target sequence comprising a nucleotide base capable of being oxidized by said oxidizing agent; complementary means capable of coupling with said determined target sequence; means for applying an electric field to said sample, said electric field being adapted to cause a reaction of said oxidizing agent with said nucleotide base, and means for measuring an electric current which passes through said sample to determine the presence of said target sequence;
  • said complementary means comprise activatable amplification means adapted to replicate said target sequence, said amplification means comprising at least nucleotides of a type including said nucleotide base, said nucleotides of said type being able to be consumed during replication to form replicated nucleic acids, and; said means of measurement provide a decreasing value of electric current when said amplification means are activated, if said nucleic acid contains said determined target sequence.
  • FIG. 1 is a reaction diagram schematically showing chemical and electrochemical reactions involved in the implementation of the method according to the invention
  • FIG. 2 is a schematic view showing a first implementation of the method according to the invention according to a first embodiment
  • FIG. 3 is a schematic view showing an element of a device for implementing the method according to the invention and according to a second embodiment
  • FIG. 4 is a graph showing curves of evolution of an electric current as a function of an applied potential and illustrating the method according to the invention
  • - Figure 5 is a graph showing the decrease of an electric current according to an amplification process
  • FIG. 6 is a schematic view of a second set of implementations of the method according to the invention.
  • Figure 7 is a graph showing a voltammetric curve.
  • the method for the electrochemical detection of nucleic acid target sequences aims to combine the implementation of a nucleic acid amplification method and an electrochemical method to be able to monitor the decrease of a species. particular chemical characterizing the presence of said nucleic acid target sequence.
  • the amplification method that will be described below is of the "PCR” type for: Polymerase chain reaction. However, any other amplification method could be implemented with the same efficiency.
  • methods of the "LCR” type for: Ligase Chain Reaction; "SDA” for Strand Displacement Amplification; RCA for Rolling Circle Amplification; "NASBA” for Nucleic Acid Sequence Based Assay or Amplification; or “HDA” for Helicase-dependent isothermal DNA amplification. These methods are all designated by their acronym.
  • the principle of the "PCR” method is to use, repetitively, one of the properties of the DNA polymerases, to synthesize by replication from the two complementary DNA component strands and a pair of primers (" primer "in English) two new strands copies of the two initial strands, the primers being nucleic acid small strands of about 20 bases, able to hybridize specifically, thanks to the complementarity of the bases, on each two strands of DNA to replicate.
  • the primers are chosen according to a target sequence to be revealed on a nucleic acid.
  • nucleotides In addition to the DNA polymerases, which allow after the primer has hybridized on one strand, to synthesize from this primer a complementary strand, it is also provided nucleotides, and in particular the four nucleotides dGTP, dATP, dTTP and dCTP component of DNA (respectively deoxy-guanine-tri-phosphate, deoxy-adenosine-triphosphate, deoxy-tyrosine-tri-phosphate and deoxy-cytosine-triphosphate), which the DNA polymerase assembles to form a complementary strand replicated.
  • the reaction medium in which are introduced the test sample likely to contain the target nucleic acid sequence, the DNA polymerase, the primers, and the four types of nucleotides and which form a reaction mixture, is well obviously liquid and buffered.
  • this reaction mixture will be alternately subjected to temperature variations, corresponding to different phases, of denaturation, hybridization and elongation of the nucleic acid, during the same cycle. In a conventional manner, the reaction mixture may successively undergo about thirty cycles.
  • the amplification method the principle of which has been described above, will be coupled to electrochemical means, making it possible to reveal, if appropriate, the disappearance of nucleotides. of one of the four types, as amplification cycles, the nucleotides of one of the four types, being incorporated into the complementary DNA strands by action of the DNA polymerase.
  • an oxidizing agent and in particular a ruthenium complex for example tris (2,2'-bipyridyl) ruthenium (II), which is susceptible, in its oxidized form, to oxidize in turn guanine is used.
  • nucleotides with the guanine residue: dGTP are for example IRCI 6 4 ".
  • the oxidizing agent As shown in Figure 1, on which is shown a 10 electrode immersed in a reaction 12 aqueous medium, the oxidizing agent being incorporated in the aforementioned reaction mixture, when an electric field is applied to this mixture, the oxidizing agent first evolves from its reduced form 14 to its oxidized form 16 according to the arrow F, by giving an electron Moreover, in its oxidized form 16, the oxidizing agent is capable of, in turn, oxidizing a guanine of a nucleotide 18 having precisely a guanine residue, and which is either free or inserted into A nucleic acid By oxidizing this guanine, the oxidizing agent is simultaneously reduced along the arrow R while the guanine definitely oxidized no longer intervenes in the reaction
  • the current measured at the electrode that is to say the flu x electronic, is mainly due to the oxidation current of free nucleotides having a guanine residue and a small fraction to the nucleotides inserted into a
  • FIG. 2 illustrates, according to a first embodiment, a tube 30 adapted to be installed in a thermocycler 32 which will allow the tube 30 to be carried at predetermined temperatures, representative of the different stages of amplification according to FIG. the "PCR" type method.
  • the tube is heated for a few seconds at 94 ° C. to cause the denaturation of the nucleic acid and here of the DNA.
  • the temperature is rapidly lowered to 58 ° C so as to cause hybridization of the primers.
  • the tube is then heated to a temperature of 72 ° C for one minute as well, so as to activate the DNA polymerase to elongate the complementary strands. And then, a new cycle is started.
  • the reaction mixture 34 is housed in the base 36 of the tube 30 and two electrodes 38, 40 introduced into the tube 30 immerse in the reaction mixture 34.
  • One of the electrodes, 38 is a carbon electrode for example, while the another electrode 40 is the reference electrode.
  • These electrodes 38, 40 are respectively connected to a potentiostat 42 making it possible to vary an electric potential in a given profile, between the two electrodes, and to record in parallel the electric current passing through them.
  • the amplification method is identical in all respects to the aforementioned method, however, the detection is no longer carried out during the amplification but the outcome of it.
  • connection ends 56, 58 are adapted to be connected to a potentiostat for applying an electric field to the reaction mixture located in the microcuvette. 44.
  • microcuvettes 44 are also adapted to amplification methods of the "NASBA”, “RCA” or “HDA” type mentioned above.
  • CMV Cytomegalovirus
  • the genome of this virus has a well-identified sequence of 406 base pairs and the two commercial AC1 and AC2 primers are used which allow the specific amplification of this sequence (references 60-003 and 60-004 from Argene).
  • the total volume of the reaction mixture is equal to 50 ⁇ l and it contains the two primers at a concentration of 0.8 ⁇ mol / l, the nucleotides of the four types at a concentration of 100 ⁇ mol / l, the polymerase at a concentration of 0, 02 units per ⁇ l, a ruthenium complex concentration of 20 ⁇ mol / l and a tenth dilution of 10X buffer.
  • the reaction mixture contains a biological sample and in this case a cellular extract incorporating Cytomegalovirus.
  • the electrochemical measurement is carried out using potentiostat 42 through the application of a voltammetric technique which consists of applying a potential variation between the two electrodes 38, 40 or 52, 54, starting, for example, from an initial potential of 0.5 V with respect to a calomel electrode, up to a final potential of 1.3 V (with respect to the same calomel electrode), for a scanning speed of between 0, 01 and 100 V per second.
  • a voltammetric technique which consists of applying a potential variation between the two electrodes 38, 40 or 52, 54, starting, for example, from an initial potential of 0.5 V with respect to a calomel electrode, up to a final potential of 1.3 V (with respect to the same calomel electrode), for a scanning speed of between 0, 01 and 100 V per second.
  • the resulting electric current is recorded during the potential sweep.
  • FIG. 4 in which two voltammetric curves recorded at a speed of 0.1 Vs -1 are recorded by the potentiostat as a function of
  • first curve 60 represents the evolution of the electric current measured at the second amplification cycle according to the above-mentioned experiment
  • the biological sample initially contained 100,000 copies of the target sequence
  • This curve reaches a first extremum 62 of approximately 68 ⁇ A per cm 2.
  • a second curve 64 represents the evolution of the electric current measured at the thirtieth cycle according to the above-mentioned experiment.
  • This curve reaches a first extremum 66 of about 56 ⁇ A per cm 2. This extremum 66 is located substantially 12 ⁇ A per cm 2. below the first extremum 62.
  • the measurement of the electric current is essentially the result of the measurement of the electron flux corresponding to the reduction of the ruthenium complex and in parallel with the oxidation of nucleotides including guanine dGTP. Also, when these latter nucleotides partially disappear because they are integrated into the complementary nucleic acid strands, their amount in the free state decreases and therefore the resulting oxidation current also decreases.
  • the numbers of replication cycles are carried and on the ordinate 82 are reported the normalized values of the currents recorded at each cycle at a given potential according to the embodiment shown in FIG. current correspond to the current measurements divided by the measurement of the current carried out before starting the amplification.
  • the five curves represented, 84, 86, 88, 90, 92 represent the curves plotted starting from a biological sample comprising, respectively, zero copies of the CMV target sequence, 84, 1000 copies of said target sequence, 86, 10,000 copies. of said target sequence, 88, 100,000 copies of said target sequence, 90, and 1,000,000 copies of said target sequence, 92.
  • the method according to the invention applied to a biological sample capable of containing an identified virus makes it possible not only, thanks to the implementation of an amplification method and an electrochemical measurement, to reveal the presence or the absence of said virus, but also to quantify it. Therefore, in comparison with the methods implemented according to the prior art, for which the preparation of the identification material is complex, according to the present invention, it is only necessary to implement a conventional amplification method, then during the amplification of subjecting the biological sample to an electric field and measuring the resulting current.
  • This method uses an oxidizing agent which is not used in conventional amplification methods, to reveal the disappearance of a species, in this case a type of nucleotide having the guanine residue or a compound having the same role. biological than guanine.
  • the choice of the oxidizing agent will depend on the nature of the type of nucleotides whose disappearance is to be measured.
  • the implementation example above relates to a double-chain nucleic acid, a DNA molecule. However, it can be applied to a single-stranded nucleic acid of the RNA or DNA type, by means of the implementation of suitable amplification means. In both cases, the amplification of these nucleic acids results in the consumption of nucleotides including guanine, and by consequently the decrease of this species in the medium as the amplification process progresses.
  • the present invention also relates to a set specially adapted for the electrochemical detection of nucleic acid target sequences.
  • This assembly comprises at least one microcuvette 94 as shown in Figure 3, to receive a biological sample 95, but here equipped with a thermal insulation.
  • This microcuvette 94 has serigraphic electrodes 96 in the bottom and which are connected to a potensiostat P.
  • the microcuvette 94 is placed between two Peltier effect modules 98, 100 connected by a generator adapted to regulate the temperature within the microcuvette 94.
  • the biological sample 95 is capable of being heated to temperatures of up to 94 ° C. and following abrupt variations as well as the aforementioned method. PCR type.
  • the biological sample is added activatable amplification material and in particular nucleotides having an oxidizable nucleotide base.
  • the assembly illustrated in FIG. 6, which can be controlled by a computer, is adapted to automatically provide the information that the target sequence sought is contained in the sample inserted in the microcuvette 94, and if so, the nucleic acid concentration comprising the target sequence.
  • the computer is then loaded by a computer program, capable of simultaneously operating the replication means, that is to say the Peltier effect modules 98, 100 according to predefined cycles and the potentiostat between cycles for measuring the amount of current flowing through the sample 95 for given potential values.
  • the surface state of said electrode is modified.
  • the solvent of the reaction mixture in this case water, is likely to evaporate taking into account the temperatures applied. Any evaporation of the solvent causes, by nature, an increase in the concentration of solutes.
  • measurement of the current that is proportional to the nucleotide base concentration consumed may not be fully correlated with the amount of amplified nucleic acid.
  • the detection method also comprises the following steps: a redox compound is provided which is capable of reacting with an offset electric field value different from the electric field value at which said oxidizing agent and said nucleotide base react; the value of the redox electric current is measured at said offset electric field value; and, the presence of said determined target sequence is determined if the difference in electrical current between the redox electric current and said electric reaction current of said oxidizing agent and said nucleotide base decreases when said amplification means are activated.
  • the oxidation of the redox compound does not disturb the measurement of the oxidation current of the agent oxidant and base.
  • this oxidizing agent does not interfere with the activatable amplification means.
  • This curve has not only one extremum, but two.
  • a first 210 located around 1100 mV with respect to the saturated calomel electrode, and which corresponds to the extremums of the curves illustrated in FIG. 4, and a second 220 situated around 200 mV, which corresponds to the oxidation of ferrocenemethanol.
  • the first extremum results from the oxidation of the oxidizing agent, the ruthenium complex and the measurement of the corresponding current is substantially 32 ⁇ A, while the second resulting from the oxidation of the redox compound is approximately 2 ⁇ A.
  • the current corresponding to the first extremum 210 is normalized, dividing its value, in the example illustrated in FIG. 7: 32 ⁇ A, by the value of the current corresponding to the second extremum 220, 2 ⁇ A and one obtains 16. Then, one proceeds in the same way for all amplification cycles of said experiment. In this way, the measurement of the variation of the difference in the intensity values of the two extremes 210, 220 results solely from the decrease in the nucleotide base concentration, in this case the dGTPs, and makes it possible to overcome the conditions experience.
  • the detection of the actual consumption of nucleotides is refined, which makes it possible to conclude that a target sequence is present after a small number of amplification cycles. As a result, the time required to establish the diagnosis is reduced.
  • the detection method according to the invention is not only applicable to viruses, but also to bacteria. Thus, it has been applied to detect the presence of bacteria, and in particular Achromobacter xylosoxidans whose mobile genetic elements and more specifically the integrons play a fundamental role in the acquisition of antibiotic resistance genes. Thus, three DNA fragments characteristic of this bacterial strain have been identified and amplified by PCR methods.
  • the implementation of the method according to the invention has made it possible to detect the presence of the aforementioned bacterium by identifying a first "veb-1" gene having approximately 900 base pairs. This gene encodes a beta lactamase that confers a high level of resistance to various antibiotics including arnoxicillin and ticarcillin.
  • the activatable amplification means comprise the four nucleotides, the DNA polymerase and a pair of "VEB-F and VEB-R" primers specific for the gene, and they have been incorporated into a biological sample containing said bacterium.
  • a voltammogram similar to that shown in FIG. 4 is observed.
  • a first curve corresponding to a measurement of the electric current before having started the amplification has an extremum of about 6 ⁇ A for a potential value of approximately 1.075 V.
  • a second curve produced after amplification shows an extremum decreased by approximately 1 ⁇ A. Consequently, the decrease of the electric current results from the consumption of nucleotides during the amplification and consequently from the effective presence of the "veb-1" gene.
  • a second 100-base pair fragment of the "int I" gene, characteristic of the above-mentioned bacterium, has been identified and detected in the same way.
  • the nucleotide sequence of this third fragment corresponds to a variable region of the integron containing all the cassettes including the "veb-1" gene.
  • the method which is the subject of the invention can be applied to amplifications of fragments of genetic material of different sizes on different protocols and with different activatable amplification means or biological leaves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

L'invention concerne une méthode et un ensemble de détection électrochimique de séquences cibles d'acide nucléique. Selon la méthode, on fournit un échantillon biologique susceptible de renfermer un acide nucléique, ledit acide nucléique étant susceptible de contenir une séquence cible, ledit échantillon biologique étant mélangé à un agent oxydant, ladite séquence cible comportant au moins une base nucléotidique oxydable par ledit agent oxydant ; on fournit des moyens complémentaires susceptibles de se coupler avec ladite séquence cible ; selon l'invention lesdits moyens complémentaires comprennent des moyens d'amplification activables adaptés à répliquer ladite séquence cible, lesdits moyens d'amplification comprenant au moins des nucléotides incluant ladite base nucléotidique, lesdits nucléotides étant aptes à être consommés durant la réplication pour constituer des acides nucléiques répliqués, et ; on détermine la présence de ladite séquence cible en appliquant un champ électrique audit échantillon et en enregistrant la décroissance du courant électrique.

Description

Méthode de détection électrochimique de séquences cibles d'acide nucléique
La présente invention se rapporte à une méthode de détection électrochimique de séquences cibles d'acide nucléique et à un ensemble de détection pour la mise en œuvre de ladite méthode.
Des méthodes connues permettent déjà grâce à une détection électrochimique d'identifier la présence ou non d'une séquence cible d'acide nucléique d'un échantillon biologique déterminé. Ces méthodes permettent notamment de détecter dans un acide nucléique une séquence cible correspondant par exemple à une partie du patrimoine génétique d'un virus donné.
Selon les techniques connues, une fois cette séquence de nucléotides identifiée, on réalise des sondes formées d'oligonucléotides incorporant ladite séquence, puis on fixe ces sondes sur un support solide. Les sondes incluent un nombre de nucléotides donné qui présente une base nucléotidique oxydable. Ensuite, on met en contact l'échantillon biologique déterminé avec le support solide sur lequel sont greffés lesdites sondes de manière à ce que, le cas échéant, se produise l'hybridation de l'acide nucléique renfermant la séquence cible avec la sonde. Puis on fait réagir l'acide nucléique hybride avec un complexe d'un métal de transition capable d'oxyder les bases des nucléotides de la sonde d'oligonucléotides ; et on détermine la présence ou non de cette hybridation, qui se produit si l'échantillon biologique comporte un acide nucléique incluant ladite séquence cible, en appliquant un champ électrique variable à l'échantillon et en mesurant parallèlement le courant électrique qui y circule. Le courant électrique étant alors une fonction du nombre de bases données susceptibles d'être oxydées. En effet, lorsque l'on réalise un balayage en potentiel et que parallèlement on enregistre le courant électrique qui circule dans l'échantillon, la réponse en courant électrique est différente selon que la sonde est hybridée avec l'acide nucléique renfermant la séquence cible ou selon qu'elle ne l'est pas. En toute hypothèse le courant électrique d'oxydation de la base des nucléotides de la sonde hybridée a une valeur plus élevée que celui associé à l'oxydation de la base des nucléotides non hybrides.
On pourra notamment se référer au document US 2002/106 683, lequel décrit un tel procédé de détection.
Toutefois, une telle méthode est relativement complexe à mettre en œuvre, car il est notamment nécessaire de préparer des sondes d'oligonucléotides afin de les greffer sur le support solide ce qui est long et coûteux. Aussi, un problème qui se pose et que vise à résoudre la présente invention, est de fournir une méthode qui non seulement soit plus aisée à mettre en œuvre mais aussi qui soit plus économique.
Dans le but de résoudre ce problème, et selon un premier aspect, la présente invention propose une méthode de détection électrochimique de séquences cibles d'acide nucléique, ladite méthode étant du type selon laquelle : on fournit un échantillon biologique susceptible de renfermer au moins un acide nucléique, ledit acide nucléique étant susceptible de contenir une séquence cible déterminée, ledit échantillon biologique étant mélangé à un agent oxydant , ladite séquence cible comportant une base nucléotidique apte à être oxydée par ledit agent oxydant ; on fournit des moyens complémentaires susceptibles de se coupler avec ladite séquence cible déterminée ; on applique un champ électrique audit échantillon, ledit champ électrique étant adapté à provoquer une réaction dudit agent oxydant avec ladite base nucléotidique, et on mesure un courant électrique qui traverse ledit échantillon pour déterminer la présence de ladite séquence cible ; selon l'invention lesdits moyens complémentaires comprennent des moyens d'amplification activables adaptés à répliquer ladite séquence cible, lesdits moyens d'amplification comprenant au moins des nucléotides d'un type incluant ladite base nucléotidique, lesdits nucléotides dudit type étant aptes à être consommés durant la réplication pour constituer des acides nucléiques répliqués, et ; on détermine la présence de ladite séquence cible déterminée si le courant électrique diminue lorsque lesdits moyens d'amplification sont activés.
Ainsi, une caractéristique de l'invention réside dans la mise en oeuvre d'une méthode d'amplification d'un acide nucléique et de la mesure simultanée d'un courant électrique, la mesure de ce courant électrique témoignant ou non de la consommation de l'un des éléments des moyens d'amplification durant celle-ci et précisément d'un des nucléotides libres. De la sorte, si la séquence cible d'acide nucléique correspond bien aux moyens d'amplification activables, cette séquence cible va être répliquée au cours du processus d'amplification, et le nombre de nucléotides libres utilisés comme substrat lors de cette réplication et dont la concentration est déterminée au départ, va décroître. En conséquence, si le nombre de nucléotides libres décroît au profit du nombre de nucléotides incorporés dans les acides nucléiques synthétisés durant l'amplification, l'agent oxydant ne pourra réagir qu'avec une quantité de plus en plus limitée de bases nucléotidiques correspondant aux nucléotides libres, et par conséquent moins de transferts électroniques se produiront, et le courant électrique finalement mesuré diminuera. On expliquera toutefois plus en détail dans la description détaillée qui suivra, que l'agent oxydant peut aussi oxyder les bases des nucléotides incorporés dans l'acide nucléique initialement présent et dans les acides nucléiques synthétisés par réplication, mais qu'en revanche le courant électrique qui en résulte est faible par rapport à celui qui résulte de l'oxydation des bases des nucléotides libres. Selon un mode de mise en œuvre de l'invention particulièrement avantageux, l'acide nucléique sur lequel on cherche à identifier une séquence cible est une molécule d'ADN ou d'ARN simple ou double brin. Aussi, les moyens d'amplification activables, comprennent des moyens adaptés à venir s'hybrider en amont d'une séquence cible et des moyens pour procéder à sa réplication. Le nombre d'acides nucléiques résultant de cette réplication croît exponentiellement avec le temps, de sorte que le nombre de nucléotides libres présentant la base nucléotidique oxydable baisse aussi exponentiellement avec le temps, et que parallèlement la diminution du courant qui traverse l'échantillon est rapidement perceptible.
Avantageusement, la base azotée qui est associée aux nucléotides libres est une base nucléotidique purique, par exemple la guanine ou un analogue chimique de la guanine, par exemple du type mercaptoguanine ou oxoguanine et l'agent oxydant utilisé est un complexe de ruthénium. Ce dernier présente une forme réduite et une forme oxydée, cette dernière venant catalyser de façon irréversible l'oxydation de la guanine. Lorsque le champ électrique est appliqué au mélange, le courant mesuré qui en résulte est sensiblement une fonction de la concentration en nucléotides libres présentant le résidu guanine, car bien que l'agent oxydant oxyde également la guanine des nucléotides incorporés dans l'acide nucléique répliqué, la cinétique d'oxydation ainsi que le coefficient de diffusion des nucléotides libres sont bien supérieurs à celui desdits acides nucléiques répliqués.
En outre, le nombre d'acides nucléiques résultant de la réplication desdites séquences cibles étant fonction du temps, la diminution du courant qui traverse l'échantillon est ainsi aussi fonction du temps. Ainsi si l'échantillon de départ présente une concentration importante en acide nucléique, et que ces acides nucléiques du même type présentent tous la séquence cible, la consommation en nucléotides, sera d'autant plus importante. Aussi, la mesure de la variation de courant électrique sera d'autant plus rapidement perceptible. En revanche, si la concentration en acide nucléique est moins importante, un temps plus important sera nécessaire pour observer la variation du courant. De ce fait, ladite invention est applicable pour une détermination quantitative de la séquence cible.
Aussi, de façon pratique, on appliquera un champ électrique et on mesurera le courant qui en résulte, par exemple au temps zéro puis régulièrement de manière à pouvoir enregistrer la diminution du courant électrique tout au long du processus d'amplification. Alternativement on pourra enregistrer le courant électrique après un temps précis déterminé. En effet, a priori, la concentration en nucléotides libres présentant le résidu guanine est maximale avant d'avoir démarré l'amplification et par conséquent le courant électrique susceptible de traverser l'échantillon est alors lui aussi maximal. Ensuite, c'est en comparant la mesure du courant au cours ou après l'amplification, avec les mesures qui ont été réalisées durant le processus d'amplification, que l'on peut apprécier la différence. Si au cours de ces mesures une diminution significative du courant électrique est observée, cela signifie que les nucléotides libres présentant le résidu guanine ont été consommés, et donc que l'acide nucléique présentant la séquence cible est bien présent dans l'échantillon. On expliquera plus en détail dans la description détaillée, les vérifications complémentaires à faire avant de conclure à la présence de la séquence cible.
Au surplus, on mesure ce courant électrique après avoir appliqué le champ électrique durant un temps prédéterminé relativement constant pour une même amplification. En effet, entre l'instant où le champ électrique est appliqué et l'instant où le courant électrique qui traverse alors l'échantillon est maximal, une phase transitoire s'instaure durant laquelle la mobilité des espèces chimiques ionisées présentes dans l'échantillon va croître jusqu'à un maximum. Aussi, pour offrir un maximum de sensibilité, il est préférable de mesurer le courant électrique lorsqu'il est maximal, soit après un temps prédéterminé comme on l'expliquera plus en détail ci-après. Quoi qu'il en soit, la mesure du courant électrique est réalisée au moyen de techniques électrochimiques connues du type voltampérométrie à balayage de potentiel pouvant être linéaire, cyclique, à impulsion ou encore du type à saut de potentiel telle que la chronoampérométrie.
En outre, et de façon préférentielle, on applique ledit champ électrique entre des électrodes aptes à être baignées dans ledit échantillon. Par exemple, on applique un champ électrique entre une électrode à base d'oxydes métalliques ou à base de carbone ou bien encore à base d'un métal noble et une électrode de référence plongeant toutes les deux dans l'échantillon, en prenant soin de présenter une surface active constante des électrodes pour chaque mesure de courant d'une même amplification pour être bien certains que la variation de courant soit la résultante de la diminution des porteurs de charges et non pas de la variation de surface. On pourra par exemple choisir une électrode d'un métal noble tel que l'or ou le platine.
Selon un autre mode de mise en œuvre de l'invention particulièrement avantageux, ledit agent oxydant est confiné à la surface de l'une desdites électrodes, soit par l'intermédiaire d'un gel, d'une membrane, ou d'un film appliqué sur l'électrode et qui emprisonne précisément l'agent oxydant ; soit par l'intermédiaire d'un polymère sur lequel est couplé l'agent oxydant, l'ensemble étant adsorbé ou greffé sur la surface de l'une des électrodes.
Selon un autre aspect, la présente invention propose un ensemble de détection électrochimique de séquences cibles d'acide nucléique, ledit ensemble comprenant : des moyens pour recevoir un échantillon biologique susceptible de renfermer au moins un acide nucléique, ledit acide nucléique étant susceptible de contenir une séquence cible déterminée, ledit échantillon biologique étant mélangé à un agent oxydant, ladite séquence cible comportant une base nucléotidique apte à être oxydée par ledit agent oxydant ; des moyens complémentaires susceptibles de se coupler avec ladite séquence cible déterminée ; des moyens pour appliquer un champ électrique audit échantillon, ledit champ électrique étant adapté à provoquer une réaction dudit agent oxydant avec ladite base nucléotidique, et des moyens de mesure d'un courant électrique qui traverse ledit échantillon pour déterminer la présence de ladite séquence cible ; selon l'invention lesdits moyens complémentaires comprennent des moyens d'amplification activables adaptés à répliquer ladite séquence cible, lesdits moyens d'amplification comprenant au moins des nucléotides d'un type incluant ladite base nucléotidique, lesdits nucléotides dudit type étant aptes à être consommés durant la réplication pour constituer des acide nucléiques répliqués, et ; lesdits moyens de mesure fournissent une valeur décroissante de courant électrique lorsque lesdits moyens d'amplification sont activés, si ledit acide nucléique contient ladite séquence cible déterminée.
D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après de modes de réalisation particuliers de l'invention, donnés à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la Figure 1 est un schéma réactionnel montrant schématiquement des réactions chimiques et électrochimiques intervenant lors de la mise en oeuvre de la méthode selon l'invention;
- la Figure 2 est une vue schématique montrant un premier ensemble de mise en oeuvre de la méthode conformément à l'invention selon un premier mode de mise en œuvre ;
- la Figure 3 est une vue schématique montrant un élément d'un dispositif de mise en oeuvre de la méthode conformément à l'invention et selon un second mode de mise en œuvre ;
- la Figure 4 est un graphique représentant des courbes d'évolution d'un courant électrique en fonction d'un potentiel appliqué et illustrant la méthode conformément à l'invention ; - la Figure 5, est un graphique montrant la diminution d'un courant électrique en fonction d'un processus d'amplification;
- la Figure 6 est une vue schématique d'un second ensemble de mises en oeuvre de la méthode conformément à l'invention.
- la Figure 7 est un graphique montrant une courbe voltampérométrique.
La méthode de détection électrochimique de séquences cibles d'acide nucléique selon l'invention, vise à combiner la mise en oeuvre d'une méthode d'amplification d'acide nucléique et d'une méthode électrochimique pour pouvoir suivre la diminution d'une espèce chimique particulière traduisant la présence de ladite séquence cible d'acide nucléique. La méthode d'amplification qui sera décrite ci-dessous est du type « PCR » pour : Polymerase chain reaction. Toutefois, toute autre méthode d'amplification pourrait être mise en oeuvre avec la même efficacité. On citera notamment les méthodes du type «LCR » pour : Ligase Chain Reaction; «SDA » pour Strand Displacement Amplification; «RCA » pour Rolling Circle Amplification ; « NASBA » pour Nucleic Acid Séquence Based Assay or Amplification ; ou encore «HDA» pour Helicase-dependent isothermai DNA Amplification. Ces méthodes sont toutes désignées par leur acronyme anglais.
Le principe de la méthode de type «PCR », consiste à utiliser, de manière répétitive, l'une des propriétés des ADN polymérases, pour synthétiser par réplication à partir des deux brins complémentaires composants IADN et d'une paire d'amorces (« primer » en langue anglaise) deux nouveaux brins copies des deux brins initiaux, les amorces, étant des petits brins d'acide nucléique d'environ 20 bases, capables de s'hybrider de façon spécifique, grâce à la complémentarité des bases, sur chacun des deux brins d'ADN à répliquer. Bien évidemment, les amorces sont choisies en fonction d'une séquence cible à révéler sur un acide nucléique.
Outre les ADN polymérases, qui permettent après que l'amorce se soit hybridée sur un brin, de synthétiser à partir de cette amorce un brin complémentaire, il est fourni également des nucléotides, et en particulier les quatre nucléotides dGTP, dATP, dTTP et dCTP constituant de l'ADN (respectivement désoxy-guanine-tri-phosphate, désoxy-adénosine-tri- phosphate, désoxy-tyrosine-tri-phosphate et désoxy-cytosine-tri- phosphate), que l'ADN polymérase vient assembler pour former un brin complémentaire répliqué.
Par ailleurs, le milieu réactionnel dans lequel sont introduits : l'échantillon à tester susceptible de contenir la séquence cible d'acide nucléique, l'ADN polymérase, les amorces, et les quatre types de nucléotides et qui forment un mélange réactionnel, est bien évidemment liquide et tamponné. En outre, et selon la méthode, ce mélange réactionnel va être alternativement soumis à des variations de température, correspondant à différentes phases, de dénaturation, d'hybridation et d'élongation de l'acide nucléique, au cours d'un même cycle. De manière classique, le mélange réactionnel pourra subir successivement une trentaine de cycles.
Par ailleurs, et c'est là un objet de l'invention, la méthode d'amplification dont le principe a été décrit ci-dessus, va être couplée à des moyens électrochimiques, permettant de révéler, le cas échéant, la disparition des nucléotides de l'un des quatre types, au fur et à mesure des cycles d'amplification, les nucléotides dudit un des quatre types, étant incorporés dans les brins d'ADN complémentaires par action de l'ADN polymérase.
Pour ce faire, on utilise un agent oxydant et en particulier un complexe de ruthénium, par exemple le tris(2, 2'~bipyridyl)ruthenium(ll), qui est susceptible, sous sa forme oxydée de venir oxyder à son tour la guanine des nucléotides présentant le résidu guanine : le dGTP. Bien évidemment, tout autre agent oxydant capable d'oxyder la guanine pourra être utilisé, on citera par exemple IrCI6 4". Ainsi que l'illustre la Figure 1 , sur laquelle est représentée une électrode 10 plongée dans un milieu réactionnel 12 aqueux, l'agent oxydant étant incorporé au mélange réactionnel précité, lorsqu'on applique un champ électrique à ce mélange, l'agent oxydant évolue tout d'abord de sa forme réduite 14 vers sa forme oxydée 16 selon la flèche F, en cédant un électron à l'électrode 10. Par ailleurs, sous sa forme oxydée 16, l'agent oxydant est susceptible, d'oxyder à son tour une guanine d'un nucléotide 18 présentant précisément un résidu guanine, et qui est soit libre ou soit insérée dans un acide nucléique. En oxydant cette guanine, l'agent oxydant est simultanément réduit selon la flèche R alors que la guanine définitivement oxydée n'intervient plus dans la réaction. Le courant mesuré à l'électrode, c'est-à-dire le flux électronique, est essentiellement dû au courant d'oxydation des nucléotides libres présentant un résidu guanine et pour une part infime aux nucléotides insérés dans un brin d'ADN. Une explication pouvant être donnée par la différence de coefficient de diffusion mais aussi la différence de cinétique d'oxydation des guanines entre un nucléotide présentant un résidu guanine libre et un nuciéotide présentant un résidu guanine incorporé dans un acide nucléique.
En conséquence, si les nucléotides incluant la guanine sont consommés durant les cycles d'amplification, au même titre que les autres nucléotides, pour synthétiser les acides nucléiques répliqués qui statistiquement incluent quasiment autant de nucléotides des quatre types précités, le flux électronique et par conséquent Ie courant mesuré à l'électrode diminuera lui aussi par voie de conséquence.
Dans le but d'illustrer la méthode conforme à l'invention, on décrira ci-après un exemple de mise en œuvre.
La Figure 2, illustre, selon un premier mode de mise en oeuvre, un tube 30 adapté à être installé dans un thermocycleur 32 qui lui, va permettre de porter le tube 30 à des températures prédéterminées, représentatives des différentes étapes de l'amplification selon la méthode du type «PCR ». De manière classique, dans une première étape d'un cycle, le tube est chauffé quelques secondes à 94° C pour provoquer la dénaturation de l'acide nucléique et ici de l'ADN. Ensuite dans une seconde étape d'environ une minute, la température est rapidement abaissée à 58° C de manière à provoquer l'hybridation des amorces. Puis, le tube est ensuite porté à une température de 72° C durant une minute également, de manière à activer l'ADN polymérase afin de provoquer l'élongation des brins complémentaires. Et ensuite, un nouveau cycle est entamé.
Le mélange réactionnel 34 est logé dans le culot 36 du tube 30 et deux électrodes 38, 40 introduites dans le tube 30 plongent dans le mélange réactionnel 34. L'une des électrodes, 38, est une électrode en carbone par exemple, tandis que l'autre électrode 40 est l'électrode de référence. Ces électrodes 38, 40 sont respectivement connectées à un potentiostat 42 permettant de faire varier un potentiel électrique selon un profil déterminé, entre les deux électrodes, et d'enregistrer parallèlement le courant électrique qui les traverse. Selon un second mode de mise en œuvre dont on a reproduit les éléments essentiels sur la figure 3, la méthode d'amplification est en tous points identiques à la méthode précitée, cependant, la détection n'est plus réalisée durant l'amplification mais à l'issue de celle-ci. Dans ce cas, aucune électrode n'est directement introduite dans le tube 30, mais le mélange réactionnel 34 est lui introduit dans une ou plusieurs microcuvettes 44 illustrées sur la Figure 3. Ces micro-cuvettes 44 sont scellées de façon étanche sur une plaque de type « circuit intégré » 46 sur laquelle ont été sérigraphiées des électrodes 48, 50. Ces électrodes 48, 50 présentent respectivement une extrémité active 52, 54 située dans le fond des micro-cuvettes 44 et elles s'étendent en dehors respectivement vers des extrémités de connexion 56, 58. De la même façon que dans le premier mode de mise en oeuvre précité, les extrémités de connexion 56, 58 sont adaptées à être reliées à un potentiostat pour appliquer un champ électrique au mélange réactionnel situé dans la micro-cuvette 44.
On notera que ces micro-cuvettes 44 sont également adaptées à des méthodes d'amplification du type« NASBA », « RCA » ou « HDA » citées ci-dessus.
Exemple d'application 1 On détaillera ci-après un exemple d'application de ladite méthode pour détecter la présence du Cytomégalovirus (CMV) dans un échantillon biologique. Le génome de ce virus présente une séquence bien identifiée de 406 paires de bases et on utilise les deux amorces commerciales AC1 et AC2 qui permettent l'amplification spécifique de cette séquence (références 60-003 et 60-004 de la société Argene). Le volume total du mélange réactionnel est égal à 50 μl et il contient les deux amorces à une concentration de 0,8 μmol/l, les nucléotides des quatre types à une concentration de 100 μmol/l, la polymérase à une concentration de 0,02 unité par μl, une concentration en complexe de ruthénium de 20 μmol/l et une dilution au dixième de tampon 10X. Bien évidemment, le mélange réactionnel contient un échantillon biologique et en l'espèce, un extrait cellulaire incorporant le Cytomégalovirus. La mesure électrochimique s'effectue à l'aide du potentiostat 42 à travers l'application d'une technique voltampérométrique qui consiste à appliquer une variation de potentiel entre les deux électrodes 38, 40 ou 52, 54, en démarrant, par exemple, d'un potentiel initial de 0,5 V par rapport à une électrode au calomel, jusqu'à un potentiel final de 1 ,3 V (par rapport à la même électrode au calomel), pour une vitesse de balayage pouvant être compris entre 0,01 et 100 V par seconde. Parallèlement, le courant électrique résultant est enregistré au cours du balayage de potentiel. On se référera à la Figure 4, sur laquelle sont reportées deux courbes voltampérométriques enregistrées à une vitesse de 0,1 V.s"1 par le potentiostat en fonction de la différence de potentiel appliquée entre les électrodes précitées et représentée ici en densité de courant. Une première courbe 60 représente l'évolution du courant électrique mesuré au deuxième cycle d'amplification selon l'expérience précitée. L'échantillon biologique contenait initialement 100000 copies de la séquence cible. Cette courbe atteint un premier extremum 62 d'environ 68 μA par cm2. Une deuxième courbe 64 représente l'évolution du courant électrique mesuré au trentième cycle selon l'expérience précitée. Cette courbe atteint un premier extremum 66 d'environ 56 μA par cm2. Cet extremum 66 est situé sensiblement 12 μA par cm2 en dessous du premier extremum 62.
Par ailleurs, on a bien vérifié au préalable, que les deux étapes du schéma opératoire précité, appliqué à un échantillon biologique ne contenant pas le Cytomégalovirus avec les moyens d'amplification précitée, conduisait à l'obtention de deux courbes sensiblement identiques. Par conséquent, lorsque le virus n'est pas présent dans l'échantillon biologique, l'amplification ne se produit pas.
Ainsi, il apparaît très clairement en comparant les deux courbes 60, 64 que l'intensité du courant électrique a diminué après 30 cycles d'amplification par rapport à sa valeur initiale avant amplification. Par conséquent, il apparaît clairement que la présence du Cytomégalovirus dans l'acide nucléique de l'échantillon biologique, a été reconnu par les amorces AC1 et AC2 correspondantes, et que Pélongation des brins complémentaires s'est bien produite en consommant les nucléotides et en particulier les nucléotides du type dGTP présentant le résidu guanine, puisque c'est la base de ce seul nucléotide que l'agent oxydant, le complexe de ruthénium, est susceptible d'oxyder. Or, la mesure du courant électrique est essentiellement le résultat de la mesure du flux d'électrons correspondant à la réduction du complexe de ruthénium et parallèlement à l'oxydation des nucléotides incluant la guanine dGTP. Aussi, lorsque ces derniers nucléotides disparaissent partiellement, car ils sont intégrés dans les brins d'acide nucléique complémentaires, leur quantité à l'état libre diminue et par conséquent le courant d'oxydation qui en résulte diminue aussi.
Par ailleurs, on se référera à présent au graphique illustré sur la Figure 5, pour décrire le principe de la quantification d'une séquence cible d'un acide nucléique dans un échantillon donné.
En abscisse 80 du graphique, sont portés les nombres de cycles de réplication et en ordonnée 82 sont reportées les valeurs normalisées des courants relevées à chaque cycle à un potentiel donné suivant le mode de mise en œuvre illustré sur la Figure 2. Ces valeurs normalisées de courant correspondent aux mesures de courant divisées par la mesure du courant réalisée avant le démarrage de l'amplification.
Les cinq courbes représentées, 84, 86, 88, 90, 92 représentent les courbes tracées en partant d'un échantillon biologique comprenant respectivement, zéro copie de la séquence cible CMV, 84, 1000 copies de ladite séquence cible, 86, 10 000 copies de ladite séquence cible, 88, 100 000 copies de ladite séquence cible, 90, et 1 000 000 de copies de ladite séquence cible, 92.
Ainsi, on constate que, plus l'échantillon biologique contient d'acides nucléiques incorporant la séquence cible, plus le courant électrique qui traverse l'échantillon diminue rapidement en fonction du nombre de cycles. En effet, plus l'échantillon contient à l'origine d'acides nucléiques incorporant la séquence cible, plus la réplication va consommer de nucléotides du type dGTP et par conséquent plus le courant électrique va chuter tôt en fonction du nombre de cycles. De la sorte, on comprend qu'une mesure de la quantité d'acides nucléiques incorporant la séquence cible est possible, en déterminant le nombre de cycles à partir duquel, la quantité de courant qui traverse l'échantillon s'infléchit. En outre, cette Figure 5 montre également que la .présence de la séquence cible est détectable même si seulement 1000 copies de ladite séquence cible sont initialement présentes dans l'échantillon. Ainsi donc, la méthode selon l'invention appliquée à un échantillon biologique susceptible de contenir un virus identifié permet non seulement, grâce à la mise en œuvre d'une méthode d'amplification et d'une mesure électrochimique de révéler la présence ou l'absence dudit virus, mais également de le quantifier. Par conséquent, en comparaison des méthodes mises en œuvre selon l'art antérieur, pour lesquelles la préparation du matériel d'identification est complexe, selon la présente invention, il est seulement nécessaire de mettre en œuvre une méthode d'amplification classique, puis durant l'amplification de soumettre l'échantillon biologique à un champ électrique et de mesurer le courant qui en résulte. Cette méthode utilise un agent oxydant qui n'est nullement mis en oeuvre dans les méthodes d'amplification classiques, pour révéler la disparition d'une espèce en l'occurrence ici un type de nucléotide présentant le résidu guanine ou un composé ayant le même rôle biologique que la guanine. En outre, le choix de l'agent oxydant dépendra de la nature du type de nucléotides dont on désire mesurer la disparition.
L'exemple de mise en œuvre ci-dessus concerne un acide nucléique à double chaîne, soit une molécule d'ADN. Cependant, il peut tout à fait être appliqué à un acide nucléique monocaténaire de type ARN ou d'ADN, moyennant la mise en œuvre de moyens d'amplification adaptés. Dans les deux cas, l'amplification de ces acides nucléiques entraîne la consommation de nucléotides incluant la guanine, et par conséquent la diminution de cette espèce dans le milieu au fur et à mesure du processus d'amplification.
Ainsi donc, quel que soit le mode de mise en oeuvre de la méthode objet de l'invention, soit le premier mode décrit ci-dessus à l'appui de la figure 2, soit le second mode décrit en référence à la figure 3, on évalue le moment à partir duquel la valeur du courant électrique chute de manière significative, en effectuant des mesures au cours du processus d'amplification. Cela permet non seulement de révéler la présence de la séquence cible d'ADN, mais également de remonter indirectement à la concentration initiale en acide nucléique incorporant la séquence cible à détecter. En effet, plus le nombre de copies initiales d'acide nucléique incorporant la séquence cible est important, plus le courant électrique diminuera tôt, et à l'inverse, plus le nombre de copies est faible et plus la chute de courant sera observée tardivement. Par ailleurs, et selon un autre aspect illustré sur la Figure 6, la présente invention concerne également un ensemble spécialement adapté à la détection électrochimique de séquences cibles d'acides nucléiques. Cet ensemble comprend au moins une micro-cuvette 94 telle que représentée sur la Figure 3, pour recevoir un échantillon biologique 95, mais ici équipée d'une isolation thermique. Cette micro-cuvette 94 présente des électrodes sérigraphiées 96 dans le fond et qui sont reliées à un potensiostat P. Par ailleurs, la micro-cuvette 94 est placée entre deux modules à effet Peltier 98, 100 reliées par un générateur adapté à réguler la température à l'intérieur de la micro-cuvette 94. De la sorte, l'échantillon biologique 95, est susceptible d'être porté à des températures allant jusqu'à 94° C et en suivant des variations brutales tout comme la méthode précitée et de type PCR. De plus, à l'échantillon biologique est ajouté du matériel d'amplification activable et notamment des nucléotides présentant une base nucléotidique oxydable. Ainsi, l'ensemble illustré sur la Figure 6, qui est susceptible d'être commandé par un ordinateur, est adapté à fournir automatiquement l'information selon laquelle, la séquence cible recherchée est bien contenue dans l'échantillon inséré dans la micro-cuvette 94, et si tel en est le cas, la concentration en acide nucléique comprenant la séquence cible. L'ordinateur, est alors chargé par un programme d'ordinateur, capable de faire fonctionner simultanément les moyens de réplication, c'est-à-dire les modules à effet Peltier 98, 100 selon des cycles prédéfinis et le potentiostat entre les cycles pour mesurer la quantité de courant traversant l'échantillon 95 pour des valeurs de potentiel données.
En outre, lors de la mise en œuvre des moyens d'amplification, l'état de surface de ladite électrode est modifié. Par ailleurs, au fil des cycles d'amplification, le solvant du mélange réactionnel, en l'espèce l'eau, est susceptible de s'évaporer compte tenu des températures appliquées. Toute évaporation du solvant provoque, par nature, une augmentation de la concentration des solutés.
En conséquence, la mesure du courant qui est proportionnelle à la concentration en base nucléotidique consommée pourrait ne pas être tout à fait corrélée à la quantité d'acide nucléique amplifié.
Aussi, un sous problème qui se pose alors, est de pouvoir s'affranchir à la fois des perturbations à l'électrode et de l'évaporation du solvant. Pour ce faire, et selon encore un autre mode de mise en œuvre de l'invention particulièrement avantageux, la méthode de détection comprend en outre les étapes suivantes : on fournit un composé redox apte à réagir à une valeur de champ électrique décalé différente de la valeur de champ électrique à laquelle ledit agent oxydant et ladite base nucléotidique réagissent ; on mesure la valeur du courant électrique redox à ladite valeur de champ électrique décalé ; et, on détermine la présence de ladite séquence cible déterminée si la différence de courant électrique entre le courant électrique redox et ledit courant électrique de réaction dudit agent oxydant et de ladite base nucléotidique diminue lorsque lesdits moyens d'amplification sont activés.
Ainsi, en choisissant un composé redox, ou étalon interne, par exemple un ferrocène, un viologène ou encore un complexe d'osmium, dont le potentiel d'oxydation est décalé par rapport au potentiel d'oxydation dudit agent oxydant et de ladite base nucléotidique, par exemple de 800 mV, l'oxydation du composé redox ne perturbe pas la mesure du courant d'oxydation de l'agent oxydant et de la base. Au surplus, cet agent oxydant n'interfère pas avec les moyens d'amplification activables.
Selon un premier mode de réalisation conformément à cet autre mode de mise en œuvre, pour lequel on pourra se référer à la Figure 7, on procède à la normalisation de la mesure du courant électrique pour un seul échantillon lors d'une même expérience.
Ainsi, on procède à la mise en œuvre d'un échantillon dans un mélange réactionnel identique à celui de l'exemple d'application précité, excepté qu'on y incorpore en plus du ferrocenemethanol à une concentration de 50 μM et que l'on applique une variation de potentiel entre les deux électrodes, en démarrant à 50 mV pour terminer à 1300 mV. On obtient de la sorte, pour le premier cycle d'amplification, la courbe voltampérométrique reportée à la Figure 7.
Cette courbe présente non plus un seul extremum, mais deux. Un premier 210 situé vers 1100 mV par rapport à l'électrode au calomel saturé, et qui correspond aux extremums des courbes illustrées sur la Figure 4, et un second 220 situé vers 200 mV, lequel correspond à l'oxydation du ferrocenemethanol. Le premier extremum résulte de l'oxydation de l'agent oxydant, le complexe de ruthénium et la mesure du courant correspondant est sensiblement de 32 μA, tandis que le second qui résulte de l'oxydation du composé redox est d'environ 2 μA.
Après le balayage en potentiel entre 50 mV et 1300 mV et l'enregistrement simultané des courants d'intensité, on procède à la normalisation du courant correspondant au premier extremum 210, en divisant sa valeur, sur l'exemple illustré sur la Figure 7 : 32 μA, par la valeur du courant correspondant au second extremum 220, 2 μA et on obtient 16. Ensuite, on procède de la même façon pour tous les cycles d'amplification de ladite expérience. De la sorte, la mesure de la variation de la différence des valeurs d'intensité des deux extremums 210, 220 résulte uniquement de la diminution de la concentration en base nucléotidique, en l'espèce les dGTP, et permet de s'affranchir des conditions de l'expérience.
Partant, et selon un second mode de réalisation on procède de manière identique pour une série d'échantillons respectivement introduit dans une série de micro-cuvettes du type de celles illustrées sur la Figure 3 de façon à réaliser une série d'expériences. Ces échantillons biologiques proviennent avantageusement d'une même source, et il s'agit là de confirmer la présence de la séquence cible déterminée. Aussi, en normalisant les valeurs d'intensité correspondant à l'oxydation de l'agent oxydant respectivement pour chacune des expériences, elles sont alors comparables entre elles puisqu'elles sont indépendantes des variations de volume et d'état de surface des électrodes.
Ainsi, selon cet autre mode de mise en oeuvre de l'invention, on affine la détection de la consommation réelle de nucléotides, ce qui permet de conclure à la présence d'une séquence cible après un faible nombre de cycles d'amplification. En conséquence, on diminue le temps nécessaire à l'établissement du diagnostic.
En outre, et ainsi que l'illustre le second mode de réalisation précité, des mesures peuvent être comparées quelles que soient les conditions opératoires. Exemple d'application 2
En outre, la méthode de détection selon l'invention, n'est pas seulement applicable aux virus, mais aussi aux bactéries. Ainsi, elle a été appliquée pour détecter la présence de bactéries, et en particulier Achromobacter xylosoxidans dont des éléments génétiques mobiles et plus précisément les intégrons jouent un rôle fondamental dans l'acquisition de gènes de résistance aux antibiotiques. Ainsi, trois fragments d'ADN caractéristiques de cette souche bactérienne ont été identifiés et amplifiés par des méthodes de type PCR. La mise en œuvre de la méthode selon l'invention a permis de détecter la présence de la bactérie précitée en identifiant un premier gène « veb-1 » comptant environ 900 paires de bases. Ce gène code pour une bêta lactamase qui confère un haut niveau de résistance à divers antibiotiques et notamment l'arnoxicilline et la ticarcilline. Les moyens d'amplification activables, comportent les quatre nucléotides, de l'ADN polymérase et une paire d'amorces «VEB-F et VEB-R » spécifiques du gène, et ils ont été incorporés à un échantillon biologique contenant ladite bactérie.
Ainsi on observe, un voltamogramme similaire à celui qui est représenté sur la Figure 4. Selon les conditions de l'expérience, une première courbe correspondant à une mesure du courant électrique avant d'avoir démarré l'amplification, présente un extremum d'environ 6 μA pour une valeur de potentiel d'environ 1 ,075 V. Une seconde courbe réalisée après amplification montre un extremum diminué d'environ 1 μA. Par conséquent, la diminution du courant électrique résulte de la consommation en nucléotides lors de l'amplification et par conséquent de la présence effective du gène «veb-1 ». Un deuxième fragment de 100 paires de bases, du gène «int I », caractéristiques de la bactérie précitée, a été identifié et détecter de la même façon.
Un troisième fragment de 2500 paires de bases, caractéristique de ladite bactérie, a aussi pu être détecté de façon analogue. La séquence nucléotidique de ce troisième fragment correspond à une région variable de l'intégron contenant l'ensemble des cassettes dont le gène «veb-1 ».
Ainsi, la méthode objet de l'invention, peut être appliquée à des amplifications de fragments de matériel génétique de tailles différentes sur des protocoles différents et avec des moyens d'amplification activable ou quitte biologique différents.

Claims

REVENDICATIONS
1. Méthode de détection électrochimique de séquences cibles d'acide nucléique, ladite méthode étant du type selon laquelle : - on fournit un échantillon biologique susceptible de renfermer au moins un acide nucléique, ledit acide nucléique étant susceptible de contenir une séquence cible déterminée, ledit échantillon biologique étant mélangé à un agent oxydant , ladite séquence cible comportant au moins une base nucléotidique apte à être oxydée par ledit agent oxydant ; - on fournit des moyens complémentaires susceptibles de se coupler avec ladite séquence cible déterminée ;
- on applique un champ électrique audit échantillon, ledit champ électrique étant adapté à provoquer une réaction dudit agent oxydant avec ladite base nucléotidique, et on mesure un courant électrique qui traverse ledit échantillon pour déterminer la présence de ladite séquence cible ; caractérisée en ce que lesdits moyens complémentaires comprennent des moyens d'amplification activables adaptés à répliquer ladite séquence cible, lesdits moyens d'amplification comprenant au moins des nucléotides d'un type incluant ladite base nucléotidique, lesdits nucléotides dudit type étant aptes à être consommés durant la réplication pour constituer des acides nucléiques répliqués ; et en ce que dans l'ordre :
- on mélange ledit échantillon biologique et ledit agent oxydant avec lesdits moyens d'amplification activables ; et, - on active lesdits moyens d'amplification activables pour déterminer la présence de ladite séquence cible déterminée si le courant électrique diminue.
2. Méthode de détection selon la revendication 1 , caractérisée en ce que ledit acide nucléique est une molécule d'ADN ou d'ARN
3. Méthode de détection selon la revendication 1 ou 2, caractérisée en ce que ladite base nucléotidique est une base azotée purique.
4. Méthode de détection selon la revendication 3, caractérisée en ce que ladite base nucléotidique est la guanine ou un analogue chimique de la guanine.
5. Méthode de détection selon Tune quelconque des revendications 1 à 4, caractérisée en ce que ledit agent oxydant est un complexe de ruthénium.
6. Méthode de détection selon l'une quelconque des revendications 1 à 5, caractérisée en ce que, lesdites séquences cibles étant répliquées au cours du temps, on mesure ledit courant électrique après avoir appliqué ledit champ électrique durant un temps déterminé.
7. Méthode de détection selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'on réplique ladite séquence cible selon des cycles d'amplification, et en ce qu'on mesure ledit courant après un nombre déterminé de cycle.
8. Méthode de détection selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'on applique ledit champ électrique entre des électrodes aptes à être baignées par ledit échantillon.
9. Méthode de détection selon la revendication 8, caractérisée en ce que l'une desdites électrodes est une électrode à base d'oxydes métalliques.
10. Méthode de détection selon la revendication 8, caractérisée en ce que l'une desdites électrodes est une électrode à base d'un métal noble.
11. Méthode de détection selon la revendication 8, caractérisée en ce que l'une desdites électrodes est une électrode de carbone.
12. Méthode de détection selon l'une quelconque des revendications 8 à 11 , caractérisée en ce que ledit agent oxydant est confiné à la surface de l'une desdites électrodes.
13. Méthode de détection selon l'une quelconque des revendications 1 à 12, caractérisée en ce qu'elle comprend en outre les étapes suivantes :
- on fournit en outre un composé redox apte à réagir à une valeur de champ électrique décalé différente de la valeur de champ électrique à laquelle ledit agent oxydant et ladite base nucléotidique réagissent ; - on mesure la valeur du courant électrique redox à ladite valeur de champ électrique décalé ; et,
- on détermine la présence de ladite séquence cible déterminée si la différence de courant électrique entre le courant électrique redox et ledit courant électrique de réaction dudit agent oxydant et de ladite base nucléotidique diminue lorsque lesdits moyens d'amplification sont activés.
14. Ensemble de détection électrochimique de séquences cibles d'acide nucléique, ledit ensemble comprenant :
- des moyens (30, 44, 94) pour recevoir un échantillon biologique (34, 95) susceptible de renfermer au moins un acide nucléique, ledit acide nucléique étant susceptible de contenir une séquence cible déterminée, ledit échantillon biologique étant mélangé à un agent oxydant, ladite séquence cible comportant au moins une base nucléotidique apte à être oxydée par ledit agent oxydant ;
- des moyens complémentaires susceptibles de se coupler avec ladite séquence cible déterminée ;
- des moyens (38, 42, 52, 54, 96) pour appliquer un champ électrique audit échantillon, ledit champ électrique étant adapté à provoquer une réaction dudit agent oxydant avec ladite base nucléotidique, et des moyens de mesure (42, P) d'un courant électrique qui traverse ledit échantillon pour déterminer la présence de ladite séquence cible ; caractérisée en ce que lesdits moyens complémentaires comprennent des moyens d'amplification activables adaptés à répliquer ladite séquence cible, lesdits moyens d'amplification comprenant au moins des nucléotides d'un type incluant ladite base nucléotidique, lesdits nucléotides dudit type étant aptes à être consommés durant la réplication pour constituer des acides nucléiques répliqués, et ; en ce que lesdits moyens de mesure (42, P) fournissent une valeur décroissante de courant électrique lorsque lesdits moyens d'amplification sont activés, si ledit acide nucléique contient ladite séquence cible déterminée.
PCT/FR2007/000373 2006-03-03 2007-03-02 Méthode de détection électrochimique de séquences cibles d'acide nucléique WO2007099236A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP07731073A EP1996725B1 (fr) 2006-03-03 2007-03-02 Méthode de détection électrochimique de séquences cibles d'acide nucléique
AT07731073T ATE510028T1 (de) 2006-03-03 2007-03-02 Verfahren zum elektrochemischen nachweis von zielnukleinsäuresequenzen
JP2008557791A JP5320077B2 (ja) 2006-03-03 2007-03-02 標的核酸配列の電気化学的検出方法
CN200780015917.7A CN101437961B (zh) 2006-03-03 2007-03-02 靶核酸序列电化学检测方法
US12/280,826 US8313638B2 (en) 2006-03-03 2007-03-02 Method for the electrochemical detection of target nucleic acid sequences
KR1020087022299A KR101345077B1 (ko) 2006-03-03 2008-09-11 표적 핵산 서열의 전기화학적 검출방법
HK09109110.7A HK1129909A1 (en) 2006-03-03 2009-10-02 Method for the electrochemical detection of target nucleic acid sequences

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0601936 2006-03-03
FR0601936A FR2898133B1 (fr) 2006-03-03 2006-03-03 Methode de detection electrochimique de sequences cibles d'acide nucleique
FR0700157A FR2911149A1 (fr) 2007-01-10 2007-01-10 Methode de detection electrochimique de sequences cibles d'acide nucleique
FR0700157 2007-01-10

Publications (2)

Publication Number Publication Date
WO2007099236A1 true WO2007099236A1 (fr) 2007-09-07
WO2007099236B1 WO2007099236B1 (fr) 2007-12-13

Family

ID=38137572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000373 WO2007099236A1 (fr) 2006-03-03 2007-03-02 Méthode de détection électrochimique de séquences cibles d'acide nucléique

Country Status (7)

Country Link
US (1) US8313638B2 (fr)
EP (1) EP1996725B1 (fr)
JP (2) JP5320077B2 (fr)
KR (1) KR101345077B1 (fr)
AT (1) ATE510028T1 (fr)
HK (1) HK1129909A1 (fr)
WO (1) WO2007099236A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147322A1 (fr) * 2008-06-05 2009-12-10 Universite Paris Diderot - Paris 7 Méthode d'identification électrochimique de séquences cibles de nucléotides
US8158677B2 (en) 2007-06-01 2012-04-17 The Trustees Of Princeton University Treatment of viral infections by modulation of host cell metabolic pathways

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908182B2 (ja) * 2006-12-22 2012-04-04 栄研化学株式会社 核酸増幅の有無の判定方法、標的核酸の検出方法及びそれらに用いられる装置
CN102576389B (zh) * 2009-10-21 2016-08-03 皇家飞利浦电子股份有限公司 用于扩增反应的分析工具
WO2013033647A2 (fr) 2011-09-01 2013-03-07 The Regents Of The University Of California Appareil et procédé pour détection électrique d'oligonucléotides à travers des blocages de pore
US9593371B2 (en) * 2013-12-27 2017-03-14 Intel Corporation Integrated photonic electronic sensor arrays for nucleic acid sequencing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106683A1 (en) * 1995-06-27 2002-08-08 Thorp H. Holden Electrochemical detection of nucleic acid hybridization
EP1500933A1 (fr) * 2002-04-22 2005-01-26 Hokuto Scientific Industry, Co., Ltd. Dispositif, procede et kit de detection genique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871773B1 (fr) * 1995-06-27 2002-09-04 University Of North Carolina At Chapel Hill Detection electrochimique de l'hybridation d'acides nucleiques
EP1090286A1 (fr) * 1998-06-24 2001-04-11 Therasense, Inc. Ensemble multicapteur de reconnaissance electrochimique de sequences nucleotidiques, et procedes y relatifs
US7892414B1 (en) * 2004-11-19 2011-02-22 The United States Of America As Represented By The Secretary Of Army Electrochemical biosensors, applications and methods of making biosensors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106683A1 (en) * 1995-06-27 2002-08-08 Thorp H. Holden Electrochemical detection of nucleic acid hybridization
EP1500933A1 (fr) * 2002-04-22 2005-01-26 Hokuto Scientific Industry, Co., Ltd. Dispositif, procede et kit de detection genique

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158677B2 (en) 2007-06-01 2012-04-17 The Trustees Of Princeton University Treatment of viral infections by modulation of host cell metabolic pathways
US9757407B2 (en) 2007-06-01 2017-09-12 The Trustees Of Princeton University Treatment of viral infections by modulation of host cell metabolic pathways
US9029413B2 (en) 2007-06-01 2015-05-12 The Trustees Of Princeton University Treatment of viral infections by modulation of host cell metabolic pathways
US20110136126A1 (en) * 2008-06-05 2011-06-09 Limoges Benoit Method for electrochemically identifying target nucleotide sequences
CN102112630A (zh) * 2008-06-05 2011-06-29 巴黎大学迪德罗特第七分校 用于电化学鉴定靶核苷酸序列的方法
JP2011523556A (ja) * 2008-06-05 2011-08-18 ユニベルシテ パリ ディドロ−パリ 7 標的ヌクレオチド配列の電気化学的同定方法およびその装置
WO2009147322A1 (fr) * 2008-06-05 2009-12-10 Universite Paris Diderot - Paris 7 Méthode d'identification électrochimique de séquences cibles de nucléotides
RU2532855C2 (ru) * 2008-06-05 2014-11-10 Университе Пари Дидро - Пари 7 Способ электрохимической идентификации целевых последовательностей нуклеотидов
US8962240B2 (en) 2008-06-05 2015-02-24 Universite Paris Diderot-Paris 7 Method for electrochemically identifying target nucleotide sequences
US20150125870A1 (en) * 2008-06-05 2015-05-07 Universite Paris Diderot - Paris 7 Method for electrochemically identifying target nucleotide sequences
KR20110016912A (ko) * 2008-06-05 2011-02-18 유니베르시떼 빠리 디데롯- 빠리 7 표적 뉴클레오티드 서열의 전기화학적 동정방법
KR101710728B1 (ko) 2008-06-05 2017-02-27 유니베르시떼 빠리 디데롯- 빠리 7 표적 뉴클레오티드 서열의 전기화학적 동정방법
FR2932191A1 (fr) * 2008-06-05 2009-12-11 Univ Paris Diderot Paris 7 Methode d'identification electrochimique de sequences cibles de nucleotides.
US9856526B2 (en) 2008-06-05 2018-01-02 Universite Paris Diderot-Paris 7 Method for electrochemically identifying target nucleotide sequences

Also Published As

Publication number Publication date
KR20080111451A (ko) 2008-12-23
EP1996725A1 (fr) 2008-12-03
US8313638B2 (en) 2012-11-20
JP2009528072A (ja) 2009-08-06
EP1996725B1 (fr) 2011-05-18
JP5320077B2 (ja) 2013-10-23
ATE510028T1 (de) 2011-06-15
US20090065372A1 (en) 2009-03-12
JP2013153764A (ja) 2013-08-15
HK1129909A1 (en) 2009-12-11
KR101345077B1 (ko) 2013-12-26
WO2007099236B1 (fr) 2007-12-13

Similar Documents

Publication Publication Date Title
EP1996725B1 (fr) Méthode de détection électrochimique de séquences cibles d'acide nucléique
EP0843738B1 (fr) Procede de detection d'acides nucleiques utilisant des sondes nucleotidiques permettant a la fois une capture specifique et une detection
Deng et al. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline
JP2007139762A (ja) バイオセンサー、その製造方法及びそれを利用した生体分子の検出方法
CN103175873B (zh) 基于目标dna重复序列自身增强放大信号的dna电化学传感器
Cevik et al. Construction of an amperometric cholesterol biosensor based on DTP (aryl) aniline conducting polymer bound cholesterol oxidase
EP1570091B1 (fr) Procede de detection electronique d'au moins une interaction specifique entre des molecules sondes et des biomolecules cibles.
US11156582B2 (en) Systems for detecting and quantifying nucleic acids
Hou et al. Label-free microelectronic PCR quantification
Crulhas et al. Stimuli‐Responsive Biointerface Based on Polymer Brushes for Glucose Detection
EP0800080B1 (fr) Procédé de dosage quantitatif des substrats à l'aide d'une électrode enzymatique
EP2288731B1 (fr) Méthode d'identification électrochimique de séquences cibles de nucléotides
FR2922897A1 (fr) Mesure d'une population d'acides nucleiques,en particulier par pcr en temps reel.
FR2898133A1 (fr) Methode de detection electrochimique de sequences cibles d'acide nucleique
FR2911149A1 (fr) Methode de detection electrochimique de sequences cibles d'acide nucleique
JP2005069836A (ja) 電極、タンパク測定装置及び酵素活性の測定方法
EP1359421A1 (fr) Procédé de détection d'une reconnaissance moléculaire par électrochimiluminescence
Nowicka et al. Changes in performance of DNA biosensor caused by hydroxyl radicals
BE1028157B1 (fr) Dispositif et procédé pour déterminer, au départ d'un échantillon préalablement prélevé chez un individu, qu'au moins un anticorps cible a été ou est présent chez ledit individu
WO2006108759A1 (fr) Procede d'analyse electrochimique par voltametrie et dispositif pour sa mise en oeuvre
Maugeri et al. A DNA-biosensor integrating surface hybridization, thermo-responsive coating, laminar-flow technology and localized photothermal effect for efficiently electrochemical nucleic acids detection
EP4133102A1 (fr) Dispositif et procédé pour déterminer, au départ d'un échantillon préalablement prélevé chez un individu, qu'au moins un anticorps cible a été ou est présent chez ledit individu
JP2006003222A (ja) Dna検出装置及びdna検出用電極
FR2947630A1 (fr) Detecteur electrochimique d'une petite molecule cible a base de polymeres conjugues a effet memoire et procede de detection utilisant un tel detecteur
FR2922023A1 (fr) Methode et installation de detection electrochimique d'un compose biologique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007731073

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1800/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008557791

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022299

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12280826

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780015917.7

Country of ref document: CN