WO2007098704A1 - Système de relais et procédé de réalisation d'attribution de bande passante et de transmission - Google Patents

Système de relais et procédé de réalisation d'attribution de bande passante et de transmission Download PDF

Info

Publication number
WO2007098704A1
WO2007098704A1 PCT/CN2007/000664 CN2007000664W WO2007098704A1 WO 2007098704 A1 WO2007098704 A1 WO 2007098704A1 CN 2007000664 W CN2007000664 W CN 2007000664W WO 2007098704 A1 WO2007098704 A1 WO 2007098704A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
bandwidth
relay
subscriber station
mobile subscriber
Prior art date
Application number
PCT/CN2007/000664
Other languages
English (en)
French (fr)
Inventor
Ruobin Zheng
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07720300A priority Critical patent/EP1995980B1/en
Publication of WO2007098704A1 publication Critical patent/WO2007098704A1/zh
Priority to US12/199,637 priority patent/US20080316954A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/677Multiple interfaces, e.g. multihomed nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the invention relates to a Chinese patent application filed on March 2, 2006, the Chinese Patent Office, the application number is 200610058618.9, and the invention name is "a transit system and bandwidth allocation and scheduling method". Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of wireless communication technologies, and in particular, to a broadband wireless access technology, and more particularly to a transit system and a bandwidth allocation and scheduling method.
  • Background technique
  • DL PHY PDU downlink physical layer protocol data unit
  • An uplink subframe includes time slots arranged in the following order: Contention slot for initial ranging, Contention slot for BW requests, and one or more uplink physical layer protocol data units (UL PHYPDU).
  • UL PHYPDU uplink physical layer protocol data units
  • Each UL PHY PDU comes from a different subscriber station (SS).
  • the DL PHY PDU in the downlink subframe is composed of: a preamble, a frame control header (FCH), and some data bursts; wherein, the preamble is used for physical synchronization; and the FCH is used to specify that immediately after the FCH
  • the attribute and length of one or more bursts, the downlink frame prefix (DLFP, DL_Frame_Prefix) in the FCH used to specify one or more profiles of the Burst following the FCH and Its length; downlink mapping message (DL - MAP), uplink mapping message (UL - MAP).
  • Downlink channel description (DCD), uplink channel description (UCD) and other messages describing the content of the frame are in Followed by the first burst of FCH (DL Burst # 1)
  • the header is sent. If the DL-MAP is transmitted in the current frame, the DL-MAP will follow the first MAC PDU following the FCH; if the UL-MAP is also sent in the current frame, the UL-MAP is followed by the DL-MAP or in the DL-MAP If not sent, it follows the DLFP; if DCD and UCD messages are sent in frames, DCD and UCD will follow DL-MAP and UL-MAP.
  • the DL-MAP and UL-MAP specify detailed control information in the uplink subframe and the downlink subframe, and the SS receives and transmits data/management signaling according to the provisions of the DL-MAP and the UL-MAP.
  • the location and usage profile of other bursts of the downlink subframe are specified by the MAP-IE in the DL-MAP, and the location and profile of each burst of the uplink subframe are specified by the MAP-IE in the UL-MAP.
  • the downlink subframe is transmitted first, followed by the uplink subframe.
  • Figure 2 shows the OFDM (or SC) frame structure under FDD.
  • the uplink subframe and the downlink subframe are simultaneously transmitted on different frequencies.
  • the SS corresponding to the half-duplex FDD is not simultaneously transmitted in the uplink subframe.
  • Figure 3 shows the OFDMA or SOFDMA frame structure under TDD; the PHY burst in OFDMA is assigned a set of adjacent subchannels and a set of OFDMA symbols.
  • a burst can be assigned to an SS (or a group of SSs) in the uplink, and a burst can be sent to the SS as a transmitting unit on the downlink.
  • the initial access, periodic Ranging, bandwidth request, etc. of the uplink SS are all performed by the Ranging subchannel; the OFDMA (or SOFDMA) frame structure under the FDD, the uplink subframe and the downlink subframe are transmitted on different frequencies.
  • the physical layer PHY
  • data link layer MAC
  • CS service specific convergence sublayer
  • MAC CPS MAC common part sublayer
  • SS encryption sublayer
  • the bandwidth allocation refers to the process in which the BS provides the uplink transmission opportunity or the request bandwidth opportunity to the subordinate SS/MSS. After determining the scheduling service type and the corresponding QoS parameters, the BS QoS Scheduling can understand the throughput of the uplink service and Delay the demand and, when appropriate, allocate opportunities to send bandwidth requests or allocate opportunities to request bandwidth.
  • the process by which the BS provides the SS/MSS with the opportunity to send bandwidth requests is called Polling.
  • Polling is divided into: unicast polling and multicast polling.
  • Unicast polling refers to polling a single SS/MSS, that is, polling for each SS/MSS in a group of SS MSSs; and multicast/broadcast polling (broadcast/multicast Polling) refers to polling a group of SS/MSS. It is a contention period. When a message is transmitted, a collision may occur. Random backoff should be considered.
  • SS/MSS For the uplink, since multiple points (SS/MSS) are supported to transmit data to a point (BS), collisions may occur, especially when transmitting long data, in order to avoid excessive collision, the basic channel of the BS uplink transmission opportunity
  • the mechanism is: SS/MSS sends a BW Request (Bandwidth Request) request resource to the connection; BS performs uplink bandwidth allocation, and describes the location and usage of each burst (burst) in the corresponding connection in the UL-MAP message. ); SS/MSS corresponding connection sends a message at the specified burst location.
  • BW Request Bandwidth Request
  • BS For the downlink, one point (BS) is sent to the multi-point (SS/MSS) to transmit data.
  • the basic mechanism for the downlink channel transmission of the BS is: BS performs downlink scheduling, in DL-MAP The location and usage profile of each burst to the corresponding connection is indicated in the message; the SS/MSS corresponding connection receives the message at the location of the specified burst.
  • Service scheduling means that the MAC layer controls the data transmission on the connection CID according to the connection QoS requirements, including the sequence of transmission, the transmission frequency and the data size.
  • a connection CID is a service flow with QoS requirements.
  • Each connection CID corresponds to a set of QoS parameters, as shown in Table 1.
  • type of service can be supported by the multi-data traffic is divided into four types of characteristics of the other active 1 h distribution service (UGS, Unsolicited Grant Service) , real-time polling service (RTPS, Real-time Polling Service), Non-real-time Polling Service (N TPS), Best Effort Service (BE), and four corresponding service scheduling methods: Active allocation, real-time round Inquiries, non-real-time polling and best efforts.
  • UMS Unsolicited Grant Service
  • RTPS Real-time Polling Service
  • N TPS Non-real-time Polling Service
  • BE Best Effort Service
  • Active allocation real-time round Inquiries
  • the difference in the service scheduling mode is mainly reflected in the difference in the bandwidth request transmission mode.
  • the uplink bandwidth allocation of the other three services must undergo the bandwidth request/allocation process.
  • the prior art proposes the concept of a WiMAX relay station (RS), which consists of a SS/MSS, RS and BS BWA transit system; performs a relay between the BS (base station) and the SS/MSS (substation station/mobile subscriber station) through the RS, Enlarging the coverage of the BS, but IEEE802.16 only defines two network elements, SS and BS. Therefore, the existing bandwidth allocation and bandwidth scheduling method between BS and SS is not suitable for solving the bandwidth of SS/MSS in BWA transit system.
  • the request and the BS and RS bandwidth allocation and scheduling, the SS in the BWA transit system cannot receive and send data/management signaling according to the original DL-MAP message and UL-MAP message delivered by the BS.
  • Embodiments of the present invention provide a transit system and a bandwidth allocation and scheduling method for processing bandwidth requests and bandwidth allocation and scheduling of a transit system.
  • Embodiments of the present invention provide a bandwidth allocation and scheduling method for a transit system, where the method includes:
  • the base station Receiving, by the base station, a bandwidth request initiated by the user station/mobile subscriber station and transiting through the relay station; the base station generates a control message with the new information unit according to the bandwidth request, and sends the control packet to the user station/mobile subscriber station for bandwidth allocation And scheduling.
  • the embodiment of the invention further provides a transit system, including a base station and a relay station;
  • the base station has a bandwidth allocation unit and a base station scheduling management unit;
  • the bandwidth allocation unit allocates the uplink bandwidth and the downlink bandwidth of the base station, the uplink bandwidth and the downlink bandwidth of the relay station according to the received bandwidth request sent by the user station/mobile subscriber station, and generates a control packet with the added information unit.
  • the bandwidth request relay unit is configured to transfer the bandwidth request initiated by the user station/mobile subscriber station bandwidth request unit to the base station;
  • the relay station scheduling management unit performs scheduling of the uplink bandwidth and the downlink bandwidth of the relay station according to the newly added information unit in the control packet of the downlink subframe of the physical layer frame structure of the received base station.
  • the technical solution provided by the embodiment of the present invention adds a new information unit to the control message of the downlink subframe of the physical layer frame structure of the base station, where the information unit is used to indicate the corresponding connection of the user station/mobile user station transited through the relay station.
  • the base station generates a control message with the new information unit according to the bandwidth request initiated by the subscriber station/mobile subscriber station and transited by the relay station, and sends the control message to the subscriber station/mobile subscriber station, Thereby bandwidth allocation and scheduling.
  • bandwidth request relay which simplifies the complexity of the BWA transit network, and P contends for the complexity of the RS.
  • FIG. 4 is an OFDM (or SC) frame structure of a BS in a TDD transit system of an extended MAP-IE according to an embodiment of the present invention
  • FIG. 5 is an OFDM (or SC) frame structure of a BS in an FDD transit system of an extended MAP-IE according to an embodiment of the present invention
  • 6 is an OFDMA frame structure of a BS in a TDD transit system of an extended JVtAP-IE according to an embodiment of the present invention
  • 8A-8B are reference modes for bandwidth allocation and scheduling management of a multi-hop BWA transit system according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a transit bandwidth request according to an embodiment of the present invention.
  • FIG. 10 is a first stage flowchart of an OFDM physical layer bandwidth request according to an embodiment of the present invention;
  • FIG. 11 is a flowchart of a first phase of an OFDMA physical layer bandwidth request according to an embodiment of the present invention.
  • the added information element Relay-IE is a MAP-IE extended in the DL-MAP message and the UL-MAP message.
  • the OFDMA frame structure of the BS in the TDD transit system of the embodiment of the present invention shown in FIG. 6; the OFDMA (or S OFDMA) frame structure of the BS in the FDD transit system is the same as that of FIG. 6, but only the OFDMA (or SOFDMA) of the BS in the FDD transit system.
  • the uplink subframe and the downlink subframe in the frame structure are simultaneously transmitted on different frequencies.
  • the Relay-IE is used to define the location and usage profile of each burst of the SS/MSS corresponding connection belonging to the RS; the MAP-IE is used to define each burst of the corresponding connection of the SS/MSS belonging to the BS (burst) ) location and usage (profile:).
  • the SS/MSS belonging to the RS means that, in addition to the partial control signaling communication, most of the communication with the BS must pass through the SS/MSS transited by the relay station; the SS/MSS belonging to the BS means that the BS can communicate directly with the BS without Transfer station
  • the bandwidth allocation and scheduling management reference model of the single-hop B WA (e.g., WiMAX) transit system of the embodiment of the present invention as shown in Fig. 7, the bandwidth allocation is implemented only at the anchor base station (Anchor BS).
  • the RS is an access anchor base station of the SS/MSS, and the RS can also initiate a bandwidth request to the anchor base station.
  • connection between RS->BS is CID3
  • connection between MSS/SS->RS is CID2.
  • the SS/MSS initiates a bandwidth request through the RS
  • the SS/MSS is an SS/MSS belonging to the RS
  • the bandwidth request unit (BW Request) of the SS/MSS initiates a bandwidth request to be sent to the RS through the connection CID2.
  • the bandwidth request relay unit (BW Request Relay) of the RS performs a bandwidth request relay, and transfers the bandwidth request to the BS through the connection CID3.
  • BW Allocation The uplink and downlink bandwidths of the BS and the RS are respectively allocated to generate a DL-MAP packet and a UL-MAP packet of the BS, and the BS directly delivers the DL-MAP packet and the UL-MAP packet of the BS to the SS/MSS.
  • BW Grant Bandwidth Grant
  • the bandwidth grant is issued by the BS.
  • the MAP-IE in the DL-MAP message and the UL-MAP message indicates the location and usage of each Burst belonging to the SS/MSS of the BS.
  • the BS after performing the uplink bandwidth and downlink bandwidth allocation of the BS, the BS also sends the DL-MAP message and the UL-MAP message of the BS to the RS through the connection CID3, and the RS according to the PL-MAP report of the received BS.
  • the Relay-IE in the text and UL-MAP passively performs scheduling management of the uplink bandwidth and downlink bandwidth of the RS.
  • the RS performs the relay of the bandwidth grant and backs up the DL-MAP packet and the UL-MAP packet of the BS.
  • the RS will directly receive the Relay-IE to the DL-MAP packet and the UL-MA packet of the RS, or the RS converts the received Relay-IE into the DL-MAP of the RS and the MAP-IE in the UL-MAP packet.
  • the SS/MSS Transmitting to the multi-hop BWA transit system through the connection between the RS and the SS/MSS CID2, the SS/MSS transfers the bandwidth request to the RS through at least one subordinate RS, and the bandwidth grant transfer of the multi-hop B WA transit system can pass through the system. Part of the RS or all RSs.
  • Figure 8A shows a bandwidth allocation and scheduling management reference model for a multi-hop BWA transit system.
  • the upper-layer RS When a transition bandwidth is granted by a partial RS, the upper-layer RS performs a bandwidth grant transfer, and the upper RS directly receives the Relay-IE to the superior RS. In the DL-MAP packet and the UL-MAP packet, or the superior RS converts the received Relay-IE into the DL-MAP of the superior RS and the MAP-IE in the UL-MAP packet, and passes between the superior RS and the SS/MSS. The connection is sent to the SS/MSS.
  • the upper RS When all RSs in the transit system perform bandwidth grant transfer, the upper RS will receive After the DL-MAP packet and the UL-MAP packet are directly copied from the bandwidth grant message DL-MAP and the UL-MAP of the BS to the DL-MAP packet and the UL-MAP packet of the upper-level RS, the DL-MAP packet of the superior RS and the UL- The MAP message is sent to the lower-level RS, and the lower-level RS is forwarded to the SS/MSS as it is; or the received RS-received bandwidth grant message DL-MAP from the BS and the Relay-IE in the UL-MAP are converted into the upper-level RS by the superior RS.
  • the MAP-IE in the DL-MAP and the UL-MAP message is delivered to the subordinate RS, and is forwarded by the subordinate RS to the SS MSS as it is.
  • the bandwidth grant message must be transferred to the SS/MSS through the upper RS and the lower RS.
  • the method for transferring the bandwidth grant message in FIG. 8A and FIG. 8B is consistent with the bandwidth grant transfer method in FIG. 7.
  • the uplink bandwidth allocation (UL-MAP) is in minislots; for OFDM or OFDMA, the uplink bandwidth allocation (UL-MAP) is in units of symbols and subchannels.
  • FIG. 9 is a flowchart of a bandwidth request relay in a BWA transit system according to an embodiment of the present invention. As shown in FIG. 9, under the bandwidth allocation and scheduling management reference model of FIG. 7 or FIG. 8A, 8B, the bandwidth allocation and request of the embodiment of the present invention includes the following steps:
  • Step 1 The SS/MSS initiates a bandwidth request.
  • the bandwidth request is a mechanism by which the SS/MSS informs the BS of the upstream bandwidth required.
  • the SS/MSS is used for relay station broadcasting, multicast, or unicast by using the Relay-IE or RS in the UL-MAP specified for the relay station broadcast, multicast, or unicast bandwidth request specified in the UL-MAP of the BS.
  • the MAP-IE of the bandwidth request initiates a bandwidth request.
  • the IE is used to describe the time interval and/or the subchannel number of the uplink data transmission bandwidth of the RS uplink request, where the Relay-IE is a new information element in the DL-MAP message and the UL-MAP message of the BS ( IE), which belongs to the extended MAP-IE; and the characteristics of IE are determined by the type of CID. If it is a broadcast or multicast CID, all SS/MSS are required to participate in the competition request; if it is a unicast CID, it means A specific connection applies for bandwidth.
  • the SS/MSS sends a bandwidth request message in the following three ways:
  • the SS/MSS sends a bandwidth request during the contention period.
  • the sent bandwidth request message may be sent.
  • the SS/MS defined according to the 802.15 standard randomly selects the backoff window when transmitting the application (or the initial ranging request), and the SS/MSS moves back for a period of time to send the bandwidth request. That is, if the SS/MSS does not receive the bandwidth grant allocated by the BS to the SS/MS, the SS MSS re-randomly reclaims the transmission bandwidth request.
  • the OFDM and OFDMA physical layers support the bandwidth request (BW Request) during the contention period, and the OFDM and OFDMA physical layers are respectively Support other bandwidth request sending methods.
  • BW Request bandwidth request
  • the bandwidth request transmission mode supported by the OFDM and OFDMA physical layers in the embodiment of the present invention will be described in detail with reference to FIG. 10 and FIG. 11 in the following.
  • the SS/MSS uses the Unicast Polling assigned by the BS to send a bandwidth request.
  • the BS assigns a unicast Polling period to it.
  • no collision occurs.
  • the specific implementation method of unicast polling is that the BS allocates enough bandwidth for sending the BW Request to the basic CID (Basic CID) of the SS/MS, usually by assigning a Data Grant IE to the Basic CID of the SS/MS in the UL-MAP.
  • Multicast polling is to define the Bandwidth Request Contention (IE). If the resource cost of each SS is too large, the multicast polling mode is used to run a group of SS/MSs to send BW Requests during the contention multicast polling period. You can define a dedicated multicast or broadcast CID.
  • the BS can be notified by the PM bit, which requires a unicast Polling for non-UGS connections. Polling is in units of SS/MSS, but the bandwidth is dependent on the connection.
  • Increment When the BS receives the incremental Request, it superimposes the bandwidth of the Request application based on the current understanding of the bandwidth requirement of the CID.
  • the BS receives the total amount of Request, which replaces the current understanding of the CID bandwidth requirement.
  • bandwidth request packets can use separate bandwidth.
  • Step 2 The RS performs a bandwidth request relay (BW Request Relay), and can perform bandwidth transfer on multiple RSs (multi-hop RS).
  • BW Request Relay bandwidth request relay
  • multi-hop RS bandwidth transfer on multiple RSs
  • the RS implementation bandwidth request (BW Request) transit processing needs to perform bandwidth request packets.
  • a CID remapping table is maintained in the RS, as shown in Table 2.
  • RS performs bandwidth request transfer processing needs to report bandwidth request
  • "Inter-conversion. Table 2 shows the CID remap table.
  • Step 3 The anchor BS performs bandwidth allocation and grant.
  • the bandwidth grant is directly sent by the base station to the SS/MSS. Describe the location and usage method of each burst connected to the SS/MSS belonging to the BS by using the DL-MAP packet sent by the BS and the MAP-IE of the UL-MAP packet, and the DL-MAP and the DL-MAP sent by the BS. The location and usage of each burst of the corresponding connection of the SS/MSS belonging to the RS is described in the Relay-IE of the UL-MAP message.
  • the bandwidth grant granted by the BS is always identified as a Basic CID (Basic CID), that is, the bandwidth request is sent based on the CID, but the bandwidth allocation grant is always based on the SS. /MSS.
  • Basic CID Basic CID
  • Step 4 In the single-hop/multi-hop BWA transit system shown in FIG. 7, FIG. 8A, and FIG. 8B, in the case where the RS is allowed to transit the BW Grant, the RS performs the relay of the BW Grant of the DL-MAP and the UL-MAP.
  • the RS performs bandwidth grant forwarding on the DL-MAP packet and the UL-MAP packet sent by the BS, that is, the RS will directly receive the Relay-IE to the DL-MAP packet and the UL-MAP packet of the RS, or RS.
  • the connection CID2 between the RS and the SS MSS is sent to the SS MSS.
  • Step 5 The SSMSS obtains an anchor point by using the DL-MAP in the received downlink subframe of the BS and the Relay-IE of the UL-MAP message or the MAP-IE and SS/MSS of the DL-MAP and JL-MAP message relayed by the RS.
  • the SS/MSS is connected according to the MAP-IE in the Relay-IE or the DL-MAP message relayed by the RS in the DL-MAP message in the downlink subframe of the BS, and the SS/MSS is connected in the specified
  • the location of the burst sends a message to the RS;
  • the SS/MSS is based on the MAP-IE in the Relay-IE or the UL-MAP message in the RS-transferred UL-MAP message in the downlink subframe of the BS, and the SS/MSS is connected in the specified
  • the location of the burst sends a message to the RS.
  • the OFDM physical layer supports two contention-based bandwidth request mechanisms.
  • One is that the SS/MSS sends a BW Request message during the REQ Region-Full period of the OFDM physical layer, requesting the bandwidth, and referring to the content of the method 1 for transmitting the bandwidth request.
  • Another bandwidth request mechanism supported by the OFDM physical layer is SS MSS in OFDM.
  • the REQ Region-Focused bandwidth request mechanism is implemented during REQ Region-Focused.
  • OFDM Physical Layer The REQ Region-Focused bandwidth request is divided into two phases.
  • Figure 10 shows the first phase of the OFDM physical layer REQ Region-Focused bandwidth request. Among them, the first phase includes the following steps:
  • Step 1-1 The SS MSS that needs to send the bandwidth request first randomly selects an RS uplink transmission opportunity (ie, the contention channel) to transmit the contention code during the REQ Region-Focus.
  • an RS uplink transmission opportunity ie, the contention channel
  • Step 1-2 The RS randomly selects an anchor BS uplink transmission opportunity (ie, a contention channel), and forwards the bandwidth request content code of the SS/MSS to the BS as it is, and the bandwidth request content code of the SS/MSS is forwarded. It can also be forwarded to the BS as it is through the multi-hop RS.
  • an anchor BS uplink transmission opportunity ie, a contention channel
  • Step 1-3 After the BS receives the contention code of the SS/MSS, the anchor BS allocates the uplink bandwidth of the BS and the RS for the SS/MSS, and is used for the SS MSS to send the bandwidth request, and the uplink bandwidth of the allocated BS and the RS.
  • the difference from the normal way is that the upstream bandwidth allocation is not indicated by the BASIC CID.
  • the uplink bandwidth allocation is jointly indicated by the broadcast CID and the OFDM Focused_Contention-IE.
  • Step 1_4 When the single-hop or multi-hop BWA transit system allows the RS to transfer the BW Grant, the RS performs the relay of the DL-MAP and the UL-MAP BW Grant.
  • Step 1-5 After the SS/MSS receives the Relay-IE of the UL-MAP message in the downlink subframe of the BS or the UL-MAP message in the downlink subframe of the RS that is relayed by the RS, the SS/MSS You can determine whether you have the opportunity to send a bandwidth request BW Request message.
  • the OFDMA physical layer In addition to supporting the BW Request request bandwidth (bandwidth request transmission mode 1), the OFDMA physical layer also supports a CDMA bandwidth request mechanism called contention-based.
  • the OFDMA physical layer defines the Ranging subchannel and a special set of pseudorandom ranging
  • the pseudo-random ranging code is further divided into three types: Initial Ranging ⁇ Periodic Ranging and Bandwidth Request.
  • the OFDMA physical layer bandwidth request mechanism is divided into two phases. As shown in Figure 11, the first phase of the OFDMA physical layer bandwidth request mechanism is shown in the flowchart. The first phase of the OFDMA physical layer bandwidth request mechanism includes the following steps: Step 2-1: When the SS/MSS needs to request bandwidth, the SS/MSS slave bandwidth Request (Bandwidth Request) A random selection of a code in the pseudo-random ranging code is sent to the RS in the Ranging subchannel of the RS.
  • Step 2-2 The RS forwards the bandwidth request pseudo-random ranging code of the SS/MSS to the BS (single hop) as it is through the ranging subchannel of the BS, or requests the pseudo-random ranging of the bandwidth of the SS/MSS by the RS.
  • the code is forwarded to other RSs as it is and then forwarded to the BS (multi-hop RS forwarding).
  • Step 2-3 After the BS receives the pseudo-random ranging code, the anchor BS allocates the uplink bandwidth of the BS and the RS for the SS/MSS, and is used for the SS/MSS to send the bandwidth request, and passes the DL-MAP report with the Relay-IE.
  • the text and UL-MAP messages are sent to the RS and sent to the RS and the MS.
  • the uplink bandwidth of the BS and RS allocated for the SS/MSS is done by allocating a CDMA-Allocation-IE with a transmission area and ranging code information in the UL-MAP.
  • Step 2-4 In the case of a multi-hop condition or a single hop to allow the RS to transfer the BW Grant, the RS performs the relay of the DL-MAP and the UL-MAP BW Grant.
  • Step 2-5 After the SS/MSS receives the relay-IE of the UL-MAP packet in the downlink subframe of the BS or the UL-MAP packet in the downlink subframe of the transited RS, the SS/MSS is based on the SS/MSS.
  • CDMA Allocation—The information carried in the IE determines whether the upstream transmission opportunity is its own. If it is its own, SS/MSS can use this upstream transmission to send bandwidth requests and data.
  • the second phase of the OFDMA physical layer bandwidth request is the same as the bandwidth request and allocation procedure in Figure 9.
  • the embodiment of the invention provides a transit system and a bandwidth allocation and scheduling method, which solves the bandwidth request, bandwidth allocation and service scheduling processing method of the transit system.
  • the embodiment of the present invention solves the problem of multi-hop transit through the bandwidth request relay, simplifies the complexity of the BWA transit network, and reduces the complexity of the RS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种中转系统及带宽分配和调度方法 本申请要求于 2006 年 03 月 02 日提交中国专利局、 申请号为 200610058618.9、 发明名称为"一种中转系统及带宽分配和调度方法" 的 中国专利申请的优先权 , 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信技术领域,特别涉及宽带无线接入技术,具体的 讲是一种中转系统及带宽分配和调度方法。 背景技术
在现有的宽带无线接入标准中,数据以帧的格式在物理信道传输,每 帧包括下行子帧 (DL subframe)和上行子帧 (UL subframe),现有的宽带无线 接入标准支持多种物理层规范,如单载波 (SC),正交频分复用(OFDM), 正 交频分复用接入 (OFDMA)以及支持时分双工 (TDD)和频分双工 (FDD)模 式。 在 TDD模式下, 下行子帧先行传输, 随后是上行子帧, TTG和 RTG 会插在上下行子帧交替的时候, 以留出一段时间让 BS完成收发交替。 在 FDD模式下, 上行子帧和下行子帧在不同的频率上同时传输, 可以支持 全双工 SS, 也支持半双工 ss。
TDD系统和 FDD系统中,一个下行子帧中只有一个下行物理层协议 数据单元 (DL PHY PDU)。 一个上行子帧包含按以下顺序排列的时隙: 初 始竟争时隙(Contention slot for initial ranging) , 带宽请求竟争时隙 (Contention slot for BW requests)和一个或多个上行物理层协议数据单元 (UL PHYPDU)。 每个 UL PHYPDU来自不同的用户站 (SS)。
下行子帧中的 DL PHYPDU由:前导码 (preamble).帧控制头部 (FCH) 和一些数据突发 (burst)组成; 其中, 前导码用于物理同步; FCH用于规定 紧跟在 FCH后的一个或多个突发的属性和长度, FCH 中的下行帧前缀 (DLFP, DL— Frame— Prefix), 用于指定紧随在 FCH后的一个或多个下行突 法 (Burst)的 profile及其长度; 下行映射报文 (DL - MAP), 上行映射报文 (UL - MAP). 下行链路信道描述 (DCD)、 上行链路信道描述 (UCD)以及其 它描述帧内容的报文都在紧跟着 FCH的第一个突发 (DL Burst # 1)的开 头发送。 如果 DL-MAP在当前帧发送, 则 DL-MAP将跟在 FCH后面的 第一个 MAC PDU; 如果 UL-MAP也在当前帧发送, 则 UL-MAP紧跟在 DL-MAP或者在 DL-MAP不发送的情况下紧跟在 DLFP后面; 如果 DCD 和 UCD消息在帧中发送, DCD和 UCD将紧跟在 DL-MAP和 UL-MAP 后面。 DL— MAP和 UL— MAP规定了上行子帧和下行子帧中的详细控制信 息, SS根据 DL-MAP和 UL-MAP的规定接收和发送数据 /管理信令。 下 行子帧其它 burst的位置和使用方法 (profile)由 DL-MAP中的 MAP- IE指 定,上行子帧的各个 burst的位置和 profile由 UL-MAP中的 MAP-IE指定。
如图 1所示的 TDD下的 OFDM (或 SC)帧结构中,下行子帧先行传输, 随后是上行子帧。 图 2所示为 FDD下的 OFDM (或 SC)帧结构, 上行子帧 和下行子帧在不同的频率上同时发送,对应半双工 FDD下的 SS,在上行 子帧发送时就不会同时发送下行子帧。 图 3 为 TDD 下的 OFDMA或 SOFDMA)帧结构 ;OFDMA中的 PHY burst被分配了一组相邻的子信道和 一组 OFDMA符号 (symbol)。一个 burst在上行可以分配给一个 SS (或一组 SS), 一个 burst在下行可以由 BS (基站)作为一个发送单元发给 SS。 上行 SS的初始接入、 周期性 Ranging, 带宽请求等都通过 Ranging subchannel 进行; FDD下的 OFDMA (或 SOFDMA)帧结构, 上行子帧和下行子帧在 不同的频率上发送。
现有的宽带无线接入标准相应地定义了物理层 (PHY)和数据链路层 (MAC)。数据链路层又分为服务特定汇聚子层 (SSCS或简写为 CS)、 MAC 公共部分子层 (MAC CPS)、 加密子层 (SS), 其中 MAC CPS层实现带宽分 配和调度管理。
带宽分配是指 BS给下属的 SS/MSS提供上行发送机会或者请求带宽 机会的过程,确定调度业务类型和对应的 QoS参数以后, BS的调度器 (QoS Scheduling)就可以了解上行业务的吞吐量和延迟需求,并在合适的时候分 配发送带宽请求的机会或者分配请求带宽的机会。
BS给 SS/MSS提供发送带宽请求机会的过程称为 Polling (轮询)。 轮 询分为: 单播轮询和组播轮询。 单播轮询是指对单个 SS/MSS进行轮询, 即对于一组 SS MSS 中的每一个 SS/MSS 分别轮询; 而组播 /广播轮询 (broadcast/multicast Polling)是指对一组的 SS/MSS进行轮询,是争用时段, 在传送报文时可能发生碰撞, 要考虑随机退避。
对于上行链路, 由于支持多点 (SS/MSS)向一点 (BS)发送数据, 因而可 能会发生碰撞, 特别是发送长数据时, 为了避免过多的碰撞, BS的上行 通道发送机会的基本机制是: SS/MSS发送对连接的 BW Request (带宽请 求)请求资源; BS进行上行带宽分配, 在 UL-MAP报文中说明给相应连 接的各个突发 (burst)的位置和使用方法 (profile); SS/MSS相应连接在指定 的 burst的位置发送报文。
对于下行链路, 支持一点 (BS) 向多点 (SS/MSS)发送数据, 为了能在 时频空间内区分用户, BS的下行通道发送的基本机制是: BS进行下行调 度,在 DL-MAP报文中说明给相应连接的各个突发 (burst)的位置和使用方 法 (profile); SS/MSS相应连接在指定的 burst的位置接收报文。
业务调度就是指 MAC层根据连接 QoS要求的不同, 控制连接 CID 上的数据传输, 包括发送的先后顺序, 发送频率和数据大小。 一条连接 CID就是一个有 QoS要求的业务流。每条连接 CID都对应一组 QoS参数, 如表 1所示
表 1: 不同业务的 QoS参数
Figure imgf000005_0001
由于现有的宽带无线接入标准的重要特性之一就是对多类型业务的 支持,可根据所支持多类型业务的数据特性将业务分成四种类另1 h主动分 配业务 (UGS, Unsolicited Grant Service), 实时轮询业务 (RTPS, Real-time Polling Service)、非实时轮询业务 (N TPS, Non-real-time Polling Service, )、 尽力而为业务 (BE, Best Effort Service),并提供四种相应地业务调度方式: 主动分配、 实时轮询、 非实时轮询和尽力而为。 业务调度方式的不同主要 体现在带宽请求发送方式的不同,除了主动分配业务,其它三种业务的上 行带宽分配都要经历带宽请求 /分配的过程。
现有技术提出了 WiMAX中转站 (RS)的概念, 由 SS/MSS, RS 以及 BS组成 BWA中转系统; 通过 RS在 BS (基站)与 SS/MSS (用户站 /移动用 户站)间执行中转, 扩大 BS的覆盖范围, 但是 IEEE802.16只定义了 SS 和 BS两种网元, 因此现有的 BS与 SS间的带宽分配和带宽调度方法不 适用于解决 BWA中转系统中, SS/MSS的带宽请求以及 BS和 RS带宽分 配和调度, BWA中转系统中的 SS也无法按照 BS下发的原有的 DL-MAP 报文和 UL-MAP报文的规定接收和发送数据 /管理信令。 发明内容
本发明实施例提供一种中转系统及带宽分配和调度方法,用于处理中 转系统的带宽请求以及带宽分配和调度。
本发明实施例提供一种中转系统的带宽分配和调度方法, 该方法包 括:
在基站物理层帧结构的下行子帧的控制报文中增加新的信息单元,所 述信息单元用于指示通过中转站中转的用户站 /移动用户站相应连接的各 个突发的位置和使用方法;
基站接收用户站 /移动用户站发起且经过中转站中转的带宽请求; 基站根据所述带宽请求生成具有所述新的信息单元的控制报文,并发送至 用户站 /移动用户站, 进行带宽分配和调度。
本发明实施例还提供一种中转系统, 包括基站和中转站;
所述基站具有带宽分配单元和基站调度管理单元;
所述带宽分配单元根据接收到的用户站 /移动用户站发出的带宽请 求,对基站上行带宽和下行带宽、中转站的上行带宽和下行带宽进行分配, 生成具有新增信息单元的控制报文,发送给用户站 /移动用户站和中转站; 所述基站调度管理单元, 对基站上行带宽和下行带宽进行调度; 中转站, 具有带宽请求中转单元和中转站调度管理单元;
所述带宽请求中转单元, 用于将用户站 /移动用户站带宽请求单元发 起的带宽请求中转到基站;
所述中转站调度管理单元 ,根据接收到的基站的物理层帧结构的下行 子帧的控制报文中的新增信息单元进行中转站上行带宽和下行带宽的调 度。
本发明实施例提供的技术方案,在基站物理层帧结构的下行子帧的控 制报文中增加新的信息单元,所述信息单元用于指示通过中转站中转的用 户站 /移动用户站相应连接的各个突发的位置和使用方法; 基站根据用户 站 /移动用户站发起且经过中转站中转的带宽请求生成具有所述新的信息 单元的控制报文, 并发送至用户站 /移动用户站, 从而进行带宽分配和调 度。 这样解决了中转系统的带宽请求、 带宽分配和业务调度的处理方法。 本发明实施例通过带宽请求中转, 解决多跳中转的问题, 简化了 BWA中 转网络的复杂度, P争低了 RS的复杂度。 附图说明
图 1为现有技术的 TDD下的 OFDM (或 SC)帧结构;
图 2为现有技术的 FDD下的 OFDM (或 SC)帧结构;
图 3为现有技术的 TDD下的 OFDMA (或 SOFDMA)帧结构;
图 4为本发明实施例中扩展 MAP-IE的 TDD中转系统中 BS的 OFDM (或 SC)帧结构;
图 5为本发明实施例中扩展 MAP-IE的 FDD中转系统中 BS的 OFDM (或 SC)帧结构;
图 6为本发明实施例中扩屑 JVtAP- IE的 TDD中转系统中 BS的 OFDMA 帧结构;
图 7为本发明实施例的单跳 BWA中转系统带宽分配和调度管理参考 模型;
图 8A- 8B为本发明实施例的多跳 BWA中转系统带宽分配和调度管理 参考模;
图 9为本发明实施例的中转带宽请求的流程图; 图 10 为本发明实施例的 OFDM物理层带宽请求第一阶段流程图; 图 11 为本发明实施例的 OFDMA物理层带宽请求第一阶段流程图。 具体实施方式
以下将结合本发明说明书附图, 详细说明本发明的实施过程: 在基站 (BS)物理层帧结构的下行子帧的 DL-MAP报文和 UL-MAP报 文中增加信息单元 Relay-IE, 增加的信息单元 Relay-IE为 DL-MAP报文和 UL-MAP报文中扩展的 MAP-IE。
如图 4所示的本发明实施例的 TDD中转系统中 BS的 OFDM (或 SC)帧 结构; 图 5所示的本发明实施例的 FDD中转系统中 BS的 OFDM (或 SC)帧结 构;图 6所示的本发明实施例的 TDD中转系统中 BS的 OFDMA帧结构; FDD 中转系统中 B S的 OFDMA (或 S OFDMA)帧结构与图 6雷同, 只是 FDD中转 系统中 BS的 OFDMA (或 SOFDMA)帧结构中的上行子帧和下行子帧在不 同的频率上同时发送。
Relay-IE用于定义属于 RS的 SS/MSS相应连接的各个突发 (burst)的位 置和使用方法 (profile); MAP-IE用于定义属于 BS的 SS/MSS相应连接的各 个突发 (burst)的位置和使用方法 (profile:)。 属于 RS的 SS/MSS是指, 除部分 控制信令通信外, 大部分和 BS的通信, 必须通过中转站中转的 SS/MSS; 属于 BS的 SS/MSS是指, 可以和 BS直接通信, 无须中转站中转的
SS/MSS (图 7, 图 8A, 图 8B中未标示)。 其中, Relay-IE的 DL-MAP报文和 UL-MAP报文的具体格式和内容定义, 遵循现有标准对 DL-MAP报文和 UL-MAP4艮文的具体格式和内容定义。
在如图 7所示的本发明实施例的单跳 B WA (例如, WiMAX)中转系统的 带宽分配和调度管理参考模型, 带宽分配仅在锚点基站 (Anchor BS)实现。 RS为 SS/MSS的接入锚点基站, RS也可以向锚点基站发起带宽请求。
RS->BS的连接为 CID3, MSS/SS->RS间的连接为 CID2。
图 7中, SS/MSS通过 RS发起带宽请求, SS/MSS为属于 RS的 SS/MSS, SS/MSS的带宽请求单元 (BW Request)发起带宽请求通过连接 CID2发送 到 RS。 RS的带宽请求中转单元 (BW Request Relay)执行带宽请求中转, 将带宽请求通过连接 CID3中转到 BS。 BS的带宽分配单元 (BW Allocation) 分别对 BS和 RS的上行和下行带宽进行分配, 生成 BS的 DL-MAP报文和 UL-MAP报文, BS将 BS的 DL-MAP报文和 UL-MAP报文直接下发至 SS/MSS, 执行带宽授予 (BW Grant), 其中 BS的 DL-MAP报文和 UL-MAP 报文中的 Relay-IE中说明属于 RS的 SS/MSS相应连接的各个突发 (burst)的 位置和使用方法 (profile); SS MSS通过接》|tBS的 DL-MAP报文和 UL-MAP 报文中的 Relay-IE获得带宽分配的结果。 根据 BS的 DL-MAP报文中的 Relay-IE, SS/MSS相应连接在指定的 burst位置接收 RS向 SS/MSS发送的报 文;根据 BS的 UL-MAP报文中的 Relay-IE, SS/MSS相应连接在指定的 burst 位置向 RS发送报文。
对于属于 BS的 SS MSS (图 7中未示)的带宽授予是通过 BS下发的
DL-MAP报文和 UL-MAP报文中的 MAP-IE说明属于 BS的 SS/MSS相应连 接的各个 Burst的位置和使用方法。
在图 7中, BS在进行 BS的上行带宽和下行带宽分配后, 还将 BS的 DL-MAP报文和 UL-MAP报文通过连接 CID3发送到 RS , RS根据接收的 BS 的 PL-MAP报文和 UL-MAP中的 Relay-IE, 被动地进行 RS的上行带宽和下 行带宽的调度管理。 为避免 BS下发的 BS的 DL-MAP报文和 UL-MAP不能 到达属于 RS的 SS/MSS, RS执行带宽授予的中转,对 BS的 DL-MAP报文和 UL-MAP报文进行备份。 RS将接收 Relay-IE直接拷贝到 RS的 DL-MAP报文 和 UL-MA 报文中, 或者 RS将接收的 Relay-IE转换为 RS的 DL-MAP和 UL-MAP报文中的 MAP-IE , 通过 RS与 SS/MSS间的连接 CID2发送到 在多跳 BWA中转系统中, SS/MSS通过至少一个下级 RS将带宽请求中 转到 RS , 多跳 B WA中转系统的带宽授予中转可以通过系统中的部分 RS 或全部 RS进行。 图 8A所示为多跳 BWA中转系统带宽分配和调度管理参考 模型中, 当通过部分 RS进行中转带宽授予时, 由上级 RS执行带宽授予中 转,上级 RS将接收 Relay-IE直接拷贝到上级 RS的 DL-MAP报文和 UL-MAP 报文中, 或者上级 RS将接收的 Relay-IE转换为上级 RS的 DL-MAP和 UL-MAP报文中的 MAP-IE , 通过上级 RS与 SS/MSS间的连接发送到 SS/MSS。 当中转系统中的全部 RS进行带宽授予中转时,上级 RS将接收的 来自 BS的带宽授予报文 DL-MAP和 UL-MAP中的 Relay-IE直接拷贝到上级 RS的 DL-MAP报文和 UL-MAP报文后, 将上级 RS的 DL-MAP报文和 UL-MAP报文下发到下级 RS, 由下级 RS原样转发到 SS/MSS; 或者由上级 RS将接收的来自 BS的带宽授予报文 DL-MAP和 UL-MAP中的 Relay-IE转 换为上级 RS的 DL-MAP和 UL-MAP报文中的 MAP-IE下发到下级 RS, 由下 级 RS原样转发到 SS MSS。
图 8B所示本发明实施例的的多跳 BWA中转系统带宽分配和调度管理 参考模型中, 带宽授予报文必须通过上级 RS和下级 RS中转到 SS/MSS。 图 8A、 图 8B的带宽授予报文中转的方法与图 7中的带宽授予中转方法一致。
对于 SC而言, 上行链路带宽分配(UL-MAP ) 以微时隙 (minislot)为 单位; 对于 OFDM或者 OFDMA而言, 上行链路带宽分配 (UL- MAP ) 以 符号和子信道为单位。
图 9所示为本发明实施例 BWA中转系统中带宽请求中转的流程图。如 图 9所示, 在图 7或图 8A,8B的带宽分配和调度管理参考模型下, 本发明实 施例的带宽分配与请求包括以下步骤:
步骤 1、 SS/MSS发起带宽请求。
带宽请求是 SS/MSS通知 BS所需上行带宽的一种机制。 SS/MSS通过 使用 B S的 UL-MAP中指定的用于中转站广播、 多播或者单播带宽请求的 Relay-IE或 RS的 UL-MAP中指定的用于中转站广播、 多播或者单播带宽请 求的 MAP-IE发起带宽请求。 BS的 UL-MAP中指定的用于中转站广播、 多 播或者单播带宽请求的 Relay-IE或 RS的 UL-MAP中指定的用于中转站广 播、 多播或者单播带宽请求的 MAP-IE, 均用于描述 RS上行链路请求上行 数据传输带宽的时间间隔和 /或子信道号, 其中 Relay-IE为 BS的 DL-MAP 报文和 UL-MAP报文中新增的信息单元 (IE), 属于扩展的 MAP-IE; 而 IE 的特点由 CID的类型决定, 如果是广播或多播 CID, 则需要所有的 SS/MSS 参与竟争请求; 如果是单播 CID, 则表示针对每一个特定连接申请带宽。
SS/MSS通过以下三种方式发送带宽请求消息:
1、 SS/MSS在争用时段, 发送带宽请求。
由于争用时段通常是指广播 /多播轮询, 发送的带宽请求报文可能发 生碰撞的, 根据 802.15标准定义的 SS/MS在发送申请 (或者初始测距请求) 时,随机选择退避窗口, SS/MSS后退一段时间发送带宽请求。即, SS/MSS 如果超时未收到 BS分配给 SS/MS的带宽授予, 则 SS MSS重新随机退避发 送带宽请求。
由于不同的物理层方式在争用时段发送 Request (申请)的机制有所不 同, OFDM和 OFDMA物理层除了支持在争用时段发送带宽请求 (BW Request)的方式外 , OFDM和 OFDMA物理层还分别支持其它的带宽请求 发送方式。 将在后续内容中参照附图 10和附图 11 , 对本发明实施例中 OFDM和 OFDMA物理层支持的带宽请求发送方式进行详细说明。
2、 SS/MSS利用 BS分配的单播轮询 (Unicast Polling), 发送带宽请求。 对于实时轮询 (rt-Polling)或者非实施轮询 (nrt-Polling)业务流, BS会为其分 配单播的 Polling时段, SS/MS在该时段内发送申请, 则不会发生碰撞。
单播轮询的具体实现方法是 BS为 SS/MS的基本 CID(Basic CID)分配 足够发送 BW Request的带宽, 通常是在 UL-MAP分配一个指向 SS/MS的 Basic CID的 Data Grant IE。 组播轮询, 实际就是定义带宽请求竟争信息单 元 (Bandwidth Request Contention IE)。如果 BS单独轮询每个 SS的资源开销 太大的话, 就采用组播 Polling的方式, 运行一组 SS/MS在争用的组播 Polling时段发送 BW Request。 可以定义专门的组播或者广播 CID。
对于当前有 UGS业务流的 SS/MS, 可以通过 PM位通知 BS, 该 SS/MS 需要一个单播 Polling, 用于非 UGS的连接。 轮询以 SS/MSS为单位, 但带 宽倚求以连接为单位。
3、 SS/MSS利用发送数据的机会, 发送附带申请 (Piggyback), 即利用 数据报文的一部分发送带宽请求。
Request具有以下两种属性之一:
1、 增量的 (Increment): BS收到增量的 Request, 则在当前对该 CID的 带宽需求理解的基础上叠加该 Request申请的带宽。
2、 总量的 (Aggregate): BS收到总量的 Request, 则替代当前对该 CID 带宽需求的理解。
采用方式 1和 2发送带宽请求时,带宽请求报文可以采用单独的带宽请 求头;采用方式 3发送带宽请求时,带宽请求^ =艮文则表示为一种捎带信息, 捎带方式为可选。
步骤 2、 RS执行带宽请求中转 (BW Request Relay), 可以经多个 RS (多 跳 RS)对带宽请求进行中转。
RS执行带宽请求 (BW Request)中转处理需要对带宽请求报文进行
CID的转换。 RS中维护一张 CID重映射表, 如表 2所示。 在图 7中, RS->BS 的连接为 CID3(出 CID = 0x8b) , MSS/SS->RS间的连接为 CID2(入 CID = 0x3 f), RS执行带宽请求中转处理需要将带宽请求报文中的 CID由"入 CID = 0x3f,转换为 "出 CID = 0x8b"。 即 RS执行报文中转时, RS根据 CID重映 射表, 对接收到的报文进行 "入 CID"与"出 CID"间的转换。 表 2为 CID重映 射表
Figure imgf000012_0001
步骤 3、 锚点 BS做带宽分配和授予。
BS进行 BS和 RS的上行和下行带宽分配后, 带宽授予由基站直接下发 到 SS/MSS。 通过在 BS下发的 DL-MAP报文和 UL-MAP报文的 MAP-IE中 说明给属于 BS的 SS/MSS相应连接的各个 burst的位置和使用方法, 在 BS 下发的 DL-MAP和 UL-MAP报文的 Relay-IE中说明给属于 RS的 SS/MSS相 应连接的各个 burst的位置和使用方法。
虽然 SS/MSS可能为单独的 CID发送带宽请求, 但是 BS分配的带宽授 予总是标识为基本 CID(Basic CID), 也就是说, 带宽请求是基于 CID发送 的, 但是带宽分配授予总是基于 SS/MSS。
步骤 4: 在图 7, 图 8A, 图 8B所示的单跳 /多跳 BWA中转系统中, 允许 RS中转 BW Grant的情况下, RS做 DL-MAP和 UL-MAP的 BW Grant的中转, 则 RS对 BS下发的 DL-MAP报文和 UL-MAP报文执行带宽授予中转, 即 RS 将接收 Relay-IE直接拷贝到 RS的 DL-MAP报文和 UL-MAP报文中,或者 RS RS与 SS MSS间的连接 CID2发送到 SS MSS。
步骤 5: SSMSS通过接收的 BS下行子帧中的 DL-MAP和 UL-MAP报文 的 Relay-IE或 RS中转的 DL-MAP和 JL-MAP报文的 MAP-IE , SS/MSS获得 锚点 BS带宽分配和授予的结果, SS/MSS根据 BS下行子帧中的 DL-MAP报 文中 Relay-IE或 RS中转的 DL-MAP报文中的 MAP-IE, SS/MSS相应连接在 指定的 burst的位置发送报文给 RS; SS/MSS根据 BS下行子帧中的 UL-MAP 报文中 Relay-IE或 RS中转的 UL-MAP报文中的 MAP-IE, SS/MSS相应连接 在指定的 burst的位置发送报文至 RS。
如前所述,不同的物理层方式在争用时段发送带宽请求的机制有所不 同, 以下将对 OFDM物理层和 OFDMA物理层支持的带宽请求机制进行详 细说明:
OFDM物理层支持两种基于竟争的带宽请求机制。 一种是 SS/MSS在 OFDM物理层的 REQ Region-Full期间发送 BW Request报文, 请求带宽, 参照发送带宽请求的方式一的内容。
OFDM物理层支持的另外一种带宽请求机制是, SS MSS在 OFDM的
REQ Region-Focused期间进行 REQ Region-Focused带宽请求机制。 OFDM 物理层 REQ Region-Focused带宽请求分为两个阶段, 图 10所示为 OFDM物 理层 REQ Region-Focused带宽请求第一阶段流程图。 其中, 第一个阶段包 括以下步骤:
步驟 1-1: 需要发送带宽请求的 SS MSS首先在 REQ Region- Focused期 间,随机选择一个 RS上行发送机会 (即竟争信道 Contention Channel)发送竟 争码 (Contention Code).
步骤 1-2 : RS随机选择一个锚点 BS上行发送机会(即竟争信道 Contention Channel), 将 SS/MSS的带宽请求竟争码的按原样转发到 BS, SS/MSS的带宽请求竟争码也可以通过多跳 RS按原样转发到 BS。
步骤 1-3: 当 BS收到 SS/MSS的竟争码后, 锚点 BS为 SS/MSS分配 BS 和 RS的上行带宽, 用于 SS MSS发送带宽请求, 将分配的 BS和 RS的上行 带宽
RS和 MSC 与普通方式不同点在于, 上行带宽分配不用 BASIC CID指示。 通过 broadcast CID和 OFDM Focused— Contention— IE共同指示上行带宽分配。 OFDM Focused_Contention— IE中包含 SS/MSS使用的竟争信道、 竟争码、 发送机会。 SS/MSS可以根据自己刚才使用的竟争信道 /发送机会和竟争码 的参数得知 BS是否为自己分配了上行机会。
步驟 1_4: 当单跳或多跳 BWA中转系统允许 RS中转 BW Grant, RS做 DL-MAP和 UL-MAP的 BW Grant的中转。
步驟 1-5: SS/MSS接收到 BS的下行子帧中的 UL-MAP报文的 Relay-IE 或接收到通过 RS中转的 RS的下行子帧中的 UL-MAP报文后, SS/MSS即可 判断自己是否有发送带宽请求 BW Request报文的机会。
OFDM物理层 REQ Region-Focused带宽请求的第二个阶段与图 9中带 宽请求和分配的过程相同。
OFDMA物理层除支持发送带宽请求 (BW Request)请求带宽(带宽请 求发送方式一)夕卜,还支持一种称为基于竟争的 CDMA带宽请求机制。
OFDMA物理层定义测距 (Ranging) 子信道和一組特殊的伪随机测距
(Ranging)码。 伪随机测距码又分为初始测距 (Initial Ranging) ^ 周期测距 (Periodic Ranging)和带宽请求 (Bandwidth Request)三种。 OFDMA物理层带 宽请求机制分为两个阶段。 如图 11所示为 OFDMA物理层带宽请求机制第 一阶段流程图, OFDMA物理层带宽请求机制第一阶段包括以下步骤:步驟 2-1: 当 SS/MSS需要请求带宽时, SS/MSS从带宽请求 (Bandwidth Request) 伪随机测距码中随机选择一个码, 并在 RS的 Ranging子信道中发送给 RS。
步骤 2-2: RS通过 BS的测距子信道将 SS/MSS的带宽请求伪随机测距 码按原样进行转发给 BS (单跳 ), 或由 RS将 SS/MSS的带宽请求伪随机测距 码原样转发至其它 RS后再转发给 BS (多跳 RS转发)。
步骤 2-3: 当 BS收到伪随机测距码后, 锚点 BS为 SS/MSS分配 BS和 RS 的上行带宽,用于 SS/MSS发送带宽请求, 通过带 Relay-IE的 DL-MAP报文 和 UL-MAP报文发送给 RS发送给 RS和 MS。
为 SS/MSS分配的 BS和 RS的上行带宽通过在 UL-MAP中分配一个带 有发送区域、 测距码信息的 CDMA— Allocation— IE来完成。 步骤 2-4: 多跳情况或单跳下允许 RS中转 BW Grant的情况下, RS做 DL-MAP和 UL-MAP的 BW Grant的中转。
步驟 2-5: SS/MSS接收到 BS的下行子帧中的 UL-MAP报文的 Relay-IE 或经中转的 RS的下行子帧中的 UL-MAP报文后, SS/MSS根据
CDMA— Allocation— IE中携带的信息确定是否该上行发送机会是否属于自 己。如果属于自己, SS/MSS可以用该上行发送机会发送带宽请求和数据。
OFDMA物理层带宽请求的第二个阶段与图 9中带宽请求和分配的过 程相同。
本发明实施例提供了一种中转系统及带宽分配和调度方法,解决了中 转系统的带宽请求、带宽分配和业务调度的处理方法。本发明实施例通过 带宽请求中转, 解决多跳中转的问题, 简化了 BWA中转网络的复杂度, 降 4氐了 RS的复杂度。
以上实施例仅用于说明本发明的实施过程,并非用于限定本发明的保 护范围。

Claims

权 利 要 求
1、 一种中转系统的带宽分配和调度方法, 其特征在于, 包括: 在基站物理层帧结构的下行子帧的控制报文中增加新的信息单元,所 述信息单元用于指示通过中转站中转的用户站 /移动用户站相应连接的各 个突发的位置和使用方法;
基站接收用户站 /移动用户站发起且经过中转站中转的带宽请求; 基站根据所述带宽请求生成具有所述新的信息单元的控制报文,并发 送至用户站 /移动用户站, 进行带宽分配和调度。
2、根据权利要求 1所述的方法,其特征在于,基站根据所述带宽请求 进行带宽分配和调度, 包括:
基站才艮据用户站 /移动用户站的带宽请求分别对基站的上行带宽和下 行带宽以及中转站的上行带宽和下行带宽进行带宽分配,并对基站的上行 带宽和下行带宽进行调度。
3、根据权利要求 1所述的方法,其特征在于, 当基站通过中转站将所 述控制报文转发到用户站 /移动用户站时,
中转站接收到基站发送的具有所述新的信息单元的控制报文后,根据 控制报文中的所述新增加的信息单元进行中转站上行带宽和下行带宽的 调度。
4、 根据权利要求 3所述的方法, 其特征在于, 还包括:
中转站将接收的控制报文中增加的信息单元复制到中转站的控制报 文中, 将中转站的控制报文发送至用户站 /移动用户站; 或者
中转站将接收的基站控制报文中的增加的信息单元转换为中转站控 制报文中的映射信息单元; 并发送至用户站 /移动用户站。
5、 根据权利要求 1所述的方法, 其特征在于, 在用户站 /移动用户站 发起带宽请求之前, 用户站 /移动用户站向基站请求带宽的步驟包括: 用户站 /移动用户站选择一个中转站竟争信道发送竟争码;
中转站选择一个基站竟争信道, 将用户站 /移动用户站的带宽请求竟 争码转发给基站;
基站根据接收的用户站 /移动用户站的竟争码为用户站 /移动用户站 分配基站上行带宽和中转站上行带宽, 用于用户站 /移动用户站发送带宽 请求。
6、 根据权利要求 1所述的方法, 其特征在于, 在用户站 /移动用户站 发起带宽请求之前, 用户站 /移动用户站向基站请求带宽的步骤还包括: 用户站 /移动用户站在带宽请求伪随机测距码中随机选择一个码, 在 中转站的测距子信道中发送给中转站;
中转站通过基站的测距子信道将用户站 /移动用户站带宽请求伪随机 测距码中转给基站;
基站接收到用户站 /移动用户站的伪随机测距码后, 基站为用户站 /移 动用户站分配基站和中转站的上行带宽用于发送带宽请求;
基站通过发送具有增加的新的信息单元的控制报文,将分配给用户站 /移动用户站的基站上行带宽和中转站上行带宽发送给到用户站 /移动用 户站和中转站。
7、 根据权利要求 1所述的方法, 其特征在于, 用户站 /移动用户站通 过至少一个下級中转站将带宽请求中转到中转站;
中转站将具有复制的增加的新的信息单元的中转站的控制报文下发 到下级中转站;
由下级中转站将中转站的控制报文原样转发到用户站 /移动用户站; 或者,
中转站将接收的基站控制报文中的增加的新的信息单元转换为中转 站控制报文中的映射信息单元,中转站将转换后的中转站控制报文发送到 下级中转站, 下级中转站将接收的中转站控制报文原样转发到用户站 /移 动用户站。
8、根据权利要求 1所述的方法, 其特征在于, 所述基站物理层帧结构 的下行子帧的控制报文为:下行映射信息单元报文和上行映射信息单元报 文。
9、根据权利要求 1、 3、 4中任一项所述的方法, 其特征在于, 所述增 加的信息单元是下行映射信息单元报文和上行映射信息单元报文中的扩 展映射信息单元。
10、 根据权利要求 1所述的方法, 其特征在于, 用户站 /移动用户站发 起带宽请求的步骤包括:
用户站 /移动用户站使用基站的上行映射信息单元 文中指定的用于 中转站广播、多播或者单播的带宽请求的增加的新的信息单元发起带宽请 求; 或者
用户站 /移动用户站通过使用中转站的上行映射信息单元报文中指定 的用于中转站广播、多播或者单播的带宽请求的映射信息单元发起带宽请 求; 其中,
基站的上行映射信息单元报文中指定的用于中转站广播、多播或者单 播的带宽请求的增加的信息单元与中转站的上行映射信息单元报文中指 定的用于中转站广播、 多播或者单播的带宽请求的映射信息单元。
11、 一种中转系统, 其特征在于, 包括基站和中转站; 其中, 所述基站具有带宽分配单元和基站调度管理单元;
所述带宽分配单元根据接收到的用户站 /移动用户站发出的带宽请 求,对基站上行带宽和下行带宽、中转站的上行带宽和下行带宽进行分配, 生成具有新增信息单元的控制报文,发送给用户站 /移动用户站和中转站; 所述基站调度管理单元, 对基站上行带宽和下行带宽进行调度; 中转站, 具有带宽请求中转单元和中转站调度管理单元;
所述带宽请求中转单元, 用于将用户站 /移动用户站带宽请求单元发 起的带宽请求中转到基站;
所述中转站调度管理单元 ,根据接收到的基站的物理层帧结构的下行 子帧的控制报文中的新增信息单元进行中转站上行带宽和下行带宽的调 度。
12、根据权利要求 11所述的中转系统, 其特征在于, 中转站还包含有 带宽授予中转单元,带宽授予中转单元将接收的增加的信息单元复制到中 转站的控制报文,将复制了增加的信息单元的中转站的控制报文发送至用 户站 /移动用户站; 或者
带宽授予中转单元将接收的增加的信息单元转换为中转站的控制报 文中的映射信息单元, 将中转站转换后的控制报文发送至用户站 /移动用 户站。
13、才艮据权利要求 12所述的中转系统, 其特征在于, 中转系统中还包 括至少一个下级中转站, 所述至少一个下级中转站具有带宽请求中转单 元, 该带宽请求中转单元将用户站 /移动用户站发起的带宽请求中转至中 转站。
14、才艮据权利要求 13所述的中转系统, 其特征在于, 下级中转站中还 设置有带宽授予中转单元,所述带宽授予中转单元将中转站下发给下级中 转站的中转站控制报文转发至用户站 /移动用户站。
15、才艮据权利要求 13或 14所述的中转系统, 其特征在于,基站物理层 帧结构的下行子帧的控制报文为下行映射信息单元报文或上行映射信息 单元报文。
16、才艮据权利要求 15所述的中转系统, 其特征在于, 所述新增信息单 元是下行映射信息单元报文和上行映射信息单元报文中的扩展映射信息 单元, 所述扩展映射信息单元用于指示通过中转站中转的用户站 /移动用 户站相应连接的各个突发的位置和使用方法。
PCT/CN2007/000664 2006-03-02 2007-03-02 Système de relais et procédé de réalisation d'attribution de bande passante et de transmission WO2007098704A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07720300A EP1995980B1 (en) 2006-03-02 2007-03-02 A relay system and a method for realizing bandwidth assignment and dispatch
US12/199,637 US20080316954A1 (en) 2006-03-02 2008-08-27 Relay System And Method For Bandwidth Allocation And Scheduling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610058618.9 2006-03-02
CN200610058618A CN100579024C (zh) 2006-03-02 2006-03-02 一种中转系统及带宽分配和调度方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/199,637 Continuation US20080316954A1 (en) 2006-03-02 2008-08-27 Relay System And Method For Bandwidth Allocation And Scheduling

Publications (1)

Publication Number Publication Date
WO2007098704A1 true WO2007098704A1 (fr) 2007-09-07

Family

ID=38458671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000664 WO2007098704A1 (fr) 2006-03-02 2007-03-02 Système de relais et procédé de réalisation d'attribution de bande passante et de transmission

Country Status (5)

Country Link
US (1) US20080316954A1 (zh)
EP (1) EP1995980B1 (zh)
KR (2) KR101078673B1 (zh)
CN (2) CN100579024C (zh)
WO (1) WO2007098704A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102906A1 (en) * 2008-02-13 2009-08-20 Qualcomm Incorporated Apparatus and method for scheduling over multiple hops
RU2617439C2 (ru) * 2013-03-11 2017-04-25 Хуавей Текнолоджиз Ко., Лтд. Структура пилот-сигнала восходящей линии связи в системе связи с ортогональным мультиплексированием с частотным разделением точка-многоточка

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961754B2 (en) * 2005-07-26 2011-06-14 Electronics And Telecommunications Research Institute Apparatus and method for multimedia data transmission and reception in cable network using broadband and physical layer frame structure
CN1941666B (zh) * 2005-09-30 2014-07-30 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统
KR101015681B1 (ko) * 2007-07-16 2011-02-22 삼성전자주식회사 통신 시스템에서 대역폭 할당 방법 및 장치
CN101447912B (zh) * 2007-11-27 2012-02-29 华为技术有限公司 一种报文调度方法和装置
US8223739B2 (en) 2008-10-29 2012-07-17 Intel Corporation Method and apparatus of dynamic bandwidth management
US8750883B2 (en) * 2008-11-12 2014-06-10 Industrial Technology Research Institute Communication network method and apparatus including macro base station and femto base station
KR101611295B1 (ko) * 2009-02-18 2016-04-11 엘지전자 주식회사 제어 정보와 제어 정보 시그널링 수신 방법 및 이를 이용하는 단말 장치
BRPI1009456B1 (pt) 2009-03-13 2021-11-03 Blackberry Limited Sistema e método de sincronização de recepção de retransmissão
US20100265934A1 (en) * 2009-04-17 2010-10-21 Qualcomm Incorporated Methods and systems using fast initial synchronization for wimax mobile stations
JP5319838B2 (ja) 2009-04-21 2013-10-16 アルカテル−ルーセント 無線リレーの方法およびデバイス
US9125179B2 (en) * 2009-06-10 2015-09-01 Lg Electronics Inc. Method and apparatus for transmitting frame in wireless local area network (WLAN) system
TW201106745A (en) * 2009-08-06 2011-02-16 Inst Information Industry Method for assigning wireless network transmission resource
US20110205980A1 (en) * 2009-08-10 2011-08-25 Qualcomm Incorporated Multi-node resource request pipelining
JP5338590B2 (ja) * 2009-09-17 2013-11-13 富士通株式会社 無線端末および通信方法
JP5365442B2 (ja) * 2009-09-17 2013-12-11 富士通株式会社 中継局
US9345012B2 (en) * 2011-03-03 2016-05-17 Agency For Science, Technology And Research Communication devices and methods for performing communication
KR20140042846A (ko) * 2011-07-07 2014-04-07 엘지전자 주식회사 무선 통신 시스템에서 레인징 채널 할당 방법 및 이를 위한 기지국
GB2493782B (en) 2011-08-19 2016-07-27 Nvidia Corp Wireless communications system and method
GB2493781B (en) 2011-08-19 2016-07-27 Nvidia Corp Wireless communications system and method
US9066287B2 (en) * 2012-01-24 2015-06-23 Qualcomm Incorporated Systems and methods of relay selection and setup
US9794796B2 (en) 2012-06-13 2017-10-17 Qualcomm, Incorporation Systems and methods for simplified store and forward relays
CN104521267B (zh) * 2012-08-13 2018-10-09 索尼公司 通信控制装置及通信控制方法
US9510271B2 (en) 2012-08-30 2016-11-29 Qualcomm Incorporated Systems, apparatus, and methods for address format detection
EP3902322A1 (en) 2013-03-28 2021-10-27 Huawei Technologies Co., Ltd. Bandwidth allocation method and apparatus, user equipment, and base station
US10251202B2 (en) 2013-11-26 2019-04-02 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system
CN104904136B (zh) * 2013-12-12 2019-05-10 华为终端(东莞)有限公司 数据传输方法及装置
WO2017028300A1 (en) * 2015-08-20 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Optimization on ul resource allocation in prose relay
CN111405668A (zh) * 2016-12-09 2020-07-10 上海朗帛通信技术有限公司 一种ue和基站中的方法和设备
US10616897B1 (en) 2017-02-23 2020-04-07 Sprint Communications Company L.P. Wireless access point to control wireless user data exchanges through wireless relays
CN108738113A (zh) * 2017-04-21 2018-11-02 维沃移动通信有限公司 一种信息传输方法、终端及基站
CN109714794B (zh) * 2017-10-26 2022-06-03 中国移动通信有限公司研究院 一种业务模型选取方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1183902A1 (en) * 1999-05-21 2002-03-06 Ensemble Communications, Inc. Method and apparatus for bandwidth allocation
CN1372740A (zh) * 1999-07-09 2002-10-02 马利布网络有限公司 Tcp/ip以分组为中心的无线传输系统结构
CN1647457A (zh) * 2002-05-08 2005-07-27 国际商业机器公司 无线网络中的带宽管理
CN1941666A (zh) * 2005-09-30 2007-04-04 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594246B1 (en) * 1998-07-10 2003-07-15 Malibu Networks, Inc. IP-flow identification in a wireless point to multi-point transmission system
US6628629B1 (en) * 1998-07-10 2003-09-30 Malibu Networks Reservation based prioritization method for wireless transmission of latency and jitter sensitive IP-flows in a wireless point to multi-point transmission system
US6590885B1 (en) * 1998-07-10 2003-07-08 Malibu Networks, Inc. IP-flow characterization in a wireless point to multi-point (PTMP) transmission system
US6452915B1 (en) * 1998-07-10 2002-09-17 Malibu Networks, Inc. IP-flow classification in a wireless point to multi-point (PTMP) transmission system
US6862622B2 (en) * 1998-07-10 2005-03-01 Van Drebbel Mariner Llc Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture
US8018893B2 (en) * 2003-09-03 2011-09-13 Motorola Mobility, Inc. Method and apparatus for relay facilitated communications
US8554232B2 (en) * 2005-08-17 2013-10-08 Apple Inc. Method and system for a wireless multi-hop relay network
US7675888B2 (en) * 2005-09-14 2010-03-09 Texas Instruments Incorporated Orthogonal frequency division multiplexing access (OFDMA) ranging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1183902A1 (en) * 1999-05-21 2002-03-06 Ensemble Communications, Inc. Method and apparatus for bandwidth allocation
CN1372740A (zh) * 1999-07-09 2002-10-02 马利布网络有限公司 Tcp/ip以分组为中心的无线传输系统结构
CN1647457A (zh) * 2002-05-08 2005-07-27 国际商业机器公司 无线网络中的带宽管理
CN1941666A (zh) * 2005-09-30 2007-04-04 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995980A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102906A1 (en) * 2008-02-13 2009-08-20 Qualcomm Incorporated Apparatus and method for scheduling over multiple hops
JP2011515895A (ja) * 2008-02-13 2011-05-19 クゥアルコム・インコーポレイテッド 複数のホップによるスケジューリングためのシステムおよび方法
US8509162B2 (en) 2008-02-13 2013-08-13 Qualcomm Incorporated System and method for scheduling over multiple hops
TWI500345B (zh) * 2008-02-13 2015-09-11 Qualcomm Inc 用於在多重中繼段上排程的系統及方法
RU2617439C2 (ru) * 2013-03-11 2017-04-25 Хуавей Текнолоджиз Ко., Лтд. Структура пилот-сигнала восходящей линии связи в системе связи с ортогональным мультиплексированием с частотным разделением точка-многоточка
US10020974B2 (en) 2013-03-11 2018-07-10 Futurewei Technologies, Inc. Upstream pilot structures in point-to-multipoint orthogonal frequency-division multiplexing (OFDM) communication systems

Also Published As

Publication number Publication date
EP1995980A1 (en) 2008-11-26
KR20110010136A (ko) 2011-01-31
KR20080106299A (ko) 2008-12-04
US20080316954A1 (en) 2008-12-25
CN101313600A (zh) 2008-11-26
CN101030883A (zh) 2007-09-05
KR101078673B1 (ko) 2011-11-01
EP1995980B1 (en) 2013-01-23
CN100579024C (zh) 2010-01-06
EP1995980A4 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
WO2007098704A1 (fr) Système de relais et procédé de réalisation d'attribution de bande passante et de transmission
US8243662B2 (en) Method, system and apparatus for implementing bandwidth allocation based on a relay station
JP4952797B2 (ja) 無線通信システム
KR100801893B1 (ko) 다중 홉 릴레이 방식을 사용하는 무선 통신 시스템의채널구성 및 자원할당 방법
KR100735277B1 (ko) 광대역 무선 접속 통신 시스템에서 레인징 방법
TWI337505B (zh)
US20120163278A1 (en) Method for performing direct communication between terminals
WO2007036161A1 (fr) Système de communications relais sans fil, et procédé
WO2007128218A1 (en) Frame constructing and frame processing method of multi-hop access network, device and system
WO2007128209A1 (fr) Procédé et dispositif pour configurer les chemins de trafic dans un système relais et procédé de commutation pour stations mobiles
JP5559941B2 (ja) 中継局を含む無線通信システムにおける帯域幅要求チャネル割当方法及び装置
US11979774B2 (en) Methods and infrastructure equipment
WO2007101406A1 (fr) Système et procédé de communication radio par relais
JP4680047B2 (ja) 無線中継システムおよび方法
US20150296498A1 (en) Flexible control channels for unplanned wireless networks
KR20070080367A (ko) 릴레이 스테이션을 이용한 중계 통신 방법
KR101498056B1 (ko) 릴레이를 지원하는 무선접속 시스템에서 멀티캐스트 및 방송서비스 제공방법
WO2011037375A2 (ko) 중계국을 포함하는 무선 통신 시스템에서 무선 자원 할당 방법 및 장치
Kaneko et al. Proposed relay method with P-MP structure of IEEE 802.16-2004
Izumikawa et al. MAP multiplexing in IEEE 802.16 mobile multi-hop relay
WO2012060533A1 (en) Method and apparatus for allocating bandwidth request channel in wireless communication system including relay station

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000202.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007720300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087023425

Country of ref document: KR

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 1020107029805

Country of ref document: KR