WO2007097188A1 - スクロール膨張機および冷凍サイクル装置 - Google Patents

スクロール膨張機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2007097188A1
WO2007097188A1 PCT/JP2007/052035 JP2007052035W WO2007097188A1 WO 2007097188 A1 WO2007097188 A1 WO 2007097188A1 JP 2007052035 W JP2007052035 W JP 2007052035W WO 2007097188 A1 WO2007097188 A1 WO 2007097188A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
scroll
contact surface
spiral wrap
expansion chamber
Prior art date
Application number
PCT/JP2007/052035
Other languages
English (en)
French (fr)
Inventor
Masanobu Wada
Takashi Morimoto
Akira Hiwata
Akira Ikeda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP07713864.2A priority Critical patent/EP1992783B8/en
Priority to JP2008501669A priority patent/JP4804531B2/ja
Priority to CN2007800067029A priority patent/CN101389828B/zh
Priority to US12/279,945 priority patent/US8177533B2/en
Publication of WO2007097188A1 publication Critical patent/WO2007097188A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger

Definitions

  • the present invention relates to a scroll expander that recovers motive energy by expanding a compressive fluid, and a refrigeration cycle apparatus including the scroll expander.
  • a scroll expander includes a fixed scroll and a orbiting scroll that are entangled with each other, and each of the fixed scroll and the orbiting scroll is provided with an end plate and a spiral wrap erected on the end plate It has been.
  • an expansion chamber is formed between the end plate and lap of the fixed scroll and the end plate and wrap of the orbiting scroll.
  • the orbiting scroll orbits along a circular orbit while the rotation is restricted by the rotation restriction mechanism. As the orbiting scroll turns in this manner, the expansion chamber moves while changing its volume, and the suction, expansion, and discharge of fluid are performed.
  • the expansion chambers are respectively formed on the wrap inner wall side and the wrap outer wall side of the orbiting scroll.
  • the expansion ratio of the expansion chamber on the wrap inner wall side (hereinafter referred to as the inner wall side expansion chamber) and the expansion chamber on the wrap outer wall side (hereinafter referred to as the outer wall side expansion chamber) is determined by the wrap shape of the orbiting scroll and the fixed scroll.
  • the fixed scroll and the orbiting scroll wrap have an expansion ratio of the inner wall side expansion chamber.
  • the expansion ratio of the outer wall side expansion chamber were equal to each other.
  • the scroll expander includes a fixed scroll having a wrap 502 and a turning scroll having a wrap 501.
  • An inner wall side expansion chamber 503a is formed on the wrap inner wall 501a side of the orbiting scroll, and an outer wall side expansion chamber 503b is formed on the wrap outer wall 501b side.
  • the fluid to be expanded is a refrigerant
  • the refrigerant is sucked from a suction port 507 at the center of the scroll.
  • the sucked refrigerant expands as the volume of the expansion chambers 503a and 503b changes, and each scroll It moves to the outer periphery and is discharged from the discharge port 506.
  • FIG. 15 shows the moment when the innermost expansion chambers 503a and 503b also move the suction process force into the expansion process.
  • the wrap inner wall 501a of the orbiting scroll and the wrap outer wall 502b of the fixed scroll are in contact with each other at the center of the scroll, and the wrap outer wall 501b of the orbiting scroll and the wrap inner wall 502a of the fixed scroll are in contact. This is the moment when the contact surfaces 504 and 505 occur.
  • the inner wall side expansion chamber 503a and the outer wall side expansion chamber 503b are closed simultaneously.
  • the contact surfaces 504 and 505 move to the outer peripheral side along the lap shape, and eventually disappear at the outermost peripheral portion of the scroll. That is, the inner wall side expansion chamber 503a and the outer wall side expansion chamber 503b are opened simultaneously.
  • this scroll expander by terminating the involute trap of the fixed scroll wrap inner wall 502a at the middle part 502c, the position where the contact surface 504 of the orbiting scroll wrap inner wall 501a and the fixed scroll wrap outer wall 502b disappears, The contact surface 505 between the outer wall 501b of the orbiting scroll and the inner wall 502a of the fixed scroll is displaced 180 degrees from the position where the contact surface 505 disappears. Thereby, the inner wall side expansion chamber 503a and the outer wall side expansion chamber 503b are simultaneously opened.
  • the inner wall side expansion chamber 503a and the outer wall side expansion chamber 503b have the same timing for starting and ending the expansion in which both the timing to start closing and the timing to start opening are equal. It is. As a result, the expansion ratios of these two chambers 503a and 503b were equal.
  • the scroll expander when used in, for example, a refrigeration cycle apparatus, when the operating conditions of the refrigeration cycle apparatus change, the high pressure and low pressure of the refrigeration cycle change. Therefore, the suction pressure and discharge pressure of the expander also change.
  • the expansion ratio of the expansion chamber is set to a predetermined design expansion ratio in advance, depending on the values of the suction pressure and the discharge pressure, the refrigerant is overexpanded or insufficient in the expander. Causes swelling.
  • FIGS. 16A-C show pressure-volume diagrams of the expansion process.
  • FIG. 16A shows a case where the expansion ratio of the expansion chamber matches the high pressure Z low pressure conditions of the refrigeration cycle apparatus. In other words, this is the case where the expansion ratio of the expansion chamber matches the high / low pressure ratio of the refrigeration cycle apparatus. In this case, no loss occurs during the expansion process.
  • FIG. 16B shows a case where the high pressure is higher (Ph2> Phl) and the low pressure is lower (P12 ⁇ P11) than the high pressure Z low pressure conditions of the refrigeration cycle apparatus of FIG. 16A.
  • Such operating conditions occur when heat is dissipated when the external temperature of the radiator is high and heat is received when the external temperature of the evaporator is low compared to the operating conditions of Fig. 16A.
  • the expansion chamber is designed with a suction volume and a discharge volume so that the refrigerant expands without excess or shortage under the conditions of high pressure, low pressure, and PhlZPll.
  • FIG. 16C shows a case where the high pressure is low (Ph3 and Phi) and the low pressure is high (P13> P11) than the high pressure Z low pressure condition of the refrigeration cycle apparatus of FIG. 16A.
  • Such operating conditions occur when heat is dissipated when the external temperature of the radiator is low compared to the operating condition of Fig. 16A, and heat is received when the external temperature of the evaporator is high.
  • the expansion chamber is designed with a suction volume and a discharge volume so that the refrigerant expands without excess or deficiency under the conditions of high pressure Z low pressure PhlZPll.
  • the present invention solves such a problem, and an object thereof is to suppress a decrease in power recovery performance of a scroll expander accompanying a change in operating conditions. Furthermore, an object of the present invention is to provide a highly efficient refrigeration cycle apparatus using such a scroll expander over a wide operating range.
  • a second spiral wrap that mates with the first spiral wrap, and an inner wall side expansion chamber and an outer wall side on the inner wall side and the outer wall side of the first spiral wrap together with the first scroll, respectively.
  • a second scroll that partitions the expansion chamber,
  • the inner wall side expansion chamber and the outer wall side expansion chamber are directed from the center side of each scroll toward the outer peripheral side. Configured to move with increasing volume,
  • the present invention provides:
  • a refrigeration cycle device in which a compressor, a radiator, an expander, and an evaporator are connected in order by piping,
  • the expander is a refrigeration cycle which is constituted by the scroll expander of the present invention. Kuru device is provided.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of a scroll expander according to Embodiment 1 of the present invention.
  • FIG. 3A is a cross-sectional view of the orbiting scroll and the fixed scroll of the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 3B Cross section of orbiting scroll and fixed scroll at the moment when the inner wall side expansion chamber opens
  • FIG. 3C Cross section of orbiting scroll and fixed scroll at the moment when the outer wall side expansion chamber opens
  • FIG. 4A Pressure-volume diagram of expansion process in conventional scroll expander
  • FIG. 4B is a pressure-volume diagram of the expansion process in the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 6B is a characteristic diagram of the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 6C is a diagram comparing the characteristics of the conventional scroll expander and the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 7A Diagram showing the expansion efficiency of both expansion chambers in the summer of a conventional scroll expander
  • FIG. 7B is a diagram showing the expansion efficiency of both expansion chambers in the intermediate period of a conventional scroll expander
  • FIG. 7C A diagram showing the expansion efficiency of both expansion chambers of a conventional scroll expander in winter
  • FIG. 8A is a diagram showing the expansion efficiency of both expansion chambers in the summer of the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 8B is a diagram showing the expansion efficiency of both expansion chambers in the intermediate period of the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 8C The expansion effect of both expansion chambers in the winter of the scroll expander according to Embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view of the orbiting scroll and the fixed scroll of the scroll expander according to Embodiment 2 of the present invention.
  • FIG. 10 is a cross-sectional view of the orbiting scroll and the fixed scroll of the scroll expander according to Embodiment 3 of the present invention.
  • FIG. 11 is a partial cross-sectional view of the orbiting scroll and the fixed scroll of the scroll expander according to Embodiment 4 of the present invention.
  • FIG. 12 is a partial cross-sectional view of the orbiting scroll and the fixed scroll of the scroll expander according to the fifth embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view of the orbiting scroll and the fixed scroll of the scroll expander according to Embodiment 6 of the present invention.
  • FIG. 14 is a partial cross-sectional view of the orbiting scroll and fixed scroll of the scroll expander according to Embodiment 7 of the present invention.
  • FIG.15 Cross-sectional view of orbiting scroll and fixed scroll of conventional scroll expander
  • FIG. 16A Volume-volume diagram of pressure during expansion process
  • FIG. 16B Pressure volume diagram following Fig. 16A
  • FIG. 16C Pressure-volume diagram following Fig. 16B
  • the scroll expander of the present invention may be configured as follows.
  • the scroll expander of the present invention is formed on the center side of the orbiting scroll or the fixed scroll, and includes an intake path for sucking fluid into the inner wall side expansion chamber and the outer wall side expansion chamber, and the orbiting scroll.
  • a discharge path that is formed on the outer peripheral side of the fixed scroll and discharges fluid from the inner wall side expansion chamber and the outer wall side expansion chamber may be provided.
  • the inner wall side expansion chamber and the outer wall side expansion chamber may have the same volume at the time of completion of suction and different volumes at the start of discharge.
  • the second disappearance position where the second contact surface moves from the center side to the outer peripheral side of each scroll and the force disappears is directed to the wrap winding start side of the second spiral wrap from 0 degree. Is larger and less than 180 degrees, or 180 degrees Smaller than the even greater or One 360 degrees, shifted by a predetermined angle, even if,.
  • the "involute step” refers to a portion where the involute curve has changed or ended at a certain portion.
  • the part that deviates from the external line force S involute curve force appearing in the cross section parallel to the turning surface can be called “involute step”.
  • involute step when a part of the inner wall of a spiral wrap formed according to an involute curve with a constant radius of the base circle is cut, such an involute step is created, and the contact surface of the inner wall of the spiral wrap (other The position at which the spiral wrap contacts the outer wall changes.
  • the involute trap end position (the disappearance position of the second contact surface) of the second spiral wrap can be changed. it can.
  • the first annihilation position and the second annihilation position are a predetermined angle greater than 0 degree and smaller than 180 degrees, or a predetermined angle larger than 180 degrees and smaller than 360 degrees
  • the second disappearance position is located at the outermost periphery of the second spiral wrap.
  • the outermost peripheral portion of the second spiral wrap is a thick portion of the second scroll that is not a portion where the first spiral wrap and the second spiral wrap are double-interposed. is there.
  • the wall thickness of the wrap does not change greatly even if the shape force of the second scroll is changed. Strength can be maintained and reliability can be maintained at a high level.
  • the inner wall of the first spiral wrap and the second spiral are formed on the center side of each scroll. A first contact surface that is a contact surface with the outer wall of the wrap and a second contact surface that is a contact surface between the outer wall of the first spiral wrap and the inner wall of the second spiral wrap are generated simultaneously.
  • the first contact surface moves to the outer peripheral side from the center side of each scroll and then disappears at the first disappearance position.
  • the second disappearance position where the second contact surface disappears after moving from the center side of each scroll to the outer peripheral side is 0 degree toward the wrap winding start side of the second spiral wrap.
  • the inner wall-side expansion chamber and the outer wall-side expansion chamber may have different volumes at the time of completion of suction and may have the same volume at the start of discharge.
  • the inner wall of the first spiral wrap and the second spiral wrap A first contact surface that is a contact surface with the outer wall of the first spiral wrap, and a second contact surface that is a contact surface between the outer wall of the first spiral wrap and the inner wall of the second spiral wrap,
  • the inner wall extension angle of the first spiral wrap at the position where the first contact surface is generated is larger than the inner wall extension angle of the second spiral wrap at the position where the second contact surface is generated.
  • the large first contact surface and the second contact surface may be configured to disappear simultaneously after moving from the center side to the outer periphery side of each scroll.
  • the inner wall of the first spiral wrap and the second spiral wrap A first contact surface that is a contact surface with the outer wall of the first spiral wrap, and a second contact surface that is a contact surface between the outer wall of the first spiral wrap and the inner wall of the second spiral wrap,
  • the inner wall extension angle of the first spiral wrap at the position where the first contact surface is generated is larger than the inner wall extension angle of the second spiral wrap at the position where the second contact surface is generated.
  • the small first contact surface and the second contact surface may be configured to disappear simultaneously after moving from the center side to the outer periphery side of each scroll.
  • adjusting the shape of the wrap is a concept including adjusting the thickness of the wrap.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 is configured by connecting a compressor 101, a radiator 102, an expander 103, and an evaporator 104 in order via a pipe 105.
  • the refrigeration cycle apparatus 100 is an apparatus having a constant refrigerant flow direction.
  • the refrigeration cycle apparatus according to the present invention is, for example, a reversible operation refrigeration cycle apparatus capable of changing the refrigerant flow direction. There may be.
  • the refrigeration cycle apparatus 100 can be used as, for example, a water heater, an air conditioner, or the like.
  • the expander 103 is a scroll expander.
  • the expander 103 is the main bearing The member 11, the fixed scroll 22, and the orbiting scroll 21 are provided.
  • the main bearing member 11 is fixed in the hermetic container 13 by welding or shrink fitting, and supports the main shaft portion 14a of the drive shaft 14.
  • the fixed scroll 22 is fixed on the main bearing member 11 by a bolt (not shown).
  • the fixed scroll 22 includes an end plate 22a and a spiral wrap 202.
  • the orbiting scroll 21 also includes an end plate 21a and a spiral wrap 201.
  • the orbiting scroll 21 is sandwiched between the main bearing member 11 and the fixed scroll 22, and the wrap 202 of the fixed scroll 22 and the wrap 201 of the orbiting scroll 21 are intertwined with each other. Thereby, an expansion chamber 203 is formed between the orbiting scroll 21 and the fixed scroll 22. More specifically, as shown in FIG.
  • the expansion chamber 203 has two expansion chambers, that is, the inner wall 201a of the wrap 201 of the orbiting scroll 21 (hereinafter referred to as the orbiting wrap 201) and the wrap 202 of the fixed scroll 22 (
  • the inner wall side expansion chamber 203a expansion chamber A
  • the outer wall side expansion chamber 203b expansion chamber B is formed.
  • a rotation restricting mechanism such as an Oldham ring that guides the orbiting scroll 21 to rotate and prevent the orbiting scroll 21 from rotating. 12 are provided.
  • An eccentric shaft portion 14 b is formed at the upper end of the drive shaft 14.
  • the eccentric shaft portion 14b causes the orbiting scroll 21 to move in a circular orbit by driving the orbiting scroll 21 eccentrically.
  • the expansion chamber 203 formed between the fixed scroll 22 and the orbiting scroll 21 moves toward the outer peripheral side of the center side force while increasing its volume.
  • a suction pipe 15 that communicates the inside and outside of the sealed container 13 is provided above the sealed container 13.
  • the refrigerant flowing from the suction pipe 15 is sucked into the expansion chamber 203 from the suction path 207 at the center of the fixed scroll 22 through the refrigerant passage (broken arrow) provided in the main bearing member 11 and the fixed scroll 22.
  • the sucked refrigerant expands as the volume of the expansion chamber 203 changes.
  • the expanded refrigerant is discharged to the outside of the sealed container 13 through the discharge path 206 and the discharge pipe 16 formed on the outer peripheral side of the fixed scroll 22.
  • Reference numeral 25 denotes power generation. Machine.
  • the lower end side of the drive shaft 14 is supported by the auxiliary bearing member 17, and the positive displacement pump 18 is installed at the lower end of the drive shaft 14.
  • the lubricating oil 19 is pumped up from the lubricating oil reservoir 20 by the positive displacement pump 18 and lubricates the main bearing portion 11a and the eccentric bearing portion l ib through an oil supply passage 31 provided in the axial center of the drive shaft 14. And after cooling, it returns to the lubricating oil reservoir 20 through a lubricating oil return hole (not shown).
  • a lead valve is provided in a discharge path at the center of the fixed scroll.
  • such a reed valve is not necessary for the scroll expander of this embodiment. Therefore, the suction pipe 15 and the suction passage 207 at the center of the fixed scroll 22 may be directly connected.
  • a chamber for temporarily storing the refrigerant to be expanded can be provided inside the sealed container 13, and the suction pipe 15 and the suction path 207 at the center of the fixed scroll 22 can be connected via the chamber.
  • the sealed container is filled with the high-temperature and high-pressure refrigerant after compression.
  • the high-temperature and high-pressure refrigerant is discharged to the outside through the internal space of the sealed container.
  • the refrigerant before expansion and the refrigerant after expansion do not pass through the internal space of the sealed container 13.
  • FIG. 3A is a cross-sectional view of the orbiting scroll 21 and the fixed scroll 22.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different expansion ratios.
  • FIG. 3A shows a moment when the innermost inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b move from the suction process to the expansion process.
  • FIG. 3A shows that the inner wall 201a of the turning side wrap 201 and the outer wall 202b of the fixed side wrap 202 are in contact with each other on the center side of the scrolls 21 and 22, and the outer wall 201b of the turning side wrap 201 and the inner wall of the fixed side wrap 202 It represents the moment of contact with 202a.
  • FIG. 3A shows a moment when the first contact surface 204 and the second contact surface 205 are newly generated on the center side of the orbiting scroll 21 and the fixed scroll 22. As shown in FIG.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are closed at the same time, and the volume (containment volume) when these two chambers 203a and 203b are closed is equal to each other.
  • the center side force also moves to the outer peripheral side along the shape of the heel of the insect contact surface 204, 205 ⁇ wrap 201, 202, and the expansion chambers 203a, 203b increase in volume. Move to the outer perimeter of scrolls 21, 22.
  • the contact surfaces 204, 205 disappear at the outermost periphery, and the expansion chambers 203a, 203b are opened (in communication with the discharge passage 206).
  • the shape of the fixed side wrap 202 is designed such that the position 204e where the first contact surface 204 disappears and the position 205e where the second contact surface 205 disappears are shifted by about 90 degrees!
  • “Position 204e at which the first contact surface 204 disappears” refers to the position on the turning lap 201 (or on the fixed lap 202) occupied by the first contact surface 204 when the first contact surface 204 disappears. That means. In FIG. 3A, the position is shown on the turning side lap 201. Similarly, “the position 205e at which the second contact surface 205 disappears” means on the turning lap 201 (or on the fixed lap 202) occupied by the second contact surface 205 when the second contact surface 205 disappears. Ask for the location of The angle difference between the position 204e and the position 205e can be considered as an angle formed by two line segments connecting the positions 204e and 205e and the rotation center of the shaft 14.
  • the first contact surface 204 disappears at the position 205e where the second contact surface 205 disappears. There is a deviation of about 90 degrees from the position 204 e toward the wrap winding start side.
  • the inner wall 202a of the wrap 202 of the fixed scroll 22 is discontinuous at the position 205e where the second contact surface 205 disappears, and the involute trap is terminated at the position 205e. Yes. That is, an involuntary step occurs at the position.
  • the opening time of the outer wall side expansion chamber 203b is delayed compared to the opening time of the inner wall side expansion chamber 203a. Therefore, the volume when the outer wall side expansion chamber 203b is opened is larger than the volume when the inner wall side expansion chamber 203a is opened (open volume).
  • the opening time of the outer wall side expansion chamber 203b arrives with a delay of about 90 degrees from the opening time of the inner wall side expansion chamber 203a.
  • Fig. 3B shows the moment when the inner wall side expansion chamber 203a opens
  • Fig. 3C shows that the outer wall side expansion chamber 203b is opened. It represents the moment of opening.
  • the phase difference between the state of Fig. 3B and the state of Fig. 3C is about 90 degrees.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different volumes at the start of discharge, which are equal in volume when the suction is completed. As a result, the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different expansion ratios!
  • the ratio between the expansion ratio of the inner wall side expansion chamber 203a and the expansion ratio of the outer wall side expansion chamber 203b is not limited to the example shown in FIG. 3A.
  • the ratio between the expansion ratios of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b is determined by appropriately setting the position 204e where the first contact surface 204 disappears and the position 205e where the second contact surface 205 disappears. It can be changed arbitrarily.
  • the shape can be appropriately changed by changing the shape of the inner wall 202a of the wrap 202 of the fixed scroll 22.
  • phase difference between the opening timing of the inner wall side expansion chamber 203a and the opening timing of the outer wall side expansion chamber 203b can be adjusted as appropriate, not limited to this embodiment.
  • the laps 201 and 202 have a phase difference between the opening time of the inner wall side expansion chamber 203a and the opening time of the outer wall side expansion chamber 203b so that the rotation angle of the shaft 14 is 30 ° to 150 °.
  • the shape (and dimensions) are preferably adjusted.
  • the position of the winding end of the fixed side wrap 202 (involute step) is determined Good (about 90 degrees in this embodiment).
  • the expansion ratio of each expansion chamber 203a, 203b is set to a desired value.
  • the refrigerant whose temperature has been increased by the compressor 101 flows into the heat radiator 102 and dissipates heat by transferring heat to the outside.
  • the refrigerant is sucked into the expander 103, expands, and becomes low temperature and low pressure.
  • This low-temperature and low-pressure refrigerant flows into the evaporator 104, receives heat from the outside, and is sucked into the compressor 101 again.
  • the refrigerant repeats such circulation.
  • the pressure on the high pressure side (hereinafter simply referred to as high pressure) and the pressure on the low pressure side (hereinafter simply referred to as low pressure) of the refrigeration cycle apparatus 100 vary depending on the operating conditions that are not constant. Therefore, the cycle side force is also the ratio of the refrigerant pressure required for the expander 103 (from high pressure to low pressure).
  • the expansion ratio expressed by (high pressure Z low pressure) varies depending on the operating conditions.
  • the expansion ratio in the expander 103 is set to a constant value in advance according to the design specifications of the expansion chamber. For this reason, if the expander 103 is designed in accordance with the optimal expansion ratio of a certain operating condition, if the operating condition changes, the high pressure cannot be sufficiently expanded to the desired low pressure, or the low pressure Over-expansion that is unnecessarily reduced occurs.
  • FIG. 4A and 4B are pressure-volume diagrams of the expansion process
  • FIG. 4A shows a conventional scroll expander, that is, a scroll expander having the same expansion ratio of the inner wall side expansion chamber and the outer wall side expansion chamber.
  • FIG. 4B shows the scroll expander 103 of the present embodiment in which the expansion ratios of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are different.
  • the high / low pressure difference (Phi-P11) in operating condition 1 is larger than the high / low pressure difference (Ph2-P12) in operating condition 2.
  • the inner wall side expansion chamber and the outer wall side expansion chamber are referred to as A chamber and B chamber, respectively.
  • the conventional scroll expander is designed based on the operating condition 1. That is, the conventional scroll expander is designed so that the expansion ratio between the inner wall side expansion chamber and the outer wall side expansion chamber is! /, And the deviation is equal to the high / low pressure ratio (PhlZPll) in the operating condition 1.
  • the refrigerant is designed to expand without excess or deficiency.
  • the inner wall side expansion chamber 203a (room A) is designed on the basis of operating condition 2, and the outer wall side expansion chamber 203b (room B) is based on operating condition 1. It is assumed that it is designed. That is, the expansion ratio of the inner wall side expansion chamber 203a is designed to expand the refrigerant without excess or deficiency when the operating condition is 2, and the outer wall side expansion chamber 203b expands the refrigerant without excess or deficiency when the operation condition is 1. It is designed to be
  • the amount of expansion loss is compared between the conventional scroll expander and the scroll expander 103 of the present embodiment, taking into account fluctuations in operating conditions.
  • the appearance ratio of operation condition 1 is Fl
  • L1 be the amount of underexpansion loss under operating condition 1
  • L2 be the amount of overexpansion loss under operating condition 2.
  • the scroll expander 103 of this embodiment has a smaller total loss than the conventional scroll expander. Therefore, in the refrigeration cycle apparatus 100 of the present embodiment, the scroll expander 103 is designed so that 2XF2XL 2> F1XL1 + F2X L2!
  • FIG. 5 is a pressure-volume diagram of the expansion process of a conventional scroll expander. Is the expansion of both the inner wall side expansion chamber (A chamber) and the outer wall side expansion chamber (B chamber) insufficiently expanded? It shows the case where excessive expansion always occurs.
  • both the inner wall side expansion chamber and the outer wall side expansion chamber cause a slight underexpansion, and the operating condition 2
  • a slight overexpansion occurs, and the expansion ratio of both chambers is determined in consideration of the appearance ratio of these operating conditions.
  • a method is also conceivable.
  • both of the expansion chambers serve as vibration sources in both the operating conditions 1 and 2, and the vibration of the entire expander tends to increase.
  • the expansion ratios of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are different.
  • the chamber is a source of vibration, but the other expansion chamber is not a source of vibration (see Figures 4A and B). Therefore, the scroll expander 103 of the present embodiment is less likely to vibrate even when the operating conditions fluctuate as compared with the conventional scroll expander.
  • FIG. 6A shows the distribution of the occurrence frequency of the expansion ratio, the expansion efficiency of each expansion chamber, and the expansion efficiency considering the occurrence frequency (occurrence frequency X expansion) in a refrigeration cycle apparatus equipped with a conventional scroll expander. Efficiency).
  • FIG. 6B shows the distribution of the generation ratio of the expansion ratio, the expansion efficiency of each expansion chamber, and the expansion efficiency in consideration of the generation frequency in the refrigeration cycle apparatus 100 including the scroll expander 103 of the present embodiment.
  • the inner wall side expansion chamber and the outer wall side expansion chamber are represented as expansion chambers A and B, respectively.
  • FIG. 6C is a diagram comparing the expansion efficiency in consideration of the frequency of occurrence between the conventional scroll expander and the scroll expander 103 of the present embodiment.
  • the frequency of expansion ratio generation is the frequency of operating conditions for the refrigeration cycle equipment.
  • the expansion ratio of both expansion chambers A and B is determined in accordance with the expansion ratio with the highest occurrence frequency.
  • Such a conventional scroll expander exhibits excellent expansion efficiency at the most frequently occurring expansion ratio.
  • the expansion ratio of the refrigeration cycle apparatus deviates from the design expansion ratio, the expansion efficiency of both expansion chambers A and B decreases rapidly.
  • the expansion ratio of the one expansion chamber is slightly decreased, with the expansion ratio having the highest occurrence frequency being sandwiched, and the expansion ratio of the other expansion chamber is slightly increased.
  • the expansion efficiency is inferior to that of the conventional scroll expander, it is possible to prevent a rapid decrease in the expansion efficiency when it is outside the most frequently occurring expansion ratio.
  • the expansion ratio of the two expansion chambers is different, so that compared with a conventional scroll expander having the same expansion ratio, High expansion efficiency can be maintained at the expansion ratio.
  • the actual expansion ratio occurrence frequency of the refrigeration site apparatus 100 is different from the design value, it is possible to prevent the expansion efficiency from being lowered and to efficiently recover the power with the expander 103.
  • the refrigeration cycle apparatus is a heat pump water heater, and this heat pump water heater is operated for one year, there are multiple operating conditions in the summer, winter, and middle (spring, autumn) periods. However, the frequency of occurrence in the interim period is the largest. According to the Japan Refrigeration and Air Conditioning Industry Association Standard (JRA4050: 2005), in order to calculate the annual power consumption from the actual measured values of the heat pump water heater in each period, Number of days). According to this rule, the summer period is 92 days, the intermediate period is 152 days, and the winter period is 121 days.
  • Typical examples of conventional heat pump water heaters are mid-term operating conditions: outside temperature (dry bulb temperature Z wet bulb temperature) 16 ° C / 12 ° C, water temperature 17 ° C, boiling temperature 65 ° C It was designed to exhibit the highest COP (coefficient of performance) under these operating conditions. Therefore, in the conventional general scroll expander, the expansion ratio of both expansion chambers A and B is also determined as the expansion ratio in the intermediate period, and the power recovery is efficiently performed by the expander in the operating conditions other than the intermediate period. There was a disadvantage of being unable to do it.
  • the scroll expander 103 of the present embodiment is mounted on a heat pump water heater using carbon dioxide and carbon dioxide as a refrigerant.
  • the summer, winter and intermediate operating conditions of this heat pump water heater are as follows: summer: high pressure 9MPaZ low pressure 3.5MPa, expander inlet temperature 35 ° C, winter: high pressure 11.5MPaZ low pressure 2.8MPa, expander inlet temperature 8 ° C, Interim period: High pressure lOMPaZ Low pressure 3MPa, expander inlet temperature 20 ° C.
  • the expansion ratio in each period is 2.97 in the summer, 1.95 in the winter, and 2.68 in the middle, depending on the operating conditions.
  • the conventional scroll expander is designed to have an expansion ratio of 2.68 in the middle period where the expansion ratio of both expansion chambers is the highest.
  • Figure 7A shows the expansion efficiency of both expansion chambers in the summer for a conventional scroll expander.
  • Figure 7B shows the expansion efficiency of both expansion chambers in the middle of a conventional scroll expander.
  • FIG. 7C shows the expansion efficiency of both expansion chambers of a conventional scroll expander in winter.
  • the expansion ratio of the A chamber is 2.68 in the most frequently occurring intermediate period, and the expansion ratio of the B chamber is between the intermediate and winter periods 2.32. .
  • FIG. 8A shows the expansion efficiency of both expansion chambers in the summer of the scroll expander according to Embodiment 1.
  • FIG. 8B shows the expansion efficiency of both expansion chambers in the intermediate period of the scroll expander according to Embodiment 1.
  • FIG. 8C shows the expansion efficiency of both expansion chambers in the winter of the scroll expander according to Embodiment 1. As shown in Fig.
  • the expansion efficiency of the expansion chamber at the expansion ratio that expands without excess or deficiency in each period is 100.0
  • the expansion efficiency in the summer of room A is 98.4 and the expansion efficiency of the intermediate period is 100
  • the expansion efficiency in winter is 68.7
  • the expansion efficiency in summer of room B is 92.0
  • the expansion efficiency in the middle period is 96.3
  • the expansion efficiency in winter is 91.4. If the expansion efficiency of each season is the average of the expansion efficiency of the two rooms, it is 95.2 in the summer, 98.2 in the middle, and 80.0 in the winter.
  • the expansion efficiency of the scroll expander 103 of this embodiment is calculated annually from the expansion efficiency of each period and the frequency of occurrence of each operating condition (annual days of deployment of the heat pump water heater), the expansion is always consistently sufficient throughout the year.
  • a heat pump type water heater and its operating conditions are given as an example.
  • the scroll expander according to the present invention is not limited to these refrigeration cycle devices and operating conditions, but various other types. Applicable to refrigeration cycle equipment and operating conditions.
  • the expansion ratios of the two expansion chambers 203a and 203b are different, thereby causing overexpansion or underexpansion without increasing the vibration of the expansion mechanism. A reduction in power recovery performance can be suppressed. According to the refrigeration cycle apparatus 100 according to the present embodiment, high efficiency can be maintained over a wide range of operating conditions.
  • the scroll expander according to the present invention is not limited to the scroll expander 103 of the first embodiment. Next, another embodiment of the scroll expander according to the present invention will be described.
  • FIG. 9 is a cross-sectional view of the orbiting scroll 21 and the fixed scroll 22 of the scroll expander according to the second embodiment. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIG. 9 also shows the moment when the innermost inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b move to the suction process force expansion process, as in FIG. 3A. Also in this embodiment, the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are closed at the same time, and the confined volumes of these two chambers are equal. The expansion chambers 203a and 203b also move to the outer peripheral portions of the scrolls 21 and 22 while changing the volume. Finally, the contact surface between the turning side wrap 201 and the fixed side wrap 202 disappears at the outermost peripheral portion.
  • the first contact surface 204 (the contact surface between the inner wall 201a of the turning side wrap 201 and the outer wall 202b of the fixed side wrap 202) disappears
  • the second contact surface 205 (the turning side)
  • the position 205e where the outer wall 201b of the wrap 201 and the inner wall 202a of the stationary wrap 202 contact) is displaced by about 270 degrees.
  • the position 205e where the second contact surface 205 disappears is the first contact surface 20
  • the position 204e where 4 disappears is offset by about 270 degrees toward the wrap winding start side.
  • the inner wall 202a of the fixed side wrap 202 is discontinuous at a position 205e where the second contact surface 205 disappears, and the involute trap is terminated at the position 205e. At this position 205e, there is an involuntary step.
  • the opening time of the outer wall side expansion chamber 203b is earlier than the opening time of the inner wall side expansion chamber 203a. Therefore, the volume when the outer wall side expansion chamber 203b is opened is smaller than the volume when the inner wall side expansion chamber 203a is opened. Specifically, in the present embodiment, considering the rotation angle of the shaft 14, the opening time of the outer wall side expansion chamber 203b comes approximately 90 degrees earlier than the opening time of the inner wall side expansion chamber 203a.
  • the phase difference between the opening timing of the inner wall side expansion chamber 203a and the opening timing of the outer wall side expansion chamber 203b is not limited to this embodiment and can be adjusted as appropriate.
  • the winding end position of the fixed side wrap 202 (involute step) should be set at a position advanced 210 degrees to 330 degrees to the winding start position of the wrapping end wrap 201. Is possible. Thereby, the expansion ratio of each expansion chamber 203a, 203b is set to a desired value.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different volumes at the start of discharge in which the volumes at the completion of suction are equal. As a result, the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different expansion ratios!
  • Embodiments 1 and 2 when changing the involute trap end position of the outermost peripheral portion of the inner wall 202a of the fixed scroll 22, the shape of the outermost peripheral portion of the wrap 202 of the fixed scroll 22 is changed to the conventional one. It is supposed to change the shape power. Specifically, a part of the outermost periphery of the lap 202 of the fixed scroll 22 is cut to form an involuntary step. According to the present embodiment, the step is formed in a thick portion of the wrap 202 of the fixed scroll 22. Therefore, even if the shape is changed from the conventional shape, the wall thickness of the wrap 202 does not change greatly, so that the conventional lap strength can be maintained and high reliability can be maintained. [Embodiment 3]
  • FIG. 10 is a cross-sectional view of the orbiting scroll 21 and the fixed scroll 22 of the scroll expander according to the third embodiment. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • FIG. 10 also represents the moment when the innermost inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b move to the suction process force expansion process, as in FIG. 3A. Also in this embodiment, the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are closed at the same time, and the confined volumes of these two chambers are equal. The expansion chambers 203a and 203b also move to the outer peripheral portions of the scrolls 21 and 22 while changing the volume. Finally, the contact surface between the turning side wrap 201 and the fixed side wrap 202 disappears at the outermost peripheral portion.
  • the inner wall 202a of the fixed side wrap 202 is constituted by an in-pole trap up to the vicinity of the discharge path 206. That is, the inner wall 202a continues smoothly to the vicinity of the discharge path 206, and no step is generated.
  • the first contact surface 204 (the contact surface between the inner wall 201a of the turning side wrap 201 and the outer wall 202b of the fixed side wrap 202) disappears
  • the second contact surface 205 (the turning side)
  • the position 205e where the second contact surface 205 disappears is shifted by about 90 degrees toward the winding start side of the lap with respect to the position 204e where the first contact surface 204 disappears (preferable range is 30 to 150 degrees). .
  • the outer wall 201b of the turning side lap 201 is discontinuous at a position 205e where the second contact surface 205 disappears, and the involute trap is terminated at the position 205e. At the position 205e, there is an involuntary step.
  • the opening time of the outer wall side expansion chamber 203b is delayed compared to the opening time of the inner wall side expansion chamber 203a. Therefore, the volume when the outer wall side expansion chamber 203b is opened is larger than the volume when the inner wall side expansion chamber 203a is opened.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different volumes at the start of discharge where the volumes at the time of completion of suction are equal. As a result, the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b have different expansion ratios!
  • the power rotation due to the overexpansion or underexpansion of the scroll expander It is possible to provide a highly efficient refrigeration cycle apparatus that suppresses a decrease in yield performance.
  • the involute trap on the outer wall 201b of the turning side lap 201 is terminated so that the disappearance position 204e of the first contact surface 204 and the disappearance position 205e of the second contact surface 205 are displaced by more than 180 degrees. It is also possible to make it. For example, the position 205e where the second contact surface 205 disappears can be shifted from the position 204e where the first contact surface 204 disappears by 210 degrees to 330 degrees toward the wrap winding start side. In this case, the opening time of the outer wall side expansion chamber 203b is earlier than the opening time of the inner wall side expansion chamber 203a.
  • the volume when the outer wall side expansion chamber 203b is opened can be made smaller than the volume when the inner wall side expansion chamber 203a is opened. Even with such a configuration, the expansion ratio of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b can be different.
  • the shape of the outermost periphery of the turning lap 201 is also changed by the conventional shape force.
  • the outermost peripheral portion of the turning side lap 201 is a place where the machining operation is relatively easy. Therefore, the ratio of the expansion ratio of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b can be set by a relatively simple processing operation.
  • the scroll expander according to Embodiment 4 changes the shape of the inner wall 201a of the orbiting side wrap 201, thereby reducing the confined volume and the outer wall side of the inner wall side expansion chamber 203a upon completion of suction.
  • the expansion volume of the expansion chamber 203b is different from that when the suction is completed.
  • the inner wall 201a of the turning side wrap 201 is located in the vicinity of the suction passage 207 (specifically, the winding start portion with an expansion angle of less than 180 degrees), which is indicated by a two-dot chain line in the figure. It is formed with an arc or the like cut deeper than an involute trap (a wrap extending in a spiral shape according to a predetermined involute), and is formed with a normal involute trap from the middle.
  • the outer wall 201b of the turning side lap 201 is formed of a normal involute trap.
  • the winding start portion of the turning-side lap 201 includes an inner wall 201a that protrudes outward in the radial direction of the shaft 14 so as to release the involute curve force, and an outer wall 201b that follows the involute curve. That is, the thickness of the winding start portion of the turning side wrap 201 is from the inner wall 201a side. The thickness of the fixed side wrap 202 becomes smaller than the thickness of the winding start portion.
  • the inner wall 202a and the outer wall 202b of the fixed side wrap 202 are also formed of ordinary involute traps.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are simultaneously opened to the discharge passage 206, and the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b immediately before the opening are opened. Volumes are equal to each other.
  • FIG. 11 shows a moment when the outer wall side expansion chamber 203b formed by the outer wall 201b of the turning side lap 201 and the inner wall 202a of the fixed side wrap 202 also moves the suction process force to the expansion process.
  • the inner wall 201a of the turning side lap 201 is formed of a normal involute trap
  • the inner wall side expansion chamber formed by the inner wall 201a of the turning side wrap 201 and the outer wall 202b of the fixed side wrap 202 will be described.
  • the contact point for closing 203a that is, the contact point when the inner wall side expansion chamber 203a moves from the suction process to the expansion process, is that the inner wall extension angle of the swing side wrap 201 is the inner wall extension angle of the fixed side lap 202 ⁇ s Occurs at the same position as
  • the inner wall 201a of the turning side lap 201 is formed with an arc or the like that is cut deeper than the involute trap in the vicinity of the start of winding, and is formed with a normal involute trap from the middle.
  • the contact Ti is generated for the first time at the position where the confinement contact does not occur and the involute trap starts.
  • the extension angle ⁇ shown in FIG. 11 represents the extension angle of the inner wall 201a when it is assumed that the inner wall 201a follows an involute curve. The same applies to the fifth embodiment shown in FIG.
  • the expansion angle ⁇ m of the turning side wrap 201 is the fixed side of the outer wall 201b of the turning side wrap 201 It is larger than the extension angle ⁇ s of the turning side lap when the first contact point To with the inner wall 202a of the lap 202 is generated.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are simultaneously opened to the discharge path 206, and the volumes of the expansion chambers 203a, 203b at the time of opening (volume at the start of discharge) Are equal.
  • the confined volumes when the suction of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b is completed are different from each other.
  • the expansion ratios of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are different from each other.
  • the pressure difference between the discharge pressure and the pressure in the expansion chamber when the expansion chambers 203a and 203b are opened serves as a vibration source. May occur.
  • both the expansion chambers 203a and 203b are simultaneously opened while the enclosed volumes of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are different. Therefore, the vibration of the expansion mechanism can be suppressed as compared with the case where the two expansion chambers 203a and 203b are alternately opened.
  • the predetermined extension angle may be an extension angle determined between 0 degrees and 45 degrees, for example. For example, an extension angle of about 20 degrees can be treated as a predetermined extension angle.
  • the scroll expander according to Embodiment 5 changes the shape of the inner wall 202a of the fixed-side wrap 202 so that the confined volume and the outer wall side when the suction of the inner wall-side expansion chamber 203a is completed are changed.
  • the expansion volume of the expansion chamber 203b is different from that when the suction is completed.
  • the inner wall 202a of the fixed side wrap 202 is located in the vicinity of the suction path 207 (start of winding) Part) is formed by an arc or the like cut deeper than a normal involute trap shown by a two-dot chain line in the figure, and is formed by a normal involute trap from the middle.
  • the outer wall 202b of the fixed side wrap 202 is formed of a normal involute trap.
  • the winding start portion of the fixed side wrap 202 includes an inner wall 202a that protrudes radially outward of the shaft 14 so as to release the involute curve force, and an outer wall 202b that follows the involute curve.
  • the thickness of the winding start portion of the fixed side wrap 202 is also reduced by the inner wall 202a side force, and is smaller than the thickness of the winding start portion of the turning side wrap 201.
  • the inner wall 2 Ola and the outer wall 201b of the turning-side wrap 201 are formed by a normal involute trap.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are simultaneously opened to the discharge path 206, and the inner wall side expansion chamber 203a and the outer wall at the time of opening are opened.
  • the volumes of the side expansion chambers 203b are equal to each other.
  • FIG. 12 shows a moment when the outer wall side expansion chamber 203a formed by the outer wall 202b of the fixed side wrap 202 and the inner wall 201a of the turning side lap 201 also changes the suction process force to the expansion process.
  • the inner wall 202a of the fixed side wrap 202 is formed by a normal involute trap
  • the outer wall side expansion chamber formed by the inner wall 202a of the fixed side wrap 202 and the outer wall 201b of the swivel side wrap 201 will be described.
  • the contact point for closing 203b that is, the contact point when the outer wall side expansion chamber 203b moves from the suction process to the expansion process, is that the inner wall extension angle of the fixed side wrap 202 is the inner wall extension angle of the swing side lap 201 ⁇ m Equivalent to the position.
  • the inner wall 202a of the fixed-side wrap 202 is formed by an arc or the like that is cut deeper than the involute trap in the vicinity of the start of winding, and is formed by a normal involute trap from the middle. At this position, no confinement contact occurs, and this involute trap begins. At the extension angle ⁇ 3 , the contact To occurs for the first time, and the process proceeds from the suction process to the expansion process.
  • the expansion angle ⁇ s of the fixed-side wrap 202 is the rotation side of the outer wall 202b of the fixed-side wrap 202 It is larger than the extension angle ⁇ m of the turning side lap 201 when the contact Ti first occurs with the inner wall 201a of the lap 201.
  • the outer wall side expansion chamber 203b formed with the generation of the contact To has a larger confining volume than the inner wall side expansion chamber 203a formed by generating the contact Ti first.
  • the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are simultaneously opened to the discharge path 206, and the volumes of the expansion chambers 203a and 203b at the time of opening are equal.
  • the confining volumes when the suction of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b is completed are different from each other.
  • the expansion ratios of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are different from each other.
  • the vibration of the expansion mechanism can be suppressed as compared with the case where the two expansion chambers 203a and 203b are alternately opened.
  • the scroll expander according to Embodiment 6 changes the shape of the outer wall 201b of the orbiting side wrap 201 to thereby reduce the confined volume and the outer wall side expansion when the suction of the inner wall side expansion chamber 203a is completed.
  • the closed volume at the completion of the suction of the tension chamber 203b is made different.
  • the outer wall 201b of the turning side lap 201 is an arc or the like sharpened deeper than a normal involute trap shown by a two-dot chain line in the drawing in the vicinity of the suction passage 207 (winding start portion). It is formed with a normal involute trap from the middle.
  • the winding start portion of the turning side wrap 201 includes an outer wall 201b that is drawn inward in the radial direction of the shaft 14 so as to release the involute curve force, and an inner wall 201a that follows the involute curve.
  • the inner wall extension angle ⁇ m of the turning side wrap 201 is equal to the outer wall of the turning side wrap 201.
  • Fixed side wrap 20 when contact To between 201b and fixed side wrap 202 inner wall 202a occurs The inner wall extension angle of 2 is smaller than ⁇ s.
  • the closed volumes at the completion of the suction of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b are made different, and both the expansion chambers 203a and 203b are simultaneously opened.
  • the expansion ratios of the two expansion chambers 203a and 203b can be made different.
  • the scroll expander according to the seventh embodiment changes the shape of the outer wall 202b of the fixed side wrap 202, so that when the suction of the inner wall side expansion chamber 203a and the outer wall side expansion chamber 203b is completed.
  • the confined volumes are different.
  • the outer wall 202b of the fixed side wrap 202 is an arc or the like sharpened deeper than a normal involute trap shown by a two-dot chain line in the figure in the vicinity of the suction passage 207 (winding start portion). It is formed with a normal involute trap from the middle.
  • the winding start portion of the fixed side wrap 202 includes an outer wall 202b that is drawn inwardly in the radial direction of the shaft 14 so as to release the involute curve force, and an inner wall 202a that follows the involute curve.
  • the inner wall extension angle ⁇ m of the turning side wrap 201 when the contact Ti between the inner wall 201a of the turning side lap 201 and the outer wall 202b of the fixed side wrap 202 occurs is the outer wall of the turning side wrap 201. It is larger than the inner wall extension angle ⁇ s of the fixed side wrap 20 2 when the contact point To between the 201b and the inner wall 202a of the fixed side wrap 202 occurs.
  • the inner volume side expansion chamber 203a and the outer wall side expansion chamber 203b have different closed capacities when the suction is completed, and both the expansion chambers 203a and 203b are simultaneously opened.
  • the expansion ratios of the two expansion chambers 203a and 203b can be made different.
  • the scroll expander of the present invention is not limited to the above embodiments.
  • the scroll expander according to the present invention includes an inner wall side expansion chamber 203a and an outer wall side expansion chamber 203.
  • the closed volumes at the time of completion of the suction of b may be different from each other, and the volumes at the time of opening both the expansion chambers 203a and 203b may be different from each other.
  • the present invention is useful for a scroll expander that recovers motive energy by expanding a compressive fluid, and a refrigeration cycle apparatus including the scroll expander.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rotary Pumps (AREA)

Description

明 細 書
スクロール膨張機および冷凍サイクル装置
技術分野
[0001] 本発明は、圧縮性流体を膨張させることによって動力エネルギーを回収するスクロ ール膨張機、およびそれを備えた冷凍サイクル装置に関する。
背景技術
[0002] スクロール膨張機は、互いに嚙み合わされた固定スクロールと旋回スクロールとを 備えており、固定スクロールおよび旋回スクロールのそれぞれには、鏡板と、鏡板に 立設された渦巻状のラップとが設けられている。スクロール膨張機では、固定スクロー ルの鏡板およびラップと、旋回スクロールの鏡板およびラップとの間に、膨張室が形 成される。旋回スクロールは、自転規制機構により自転を規制されつつ、円軌道に沿 つて旋回する。そして、このように旋回スクロールが旋回することによって、上記膨張 室は容積を変えながら移動し、流体の吸入、膨張、および吐出が行われる。
[0003] 上記膨張室は、旋回スクロールのラップ内壁側とラップ外壁側とにそれぞれ形成さ れる。ラップ内壁側の膨張室 (以下、内壁側膨張室という)およびラップ外壁側の膨張 室 (以下、外壁側膨張室という)の各膨張比は、旋回スクロールおよび固定スクロー ルのラップ形状により決定される。例えば、特開平 8— 28461号公報および特開 200 2— 364563号公報に開示されているように、従来のスクロール膨張機では、固定ス クロールおよび旋回スクロールのラップは、内壁側膨張室の膨張比と外壁側膨張室 の膨張比とが等しくなるような形状に形成されていた。
[0004] 図 15を参照しながら、従来のスクロール膨張機の膨張室について説明する。このス クロール膨張機は、ラップ 502を有する固定スクロールと、ラップ 501を有する旋回ス クロールとを備えている。旋回スクロールのラップ内壁 501a側には内壁側膨張室 50 3aが形成され、ラップ外壁 501b側には外壁側膨張室 503bが形成されている。
[0005] このスクロール膨張機が冷凍サイクル装置に設けられて 、る場合、膨張対象となる 流体は冷媒であり、冷媒はスクロールの中心の吸入口 507から吸入される。吸入され た冷媒は、上記膨張室 503a, 503bの容積変化に伴って膨張して、各スクロールの 外周部へ移動し、吐出口 506から吐出される。
[0006] 図 15は、最内側の膨張室 503a, 503bが吸入過程力も膨張過程へ移る瞬間を表 している。言い換えると、図 15は、スクロールの中心側において、旋回スクロールのラ ップ内壁 501aと固定スクロールのラップ外壁 502bとが接触し、旋回スクロールのラッ プ外壁 501bと固定スクロールのラップ内壁 502aとが接触する瞬間、すなわち、接触 面 504, 505が生じる瞬間を表している。図 15から分かるように、内壁側膨張室 503a と外壁側膨張室 503bとは、同時に閉じられる。
[0007] そして、膨張過程が進むにつれて、接触面 504, 505はラップ形状に沿って外周側 へ移動し、やがて、スクロールの最外周部で同時に消滅する。すなわち、内壁側膨 張室 503aと外壁側膨張室 503bとは、同時に開かれる。このスクロール膨張機では、 固定スクロールのラップ内壁 502aのインボリユートラップを中途部 502cで終了させる ことにより、旋回スクロールのラップ内壁 501aと固定スクロールのラップ外壁 502bの 接触面 504が消滅する位置と、旋回スクロールのラップ外壁 501bと固定スクロール のラップ内壁 502aの接触面 505が消滅する位置と力 180度ずれている。これにより 、内壁側膨張室 503aと外壁側膨張室 503bとが同時に開かれる。
[0008] このように、従来のスクロール膨張機では、内壁側膨張室 503aおよび外壁側膨張 室 503bは、閉じ始める時期および開き始める時期がいずれも等しぐ膨張の開始お よび終了のタイミングが同時である。その結果、それら 2室 503a, 503bの膨張比は 等し力つた。
[0009] し力しながら、上記のようなスクロール膨張機では、両膨張室 503a, 503bの膨張 比が常に一定であるので、冷凍サイクル装置等のように、運転条件によって好適な膨 張比が変動するような用途にあっては、必ずしも常に効率的な膨張動作を行うことが できる訳ではな力つた。
[0010] 具体的には、スクロール膨張機が例えば冷凍サイクル装置に使用される場合、冷 凍サイクル装置の運転条件が変化すると、冷凍サイクルの高圧および低圧は変化す る。そのため、膨張機の吸入圧力および吐出圧力も変化することになる。ところが、上 述したように、膨張室の膨張比は予め一定の設計膨張比に設定されているため、吸 入圧力および吐出圧力の値によっては、膨張機において冷媒の過膨張または不足 膨張を生じる。
[0011] 図 16A〜Cは、膨張過程の圧力-体積線図を示す。図 16Aは、膨張室の膨張比 が冷凍サイクル装置の高圧 Z低圧の条件と一致する場合である。すなわち、膨張室 の膨張比と、冷凍サイクル装置の高低圧の圧力比とがー致する場合である。この場 合には、膨張過程において損失は発生しない。
[0012] これに対し、図 16Bは、図 16Aの冷凍サイクル装置の高圧 Z低圧の条件よりも高圧 が高く(Ph2>Phl)、低圧が低い(P12く P11)運転条件の場合である。このような運 転条件は、図 16Aの運転条件と比べて、放熱器の外部温度が高い中で放熱し、蒸 発器の外部温度が低い中で受熱する場合等に発生する。膨張室は、高圧 Z低圧が PhlZPllの条件において、冷媒が過不足なく膨張するように、吸入容積と吐出容積 が設計されている。そのため、膨張室に吸入される冷媒の圧力が Phiより大きい Ph2 だとすると、膨張室力 吐出される冷媒は冷凍サイクル装置の低圧 P12まで膨張しき れず、 P12より高い圧力で吐出されることになる。このため、図 16Bの運転条件では、 膨張不足となり、図 16B中の斜線部分が損失となる。
[0013] 図 16Cは、図 16Aの冷凍サイクル装置の高圧 Z低圧の条件よりも高圧が低く(Ph3 く Phi)、低圧が高い (P13 >P11)運転条件の場合である。このような運転条件は、 図 16Aの運転条件と比べて、放熱器の外部温度が低い中で放熱し、蒸発器の外部 温度が高い中で受熱する場合等に発生する。前述した通り、膨張室は、高圧 Z低圧 力 PhlZPllの条件において冷媒が過不足なく膨張するように、吸入容積と吐出容 積が設計されている。そのため、膨張室に吸入される冷媒の圧力が Phiより小さい P h3だとすると、膨張室力も吐出される冷媒は冷凍サイクル装置の低圧 P13よりも膨張 してしまい、 P13より低い圧力で吐出されることになる。このため、図 16Cの運転条件 では、過膨張となり、図 16C中の斜線部分が損失となる。
[0014] このように、従来のスクロール膨張機を備えた冷凍サイクル装置等では、冷凍サイク ル装置の高圧 Z低圧力 Sスクロール膨張機の設計膨張比と一致している限りは、高効 率な運転が可能であった。しかしながら、その反面、運転条件がわずかに変化しただ けでも、不足膨張や過膨張による損失が大きくなりやす力 た。そのため、膨張機の 動力回収性能が低下し、冷凍サイクル装置の能力を十分に高めることができなかつ た。
発明の開示
[0015] 本発明は、このような課題を解決するものであり、運転条件の変化に伴うスクロール 膨張機の動力回収性能の低下を抑えることを目的とする。さらに、本発明は、そのよう なスクロール膨張機を用い、広い運転範囲にわたって高効率な冷凍サイクル装置を 提供することを目的とする。
[0016] すなわち、本発明は、
第 1の渦巻状ラップを有する第 1のスクロールと、
前記第 1の渦巻状ラップと嚙み合う第 2の渦巻状ラップを有し、前記第 1のスクロー ルとともに前記第 1の渦巻状ラップの内壁側および外壁側にそれぞれ内壁側膨張室 および外壁側膨張室を区画する第 2のスクロールと、を備え、
前記第 1のスクロールが前記第 2のスクロールに対して相対的に旋回することによつ て、前記内壁側膨張室および前記外壁側膨張室が前記各スクロールの中心側から 外周側に向力つて容積を増加させながら移動するように構成され、
前記内壁側膨張室の膨張比と前記外壁側膨張室の膨張比とが異なるように、前記 第 1の渦巻状ラップと前記第 2の渦巻状ラップの形状が定められている、スクロール 膨張機を提供する。
[0017] これにより、運転条件が変動した場合であっても、両膨張室(内壁側膨張室および 外壁側膨張室)において過膨張が同時発生したり、不足膨張が同時発生したりする ことはない。 2つの膨張室の膨張比が相違するので、一方の膨張室で過膨張が生じ ても、他方の膨張室では過膨張が抑制される。また、一方の膨張室で不足膨張が生 じても、他方の膨張室では不足膨張が抑制される。したがって、上記スクロール膨張 機によれば、運転条件が変動した場合であっても、過膨張や不足膨張による動力回 収性能の著し 、低下を抑えることができる。
[0018] 他の側面において、本発明は、
圧縮機、放熱器、膨張機、および蒸発器を順に配管で接続してなる冷凍サイクル 装置であって、
前記膨張機は、上記本発明のスクロール膨張機によって構成されている、冷凍サイ クル装置を提供する。
[0019] 上記冷凍サイクル装置によれば、広い運転範囲にわたって高効率を実現すること ができる。
図面の簡単な説明
[0020] [図 1]本発明の実施の形態 1に係る冷凍サイクル装置の構成図
[図 2]本発明の実施の形態 1に係るスクロール膨張機の縦断面図
[図 3A]本発明の実施の形態 1に係るスクロール膨張機の旋回スクロールおよび固定 スクロールの横断面図
[図 3B]内壁側膨張室が開放する瞬間における旋回スクロールおよび固定スクロール の横断面図
[図 3C]外壁側膨張室が開放する瞬間における旋回スクロールおよび固定スクロール の横断面図
[図 4A]従来のスクロール膨張機における膨張過程の圧力一体積線図
[図 4B]本発明の実施の形態 1に係るスクロール膨張機における膨張過程の圧力 体積線図
[図 5]従来のスクロール膨張機における膨張過程の圧力一体積線図
[図 6A]従来のスクロール膨張機の特性図
[図 6B]本発明の実施の形態 1に係るスクロール膨張機の特性図
[図 6C]従来のスクロール膨張機および本発明の実施の形態 1に係るスクロール膨張 機の特性を比較した図
[図 7A]従来のスクロール膨張機の夏期の両膨張室の膨張効率を示した図
[図 7B]従来のスクロール膨張機の中間期の両膨張室の膨張効率を示した図
[図 7C]従来のスクロール膨張機の冬期の両膨張室の膨張効率を示した図
[図 8A]本発明の実施の形態 1に係るスクロール膨張機の夏期の両膨張室の膨張効 率を示した図
[図 8B]本発明の実施の形態 1に係るスクロール膨張機の中間期の両膨張室の膨張 効率を示した図
[図 8C]本発明の実施の形態 1に係るスクロール膨張機の冬期の両膨張室の膨張効 率を示した図
[図 9]本発明の実施の形態 2に係るスクロール膨張機の旋回スクロールおよび固定ス クロールの横断面図
[図 10]本発明の実施の形態 3に係るスクロール膨張機の旋回スクロールおよび固定 スクロールの横断面図
[図 11]本発明の実施の形態 4に係るスクロール膨張機の旋回スクロールおよび固定 スクロールの部分横断面図
[図 12]本発明の実施の形態 5に係るスクロール膨張機の旋回スクロールおよび固定 スクロールの部分横断面図
[図 13]本発明の実施の形態 6に係るスクロール膨張機の旋回スクロールおよび固定 スクロールの部分横断面図
[図 14]本発明の実施の形態 7に係るスクロール膨張機の旋回スクロールおよび固定 スクロールの部分横断面図
[図 15]従来のスクロール膨張機の旋回スクロールおよび固定スクロールの横断面図 [図 16A]膨張過程の圧力一体積線図
[図 16B]図 16Aに続く圧力 体積線図
[図 16C]図 16Bに続く圧力—体積線図
発明を実施するための最良の形態
[0021] 本発明のスクロール膨張機は、具体的に、以下のように構成されていてもよい。
[0022] 本発明のスクロール膨張機は、前記旋回スクロールまたは前記固定スクロールの中 心側に形成され、前記内壁側膨張室および前記外壁側膨張室に流体を吸入する吸 入路と、前記旋回スクロールまたは前記固定スクロールの外周側に形成され、前記 内壁側膨張室および前記外壁側膨張室の流体を吐出する吐出路と、を備えていて ちょい。
[0023] さらに、前記内壁側膨張室と前記外壁側膨張室とは、吸入完了時の容積が互いに 等しく、吐出開始時の容積が互いに異なって 、てもよ 、。
[0024] このことにより、従来からの設計変更を少なく抑えつつ、両膨張室の膨張比を違え ることがでさる。 [0025] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが同時に発生し、 前記第 2の渦巻状ラップの内壁にインボリユートの段差を設けることにより、前記第 1 の接触面が前記各スクロールの中心側から外周側に移動してから消滅する第 1の消 滅位置に対し、前記第 2の接触面が前記各スクロールの中心側から外周側に移動し て力 消滅する第 2の消滅位置が、前記第 2の渦巻状ラップのラップ巻き始め側へ向 力つて 0度よりも大きくかつ 180度よりも小さい所定角度、または 180度よりも大きくか つ 360度よりも小さ 、所定角度だけずれて 、てもよ 、。
[0026] なお、「インボリユートの段差」とは、ある部分を境にしてインボリユート曲線が変化ま たは終了している場合の当該部分をいう。言い換えれば、旋回面に平行な横断面に 表れる外形線力 Sインボリユート曲線力も逸脱して 、る部分を、「インボリユートの段差」 ということができる。例えば、基礎円の半径が一定のインボリユート曲線にしたがって 形成された渦巻状ラップの内壁の一部を削った場合、このようなインボリユートの段差 が生じ、当該渦巻状ラップの内壁の接触面 (他の渦巻状ラップの外壁との接触面)が 消滅する位置は変化する。
[0027] 第 2の渦巻状ラップの形状を従来の形状力 変更することにより、第 2の渦巻状ラッ プのインボリユートラップ終了位置 (第 2の接触面の消滅位置)を変更することができ る。上記スクロール膨張機によれば、第 1の消滅位置と第 2の消滅位置とは、 0度より も大きくかつ 180度よりも小さい所定角度、または 180度よりも大きくかつ 360度よりも 小さい所定角度だけずれており、第 2の消滅位置は第 2の渦巻状ラップの最外周部 に位置する。ここで、第 2の渦巻状ラップの最外周部は、第 1の渦巻状ラップと第 2の 渦巻状ラップとが二重に嚙み合う部分ではなぐ第 2のスクロールのうち肉厚な部分 である。そのため、内壁側膨張室および外壁側膨張室の膨張比を違えるために、第 2のスクロールの形状を従来の形状力も変化させても、ラップの壁厚に大きな変化は ないので、従来通りのラップ強度を保つことができ、信頼性を高度に維持することが できる。 [0028] また、前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴つ て、前記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2 の渦巻状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの 外壁と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが同時に発 生し、前記第 1の渦巻状ラップの外壁にインボリユートの段差を設けることにより、前記 第 1の接触面が前記各スクロールの中心側から外周側に移動してから消滅する第 1 の消滅位置に対し、前記第 2の接触面が前記各スクロールの中心側から外周側に移 動してから消滅する第 2の消滅位置が、前記第 2の渦巻状ラップのラップ巻き始め側 へ向かって 0度よりも大きくかつ 180度よりも小さい所定角度、または 180度よりも大き くかつ 360度よりも小さ 、所定角度だけずれて 、てもよ 、。
[0029] 前記内壁側膨張室と前記外壁側膨張室とは、吸入完了時の容積が互いに異なり、 吐出開始時の容積が互 、に等しくてもよ 、。
[0030] このことにより、従来からの設計変更を少なく抑えつつ、両膨張室の膨張比を違え ることがでさる。
[0031] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが発生し、前記第 1の接触面が発生する位置における前記第 1の渦巻状ラップの内壁伸開角は、前記 第 2の接触面が発生する位置における前記第 2の渦巻状ラップの内壁伸開角よりも 大きぐ前記第 1の接触面と前記第 2の接触面とは、前記各スクロールの中心側から 外周側に移動してから同時に消滅するように構成されて 、てもよ 、。
[0032] ところで、第 1の渦巻状ラップと第 2の渦巻状ラップとが離れる瞬間、すなわち、上記 各接触面が消滅する瞬間には、吐出圧力と各膨張室が開放される時の膨張室内圧 力との圧力差のため、振動が生じるおそれがある。ところが、上記スクロール膨張機 によれば、第 1の接触面と第 2の接触面とは同時に消滅し、両膨張室は同時に開放さ れる。そのため、両膨張室を交互に開放する場合に比べて、振動を抑えることができ 、騒音を抑制することができる。 [0033] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが発生し、前記第 1の接触面が発生する位置における前記第 1の渦巻状ラップの内壁伸開角は、前記 第 2の接触面が発生する位置における前記第 2の渦巻状ラップの内壁伸開角よりも 小さぐ前記第 1の接触面と前記第 2の接触面とは、前記各スクロールの中心側から 外周側に移動してから同時に消滅するように構成されて 、てもよ 、。
[0034] なお、ラップの形状を調整することは、ラップの肉厚を調整することを包含する概念 である。
[0035] また、本発明の冷凍サイクル装置にお!、て、前記内壁側膨張室および前記外壁側 膨張室のうち、少なくともいずれか一方の膨張室の膨張比を、当該冷凍サイクル装置 の運転条件の中で最も発生頻度が大きいとして予め設定された所定の基準膨張比と 異ならせることができる。これによつて、冷凍サイクル装置の運転条件の中でもっとも 発生頻度の多!ヽ膨張比を基準として両膨張室を設計する場合 (両膨張室の膨張比 =基準膨張比)と比較して、広域な運転条件にわたって高効率を実現することができ る。
[0036] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の 実施の形態によって本発明が限定されるものではない。
[0037] (実施の形態 1)
図 1は、本発明の実施の形態 1における冷凍サイクル装置 100の構成図である。冷 凍サイクル装置 100は、圧縮機 101、放熱器 102、膨張機 103、および蒸発器 104 が配管 105を介して順に接続されることによって構成されている。なお、この冷凍サイ クル装置 100は、冷媒の流通方向が一定の装置であるが、本発明に係る冷凍サイク ル装置は、例えば冷媒の流通方向を変更可能な可逆運転可能な冷凍サイクル装置 等であってもよい。冷凍サイクル装置 100は、例えば、給湯器、空気調和装置等とし て利用することができる。
[0038] 図 2に示すように、膨張機 103は、スクロール膨張機である。膨張機 103は、主軸受 部材 11、固定スクロール 22、および旋回スクロール 21を備えている。
[0039] 主軸受部材 11は、溶接や焼き嵌めなどによって密閉容器 13内に固定され、駆動 軸 14の主軸部 14aを軸支している。固定スクロール 22は、この主軸受部材 11上にボ ルト(図示せず)によって固定されている。固定スクロール 22は、鏡板 22aと、渦巻状 のラップ 202とを備えている。旋回スクロール 21も、鏡板 21aと、渦巻状のラップ 201 とを備えている。
[0040] 旋回スクロール 21は主軸受部材 11と固定スクロール 22との間に挟み込まれており 、固定スクロール 22のラップ 202と旋回スクロール 21のラップ 201とは、互いに嚙み 合っている。これにより、旋回スクロール 21と固定スクロール 22との間に、膨張室 203 が形成されている。より詳しくは、図 3Aに示すように、膨張室 203は 2つの膨張室、す なわち、旋回スクロール 21のラップ 201 (以下、旋回側ラップ 201という)の内壁 201a と固定スクロール 22のラップ 202 (以下、固定側ラップ 202という)の外壁 202bとの間 に形成される内壁側膨張室 203a (膨張室 A)と、旋回側ラップ 201の外壁 201bと固 定側ラップ 202の内壁 202aとの間に形成される外壁側膨張室 203b (膨張室 B)とに より構成される。
[0041] 図 2に示すように、旋回スクロール 21と主軸受部材 11との間には、旋回スクロール 2 1の自転を防止して円軌道運動をするように案内するオルダムリングなどによる自転 規制機構 12が設けられている。
[0042] 駆動軸 14の上端には偏心軸部 14bが形成されている。この偏心軸部 14bは、旋回 スクロール 21を偏心駆動することにより旋回スクロール 21を円軌道運動させる。これ により、固定スクロール 22と旋回スクロール 21との間に形成されて!ヽる膨張室 203は 、その容積を拡大させながら中心側力 外周側に移動する。
[0043] 密閉容器 13の上側には、密閉容器 13の内外を連通する吸入管 15が設けられて いる。吸入管 15から流れ込む冷媒は、主軸受部材 11および固定スクロール 22に設 けられた冷媒通路 (破線矢印)を経て、固定スクロール 22の中心部の吸入路 207か ら膨張室 203へ吸入される。吸入された冷媒は、上記膨張室 203の容積変化に伴つ て膨張する。膨張後の冷媒は、固定スクロール 22の外周側に形成された吐出路 206 および吐出管 16を通じて、密閉容器 13の外部に吐出される。なお、符号 25は発電 機である。
[0044] 駆動軸 14の下端側は、副軸受部材 17によって支持され、駆動軸 14の下端には、 容積型ポンプ 18が設置されている。潤滑油 19は、潤滑油溜まり 20から容積型ボン プ 18によって汲み上げられ、駆動軸 14の軸方向の中心に設けられた給油路 31を経 て、主軸受部 11aおよび偏心軸受部 l ibを潤滑および冷却した後、潤滑油戻し孔( 図示せず)を経て、潤滑油溜まり 20へ戻る。
[0045] 一般的に、スクロール圧縮機においては、固定スクロールの中心部の吐出路にリー ド弁が設けられる。一方、本実施形態のスクロール膨張機にはそうしたリード弁が不 要である。したがって、吸入管 15と固定スクロール 22の中心部の吸入路 207とが直 接接続されていてもよい。あるいは、膨張させるべき冷媒を一時的に貯めるチャンバ を密閉容器 13の内部に設け、そのチャンバを介して吸入管 15と固定スクロール 22 の中心部の吸入路 207とを接続することができる。
[0046] また、いわゆる高圧シェル型のスクロール圧縮機は、密閉容器内が圧縮後の高温 高圧の冷媒で満たされる。高温高圧の冷媒は、密閉容器の内部空間を経由して外 部へと吐出される。これに対し、本実施形態のスクロール膨張機においては、膨張前 の冷媒および膨張後の冷媒が密閉容器 13の内部空間を経由しない。
[0047] 図 3Aは、旋回スクロール 21および固定スクロール 22の横断面図である。本実施形 態に係るスクロール膨張機 103では、内壁側膨張室 203aと外壁側膨張室 203bとは 、膨張比が異なっている。
[0048] 図 3Aは、最内側の内壁側膨張室 203aおよび外壁側膨張室 203bが、吸入過程か ら膨張過程へ移る瞬間を表している。言い換えると、図 3Aは、スクロール 21, 22の 中心側において、旋回側ラップ 201の内壁 201aと固定側ラップ 202の外壁 202bと が接触し、旋回側ラップ 201の外壁 201bと固定側ラップ 202の内壁 202aとが接触 する瞬間を表している。旋回側ラップ 201の内壁 201aと固定側ラップ 202の外壁 20 2bとの接触面を第 1接触面 204とし、旋回側ラップ 201の外壁 201bと固定側ラップ 2 02の内壁 202aとの接触面を第 2接触面 205とすると、図 3Aは、旋回スクロール 21 および固定スクロール 22の中心側において第 1接触面 204および第 2接触面 205が 新たに生じる瞬間を表している。 [0049] 図 3Aに示すように、内壁側膨張室 203aと外壁側膨張室 203bとは同時に閉じられ 、これら 2室 203a, 203bの閉じられるときの容積(閉じ込み容積)は互いに等しい。 旋回スクローノレ 21の旋回に伴って、上記接虫面 204, 205ίまラップ 201, 202の禍 卷形状に沿って中心側力も外周側に移動し、上記膨張室 203a, 203bは容積を拡 大しながらスクロール 21, 22の外周部へ移動する。そして、最終的に、最外周部で 上記接触面 204, 205が消滅し、膨張室 203a, 203bは開放される(吐出路 206と連 通する)。
[0050] 本実施形態では、固定側ラップ 202の形状は、第 1接触面 204が消滅する位置 20 4eと第 2接触面 205が消滅する位置 205eとが約 90度ずれるように設計されて!、る。 「第 1接触面 204が消滅する位置 204e」とは、第 1接触面 204が消滅するときに当該 第 1接触面 204が占有する旋回側ラップ 201上 (または固定側ラップ 202上)の位置 のことをいう。図 3Aでは、旋回側ラップ 201上の位置として示している。同様に、「第 2 接触面 205が消滅する位置 205e」とは、第 2接触面 205が消滅するときに当該第 2 接触面 205が占有する旋回側ラップ 201上 (または固定側ラップ 202上)の位置のこ とを ヽう。位置 204eと位置 205eとの角度差は、位置 204e, 205eとシャフト 14の回 転中心とを結ぶ 2つの線分のなす角度で考えることができる。
[0051] ラップ 201, 202の外周側から中心側に向力 方向を「ラップの巻き始め側」と称す ると、第 2接触面 205が消滅する位置 205eは、第 1接触面 204が消滅する位置 204 eに対して、ラップの巻き始め側に約 90度ずれている。本実施形態では、固定スクロ ール 22のラップ 202の内壁 202aは、第 2接触面 205が消滅する位置 205eで不連 続になっており、当該位置 205eにてインボリユートラップを終了させている。すなわち 、当該位置にてインボリユートの段差が生じている。
[0052] これにより、内壁側膨張室 203aの開放時期に比べて、外壁側膨張室 203bの開放 時期は遅くなる。そのため、内壁側膨張室 203aの開放時の容積 (開放容積)に比べ て、外壁側膨張室 203bの開放時の容積は大きくなる。
[0053] 具体的に本実施形態では、シャフト 14の回転角度で考えて、外壁側膨張室 203b の開放時期が、内壁側膨張室 203aの開放時期よりも約 90度遅れて到来する。図 3 Bは、内壁側膨張室 203aが開放する瞬間を表し、図 3Cは、外壁側膨張室 203bが 開放する瞬間を表している。図 3Bの状態と図 3Cの状態との位相差は、約 90度とな つている。
[0054] このように、本実施形態では、内壁側膨張室 203aと外壁側膨張室 203bとは、吸入 完了時の容積が等しぐ吐出開始時の容積が異なっている。その結果、内壁側膨張 室 203aと外壁側膨張室 203bとは、膨張比が異なって!/、る。
[0055] 内壁側膨張室 203aの膨張比と外壁側膨張室 203bの膨張比との比率は、図 3Aに 示す例に限定されるものではない。内壁側膨張室 203aと外壁側膨張室 203bとの膨 張比同士の比率は、第 1接触面 204が消滅する位置 204eおよび第 2接触面 205が 消滅する位置 205eを適宜に設定することにより、任意に変更可能である。例えば、 固定スクロール 22のラップ 202の内壁 202aの形状を変更することにより、適宜に変 更することができる。
[0056] なお、内壁側膨張室 203aの開放時期と外壁側膨張室 203bの開放時期との位相 差は、本実施形態に限定されるわけではなぐ適宜調整することができる。実用性を 考慮すると、内壁側膨張室 203aの開放時期と外壁側膨張室 203bの開放時期との 位相差が、シャフト 14の回転角度で 30度〜 150度となるように、ラップ 201, 202の 形状 (および寸法)が調整されていることが好ましい。言い換えれば、旋回側ラップ 20 1の巻き終わりの位置力もラップの巻き始め側に 30度〜 150度進んだ位置に、固定 側ラップ 202の巻き終わりの位置 (インボリユートの段差)が定められているとよい (本 実施形態では約 90度)。これにより、各膨張室 203a, 203bの膨張比が所望の値に 設定される。
[0057] 冷凍サイクル装置 100 (図 1参照)では、圧縮機 101で昇温昇圧された冷媒は、放 熱器 102へ流入し、外部へ熱を移動させることによって放熱する。次に、冷媒は膨張 機 103に吸入され、膨張し、低温低圧になる。この低温低圧の冷媒は、蒸発器 104 へ流入し、外部から受熱し、再び圧縮機 101に吸入される。冷凍サイクル装置 100で は、冷媒はこのような循環を繰り返している。
[0058] ところで、冷凍サイクル装置 100の高圧側の圧力(以下、単に高圧という)および低 圧側の圧力(以下、単に低圧という)は、一定ではなぐ運転条件によって異なる。そ のため、サイクル側力も膨張機 103に求められる冷媒の圧力の比(高圧力も低圧まで 膨張する際の圧力変化に対応)、つまり、(高圧 Z低圧)で表現される膨張比は、運 転条件によって異なる。
[0059] しかし、膨張機 103がスクロール膨張機である場合、膨張機 103における膨張比は 、膨張室の設計仕様等により、予め一定の値に設定されている。このため、ある 1つ の運転条件の最適膨張比に合わせて膨張機 103を設計すると、運転条件が変わつ てしまった場合に、高圧を所望の低圧まで十分に膨張できない膨張不足や、低圧が 必要以上に低下してしまう過膨張が発生することになる。
[0060] ここで、図 4を参照しながら、スクロール膨張機における膨張不足および過膨張に ついて説明する。図 4Aおよび 4Bは膨張過程の圧力一体積線図であり、図 4Aは従 来のスクロール膨張機、すなわち、内壁側膨張室および外壁側膨張室の膨張比が 等しいスクロール膨張機を表している。一方、図 4Bは、内壁側膨張室 203aおよび外 壁側膨張室 203bの膨張比が異なる本実施形態のスクロール膨張機 103を表してい る。図 4Aおよび 4Bにおいて、運転条件 1の高低圧力差 (Phi— P11)は、運転条件 2 の高低圧力差 (Ph2— P12)よりも大きいとする。なお、図 4では、内壁側膨張室、外 壁側膨張室をそれぞれ A室、 B室と記す。
[0061] ここで、従来のスクロール膨張機は、運転条件 1を基準に設計されているものとする 。すなわち、従来のスクロール膨張機は、内壁側膨張室および外壁側膨張室の膨張 比が!/、ずれも運転条件 1の高低圧の比率 (PhlZPll)と等しくなるように設計され、 内壁側膨張室および外壁側膨張室のいずれにおいても、冷媒が過不足無く膨張す るように設計されて 、るものとする。
[0062] 一方、本実施形態のスクロール膨張機 103では、内壁側膨張室 203a (A室)は運 転条件 2を基準に設計され、外壁側膨張室 203b (B室)は運転条件 1を基準に設計 されているものとする。すなわち、内壁側膨張室 203aの膨張比は、運転条件 2のとき に冷媒を過不足無く膨張させるように設計され、外壁側膨張室 203bは、運転条件 1 のときに冷媒を過不足無く膨張させるように設計されているものとする。
[0063] 図 4Aに示すように、従来のスクロール膨張機にあっては、運転条件 1では、膨張過 程において両膨張室とも損失が生じない。一方、運転条件が変化し、運転条件 2に なると、両膨張室ともに過膨張を生じ、いずれにおいても損失が発生する(図中の斜 線部の面積が損失量となる)。
[0064] 図 4Bに示すように、本実施形態のスクロール膨張機 103では、運転条件 1では、外 壁側膨張室 203b (B室)では損失は発生しな 、が、内壁側膨張室 203a (A室)では 十分に膨張できず、膨張不足による損失が発生する(図中の交差線部の面積が損失 量となる)。一方、運転条件が運転条件 1から運転条件 2になったとすると、外壁側膨 張室 203b (B室)では過膨張を生じ、損失が発生する(図中の斜線部の面積が損失 量となる)力 内壁側膨張室 203a (A室)では過不足無く膨張するので、損失は発生 しない。
[0065] 次に、従来のスクロール膨張機と本実施形態のスクロール膨張機 103とについて、 運転条件の変動を考慮したうえで、膨張の損失量を比較する。ここでは、運転条件 1 の出現割合を Fl、運転条件 2の出現割合を F2とする(Fl+F2=l.0)。また、運転 条件 1における膨張不足損失量を L1、運転条件 2における過膨張損失量を L2とす る。
[0066] 全運転条件にわたる損失を考えるため、上記損失量 LI, L2に対して各運転条件 の出現割合を考慮した重み付けを行うと、内壁側膨張室および外壁側膨張室の膨 張比が等しいとき (従来のスクロール膨張機)は、全損失量は 2XF2XL2となる。一 方、内壁側膨張室および外壁側膨張室の膨張比が等しくな!/、とき (本実施形態のス クロール膨張機 103)は、全損失量は Fl XL1+F2XL2となる。
[0067] したがって、 2XF2XL2>F1XL1+F2XL2の場合には、本実施形態のスクロ ール膨張機 103の方が従来のスクロール膨張機よりも、全損失量は小さくなる。そこ で、本実施形態の冷凍サイクル装置 100では、スクロール膨張機 103は、 2XF2XL 2>F1XL1+F2X L2となるように設計されて!、る。
[0068] 図 5は、従来のスクロール膨張機の膨張過程の圧力一体積線図であり、内壁側膨 張室 (A室)および外壁側膨張室 (B室)の両室とも、膨張不足か過膨張を常に生じる 場合を示している。ここで、従来のスクロール膨張機において、全運転条件にわたる 損失を低減することを考えるなら、内壁側膨張室および外壁側膨張室の両方ともに、 運転条件 1では若干の膨張不足を生じ、運転条件 2では若干の過膨張を生じるよう にし、それらの運転条件の出現割合を考慮したうえで両室の膨張比を決定する設計 手法も考えられる。
[0069] しかし、このような設計手法であっても、運転条件 1, 2において、両室ともに膨張不 足か過膨張を常に生じることになる。ところが、不足膨張または過膨張が生じると、そ の圧力変動が振動の原因となる。
[0070] すなわち、従来のスクロール膨張機においては、運転条件 1, 2のいずれにおいて も、両方の膨張室が振動源となり、膨張機全体の振動が大きくなりやすい。これに対 し、本実施形態のスクロール膨張機 103によれば、内壁側膨張室 203aおよび外壁 側膨張室 203bの膨張比が異なっているので、運転条件 1, 2のいずれにおいても、 一方の膨張室は振動源となるが、他方の膨張室は振動源とはならない(図 4A, B参 照)。そのため、本実施形態のスクロール膨張機 103は、従来のスクロール膨張機に 比べて、運転条件が変動しても振動が大きくなりにく 、。
[0071] 図 6Aは、従来のスクロール膨張機を備えた冷凍サイクル装置において、膨張比の 発生頻度の分布と、各膨張室の膨張効率と、それら発生頻度を考慮した膨張効率( 発生頻度 X膨張効率)とを表している。図 6Bは、本実施形態のスクロール膨張機 10 3を備えた冷凍サイクル装置 100において、膨張比の発生頻度の分布と、各膨張室 の膨張効率と、発生頻度を考慮した膨張効率とを表している。なお、図 6Aおよび 6B では、内壁側膨張室および外壁側膨張室をそれぞれ膨張室 A, Bと表している。図 6 Cは、従来のスクロール膨張機と本実施形態のスクロール膨張機 103とについて、発 生頻度を考慮した膨張効率を比較した図である。なお、膨張比の発生頻度とは、冷 凍サイクル装置の運転条件の発生頻度のことである。
[0072] 図 6Aに示すように、従来の一般的なスクロール膨張機では、両膨張室 A, Bの膨張 比は、最も発生頻度の高い膨張比に合わせて決定されていた。このような従来のスク ロール膨張機(図 6A参照)では、最も発生頻度の高い膨張比においては、優れた膨 張効率を示す。しかし、冷凍サイクル装置の膨張比が設計膨張比からずれると、両膨 張室 A, Bの膨張効率は急激に低下する。
[0073] しかし、本実施形態のスクロール膨張機 103のように、最も発生頻度の高い膨張比 を挟んで、一方の膨張室の膨張比を少し小さぐ他方の膨張室の膨張比を少し大き くしたとする。すると、図 6Bに示すように、最も発生頻度の高い膨張比においては、 従来のスクロール膨張機と比べて膨張効率は劣るが、最も発生頻度の高い膨張比か ら外れたところでは、急激な膨張効率の低下を防ぐことができる。
[0074] 図 6Cに示すように、本実施形態のスクロール膨張機 103によれば、 2つの膨張室 の膨張比を違えることによって、膨張比が等しい従来のスクロール膨張機と比較して 、広範な膨張比において高い膨張効率を維持することができる。これにより、冷凍サ イタル装置 100の実際の膨張比の発生頻度が設計値と異なっていたとしても、膨張 効率の低下を防いで、膨張機 103で動力回収を効率的に行うことが可能となる。また 、設計変更を行うことなぐ気候の異なる複数の地域に対応した冷凍サイクル装置を 供給できる。
[0075] 例えば、冷凍サイクル装置がヒートポンプ給湯器であり、このヒートポンプ給湯器を 一年間通して運転する場合であれば、夏期、冬期、中間 (春、秋)期の複数の運転条 件が存在し、中間期の発生頻度が最も大きくなる。社団法人日本冷凍空調工業会規 格 (JRA4050: 2005)では、ヒートポンプ給湯器の各期の運転条件での実測値から 年間消費電力量を算定するために、各運転条件のみなし運転日数 (年展開日数)が 規定されている。この規定によると、夏期 92日、中間期 152日、冬期 121日となって いる。
[0076] 従来のヒートポンプ給湯器の典型例は、外気温 (乾球温度 Z湿球温度) 16°C/12 °C、水温 17°C、沸き上げ温度 65°C、という中間期の運転条件を基準とし、この運転 条件で最高の COP (coefficient of performance)を発揮するように設計されていた。そ のため、従来の一般的なスクロール膨張機では、両膨張室 A, Bの膨張比も、中間期 の膨張比に決定され、中間期以外の運転条件において膨張機で動力回収が効率的 に行えな 、と 、う短所があった。
[0077] ここで、例として、本実施形態のスクロール膨張機 103を二酸ィ匕炭素を冷媒とするヒ ートポンプ給湯器に搭載する場合を考える。このヒートポンプ給湯器の夏期、冬期、 中間期の運転条件を、それぞれ、夏期:高圧 9MPaZ低圧 3. 5MPa、膨張機入口 温度 35°C、冬期:高圧 11. 5MPaZ低圧 2. 8MPa、膨張機入口温度 8°C、中間期: 高圧 lOMPaZ低圧 3MPa、膨張機入口温度 20°Cとする。また、各期の膨張比は運 転条件より、夏期: 2. 97、冬期: 1. 95、中間期: 2. 68となる。 [0078] 従来のスクロール膨張機は、両膨張室の膨張比が最も発生頻度の高い中間期の 2 . 68と設計される。図 7Aは、従来のスクロール膨張機の夏期の両膨張室の膨張効 率を示す。図 7Bは、従来のスクロール膨張機の中間期の両膨張室の膨張効率を示 す。図 7Cは、従来のスクロール膨張機の冬期の両膨張室の膨張効率を示す。
[0079] 図 7A〜Cに示すように、各期において過不足無く膨張する膨張比における膨張室 の膨張効率を 100. 0とすると、その前後の膨張比では、不足膨張あるいは過膨張の ため性能が低下する。膨張室の膨張比が 2. 68で設計された場合、夏期の膨張効率 は 98. 4 (図 7A)、中間期の膨張効率は 100. 0 (図 7B)、冬期の膨張効率は 68. 7 ( 図 7C)となる。膨張室は A室、 B室の 2室あるので、各期の膨張効率を 2室の膨張効 率の平均とすると、夏期 98. 4、中間期 100. 0、冬期 68. 7となる。各期の膨張効率 と各運転条件の発生頻度 (ヒートポンプ給湯器の年展開日数)から、年間での従来の スクロール膨張機の膨張効率を算定すると、年間を通じて常に過不足無く膨張した 場合の理想膨張効率 100. 0に対し、従来のスクロール膨張機の実際の年間の膨張 効率は 89. 2となる。
[0080] 本実施形態のスクロール膨張機 103は、 A室の膨張比は最も発生頻度の高い中間 期の 2. 68、 B室の膨張比は中間期と冬期の間となる 2. 32とする。図 8Aは、実施の 形態 1に係るスクロール膨張機の夏期の両膨張室の膨張効率を示す。図 8Bは、実 施の形態 1に係るスクロール膨張機の中間期の両膨張室の膨張効率を示す。図 8C は、実施の形態 1に係るスクロール膨張機の冬期の両膨張室の膨張効率を示す。図 8に示すように、各期において過不足無く膨張する膨張比における膨張室の膨張効 率を 100. 0とすると、 A室の夏期の膨張効率は 98. 4、中間期の膨張効率は 100. 0 、冬期の膨張効率は 68. 7となり、 B室の夏期の膨張効率は 92. 0、中間期の膨張効 率は 96. 3、冬期の膨張効率は 91. 4となる。各期の膨張効率を 2室の膨張効率の 平均とすると、夏期 95. 2、中間期 98. 2、冬期 80. 0となる。各期の膨張効率と各運 転条件の発生頻度 (ヒートポンプ給湯器の年展開日数)から、年間での本実施形態 のスクロール膨張機 103の膨張効率を算定すると、年間を通じて常に過不足無く膨 張した場合の理想膨張効率 100. 0に対し、本実施形態のスクロール膨張機の実際 の年間の膨張効率は 91. 4となる。 [0081] つまり、本実施形態に係るスクロール膨張機 103によれば、従来のスクロール膨張 機に対して、年間の膨張効率が(91. 4/89. 2) X 100= 102. 5%となり、年間性 能の向上が実現できる。本実施形態では、例としてヒートポンプ式給湯器と、その運 転条件を挙げたが、本発明に係るスクロール膨張機は、これら冷凍サイクル装置、運 転条件に限定されるものではなぐ他に種々の冷凍サイクル装置、運転条件にも適 用可能である。
[0082] したがって、本実施形態に係るスクロール膨張機 103によれば、 2つの膨張室 203 a, 203bの膨張比を違えることによって、膨張機構の振動を増大させることなぐ過膨 張または不足膨張による動力回収性能の低下を抑えることができる。本実施形態に 係る冷凍サイクル装置 100によれば、広範囲の運転条件にわたって、高い効率を維 持することが可能となる。
[0083] 本発明に係るスクロール膨張機は、前記実施の形態 1のスクロール膨張機 103〖こ 限定される訳ではない。次に、本発明に係るスクロール膨張機の他の実施形態につ いて説明する。
[0084] (実施の形態 2)
図 9は、実施の形態 2に係るスクロール膨張機の旋回スクロール 21および固定スク ロール 22の横断面図である。その他の構成については実施の形態 1と同様であるの で、それらの説明は省略する。
[0085] 図 9も図 3Aと同様、最内側の内壁側膨張室 203aおよび外壁側膨張室 203bが、 吸入過程力 膨張過程へ移る瞬間を表している。本実施形態においても、内壁側膨 張室 203aと外壁側膨張室 203bとは同時に閉じられ、それら 2室の閉じ込み容積は 等しい。上記膨張室 203a, 203bも、容積変化をしながらスクロール 21, 22の外周 部へ移動する。そして、最終的に、最外周部で旋回側ラップ 201と固定側ラップ 202 との接触面が消滅する。
[0086] 本実施形態では、第 1接触面 204 (旋回側ラップ 201の内壁 201aと固定側ラップ 2 02の外壁 202bとの接触面)が消滅する位置 204eと、第 2接触面 205 (旋回側ラップ 201の外壁 201bと固定側ラップ 202の内壁 202aとの接触面)が消滅する位置 205e とは、約 270度ずれている。第 2接触面 205が消滅する位置 205eは、第 1接触面 20 4が消滅する位置 204eに対して、ラップの巻き始め側に約 270度ずれている。固定 側ラップ 202の内壁 202aは、第 2接触面 205が消滅する位置 205eで不連続になつ ており、当該位置 205eにてインボリユートラップを終了させている。当該位置 205eに て、インボリユートの段差が生じている。
[0087] これにより、内壁側膨張室 203aの開放時期に比べて、外壁側膨張室 203bの開放 時期は早くなる。そのため、内壁側膨張室 203aの開放時の容積に比べて、外壁側 膨張室 203bの開放時の容積は小さくなる。具体的に本実施形態では、シャフト 14の 回転角度で考えて、外壁側膨張室 203bの開放時期が、内壁側膨張室 203aの開放 時期よりも約 90度早く到来する。
[0088] 内壁側膨張室 203aの開放時期と外壁側膨張室 203bの開放時期との位相差は、 本実施形態に限定されるわけではなぐ適宜調整することができる。実用性を考慮す ると、固定側ラップ 202の巻き終わりの位置 (インボリユートの段差)は、旋回側ラップ 2 01の巻き終わりの位置力も巻き始め側に 210度〜 330度進んだ位置に定めることが できる。これにより、各膨張室 203a, 203bの膨張比が所望の値に設定される。
[0089] このように、本実施形態においても、内壁側膨張室 203aと外壁側膨張室 203bとは 、吸入完了時の容積が等しぐ吐出開始時の容積が異なっている。その結果、内壁 側膨張室 203aと外壁側膨張室 203bとは、膨張比が異なって!/、る。
[0090] したがって、本実施形態によっても、スクロール膨張機の過膨張または不足膨張に よる動力回収性能の低下を抑え、高効率な冷凍サイクル装置を提供することができる
[0091] ところで、実施形態 1および 2においては、固定スクロール 22の内壁 202aの最外周 部のインボリユートラップ終了位置を変更するに際し、固定スクロール 22のラップ 202 の最外周部の形状を、従来の形状力 変化させることとしている。具体的には、固定 スクロール 22のラップ 202の最外周部の一部を削り、インボリユートの段差を形成す ることとしている。本実施形態によれば、上記段差は固定スクロール 22のラップ 202 のうち肉厚な部分に形成されている。そのため、従来の形状から変化させても、ラップ 202の壁厚に大きな変化はないので、従来通りのラップ強度を保つことができ、高い 信頼性を維持することができる。 [0092] (実施の形態 3)
図 10は、実施の形態 3に係るスクロール膨張機の旋回スクロール 21および固定ス クロール 22の横断面図である。その他の構成については実施の形態 1と同様である ので、それらの説明は省略する。
[0093] 図 10も図 3Aと同様、最内側の内壁側膨張室 203aおよび外壁側膨張室 203bが、 吸入過程力 膨張過程へ移る瞬間を表している。本実施形態においても、内壁側膨 張室 203aと外壁側膨張室 203bとは同時に閉じられ、それら 2室の閉じ込み容積は 等しい。上記膨張室 203a, 203bも、容積変化をしながらスクロール 21, 22の外周 部へ移動する。そして、最終的に、最外周部で旋回側ラップ 201と固定側ラップ 202 との接触面が消滅する。
[0094] 本実施形態では、固定側ラップ 202の内壁 202aは、吐出路 206の近傍までインポ リュートラップで構成される。すなわち、吐出路 206の近傍まで内壁 202aは滑らかに 連続しており、段差は生じていない。
[0095] 本実施形態では、第 1接触面 204 (旋回側ラップ 201の内壁 201aと固定側ラップ 2 02の外壁 202bとの接触面)が消滅する位置 204eと、第 2接触面 205 (旋回側ラップ 201の外壁 201bと固定側ラップ 202の内壁 202aとの接触面)が消滅する位置 205e とは、約 90度ずれている。第 2接触面 205が消滅する位置 205eは、第 1接触面 204 が消滅する位置 204eに対して、ラップの巻き始め側に約 90度ずれている(好適な範 囲は 30度〜 150度)。旋回側ラップ 201の外壁 201bは、第 2接触面 205が消滅する 位置 205eで不連続になっており、当該位置 205eにてインボリユートラップを終了さ せている。当該位置 205eにおいて、インボリユートの段差が生じている。
[0096] これにより、内壁側膨張室 203aの開放時期に比べて、外壁側膨張室 203bの開放 時期は遅くなる。そのため、内壁側膨張室 203aの開放時の容積に比べて、外壁側 膨張室 203bの開放時の容積は大きくなる。
[0097] このように、本実施形態においても、内壁側膨張室 203aと外壁側膨張室 203bとは 、吸入完了時の容積が等しぐ吐出開始時の容積が異なっている。その結果、内壁 側膨張室 203aと外壁側膨張室 203bとは、膨張比が異なって!/、る。
[0098] 本実施形態によっても、スクロール膨張機の過膨張または不足膨張による動力回 収性能の低下を抑え、高効率な冷凍サイクル装置を提供することができる。
[0099] なお、第 1接触面 204の消滅位置 204eと第 2接触面 205の消滅位置 205eとが 18 0度より大きくずれるように、旋回側ラップ 201の外壁 201bのインボリユートラップを終 了させることも可能である。例えば、第 1接触面 204が消滅する位置 204eに対して、 第 2接触面 205が消滅する位置 205eを、ラップの巻き始め側に 210度〜 330度ずら すことができる。この場合、内壁側膨張室 203aの開放時期に比べて、外壁側膨張室 203bの開放時期は早くなる。そのため、内壁側膨張室 203aの開放時の容積に比 ベて、外壁側膨張室 203bの開放時の容積を小さくすることができる。このような構成 であっても、内壁側膨張室 203aと外壁側膨張室 203bとの膨張比を違えることができ る。
[0100] なお、本実施形態では、旋回側ラップ 201の外壁 201bの最外周部のインボリユート ラップ終了位置を変更するに際して、旋回側ラップ 201の最外周部の形状を従来の 形状力も変化させているが、旋回側ラップ 201の最外周部は加工作業が比較的容易 な箇所である。そのため、内壁側膨張室 203aおよび外壁側膨張室 203bの膨張比 の比率を、比較的簡単な加工作業で設定することが可能となる。
[0101] (実施の形態 4)
図 11に示すように、実施の形態 4に係るスクロール膨張機は、旋回側ラップ 201の 内壁 201aの形状を変更することにより、内壁側膨張室 203aの吸入完了時の閉じ込 み容積と外壁側膨張室 203bの吸入完了時の閉じ込み容積とが異なるようにしたもの である。
[0102] 本実施形態では、旋回側ラップ 201の内壁 201aは、吸入路 207の近傍 (具体的に は伸開角 180度未満の巻き始め部)では、図中二点鎖線で示される通常のインボリ ユートラップ (所定のインボリユートにしたがって渦巻状に延びるラップ)より深く削った 円弧等で形成され、途中から通常のインボリユートラップで形成されている。一方、旋 回側ラップ 201の外壁 201bは、全域が通常のインボリユートラップで形成されている 。旋回側ラップ 201の巻き始め部は、インボリユート曲線力も外れるようにシャフト 14 の半径方向外向きに迫り出している内壁 201aと、インボリユート曲線に従う外壁 201 bとを含んでいる。つまり、旋回側ラップ 201の巻き始め部の肉厚が内壁 201a側から 減じられ、固定側ラップ 202の巻き始め部の肉厚よりも小さくなつている。また、固定 側ラップ 202の内壁 202aおよび外壁 202bも、通常のインボリユートラップで形成され ている。
[0103] なお、図示していないが、内壁側膨張室 203aと外壁側膨張室 203bとは、同時に 吐出路 206へと開放され、開放直前の内壁側膨張室 203aおよび外壁側膨張室 203 bの容積は互いに等しくなつて 、る。
[0104] 図 11は、旋回側ラップ 201の外壁 201bと固定側ラップ 202の内壁 202aとで形成 される外壁側膨張室 203bが、吸入過程力も膨張過程へ移る瞬間を表している。旋 回側ラップ 201の外壁 201bと固定側ラップ 202の内壁 202aとの接触面、すなわち、 閉じ込みの接点 Toは、図示の固定側ラップ 202の内壁伸開角 ¥sで生じる。
[0105] ところで、旋回側ラップ 201の内壁 201aが通常のインボリユートラップで形成されて いれば、旋回側ラップ 201の内壁 201aと固定側ラップ 202の外壁 202bとで形成さ れる内壁側膨張室 203aの閉じ込みの接点、すなわち、内壁側膨張室 203aが吸入 過程から膨張過程へ移るときの接点は、旋回側ラップ 201の内壁伸開角が固定側ラ ップ 202の内壁伸開角 ¥sと等しい位置で生じる。
[0106] しかし、旋回側ラップ 201の内壁 201aは、巻き始め近傍においてインボリユートラッ プより深く削った円弧等で形成され、途中から通常のインボリユートラップで形成され ているので、通常の位置で閉じ込み接点が生じず、このインボリユートラップが始まる 伸開角 ¥mで、初めて接点 Tiが生じ、吸入過程から膨張過程へ移る。なお、図 11中 に示す伸開角 Ψπιは、内壁 201aがインボリユート曲線に従っていると仮定した場合 における、当該内壁 201aの伸開角を表すものとする。このことは図 12に示される第 5 実施形態でも同様である。
[0107] 旋回側ラップ 201の内壁 201aが固定側ラップ 202の外壁 202bと最初に接点 Tiを 生じるときの旋回側ラップ 201の伸開角 ¥mは、旋回側ラップ 201の外壁 201bが固 定側ラップ 202の内壁 202aと最初に接点 Toを生じるときの旋回側ラップの伸開角 Ψ sよりち大きい。
[0108] 旋回スクロール 21の旋回に伴って、始めに接点 Toが生じ、その後に遅れて接点 Ti が生じる。そのため、接点 Tiの発生に伴って形成される内壁側膨張室 203aは、先に 接点 Toの発生に伴って形成された外壁側膨張室 203bよりも、吸入完了時の閉じ込 み容積が大きくなる。
[0109] 本実施形態では、内壁側膨張室 203aと外壁側膨張室 203bとは、同時に吐出路 2 06へと開放され、開放時の両膨張室 203a, 203bの容積(吐出開始時の容積)は等 しい。一方、上述したように、内壁側膨張室 203aおよび外壁側膨張室 203bの吸入 完了時の閉じ込み容積は、互いに異なっている。その結果、内壁側膨張室 203aお よび外壁側膨張室 203bの膨張比は、互いに異なっている。
[0110] したがって、本実施形態においても、スクロール膨張機の過膨張、不足膨張による 動力回収性能の低下を抑え、高効率な冷凍サイクル装置を提供することができる。
[0111] また、旋回側ラップ 201と固定側ラップ 202との接点が離れる瞬間は、吐出圧力と 膨張室 203a, 203bが開放される時の膨張室内圧力との圧力差が振動源となり、振 動が生じるおそれがある。しかし、本実施形態によれば、内壁側膨張室 203aおよび 外壁側膨張室 203bの閉じ込み容積を違えつつ、両膨張室 203a, 203bを同時に開 放することとしている。そのため、両膨張室 203a, 203bを交互に開放する場合と比 較して、膨張機構の振動を抑制することができる。
[0112] なお、内壁伸開角 Ψπι, ¥sは、伸開角 =0度からの角度を表記するものであっても よいし、そうでなくともよい。すなわち、所定の伸開角を基準としたときの伸開角を内 壁伸開角 Ψπι, ψ 5と表記してもよぐ本明細書中ではこの表記方法を採用している。 伸開角 =0度の位置、つまり、インボリユート曲線の開始位置を厳密に規定することが 難しい場合がある力もである。なお、所定の伸開角とは、例えば 0度〜 45度の間に定 められる伸開角でありうる。一例を挙げると伸開角 =約 20度を所定の伸開角として扱 うことができる。
[0113] (実施の形態 5)
図 12に示すように、実施の形態 5に係るスクロール膨張機は、固定側ラップ 202の 内壁 202aの形状を変更することにより、内壁側膨張室 203aの吸入完了時の閉じ込 み容積と外壁側膨張室 203bの吸入完了時の閉じ込み容積とが異なるようにしたもの である。
[0114] 本実施形態では、固定側ラップ 202の内壁 202aは、吸入路 207の近傍 (巻き始め 部)では、図中二点鎖線で示される通常のインボリユートラップより深く削った円弧等 で形成され、途中から通常のインボリユートラップで形成されている。一方、固定側ラ ップ 202の外壁 202bは通常のインボリユートラップで形成されて 、る。固定側ラップ 2 02の巻き始め部は、インボリユート曲線力 外れるようにシャフト 14の半径方向外向 きに迫り出して 、る内壁 202aと、インボリユート曲線に従う外壁 202bとを含んで 、る 。つまり、固定側ラップ 202の巻き始め部の肉厚が内壁 202a側力も減じられ、旋回 側ラップ 201の巻き始め部の肉厚よりも小さくなつている。旋回側ラップ 201の内壁 2 Olaおよび外壁 201bは、通常のインボリユートラップで形成されている。
[0115] 図示していないが、本実施形態においても、内壁側膨張室 203aと外壁側膨張室 2 03bとは、同時に吐出路 206へと開放され、開放時の内壁側膨張室 203aおよび外 壁側膨張室 203bの容積は互いに等しくなつて 、る。
[0116] 図 12は、固定側ラップ 202の外壁 202bと旋回側ラップ 201の内壁 201aとで形成 される外壁側膨張室 203aが、吸入過程力も膨張過程へ移る瞬間を表している。固 定側ラップ 202の外壁 202bと旋回側ラップ 201の内壁 201aとの接触面、すなわち、 閉じ込みの接点 Tiは、図示の旋回側ラップ 201の内壁伸開角 ¥mで生じる。
[0117] ところで、固定側ラップ 202の内壁 202aが通常のインボリユートラップで形成されて いれば、固定側ラップ 202の内壁 202aと旋回側ラップ 201の外壁 201bとで形成さ れる外壁側膨張室 203bの閉じ込みの接点、すなわち、外壁側膨張室 203bが吸入 過程から膨張過程へ移るときの接点は、固定側ラップ 202の内壁伸開角が旋回側ラ ップ 201の内壁伸開角 ¥mと等し 、位置で生じる。
[0118] しかし、固定側ラップ 202の内壁 202aは、巻き始め近傍においてインボリユートラッ プより深く削った円弧等で形成され、途中から通常のインボリユートラップで形成され ているので、通常の位置で閉じ込み接点が生じず、このインボリユートラップが始まる 伸開角 ψ 3で、初めて接点 Toが生じ、吸入過程から膨張過程へ移る。
[0119] 固定側ラップ 202の内壁 202aが旋回側ラップ 201の外壁 201bと最初に接点 Toを 生じるときの固定側ラップ 202の伸開角 ¥sは、固定側ラップ 202の外壁 202bが旋 回側ラップ 201の内壁 201aと最初に接点 Tiを生じるときの旋回側ラップ 201の伸開 角 ¥mよりも大きい。 [0120] 旋回スクロール 21の旋回に伴って、始めに接点 Tiが生じ、その後に遅れて接点 To が生じる。そのため、接点 Toの発生に伴って形成される外壁側膨張室 203bは、先 に接点 Tiを生じて形成される内壁側膨張室 203aよりも、その閉じ込み容積が大きく なる。
[0121] 本実施形態では、内壁側膨張室 203aと外壁側膨張室 203bとは、同時に吐出路 2 06へと開放され、開放時の両膨張室 203a, 203bの容積は等しい。一方、上述した ように、内壁側膨張室 203aおよび外壁側膨張室 203bの吸入完了時の閉じ込み容 積は、互いに異なっている。その結果、内壁側膨張室 203aおよび外壁側膨張室 20 3bの膨張比は、互いに異なっている。
[0122] したがって、本実施形態においても、スクロール膨張機の過膨張、不足膨張による 動力回収性能の低下を抑え、高効率な冷凍サイクル装置を提供することができる。
[0123] また、実施の形態 4と同様、両膨張室 203a, 203bを交互に開放する場合と比較し て、膨張機構の振動を抑制することができる。
[0124] (実施の形態 6)
上記実施形態 4および 5以外の形態であっても、スクロール膨張機の 2つの膨張室 203a, 203bの吸入完了時の閉じ込み容積を変えることができる。図 13に示すように 、実施の形態 6に係るスクロール膨張機は、旋回側ラップ 201の外壁 201bの形状を 変更することにより、内壁側膨張室 203aの吸入完了時の閉じ込み容積と外壁側膨 張室 203bの吸入完了時の閉じ込み容積とが異なるようにしたものである。
[0125] 本実施形態では、旋回側ラップ 201の外壁 201bは、吸入路 207の近傍 (巻き始め 部)では、図中二点鎖線で示される通常のインボリユートラップより深く削った円弧等 で形成され、途中から通常のインボリユートラップで形成されている。旋回側ラップ 20 1の巻き始め部は、インボリユート曲線力も外れるようにシャフト 14の半径方向内向き に引き下がつている外壁 201bと、インボリユート曲線に従う内壁 201aとを含んでいる
[0126] これにより、旋回側ラップ 201の内壁 201aと固定側ラップ 202の外壁 202bとの接 点 Tiが生じるときの旋回側ラップ 201の内壁伸開角 ¥mは、旋回側ラップ 201の外 壁 201bと固定側ラップ 202の内壁 202aとの接点 Toが生じるときの固定側ラップ 20 2の内壁伸開角 ¥sより、小さくなつている。
[0127] このように、本実施形態においても、内壁側膨張室 203aおよび外壁側膨張室 203 bの吸入完了時の閉じ込み容積を異ならせ、かつ、両膨張室 203a, 203bを同時に 開放させることができ、両膨張室 203a, 203bの膨張比を違えることができる。
[0128] したがって、本実施形態においても、実施の形態 4および 5と同様の効果を得ること ができる。
[0129] (実施の形態 7)
図 14に示すように、実施の形態 7に係るスクロール膨張機は、固定側ラップ 202の 外壁 202bの形状を変更することにより、内壁側膨張室 203aおよび外壁側膨張室 20 3bの吸入完了時の閉じ込み容積が異なるようにしたものである。
[0130] 本実施形態では、固定側ラップ 202の外壁 202bは、吸入路 207の近傍 (巻き始め 部)では、図中二点鎖線で示される通常のインボリユートラップより深く削った円弧等 で形成され、途中から通常のインボリユートラップで形成されている。固定側ラップ 20 2の巻き始め部は、インボリユート曲線力も外れるようにシャフト 14の半径方向内向き に引き下がつている外壁 202bと、インボリユート曲線に従う内壁 202aとを含んでいる
[0131] これにより、旋回側ラップ 201の内壁 201aと固定側ラップ 202の外壁 202bとの接 点 Tiが生じるときの旋回側ラップ 201の内壁伸開角 ¥mは、旋回側ラップ 201の外 壁 201bと固定側ラップ 202の内壁 202aとの接点 Toが生じるときの固定側ラップ 20 2の内壁伸開角 ¥sより、大きくなつている。
[0132] このように、本実施形態においても、内壁側膨張室 203aおよび外壁側膨張室 203 bの吸入完了時の閉じ込み容積を異ならせ、かつ、両膨張室 203a, 203bを同時に 開放させることができ、両膨張室 203a, 203bの膨張比を違えることができる。
[0133] したがって、本実施形態においても、実施の形態 4および 5と同様の効果を得ること ができる。
[0134] なお、本発明のスクロール膨張機は、上記各実施の形態に限定されるものではなく
、他に種々の変形が可能である。
[0135] 本発明に係るスクロール膨張機は、内壁側膨張室 203aおよび外壁側膨張室 203 bの吸入完了時の閉じ込み容積が互いに異なり、かつ、両膨張室 203a, 203bの開 放時の容積が互いに異なるものであってもよ 、。
産業上の利用可能性
本発明は、圧縮性流体を膨張させることによって動力エネルギーを回収するスクロ ール膨張機、およびそれを備えた冷凍サイクル装置にっ 、て有用である。

Claims

請求の範囲
[1] 第 1の渦巻状ラップを有する第 1のスクロールと、
前記第 1の渦巻状ラップと嚙み合う第 2の渦巻状ラップを有し、前記第 1のスクロー ルとともに前記第 1の渦巻状ラップの内壁側および外壁側にそれぞれ内壁側膨張室 および外壁側膨張室を区画する第 2のスクロールと、を備え、
前記第 1のスクロールが前記第 2のスクロールに対して相対的に旋回することによつ て、前記内壁側膨張室および前記外壁側膨張室が前記各スクロールの中心側から 外周側に向力つて容積を増加させながら移動するように構成され、
前記内壁側膨張室の膨張比と前記外壁側膨張室の膨張比とが異なるように、前記 第 1の渦巻状ラップと前記第 2の渦巻状ラップの形状が定められている、スクロール 膨張機。
[2] 前記内壁側膨張室と前記外壁側膨張室とは、吸入完了時の容積が互いに等しぐ 吐出開始時の容積が互いに異なって 、る、請求項 1に記載のスクロール膨張機。
[3] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが同時に発生し、 前記第 2の渦巻状ラップの内壁にインボリユートの段差を設けることにより、前記第 1 の接触面が前記各スクロールの中心側から外周側に移動してから消滅する第 1の消 滅位置に対し、前記第 2の接触面が前記各スクロールの中心側から外周側に移動し て力 消滅する第 2の消滅位置が、前記第 2の渦巻状ラップのラップ巻き始め側に向 力つて 0度よりも大きくかつ 180度よりも小さい所定角度、または 180度よりも大きくか つ 360度よりも小さい所定角度だけずれている、請求項 2に記載のスクロール膨張機
[4] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが同時に発生し、 前記第 1の渦巻状ラップの外壁にインボリユートの段差を設けることにより、前記第 1 の接触面が前記各スクロールの中心側から外周側に移動してから消滅する第 1の消 滅位置に対し、前記第 2の接触面が前記各スクロールの中心側から外周側に移動し て力 消滅する第 2の消滅位置が、前記第 2の渦巻状ラップのラップ巻き始め側へ向 力つて 0度よりも大きくかつ 180度よりも小さい所定角度、または 180度よりも大きくか つ 360度よりも小さい所定角度だけずれている、請求項 2に記載のスクロール膨張機
[5] 前記内壁側膨張室の開放時期と前記外壁側膨張室の開放時期との位相差が、シ ャフトの回転角度で 30度〜 150度となるように、前記第 1および第 2の渦巻き状ラップ の形状調整がなされている、請求項 1記載のスクロール膨張機。
[6] 前記内壁側膨張室と前記外壁側膨張室とは、吸入完了時の容積が互いに異なり、 吐出開始時の容積が互いに等 、、請求項 1に記載のスクロール膨張機。
[7] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが発生し、 前記第 1の接触面が発生する位置における前記第 1の渦巻状ラップの内壁伸開角 は、前記第 2の接触面が発生する位置における前記第 2の渦巻状ラップの内壁伸開 角よりも大きぐ
前記第 1の接触面と前記第 2の接触面とは、前記各スクロールの中心側カゝら外周側 に移動してから同時に消滅する、請求項 6に記載のスクロール膨張機。
[8] 前記第 2のスクロールに対する前記第 1のスクロールの相対的な旋回に伴って、前 記各スクロールの中心側において、前記第 1の渦巻状ラップの内壁と前記第 2の渦 卷状ラップの外壁との接触面である第 1の接触面と、前記第 1の渦巻状ラップの外壁 と前記第 2の渦巻状ラップの内壁との接触面である第 2の接触面とが発生し、 前記第 1の接触面が発生する位置における前記第 1の渦巻状ラップの内壁伸開角 は、前記第 2の接触面が発生する位置における前記第 2の渦巻状ラップの内壁伸開 角よりも小さく、 前記第 1の接触面と前記第 2の接触面とは、前記各スクロールの中心側カゝら外周側 に移動してから同時に消滅する、請求項 6に記載のスクロール膨張機。
圧縮機、放熱器、膨張機、および蒸発器を順に配管で接続してなる冷凍サイクル 装置であって、
前記膨張機は、請求項 1に記載のスクロール膨張機によって構成されている、冷凍 サイクル装置。
PCT/JP2007/052035 2006-02-23 2007-02-06 スクロール膨張機および冷凍サイクル装置 WO2007097188A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07713864.2A EP1992783B8 (en) 2006-02-23 2007-02-06 Scroll expander and refrigeration cycle apparatus
JP2008501669A JP4804531B2 (ja) 2006-02-23 2007-02-06 スクロール膨張機および冷凍サイクル装置
CN2007800067029A CN101389828B (zh) 2006-02-23 2007-02-06 涡旋式膨胀机及制冷循环装置
US12/279,945 US8177533B2 (en) 2006-02-23 2007-02-06 Scroll expander and refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-046542 2006-02-23
JP2006046542 2006-02-23

Publications (1)

Publication Number Publication Date
WO2007097188A1 true WO2007097188A1 (ja) 2007-08-30

Family

ID=38437227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052035 WO2007097188A1 (ja) 2006-02-23 2007-02-06 スクロール膨張機および冷凍サイクル装置

Country Status (5)

Country Link
US (1) US8177533B2 (ja)
EP (1) EP1992783B8 (ja)
JP (1) JP4804531B2 (ja)
CN (1) CN101389828B (ja)
WO (1) WO2007097188A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110886623A (zh) * 2018-09-07 2020-03-17 涡旋技研有限公司 涡旋式膨胀机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8408024B2 (en) * 2008-05-23 2013-04-02 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
JP2011038480A (ja) * 2009-08-12 2011-02-24 Sanden Corp スクロール型流体機械
CN103046963B (zh) * 2013-01-14 2016-08-17 澳能电机发展有限公司 一种螺旋式车用压缩空气动力发动机
CN105089705B (zh) * 2015-09-11 2018-03-06 山东科灵节能装备股份有限公司 静涡盘及涡旋膨胀机及发电机组
CN107829784B (zh) * 2017-05-12 2020-03-27 南昌大学 一种涡旋膨胀机涡旋盘
CN111485952A (zh) * 2019-01-25 2020-08-04 艾默生环境优化技术(苏州)有限公司 膨胀机
CN112554956B (zh) * 2020-11-26 2022-06-07 思科涡旋科技(杭州)有限公司 一种减焓稳速涡旋膨胀机及减焓稳速方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515945B2 (ja) * 1984-05-26 1993-03-03 Daikin Ind Ltd
JPH0814171A (ja) * 1994-06-24 1996-01-16 Daikin Ind Ltd 横形スクロール圧縮機
JP3170111B2 (ja) * 1993-09-24 2001-05-28 株式会社日立製作所 スクロール圧縮機
JP2002364563A (ja) 2001-06-08 2002-12-18 Daikin Ind Ltd スクロール型流体機械及び冷凍装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172404A (ja) * 1982-04-05 1983-10-11 Hitachi Ltd スクロ−ル流体機械
AU567905B2 (en) * 1983-07-25 1987-12-10 Copeland Corporation Scroll pump
JPH03170111A (ja) * 1989-11-30 1991-07-23 Nhk Spring Co Ltd クッション材及びその製造方法
US5467613A (en) * 1994-04-05 1995-11-21 Carrier Corporation Two phase flow turbine
JPH0828461A (ja) 1994-07-11 1996-01-30 Toshiba Corp スクロール膨張機
US6439864B1 (en) * 1999-01-11 2002-08-27 Air Squared, Inc. Two stage scroll vacuum pump with improved pressure ratio and performance
JP4599764B2 (ja) * 2001-06-08 2010-12-15 ダイキン工業株式会社 スクロール型流体機械及び冷凍装置
US6736622B1 (en) * 2003-05-28 2004-05-18 Scroll Technologies Scroll compressor with offset scroll members
US7249459B2 (en) * 2003-06-20 2007-07-31 Denso Corporation Fluid machine for converting heat energy into mechanical rotational force

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515945B2 (ja) * 1984-05-26 1993-03-03 Daikin Ind Ltd
JP3170111B2 (ja) * 1993-09-24 2001-05-28 株式会社日立製作所 スクロール圧縮機
JPH0814171A (ja) * 1994-06-24 1996-01-16 Daikin Ind Ltd 横形スクロール圧縮機
JP2002364563A (ja) 2001-06-08 2002-12-18 Daikin Ind Ltd スクロール型流体機械及び冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1992783A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110886623A (zh) * 2018-09-07 2020-03-17 涡旋技研有限公司 涡旋式膨胀机

Also Published As

Publication number Publication date
US8177533B2 (en) 2012-05-15
JP4804531B2 (ja) 2011-11-02
JPWO2007097188A1 (ja) 2009-07-09
EP1992783B8 (en) 2014-02-26
CN101389828B (zh) 2011-05-11
CN101389828A (zh) 2009-03-18
EP1992783B1 (en) 2013-09-25
EP1992783A4 (en) 2012-06-06
US20100223948A1 (en) 2010-09-09
EP1992783A1 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
WO2007097188A1 (ja) スクロール膨張機および冷凍サイクル装置
US6892454B2 (en) Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
WO2005038254A2 (ja) スクロール圧縮機
JP2004190559A (ja) 容積型膨張機及び流体機械
JP5985068B2 (ja) スクロール圧縮機
JP2000329078A (ja) スクロール圧縮機
JPH10266980A (ja) スクロール式膨張機
US20240084801A1 (en) Scroll compressor with engineered shared communication port
JP2010265756A (ja) スクロール圧縮機
WO2011104879A1 (ja) スクロール圧縮機
JP6635095B2 (ja) 回転式圧縮機
US20110100025A1 (en) Fluid machine and refrigeration cycle apparatus
JP3291844B2 (ja) スクロール形流体機械
JP2006266165A (ja) スクロール圧縮機及びそれを用いた冷凍サイクル装置
JP4131561B2 (ja) スクロール圧縮機
WO2022230314A1 (ja) スクロール圧縮機
JPS6223588A (ja) スクロ−ル圧縮機
JP2000009065A (ja) スクロール型圧縮機
JP2010059944A (ja) 多段圧縮機
JP3560786B2 (ja) スクロール圧縮機
JP2001173584A (ja) スクロール圧縮機
KR100305369B1 (ko) 스크롤압축기의역회전방지구조
JP2006177595A (ja) 空気調和機
WO2019138502A1 (ja) スクロール圧縮機
JP2007315172A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008501669

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12279945

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780006702.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007713864

Country of ref document: EP